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A comparative assessment of SARIMA, LSTM RNN and Fb Prophet 

models to forecast total and peak monthly energy demand for India 
 

Abstract 

Selecting a suitable energy demand forecasting method is challenging due to the complex interplay of 

long-term trends, short-term seasonalities, and uncertainties. This paper compares four time-series 

models performance to predict total and peak monthly energy demand in India. Indian's Central 

Energy Authority’s (CEA) existing trend-based model is used as a baseline against (i) Seasonal Auto-

Regressive Integrated Moving Average (SARIMA), (ii) Long Short Term Memory Recurrent Neural 

Network (LSTM RNN) and (iii) Facebook (Fb) Prophet models. Using 108 months of training data to 

predict 24 months of unseen data, the CEA model performs well in predicting monthly total energy 

demand with low root-mean square error (RMSE 4.23 GWh) and mean absolute percentage error 

(MAPE, 3.4%), but significantly under predicts monthly peak energy demand (RMSE 13.31 GW, 

MAPE 7.2%). In contrast, Fb Prophet performs well for monthly total (RMSE 4.23 GWh, MAPE 3.3 

%) and peak demand (RMSE 6.51 GW, MAPE 3.01%). SARIMA and LSTM RNN have higher 

prediction errors than CEA and Fb Prophet. Thus, Fb Prophet is selected to develop future energy 

forecasts from 2019 to 2024, suggesting that India’s annual total and peak energy demand will likely 

increase at an annual growth rate of 3.9% and 4.5%, respectively. 

Keywords: Energy Demand Forecasting, SARIMA, LSTM RNN, Fb Prophet 

Highlights  

1. Performance assessment of the currently used trend-based model for developing India’s monthly 

total and peak energy demands forecasts.  

2. Compare the prediction performance of SARIMA, LSTM RNN and Fb Prophet models to 

forecast India’s total and peak monthly energy demand.  

3. Employ the most accurate model to develop future energy demand forecasts for India and its five 

electrical zones. 

List of Abbreviations 

Term Description 

FY Financial Year starting from 1st April of any given year to 31st March of the next year 

CAGR Cumulative Annual Growth Rate. It can be considered to be an equivalent growth rate 

which grows the initial investment into its final value assuming that the investment has 

compounded over this period 

 

RMSE 
Root Mean Square Error = √∑

|𝐴𝑡−𝐹𝑡|2

𝑛
𝑛
𝑡=1   

 

MAPE 

 

Mean Absolute Percentage Error MAPE =  
1

𝑛
∑

|𝐴𝑡−𝐹𝑡|

|𝐴𝑡|

𝑛
𝑡=1  where 𝐴𝑡 is the actual value, 𝐹𝑡 

is the forecast value, 𝑛 is the number of observations 

 

PEC 

 

 

Per Capita Energy Consumption is the total energy consumption for the year divided by 

the mid-year national population. 

 

EI Energy intensity is the quantity of energy required for generating a single unit of gross 

domestic product at constant prices. 
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1. Introduction  

Energy demand forecasting is defined as the process of employing historical demand data to predict 

future consumption levels using suitable statistical methods. Energy demand forecasts (EDFs) play a 

crucial role in planning and policy development for solving critical issues related to expansion of 

existing infrastructure, scheduling the operation of existing power plants and determining the structure 

of energy tariffs [1], [2]. Government agencies rely on accurate EDFs to allocate natural resources and 

power generation facilities across different regions. Resources under-allocation can create energy 

shortages causing power outages, whereas over-allocation can lead to wastage, both of which are 

undesirable for a region's socio-economic development. However, consistently producing accurate 

EDFs is a challenging task as uncertainties linked to various economic activities, climate change, and 

socio-economic and demographic factors produce considerable variations in daily and monthly energy 

demands when analysed across multiple years [3]. 

Depending on the length of the forecasting horizon, EDFs can be classified as long, medium or short 

term[3], [4]. Long term EDFs (several years ahead) are intended for developmental planning and 

making important decisions regarding resource allocation and capacity expansion [5]. Medium-term 

forecasts (several months to a year ahead) help in maintenance planning, fuel supply scheduling and 

peak demand management. Short-term forecasts (minutes to several hours ahead) are useful for the 

day-to-day operation of thermal power plants and the scheduling of renewable energy sources such as 

hydro and gas turbines [6], [7]. For example, accurate next-day forecasts enable producers to calculate 

the amount of power that needs to be purchased from the national power exchange, which is crucial 

for preventing supply interruptions, especially during peak demand periods[4], [8].  

In India, annual energy demand grew from 775 GWh in 2008-09 to 1,275 GWh in 2018-19, an overall 

growth of 65% at 5.1% CAGR [9]. Also, Indian government initiatives such as the unification of the 

national electrical grid and the creation of multiple green energy corridors have doubled the national 

electrical power generation capacity, from 169 GW in 2008 to 344 GW in 2018 (CAGR 8.6%) [10]. It 

is noteworthy that a considerable skewness exists in the distribution of India’s natural resources and 

its power generation facilities [4]. Roughly 70% of India’s electrical generation is coal based, and 

almost 70% of the coal is mined from central and eastern regions[11]. Besides, most of India’s grid-

connected renewable power is produced in the southern states of Karnataka (13.9 GW) and Tamil 

Nadu (12.7 GW) and the western state of Maharashtra (9.3 GW), mainly due to wind and solar energy 

[12]. The Indian national grid electrical consists of five zones (Figure 1), with the western zone 

accounting for the largest share (35%) of total installed electrical capacity followed by south (28%), 

north (25%), east (11%) and north-east (1%) zones respectively [13]. 
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Figure 1: (a) The five electrical zones of India and Treemaps showing the split-up of percentage split-up of (b) 

Electrical Generation Capacity (c) Total Energy Demand (Annual) (d) Peak Energy Demand (Annual) [13]. 

(The list of states and union territories belonging to the five electrical zones listed in Table A.1 in the appendix) 

The west zone accounts for the largest share of the total and peak energy demands annually, followed 

by north, south, east and north-east zones. It is seen that north, east and north-east zones have capacity 

deficits of 5%, 1%, and 1%, respectively. These shortfalls are met from the west and south zones that 

run 5% and 2% surpluses, respectively. Notably, the adverse effects of electrical capacity deficits are 

more significant for safeguarding power supply over shorter time intervals, such as hours and days. 

North, West and North East zones have a greater dependence on the national grid for achieving peak 

demand than total demand as indicated by their ((Peak/Total) >1) ratio.  

With the establishment of nationwide power exchange, zonal authorities have become more reliant on 

accurate EDFs to purchase additional power from the national exchange to balance production 

shortfalls and schedule the operation and maintenance of generation facilities. Inaccurate short to 

medium-term EDFs also contribute towards power outages and blackouts due to inefficient 

Formatted Table
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scheduling of fuel supply to the power plants [13]. With an anticipated increase of 10 GW in national 

peak energy demand every year, satisfying instantaneous power requirements shall become more 

challenging in the future. Nationwide estimates suggest that up to 13 GW (equivalent to 3.8 % annual 

electrical production) of power outages in India can be eliminated by improving forecasts accuracy, 

ensuring adequate fuel supply and enhancing coordination between various government and private 

agencies [10], [12], [13].  

1.1 Energy Demand Forecasting in India  

In India, the Central Electricity Authority (CEA), a constitutional body under the central ministry of 

power, is responsible for periodic energy demand forecasting. Each year, CEA publishes a load 

generation balance report (LGBR) providing zonal and state-wise monthly energy demand data for the 

previous year and forecasts for the following year. CEA relies on a simple trend-based model to 

forecast monthly values of total and peak energy demand for the next twelve months. In 2012,  

Rallapalli and Ghosh reported the CEA model's shortcomings for ignoring the effects of seasonality, 

non-stationarity and uncertainty present in power data. These issues often lead to a mismatch between 

the predicted and actual energy demand, increasing financial risk for the generation and distribution 

companies [4], [14]. For example, if forecasts are lower than actual demand, distribution companies 

are forced to purchase power from the deregulated power market at a higher price, reducing profit 

margins [15]. 

It has been highlighted that a sophisticated time series model such as Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) can reduce the estimation errors associated with the CEA 

model EDFs  [4]. However, with the development and improvement of several new time-series 

models in the past decade, it is unclear if SARIMA based EDFs can be improved further. To address 

this issue, we begin by presenting a concise review of existing literature in Section 2, comparing 

different energy demand forecasting approaches. Examining existing research helped select two 

widely adopted and a recently developed time series models to predict India’s monthly total and peak 

energy demand. Section 3 describes the data sources and methods. Section 4 contains the results, and  

Section 5 presents a discussion on the performance and suitability of the three time-series models and 

CEA’s trend-based model for energy demand forecasting applications. Finally, we employ the most 

accurate model to develop future energy demand forecasts for India and its five electrical zones. 

Concluding remarks are presented in Section 6.  

2. Review of energy demand forecasting models 

Researchers have employed a number of energy forecasting techniques depending on the nature, 

quality and time resolution of available data. We observe that two fundamental approaches are 

generally used to develop EDFs, i.e. causal and time series models.  Causal models are used for 

developing cause-effect relationships between energy demand and input explanatory variables related 

to weather, demography and socio-economic factors [16]. In contrast, time series models predict 

future energy demand values by regressing their previously observed values [4].  

Multiple Linear Regression (MLR), Support Vector Regression (SVR) and Artificial Neural Networks 

(ANN) are the most commonly used causal models for energy demand forecasting. MLR is the easiest 

to implement and provides estimates for parameter significance and model accuracy [17], [18]. 

However, as MLR approximates a linear function between the inputs and the output, it does not 

produce satisfactory results for datasets containing significant amounts of non-linearity and 

interaction effects [16]. In such situations, adaptive models like SVM and ANN are preferred [15]. 

ANN contains a collection of nodes that can mimic neurons' working in a biological brain [19]. 
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Several ANN architectures have been tested for energy demand forecasting as they are highly 

adaptive and efficient in learning complex dependencies between various model inputs and the output 

[20]–[22]. For instance, Szoplik developed a multi-layer perceptron (MLP) ANN model to predict the 

natural gas consumption in Szczecin [Poland] considering the weather and temporal (month, day of 

the week, hour) effects. The authors tested several MLP configurations and identified MLP (22-36-1) 

containing 22 input neurons, 36 hidden neurons, and one output neuron as the most accurate model 

configuration [23]. Similarly, Hamzaçebi et al. developed four adaptive ANN models to handle non-

linear trends and seasonality effects in Turkey’s energy demand data to develop monthly EDFs 

between 2015-2018 [19]. Intelligent optimization techniques like grid search and nature-inspired 

heuristics have also been applied for optimal hyperparameter selection to enhance ANN performance 

[24]–[27]. For instance, Muralitharan et al. compared the performance characteristics of a standalone 

ANN to a Genetic Algorithm (GA), and Particle Swarm Optimisation (PSO) assisted ANN such that 

GA and PSO selected optimal hyperparameters. Interestingly, both NN-GA and NN-PSO displayed 

higher prediction accuracy than conventional ANN.  NN-GA faired better for short term load 

forecasting (hourly, daily), whereas NN-PSO performed better for long term EDS applications 

(months, years) [28] 

The second class of forecasting models, i.e. time series models, are also known as top-down models. 

They can develop an auto-regressive relationship between the present value and its previous lagged 

values without relying on other exogenous variables. ARIMA is the most general and widely adopted 

time-series models to forecast future energy consumption [29]. Proposed by Box and Jenkins, 

ARIMA deconstructs a given time series to separate its trend, seasonality and error components which 

are then extrapolated to obtain future values. Owing to the presence of several tuning parameters to 

account for seasonal and non-seasonal features in the data, ARIMA based models have been used in 

numerous studies for energy demand forecasting, especially for medium and long-range forecasting 

horizons [30]–[33]. For example, Ghosh used the multiplicative Holt-Winters multiplicative 

exponential smoothening (HWMES) and Seasonal ARIMA (SARIMA) model to predict north India’s 

hourly and monthly peak energy demand. SARIMA forecasts were found more accurate than 

HWMES for both daily and hourly forecasting horizons [8], [14]. Similarly, the multiplicative 

SARIMA model predicted India's regional monthly peak energy demand with higher accuracy than 

the CEA’s trend-based model [4]. However, ARIMA based models have received some criticism for 

being ‘backwards-looking’ and being poor at predicting outputs beyond turning points unless the 

turning point signifies a long term trend change [34]. For instance, ARIMA forecasts were inferior to 

SVR and ANN predictions for non-linear short term (0.5 h, 1.0h and 24h) electricity demands in 

Queensland, Australia [35]. Some researchers have incorporated grey set theory with ARIMA models 

to resolve uncertainty, missing data, and randomness to achieve higher prediction accuracy [36], [37]. 

For example, Wang et al. applied single-linear, hybrid-linear and non-linear forecasting techniques 

based on grey theory to forecast India and China future energy demands. All three models displayed a 

closer fit, a low error rate and a high fitting precision than the standalone ARIMA model [1].  

Another class of neural network architecture known as Long Short Term Memory (LSTM) has gained 

popularity in energy demand forecasting due to its ability to accurately classify, process and forecast 

time series data [38]. Unlike standard feed-forward architecture present in ANN, LSTM uses an 

advanced, recurrent neural network [RNN] architecture where connections between different nodes 

create a directed graph [DAG1] along a temporal sequence [39]. LSTM RNN uses its internal state 

 

1 DAG: Graph consisting of vertices and edges with edges directed from one vertex to another such that the         

graph does not contain any closed loops 
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memory to process variable lengths sequences on inputs to make future predictions. LSTM RNN is 

modular and highly efficient in handling non-linear complexities and short- and long-term 

dependencies present in electricity time series data. For example, a recent study found LSTM RNN 

outperforming ANN, RNN and SVM models to predict city-level daily electricity demand for 

Chandigarh, India [40]. Similarly, a hybrid model combining a convolutional neural network with 

LSTM delivered much higher prediction accuracy than MLR, Random Forest, Decision Tree and 

MLP models for predicting residential hourly electricity consumption [41]. Kim et al. proposed 

another combined LSTM-CNN EDF framework capable of processing contextual information like 

temperature, humidity, season etc., apart from historical power time-series data [2]. Similar to ANN, 

hyperparameter optimisation can also enhance LSTM performance. Recently, Abbasimehr et al. 

proposed a flexible multi-layer LSTM network using a grid search method to select the best 

hyperparameters combination. The optimised model predictions were superior to other contemporary 

ARIMA, ANN and SVM models [42]. In terms of model training and application, LSTM RNN 

provides more options for parameter tuning than the SARIMA based models. However, LSTM RNN 

requires a much larger training dataset and a much longer training period than SARIMA based models 

[43].  

A recent development, i.e. Fb Prophet time-series model, promises to solve some of the issues with 

SARIMA and LSTM RNN models due to its fast computation and high prediction accuracy. 

Introduced by Taylor and Letham, Fb Prophet is based on an additive framework in which non-linear 

trends are fitted with yearly, weekly and daily seasonality, plus holiday effects [44].  Fb Prophet 

exhibits high robustness to missing data, shifts in trends and large outliers, making it an ideal 

candidate for energy forecasting applications. A recent study compared Fb Prophet's performance 

with the classical Holt-Winters model to forecast Kuwait power plants' long-term peak energy loads. 

Fb Prophet model outperformed Holt-Winters predictions over RMSE, MAPE, mean absolute error 

and 𝑅2 (coefficient of determination) criteria. Further, Fb Prophet displayed better generalizability 

than Holt-Winters even after introducing random white noise into the dataset[45] . Some studies have 

also employed hybrid approaches combining multiple prediction models to achieve greater flexibility 

and higher prediction accuracy than a single model[41], [46]–[51]. For example, Fb Prophet was 

merged with a Kalman filter to develop an enhanced algorithm for predicting maximum daily power 

demand in China's power cloud technology company [52]. Similarly, Zhu et al. developed a time 

series model based on the EMD-Fbprophet-LSTM for short term power consumption prediction. The 

final EDFs are calculated based on the individual weights of Fbprophet and LSTM model predictions 

[53]. More in-depth discussions surrounding the strengths and weaknesses of various energy 

forecasting models can be found by referring to the works of Suganthi and Samuel, Deb et al. and 

Ghalehkhondabi et al. [16], [29], [54]. 

The vast majority of studies aimed at energy demand forecasting applications in India have used 

HWMES, ARIMA based models such as SARIMA and hybrid Grey-ARIMA models and ANN 

models [1], [3], [4], [8], [14], [15], [36], [37], [47]. To date, no study has examined the performance 

of LSTM RNN and Fb Prophet models for regional and national level energy demand forecasting in 

India. In view of the proven efficacy of SARIMA, LSTM RNN and Fb Prophet models, we perform a 

comparative assessment to select a suitable method to forecast India's monthly total and peak energy 

demand. We also compare the prediction performance of these three models with CEA’s trend-based 

model. 
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3. Method and Materials 

Data for state-level monthly total and peak energy demand for 2008 to 2019 are sourced from eleven 

previous CEA load generation balance reports to conduct this research. State-level data are added 

together to produce data at the national level and for the five electrical zones. Referring to Table 1 and 

Figure 2, India’s annual energy demand grew 64% during FY: 2008-09 to FY: 2018-19, whereas 

energy supply rose by 84%, reducing the demand-supply gap from 11.04% to 0.6%. Likewise, annual 

peak energy demand grew 61% from FY: 2008-09 to FY: 2018-19, whereas peak energy supply rose 

by 86%, dwindling the peak demand-supply gap from 13.8% to 0.8%.  

Table 1: Year-wise total and peak energy demand for India (FY: 2008-09 to FY: 2018-19) 

  

(a) (b) 

Figure 2: Month-wise (a) Total Energy Demand (b) Peak Energy Demand                                                 

for India during 2008-2019 

 

Statistical properties of total and peak energy demand data from 2008-2019 are summarized in Table 

A.2 in the appendix. The following section contains a technical description of the three time-series 

models employed in this study.    

Financial 

Year 

2008-

2009 

2009-

2010 

2010-

2011 

2011-

2012 

2012-

2013 

2013-

2014 

2014-

2015 

2015-

2016 

2016-

2017 

2017-

2018 

2018-

2019 

Total Demand  

(GWh) 774 831 862 937 998 1003 1069 1115 1143 1214 1275 

Total  Supply 

(GWh ) 689 747 788 858 911 960 1031 1093 1136 1205 1268 

Peak Demand 

(GW) 
1369 1448 1515 1618 1695 1704 1832 1895 1968 2084 2206 

Peak Supply 

(GW) 
1180 1270 1374 1457 1534 1626 1749 1844 1949 2058 2188 
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3.1 Seasonal Auto-Regressive Integrated Moving Average model   

SARIMA or seasonal ARIMA is an extension of the ARIMA model used for modelling univariate 

time series with a seasonal component. ARIMA model deconstructs any given time series into Auto-

Regressive (AR), Integrated (I) and Moving Average (MA) terms [55]. The initial step in building an 

ARIMA model is to make the data stationary by ensuring its mean, variance and autocorrelation 

(linear relationship between lagged values) structure does not change over time. It is achieved by 

performing differencing operation in which each entry of the time series is subtracted from its 

predecessor. Occasionally, depending on the complexity in data, more than one differencing may be 

necessary. The order of Integrated term, i.e. ‘d’, represents the minimum amount of differencing 

needed to make a time series stationary. The order of the AR term, i.e. ‘p’, represents the minimum 

number of predecessors required as inputs to predict the present value. Similarly, ‘q’ means the order 

of MA term, denoting the minimum number of lagged forecast errors needed to forecast the current 

value. Using ARIMA model, value at time t of a time series, y𝑡 can be represented by Equation 1. 

 y𝑡  = 𝑐 +  𝜙1y𝑡−1 + 𝜙2y𝑡−2 + ⋯ 𝜙𝑝y𝑡−𝑝 +  θ1ε𝑡−1  −  θ2ε𝑡−2 − ⋯ θ𝑞ε
𝑡−𝑞

 

 

(1) 

 (1 − 𝜙1𝐵 − ⋯ −𝜙p𝐵𝑝)(𝑦𝑡
′ − µ) = (1 + θ1𝐵 + ⋯ + θq𝐵𝑝)𝛆𝑡 

 

(2) 

where c is the constant term, 𝜙 and θ are the regression weights for the lagged observations and errors 

terms, respectively. Using the Backshift operator, Equation 1 is written more elegantly as  Equation 2 

such that 𝐵𝑝y𝑡 =  y𝑡−𝑝 and 𝑦𝑡
′ =(1 − 𝐵)𝑑y𝑡 and µ is the mean of 𝑦𝑡

′. In most monthly energy time-

series datasets, seasonal variation is a major source of non-stationarity. SARIMA model is 

recommended for such situations as it can handle trends and seasonal fluctuations present in the time 

series. SARIMA model is represented as ARIMA (p, d, q) (P, D, Q)s where P denotes the seasonal 

autoregressive order, D denotes seasonal difference order, Q denotes the seasonal moving average 

order and s denotes the number of observations in a single year. Seasonal terms (P, D, Q, s) of 

SARIMA are analogous to the non-seasonal terms in ARIMA but involves backshifts of the seasonal 

period. For example, ARIMA (1,1,1)(1,1,1)4 model for quarterly seasonality can be represented by 

Equation 3  

 (1 − 𝜙1𝐵)(1 − ɸ1𝐵4)(1 − 𝐵)(1 − 𝐵4)y𝑡 = (1 + θ1𝐵)(1 + 𝛩𝐵4)ε𝑡 

 

(3) 

where ɸ and 𝛩 are the regression weights for the seasonally lagged observations and errors terms, 

respectively [56]. Setting up a SARIMA model over any monthly energy time-series datasets involves 

selecting optimum values for p, d, q, P, D, Q and s parameters. Akaike Information Criterion [AIC] is 

widely used as a suitable performance metric to compare multiple SARIMA models' prediction 

performance. AIC compares models by considering accuracy and model complexity as the two main 

attributes and favours parsimonious models with better fit using fewer features. 

 

3.2 Long Short Term Memory Recurrent Neural Network model  

Unlike standard feed-forward neural networks, LSTM is a recurrent neural network architecture 

containing feedback connections to convey information from several past instances into the present 

one [55]. LSTM relies on the backpropagation algorithm to find derivatives in the network by moving 

layer by layer from the final to the first. Quite often RNN architectures get stuck in the vanishing 

gradient problem where the network cannot propagate useful gradient information from the initial 

layers of the model to the current one. LSTM units are made up of select units called ‘cells’ or 

‘memory blocks’ to overcome the vanishing gradient problem [57].  As shown in Figure 3, a single 
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LSTM unit comprises a cell, an input gate, an output gate and a forget gate. The cell is responsible for 

maintaining the dependencies between the various elements of an input sequence, and gates are 

controlled using the sigmoid activation functions. The input gate controls the extent to which a new 

value flows into a cell, whereas the output gate controls the degree to which a value remains in the 

cell.  

 

Figure 3: Diagrammatic representation of an LSTM RNN unit  

During the model training stage, weights are assigned to the connections moving in and out of the 

LSTM gates, a few of them being recurrent. These weights are updated continuously over the course 

of a large number of training cycles (epochs) to improve prediction accuracy. The presence of a forget 

gate and the additive property of cell state gradients allow LSTM to update connection weights in 

such a manner reducing chances for a vanishing gradient problem significantly [57]. LSTM RNN 

prediction performance depends on the value of two key tuning parameters, i.e. the total number of 

cells or neurons and the total number of training cycles or epochs. Hence, several LSTM models with 

different neurons and training cycles must be compared based on their prediction accuracy using 

RMSE or MAPE metrics before selecting the final LSTM RNN architecture.  

3.3 Facebook Prophet model 

Fb Prophet is an additive time series model based on the Bayesian curve fitting technique. It allows 

the flexibility to model complicated time series features by fitting trends and multiple seasonalities to 

incorporate yearly, monthly, weekly and daily patterns along with holiday effects [44]. The three main 

components of a Fb Prophet model accounting for trend, seasonality and holidays are shown in  

Equation 4. 

 𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝑒(𝑡) (4) 

 

where 𝑦(𝑡) is the output value, 𝑔(𝑡) is a trend function which models non-periodic changes in the 

time series, 𝑠(𝑡) represents periodic changes (e.g. weekly, monthly, yearly seasonality), and ℎ(𝑡) 

represents the effects of holidays. Error term 𝑒(𝑡) describes any irregular or random features in the 

dataset that cannot be explained by this model. The trend part can be represented using a linear 

piecewise or a or a saturating growth model.  
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Since both total and peak energy demand datasets do not exhibit saturating growth, a piecewise linear 

growth model is employed shown in  Equation 5.   

 𝑔(𝑡) = (𝑘 + 𝑎(𝑡)𝑇δ)t + (m + 𝑎(𝑡)𝑇𝛾) (5) 

 

where k represents the growth rate, t represents time steps,  δ is the adjustment rate, m is an offset 

parameter, and 𝛾 means trend change points, and is set equal to -𝑠𝑗δ𝑗, with a(t) defined in  Equation 6 

as: 

 
a𝑗(t) = {

1,   𝑡 ≥ 𝑠𝑗 ,

 0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

(6) 

 

The trend change points allow the growth model to change trends after a certain number of time steps, 

increasing modelling flexibility. These change points can be either defined explicitly by the modeller 

or determined by the model automatically to describe trend altering events in the time series. The 

second term in 𝑔(𝑡), i.e. 𝑠(𝑡) represents seasonal component accounting for cyclic changes introduced 

during a weekly, monthly or annual cycle. Fb Prophet model uses Fourier series to provide a flexible 

model of periodic effects in  Equation 7.  

 𝑠(𝑡) =  ∑ (𝑁
𝑛=1 𝑎𝑛 cos (

2πnt

𝑃
) + 𝑏𝑛 sin (

2πnt

𝑃
) ) (7) 

 

Where P = 354.25 for yearly seasonality or P = 7 for weekly seasonality. Fitting seasonality term 𝑠(𝑡) 

requires estimating the 2N parameters β =  [𝑎1 , 𝑏1 … … 𝑎𝑁 𝑏𝑁 ]
𝑇.  

Finally, estimation of holiday term ℎ(𝑡) depends on an indicator function for representing whether 

time t is during a holiday event i, and each holiday is assigned a parameter 𝑘𝑖 , responsible for 

corresponding changes to the forecast. Fb Prophet model also exhibits robustness to problems 

introduced by outliers and missing data.  

As shown in Figure 4, a four-stage research methodology is adopted. In the first stage, national-level 

monthly total and peak energy demand data are partitioned in an (80-20) ratio to produce a training 

and testing set. The training set contains initial nine years of data (2008 to 2017), whereas the testing 

set contains data for the final two years (2017 to 2019). During the model development stage, 

SARIMA, LSTM RNN and Fb Prophet models are developed inside the Python environment using 

numpy, pandas, statsmodels, and pmdarima fbProphet and torch libraries [58][59][60][61]. We use 

the ‘pmdarima’ library to select the most optimal SARIMA model parameters, i.e. p, d, q, P, D, Q and 

s for total and peak energy demands as per the ‘smallest’ AIC scores [62].  
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Figure 4: Research methodology adopted in this study 

Similarly, to select suitable LSTM RNN models for predicting total and peak energy demand, twelve 

LSTM models (refer Table 2) are developed by considering (300,500,800,1000) and (200,500,800) 

values for the number of cells and training cycles, respectively. Out of these twelve models, models 

with the smallest RMSE and MAPE values are chosen to predict the two target variables. All LSTM 

RNN models are developed inside python using the pytorch library [62]. Fb Prophet models for both 

total and peak energy demands are executed in python using the open-source fbprophet library [58]. 

Table 2: Number of neurons and epochs considered in the twelve LSTM RNN models 

Model M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10 M-11 M-12 

Number of 

Neurons 

300 500 800 1000 300 500 800 1000 300 500 800 1000 

Number of 

Epochs 

200 200 200 200 500 500 500 500 800 800 800 800 

 

In the model evaluation stage, prediction performance of SARIMA, LSTM, Fb Prophet and CEA 

trend-based models are analyzed by comparing their test set predictions against observed test set data. 

The prediction accuracy of these four models is compared using two statistical metrics, namely RMSE 

and MAPE. In the model forecast stage, the model having the smallest RMSE and MAPE values is 

selected to forecast the two target variables, i.e. energy requirement and peak demand from April 

2019 until May 2024, for India and its five electrical zones.  

4.  Results  

Table 3 presents the model coefficients, standard errors, p values and confidence intervals after 

implementing the SARIMA model. As per AIC criteria, ARIMA (1, 1, 0) (1,0,1)12 is the most 

accurate model for predicting monthly total energy demand as it has the smallest AIC score of 2569. 

Similarly, ARIMA (2, 1, 2) (1,0,1)12 is the most accurate model for predicting monthly peak energy 

demand as it has the smallest AIC score of 2538. The coefficients of all model parameters, including 

AR, MA, SAR and SMA, are statistically significant as indicated by their p values (< 0.05). 
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Table 3: Estimated SARIMA model parameters for monthly total and peak energy demand  

 

RMSE values for the twelve LSTM RNN models used for predicting monthly total and peak energy 

demand are shown in Figure 5. For monthly total energy demand, model M-12 with 1000 neurons and 

800 epochs delivers the lowest RMSE of 7.92 GWh. Similarly, model M-7 with 800 neurons and 500 

epochs gives the lowest RMSE of 13.38 GW for predicting monthly peak energy demand. It is 

noteworthy that the best performing LSTM RNN models have a considerably lower prediction 

accuracy than Fb Prophet models producing 85% and 106% higher RMSE scores for monthly total 

and peak energy demands, respectively. Therefore, search space for identifying the optimum number 

of neurons and epochs is not drawn-out further, and M-12 and M-7 LSTM RNN models are selected 

for predicting monthly total and peak energy demand, respectively.  

Total Energy Demand (MWh) 

Variable Coefficient 
Standard 

Error 
z P>|z| 

95% Confidence 

Interval 

Intercept -5.36 48.94 -0.11 0.91 [-101.27, 90.54] 

AR(1) -0.17 0.03 -5.23 0.00 [-0.23, -0.10] 

SAR(12) 0.94 0.06 15.42 0.00 [0.82, 1.05] 

SMA(12) -0.82 0.10 -8.27 0.00 [-1.02, -0.63] 

Akaike Information 

Criterion (AIC) 2568.33 
    

Peak Energy Demand (MW) 

Intercept 604.43 619.27 0.97 0.33 [-609.33, 1818.18] 

AR(1) -1.54 0.03 -95.02 0.00 [-1.57, -1.51] 

AR(2) -0.99 0.01 -73.95 0.00 [-1.03, -0.97] 

MA(1) 1.54 0.07 20.77 0.00 [1.39, 1.69] 

MA(2) 0.99 0.09 11.15 0.00 [0.82, 1.17] 

SAR(12) 0.74 0.16 4.59 0.00 [0.42, 1.05] 

SMA(12) -0.67 0.18 -3.68 0.00 [-1.02, -0.31] 

Akaike Information 

Criterion (AIC) 2538.30 

AR: Auto-Regressive     SAR: Seasonal Auto-Regressive 

MA: Moving Average     SMA: Seasonal Moving Average 



13 

 

  
(a) (b) 

Figure 5: Root mean square errors of the twelve LSTM RNN models for predicting (a) monthly total energy 

demand (b) monthly peak energy demand 

4.1 Model Comparison 

Test set predictions for monthly total and peak energy demand obtained using SARIMA, LSTM RNN 

and Fb Prophet models are compared with CEA model forecast and actual observed data between 

April 2017 - March 2019. Visual comparisons are performed by referring to Figure 6 and Figure 7. 

RMSE and MAPE values are presented in Table 4 and Table 5.  

 

Figure 6: Visual comparison between SARIMA, LSTM RNN, Fb Prophet and CEA models for predicting 

monthly total energy demand  

Table 4: Statistical comparison between SARIMA, LSTM RNN, Fb Prophet and CEA models for predicting 

monthly total energy demand 

Performance 

Metrics 

CEA forecast SARIMA Fb Prophet LSTM RNN 

RMSE (GWh) 4.28 5.39 4.28 7.92 

MAPE 3.41% 4.12% 3.29% 6.39% 
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Both CEA and Fb Prophet model predictions deliver the smallest RMSE ~ 4.28 MWh than SARIMA 

(5.39 GWh) and LSTM RNN (7.92 GWh) models. Further, Fb Prophet model has the smallest MAPE 

value of 3.29%, followed by CEA (3.41%), SARIMA (4.12%) and LSTM RNN model (6.39%). For 

the entire duration between March 2017 and April 2019, CEA predictions are higher than the actual 

demand. Fb Prophet predictions deliver best performance in recreating the surges and valleys seen in 

actual demand. In comparison, SARIMA and LSTM RNN predictions are less accurate and less 

efficient in recreating the actual demand's temporal features.  

 

Figure 7: Visual comparison between SARIMA, LSTM RNN, Fb Prophet and CEA models for predicting 

monthly peak energy demand 

Table 5: Statistical comparison between SARIMA, LSTM RNN, Fb Prophet and CEA models for predicting 

monthly peak energy demand 

Performance 

Metrics 

CEA Forecast SARIMA Fb Prophet LSTM RNN 

RMSE (GW) 13.31 7.52 6.51 13.38 

MAPE 7.21% 3.04% 3.01% 5.95% 

 

Fb Prophet prediction has the smallest RMSE of 6.51 GW, followed by SARIMA (7.52 GW), CEA 

forecast (13.31 GW) and LSTM RNN (13.38 GW). Fb Prophet delivers the lowest MAPE of 3.01%, 

followed by SARIMA (3.04%), LSTM RNN (5.95%) and CEA model (7.21%). All four models 

under-predict the actual peak energy demand, with the CEA forecast being the farthest from the actual 

data. Fb Prophet model produces smallest prediction error, and yields the closest match to the actual 

peak demand data, reconstructing its temporal features. Similar to Rallapalli and Ghosh [4], we find 

that the multiplicative SARIMA model delivers superior performance than the CEA model for 

predicting monthly peak energy demand.  

4.2 Future forecasts for Total and Peak Energy Demand  

Fb Prophet model delivers the highest accuracy for predicting India’s monthly total and peak energy 

demand. Therefore, we employ it to develop future forecasts from April 2019 until May 2024. 

Estimates from the other two models are also presented alongside in Figure 8 for comparison. Further, 
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the Fb Prophet model is also employed to develop monthly total and peak energy demand forecasts 

for India's five electrical zones (refer Table A.3 in appendix). 

  

(a) (b) 

Figure 8: Monthly forecast (April 2019 - May 2024) for (a) total energy demand and (b) peak energy demand 

for India using SARIMA, Fb Prophet and LSTM RNN models 

Based on the Fb Prophet model forecast (Referring to Table A.3), the national annual total and peak 

energy demand are expected to grow at CAGR of 3.11% and 3.50%, respectively, during 2019-2024. 

Further, the total energy demand is expected to grow fastest in the south zone with a CAGR of 3.49%, 

followed by the east zone at 3.42%, northeast zone at 3.15%, and west zone 3.04% and north zone at 

2.63%. In comparison, peak energy demand is expected to grow fastest in the south zone with a 

CAGR of 4.25%, followed by east zone at 4.02%, west zone at 3.77%, north zone at 3.02% and 

northeast zone at 2.34%.  

5. Discussion 

CEA's conventional trend-based model delivers acceptable performance for predicting India’s 

monthly total energy demand with a slight overestimation risk. In comparison, Fb Prophet performs 

better in capturing the trends and seasonalities present in the actual time series. CEA forecasts can be 

adopted at a slight risk of overestimation and missing some temporal features present in the time 

series. However, we recommend adopting Fb prophet total demand predictions when it is necessary to 

capture the time series’ temporal characteristics accurately.  

All four models are found to underestimate India’s monthly peak energy demand. This issue arises 

partially due to a sudden increase in peak demand's seasonal component in 2015 (refer Figure 2). The 

CEA model grossly predicts the actual peak demand having the lowest prediction accuracy and should 

not be used to develop future peak forecasts. SARIMA predictions have smaller errors but do not 

capture the seasonal changes efficiently. LSTM RNN peak predictions are inferior to SARIMA and 

only marginally better than the CEA estimates. Moreover, LSTM RNN models are time-intensive for 

parameter tuning and model training. Fb Prophet delivers the lowest prediction errors, yielding the 

closest match with the actual data; therefore, it should be adopted to forecast peak monthly energy 

demands.  

Regarding future forecasts in Figure 8, the Fb Prophet model delivers the best performance in 

extrapolating trends and seasonalities seen in historical data. In comparison, seasonal effects in 

SARIMA forecasts are less prominent and gradually becomes weaker towards the later years. LSTM 

RNN predictions underestimate both target variables and become highly unstable beyond twenty-four 
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time steps. Inspecting future forecasts, we find that the growth rate for peak demand is higher than 

that for the total demand in north, south, east and west zones. These findings indicate a growing 

necessity to adopt accurate forecasting models to help stakeholders carry out economic power 

transactions with the national grid. This study shows that Fb prophet model can train over large 

datasets to produce highly accurate forecasts within a short period. Due to its additive submodular 

structure, the Fb Prophet model can efficiently handle anomalies, periodicity and sudden jumps 

present in time-series data. Plus, it also accounts for demand variations due to seasonal and holiday 

effects. Our findings agree with Guo et al. [52], who also recommend applying the Fb Prophet model 

for energy demand forecasting.  

6. Conclusion and Policy Implications  

Accurate energy demand forecasts are crucial for any country to ensure the efficient operation of its 

power sector. This paper presented a comparative assessment of SARIMA, LSTM RNN and Fb 

Prophet models with the currently employed Central Energy Agency (CEA) trend-based model to 

predict India's total and peak monthly energy demand. All three models were trained using 108 

months of historical data from 2008 to 2017 to predict 24 months’ data from 2017 to 2019. CEA’s 

trend-based model performs well in predicting monthly total energy demand with low root-mean 

square error (RMSE 4.28 GWh) and mean absolute percentage error (MAPE, 3.4%), but significantly 

under predicts monthly peak energy demand (RMSE 13.31 GW, MAPE 7.2%). In contrast, Fb 

Prophet performs well for monthly total (RMSE 4.28 GWh, MAPE 3.3 %) and peak demand (RMSE 

6.51 GW, MAPE 3.01%).  

SARIMA predictions are found inferior to Fb Prophet with (RMSE 5.39 GWh, MAPE 4.12%) and 

(RMSE 7.52 GW, MAPE 3.04%) for monthly total and peak demands, respectively. LSTM RNN 

forecasts are not found reliable due to large prediction errors, and forecasts tend to become highly 

unstable after 24 time steps. Fb Prophet forecasts also performed best in recreating the temporal 

features present in observed data. Thus, the Fb Prophet model should be preferred over others in 

demand forecasting. We employ it to develop monthly total and peak demand forecasts for India and 

its five electrical zones from April 2019 until May 2024. Between 2019-2024, India’s annual total and 

peak demand shall increase at a yearly growth rate of 3.9% and 4.5%, respectively.  

Both total and peak demands are forecasted to grow fastest in India’s south zone, followed by east, 

west and north zones. Future forecasts also indicate that annual peak demand growth shall be faster 

than total demand growth in four (north, south, east and west) out of five electrical zones. Findings 

from this paper shall assist practitioners in the energy sector for medium to long-term planning. 

Future follow-up studies can investigate the prediction performance of advanced hybrid and ensemble 

machine learning methods to achieve higher prediction accuracy.   
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Appendix 

 

Table A.1: List of states and union territories included in the five electrical zones of India (adopted from [9]) 

Zones States 

Northern Chandigarh, Delhi, Haryana, Himachal Pradesh, Jammu & Kashmir, Punjab, 

Rajasthan, Uttar-Pradesh, Uttarakhand 

Western Chhattisgarh, Gujarat, Madhya Pradesh, Maharashtra, Daman & Diu, Dadra & 

Nagar Haveli, Goa 

Southern Andhra Pradesh, Karnataka, Kerala, Tamil Nadu, Telangana, Puducherry, 

Lakshadweep 

Eastern Bihar, Jharkhand, Odisha, West Bengal, Sikkim, Andaman & Nicobar 

North Eastern Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura 

 

Table A.2: Statistical summary for the monthly total and peak energy demand data for India (2008 to 2019) 

Total Energy Demand (GWh) 
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 Parameter India North South West  East North East 

Average 85.00 25.76 22.83 26.00 9.34 1.07 

Maximum 113.02 38.57 33.61 37.74 13.78 1.67 

Minimum 61.61 16.39 15.54 17.84 6.18 0.64 

Median 85.10 24.93 23.11 25.39 9.25 1.04 

Skewness 0.11 0.47 0.02 0.26 0.38 0.30 

Kurtosis -0.89 -0.34 -0.41 -0.52 -0.60 -0.75 

Peak Energy Demand (GW) 

 Parameter India North South West East North East 

Average 146.47 41.68 35.79 41.55 15.82 2.10 

Maximum 190.67 63.17 49.62 56.68 23.14 2.97 

Minimum 110.68 29.67 25.77 30.99 11.11 1.46 

Median 144.34 40.77 35.90 40.75 15.41 2.07 

Skewness 0.21 0.52 0.13 0.52 0.42 0.13 

Kurtosis -0.92 -0.41 -0.57 -0.39 -0.60 -1.08 
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Table A.3: Sixty months (April 2019 - May 2024) total and peak energy demand forecast for India and its five electrical zones using Fb Prophet model 1 

 
Total Energy Demand (GWh)  Peak Energy Demand (GW) 

Period 

National 

Level 

North 

Zone 

South 

Zone 

West 

Zone 

East 

Zone 

North 

East 

Zone 

 
National 

Level 

North 

Zone 

South 

Zone 

West 

Zone 

East  

Zone 

North 

East 

Zone 

01-04-2019 107.95 29.49 30.36 34.57 12.48 1.28  188.32 50.32 48.98 54.11 22.09 2.56 

01-05-2019 115.81 35.30 29.27 36.23 13.32 1.43  191.46 55.61 46.97 54.02 22.09 2.72 

01-06-2019 110.50 36.62 27.51 31.86 13.09 1.47  194.10 60.10 46.30 51.81 22.04 2.66 

01-07-2019 113.14 38.59 29.68 30.15 13.16 1.62  194.42 61.39 47.43 49.37 22.48 2.83 

01-08-2019 113.65 38.37 29.18 30.79 13.54 1.64  194.86 61.88 46.42 49.70 22.31 2.83 

01-09-2019 110.25 35.45 28.91 31.19 13.28 1.62  196.28 59.41 47.58 53.49 22.64 2.81 

01-10-2019 114.02 33.16 29.82 36.31 12.84 1.57  195.83 54.33 47.43 57.08 22.71 2.79 

01-11-2019 102.13 28.58 26.72 33.97 11.62 1.41  183.54 48.94 46.56 56.03 21.32 2.68 

01-12-2019 107.31 31.09 28.66 34.90 11.35 1.42  186.29 51.20 47.38 56.32 20.25 2.63 

01-01-2020 109.25 31.75 29.53 34.50 11.95 1.42  189.18 51.92 48.44 56.13 20.81 2.63 

01-02-2020 104.47 28.74 30.13 32.39 11.48 1.31  193.60 51.55 50.55 56.88 21.46 2.65 

01-03-2020 115.80 30.40 34.02 36.19 13.54 1.37  194.96 48.90 52.03 56.78 22.73 2.64 

01-04-2020 115.29 31.19 32.78 36.11 13.69 1.36  198.74 55.35 52.34 57.13 23.32 2.70 

01-05-2020 118.42 36.21 31.06 36.38 13.52 1.44  201.96 58.70 50.52 56.70 23.53 2.75 

01-06-2020 115.21 38.16 29.08 33.05 13.26 1.58  204.73 63.11 48.84 55.29 23.32 2.86 



23 

 

01-07-2020 117.97 39.99 30.10 32.06 14.00 1.65  201.11 62.84 48.51 50.44 23.46 2.82 

01-08-2020 117.93 38.62 31.10 32.40 14.11 1.75  202.51 62.44 50.25 52.81 23.50 2.88 

01-09-2020 115.80 37.16 29.65 33.19 13.91 1.67  206.78 61.91 50.40 56.87 24.04 2.91 

01-10-2020 116.23 34.43 30.70 36.01 13.69 1.63  203.51 58.18 50.39 58.92 23.79 2.93 

01-11-2020 108.29 29.95 29.07 35.63 11.95 1.45  194.62 50.29 49.06 59.49 22.59 2.79 

01-12-2020 112.98 32.00 30.10 37.14 11.99 1.49  195.35 53.80 49.87 59.45 21.34 2.69 

01-01-2021 114.32 32.68 31.80 35.75 12.58 1.51  198.76 54.43 51.81 59.25 21.90 2.71 

01-02-2021 103.59 28.87 29.96 32.67 11.10 1.31  198.71 53.07 52.88 58.55 22.55 2.64 

01-03-2021 119.56 31.24 35.71 37.17 13.93 1.42  203.75 51.80 55.05 59.45 23.94 2.71 

01-04-2021 118.97 32.02 33.94 37.49 14.08 1.41  207.35 56.51 55.12 59.88 24.56 2.76 

01-05-2021 123.95 37.55 32.33 38.28 14.27 1.52  210.68 60.70 53.06 59.53 24.70 2.85 

01-06-2021 119.81 39.36 30.29 34.40 14.00 1.63  213.50 65.36 51.60 57.71 24.52 2.90 

01-07-2021 122.65 41.31 31.79 33.08 14.54 1.73  211.06 65.63 51.79 53.42 24.78 2.93 

01-08-2021 122.79 40.29 32.31 33.53 14.75 1.80  212.17 65.54 52.63 55.19 24.74 2.98 

01-09-2021 120.05 38.24 31.19 34.21 14.51 1.74  215.61 64.28 53.13 59.39 25.23 2.99 

01-10-2021 121.71 35.54 32.26 38.02 14.20 1.70  213.13 59.84 53.06 62.13 25.07 3.00 

01-11-2021 111.90 30.81 29.98 36.92 12.54 1.52  202.41 52.42 51.78 62.13 23.71 2.86 

01-12-2021 116.97 33.11 31.39 38.28 12.46 1.54  203.86 55.66 52.64 62.19 22.43 2.78 

01-01-2022 118.56 33.81 32.87 37.16 13.09 1.56  207.23 56.34 54.38 61.95 23.02 2.79 
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01-02-2022 109.42 30.12 31.80 34.27 11.89 1.38  208.78 55.25 55.89 61.74 23.71 2.75 

01-03-2022 123.22 32.06 37.40 38.10 14.29 1.46  212.49 54.75 58.08 62.10 25.15 2.77 

01-04-2022 122.58 32.83 35.07 38.87 14.45 1.45  215.90 57.58 57.88 62.62 25.79 2.82 

01-05-2022 129.56 38.89 33.59 40.21 15.02 1.59  219.36 62.69 55.58 62.36 25.86 2.96 

01-06-2022 124.40 40.55 31.50 35.74 14.76 1.68  222.26 67.61 54.38 60.11 25.72 2.95 

01-07-2022 127.33 42.64 33.52 34.09 15.07 1.81  221.10 68.46 55.13 56.44 26.11 3.06 

01-08-2022 127.65 41.99 33.50 34.66 15.39 1.86  221.87 68.68 54.96 57.54 25.97 3.08 

01-09-2022 124.29 39.31 32.75 35.23 15.11 1.82  224.40 66.63 55.87 61.89 26.41 3.07 

01-10-2022 127.24 36.64 33.82 40.07 14.69 1.77  222.79 61.46 55.71 65.37 26.36 3.06 

01-11-2022 115.45 31.66 30.85 38.18 13.13 1.58  210.12 54.58 54.51 64.75 24.82 2.94 

01-12-2022 120.94 34.23 32.68 39.40 12.94 1.60  212.36 57.51 55.42 64.92 23.52 2.87 

01-01-2023 122.82 34.95 33.93 38.58 13.60 1.60  215.69 58.24 56.93 64.66 24.15 2.87 

01-02-2023 115.37 31.38 33.71 35.90 12.70 1.45  218.96 57.46 58.93 64.96 24.88 2.86 

01-03-2023 126.76 32.86 39.09 39.00 14.62 1.51  221.19 57.75 61.10 64.72 26.35 2.83 

01-04-2023 126.14 33.63 36.16 40.26 14.81 1.50  224.40 58.55 60.61 65.36 27.03 2.88 

01-05-2023 135.25 40.25 34.84 42.18 15.80 1.67  228.00 64.67 58.07 65.20 27.01 3.06 

01-06-2023 128.99 41.74 32.72 37.07 15.52 1.72  231.00 69.86 57.18 62.49 26.91 2.99 

01-07-2023 132.00 43.97 35.28 35.07 15.59 1.89  231.23 71.33 58.53 59.51 27.44 3.18 

01-08-2023 132.53 43.70 34.67 35.79 16.03 1.91  231.60 71.86 57.23 59.86 27.21 3.18 
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01-09-2023 128.51 40.36 34.33 36.24 15.71 1.89  233.15 68.96 58.61 64.38 27.58 3.16 

01-10-2023 132.83 37.74 35.38 42.17 15.18 1.84  232.47 63.03 58.36 68.64 27.65 3.13 

01-11-2023 118.93 32.52 31.69 39.43 13.73 1.65  217.75 56.75 57.24 67.34 25.93 3.01 

01-12-2023 124.89 35.36 33.96 40.49 13.41 1.65  220.87 59.35 58.20 67.64 24.61 2.95 

01-01-2024 127.09 36.10 34.98 40.02 14.11 1.65  224.16 60.15 59.45 67.36 25.27 2.95 

01-02-2024 121.46 32.66 35.67 37.55 13.54 1.53  229.27 59.70 61.99 68.22 26.05 2.97 

01-03-2024 134.59 34.54 40.25 41.93 15.97 1.59  230.75 56.61 63.74 68.05 27.57 2.96 
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