

Citation for published version:
Mazumder, P, Singh, P, Rai, P & Namboodiri, VP 2024, 'Rectification-based Knowledge Retention for Task
Incremental Learning', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 3, pp. 1561-
1575. https://doi.org/10.1109/TPAMI.2022.3225310

DOI:
10.1109/TPAMI.2022.3225310

Publication date:
2024

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. May. 2024

https://doi.org/10.1109/TPAMI.2022.3225310
https://doi.org/10.1109/TPAMI.2022.3225310
https://researchportal.bath.ac.uk/en/publications/38b5613f-1936-4ce3-a687-5d9a316a80e3

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Rectification-based Knowledge Retention for
Task Incremental Learning

Pratik Mazumder∗, Pravendra Singh∗, Piyush Rai, Vinay P. Namboodiri

Abstract—In the task incremental learning problem, deep learning models suffer from catastrophic forgetting of previously seen
classes/tasks as they are trained on new classes/tasks. This problem becomes even harder when some of the test classes do not
belong to the training class set, i.e., the task incremental generalized zero-shot learning problem. We propose a novel approach to
address the task incremental learning problem for both the non zero-shot and zero-shot settings. Our proposed approach, called
Rectification-based Knowledge Retention (RKR), applies weight rectifications and affine transformations for adapting the model to any
task. During testing, our approach can use the task label information (task-aware) to quickly adapt the network to that task. We also
extend our approach to make it task-agnostic so that it can work even when the task label information is not available during testing.
Specifically, given a continuum of test data, our approach predicts the task and quickly adapts the network to the predicted task. We
experimentally show that our proposed approach achieves state-of-the-art results on several benchmark datasets for both non
zero-shot and zero-shot task incremental learning.

Index Terms—Task Incremental Learning, Continual Learning, Image Classification, Generalized Zero-Shot Classification, Deep
Learning.

F

1 INTRODUCTION

D EEP learning models have surpassed human performance
for a number of tasks and are being increasingly used to

solve real-world problems. However, such models still suffer from
a shortcoming, i.e., they require the entire training data to be
available when they start training the model. If the training data
becomes available sequentially, then these models suffer from
catastrophic forgetting [1] of the previous classes or tasks, and
their performance degrades for these classes/tasks. This is in
stark contrast to humans, who can incrementally learn new tasks
or categories of data without forgetting the knowledge gained
previously. This is known as the lifelong/continual/incremental
learning problem [2]. Another requirement for deep learning
models is that all categories of data that the model is supposed
to work with should be present in the training data. Instead,
if there are classes in the test set that were not present in the
training data, the performance of deep learning models suffers
from significant degradation [3]. Researchers have proposed zero-
shot learning to solve this problem. If the incremental learning
problem is coupled with the zero-shot learning problem, then the
overall problem becomes even harder. In this work, we solve for

∗ The first two authors have contributed equally to this work.

• Part of this work has been accepted in preliminary form in the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR-2021).
Our CVPR paper “Rectification-based Knowledge Retention for Continual
Learning" can be found on this link.

• Pratik Mazumder is with the Department of Computer Science
and Engineering, IIT Jodhpur, Rajasthan, 342030, India. E-mail:
pratikm@iitj.ac.in.

• Pravendra Singh is with the Department of Computer Science and
Engineering, IIT Roorkee, Uttarakhand, 247667, India. E-mail: praven-
dra.singh@cs.iitr.ac.in.

• Piyush Rai is with the Department of Computer Science and Engineering,
IIT Kanpur, Uttar Pradesh, 208016, India. E-mail: piyush@cse.iitk.ac.in.

• Vinay P. Namboodiri is with the Department of Computer Science, Uni-
versity of Bath, United Kingdom. E-mail: vpn22@bath.ac.uk.

Manuscript received 30 April 2021.
(Corresponding author: Pravendra Singh.)

the task incremental learning problem in the zero-shot and non
zero-shot settings and demonstrate that our approach achieves
state-of-the-art performance in these settings.

In the task incremental learning problem, training data be-
comes available in the form of one task at a time. Each task
contains training examples from a set of classes, and we assume
that the classes in each task do not overlap. Further, the data from
all the previous tasks become inaccessible to the model when the
training on a new task begins. These constraints provide challenges
during training. If we apply the general training process to train
the model only on the data from the new task, the model will
forget the knowledge gained from the previous tasks. As a result,
the objective of any approach in this setting is to prevent the
catastrophic forgetting of knowledge gained from the previous
tasks when training the model on the new task. Similarly, the task
incremental generalized zero-shot learning problem also involves
training the model on tasks that arrive sequentially. However, each
task contains a set of seen classes and unseen classes (not part of
the training data). In this case, the objective of the model is to
retain its capability to classify the seen and unseen classes of all
the previous tasks when training on a new task.

In this paper, we propose a novel approach called
Rectification-based Knowledge Retention (RKR) for the task
incremental learning problem in the non zero-shot and zero-shot
settings. Our proposed RKR approach learns the rectifications
needed to adapt the network to a new task. During testing, it
can then quickly adapt the network to any given task, without
any fine-tuning, by simply applying these weight rectifications
to the weights of the network layers. RKR uses a parameter-
efficient technique to learn these weight rectifications in order
to limit the model size. Additionally, RKR also learns the affine
transformations (scaling factors) needed to better adapt all the
intermediate outputs of the network to the given task. In our
previous work [4], we assumed that the model has access to
the task label of the test sample during test time (task-aware),

https://openaccess.thecvf.com/content/CVPR2021/papers/Singh_Rectification-Based_Knowledge_Retention_for_Continual_Learning_CVPR_2021_paper.pdf

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

and we use this information to quickly adapt the network to the
corresponding task by applying the weight rectifications and affine
transformations of that task. Whereas in this work, we extend our
approach to also support the test setting where the model does
not have access to the task labels during testing (task-agnostic).
We extend our approach to predict the task label from the output
logits of the test images in a data continuum. It then quickly adapts
the network to the predicted task and performs classification on
that task. Therefore, our approach alleviates the need for task
labels during the testing process for both the zero-shot and non
zero-shot settings, making it task-agnostic [5]. RKR can quickly
adapt to any task during testing because it only involves adding
the corresponding weight rectifications to the network weights
and applying the corresponding scaling factors to the intermediate
network outputs.

We perform various experiments on multiple benchmark
datasets for the task incremental learning problem in both the zero-
shot and non zero-shot settings in order to show the effectiveness
of our approach. We also perform various ablation experiments in
order to validate the components of our approach. Our contribu-
tions can be summarized as follows:

• We propose a novel approach for the task incremental
learning problem in the zero-shot and non zero-shot set-
tings that learns weight rectifications and scaling factors
in order to adapt the network to the respective tasks.

• Our proposed approach RKR introduces very few pa-
rameters during training for learning the weight rectifi-
cations and scaling factors. The model size growth in our
method is significantly low as compared to other dynamic
network-based task incremental learning methods.

• We experimentally show that our method Rectification-
based Knowledge Retention (RKR) significantly outper-
forms the existing state-of-the-art methods for the task
incremental learning problem in both the zero-shot and
non zero-shot settings when the task label is available
during testing (task-aware).

• Our approach works even when the task label information
is missing during testing (task-agnostic). Our approach can
automatically predict the task and classes of any test data
continuum. Our approach achieves state-of-the-art perfor-
mance for the task-agnostic non zero-shot incremental
learning setting.

• We also show experimentally that for the task-agnostic
generalized zero-shot incremental learning setting, our
approach achieves state-of-the-art performance and signif-
icantly outperforms even the existing method that requires
task labels during testing.

2 RELATED WORKS

2.1 Incremental Learning

Incremental learning [2] is a setting where we have to train the
model on tasks that arrive incrementally. The model has to retain
the knowledge gained from the older task while learning the new
tasks [6], [7], [8]. We can categorize incremental learning methods
into: replay-based, regularization-based, and dynamic network-
based methods.

Replay-based methods store an exemplar set of data from
the previously seen tasks and use this data along with the data
from the new task to fine-tune the network such that the network

performs well on the new task and the previous tasks. The authors
in [6] propose to use an exemplar-based prototype rehearsal
technique along with distillation. The methods proposed in [9],
[10] use a custom architecture to produce pseudo samples for
the older tasks to be used for rehearsal. Gradient of episodic
memory (GEM) [11], promotes positive knowledge transfer to
the older tasks while preventing catastrophic forgetting. The work
in [5] proposes a task-agnostic meta-learning approach iTAML
for incremental learning with a new meta-update rule to avoid
catastrophic forgetting. During testing, iTAML predicts the task
of the data continuum, and it stores an exemplar set to quickly
adapt the network to the predicted task using meta-learning.

Another approach of preventing catastrophic forgetting of the
older tasks/classes is to use regularization techniques to prevent
any significant change in the network outputs while training on
a new task. Such methods are known as regularization-based
methods for incremental learning. The work in [12] proposes to
use knowledge distillation as the regularization technique. In [6],
[13], the authors propose to use modified classification techniques
suited to continual learning in addition to the distillation loss. Deep
model consolidation (DMC) [14] combines separate networks
trained on disjoint classes using a distillation process. Memory
Aware Synapses (MAS) [15] reduces catastrophic forgetting of
older tasks by preventing important network parameters from
changing significantly. Elastic Weight Consolidation (EWC) [16]
selectively slows down the learning of some of the network
weights that are vital to preserving the knowledge from the
previous tasks. The authors in [17] propose Synaptic Intelligence
(SI) that uses intelligent synapses to accumulate task-relevant
information and utilizes this information to learn new tasks rapidly
without forgetting the knowledge gained from the previous tasks.
The authors in [18] propose an improved version of the EWC
method called EWC++ and also propose the Riemannian Walk
(RWalk) method, which is a generalized version of EWC++,
and Path Integral [17]. P&C [19] trains a knowledge base to
accumulate previous task knowledge and an active column to learn
the new task. After learning the new task, the knowledge gained
by the active column is merged into the knowledge base using
distillation.

Dynamic network-based methods use network expan-
sions/modifications for training new tasks. The work in [20]
proposes to create an extra network for each new task with
lateral connections to the networks of the older tasks. The method
proposed in [21] uses reinforcement learning to determine how
many neurons to add for each new task. DEN [22] performs
selective retraining and dynamically expands the network for
each task with only the required amount of units. The method
proposed in [23] uses a random path selection methodology for
each task. The authors in [24] propose an order-robust approach
APD, which uses task-shared and task-adaptive parameters. Deep
Adaptation Module (DAM) [25] learns filters for the new task as a
linear combination of existing filters. Recently the authors in [26]
proposed CCLL that calibrates the feature maps of convolutional
layer outputs to perform incremental learning. The superposition
method proposed in [27] learns and stores layer weights for
different tasks within a single set of parameters using superpo-
sition through context parameters. Therefore, when the weights
are retrieved for a given task, the retrieved weights are likely
to be noisy estimates of the actual task-specific layer weights
(as also mentioned in [27]). Due to this issue, as the model in
the superposition approach is trained on more tasks, the problem

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

of catastrophic forgetting gradually increases for the older tasks
(which can be observed in Fig. 6 (b) in [27]). This is in contrast to
our approach, where the base network remains frozen after being
trained on the first task, and we only learn the weight rectifications
and scaling factors for each new task. As a result, in our approach,
we can retrieve the actual task-specific layer weights for adapting
the network to the given task. Further, the authors in [27] specify
that when the task label is not known, the number of models
to be stored increases 100 times in the superposition method,
which is not the case in RKR. We empirically show that RKR
significantly outperforms this approach (see Fig. 3). Therefore,
our proposed RKR is a more parameter-efficient and effective
approach than [27]. The work in [28] iteratively finetunes and
prunes the network parameters for incremental tasks. However, its
scalability is limited by the network size, and we have empirically
shown that our proposed approach significantly outperforms this
approach (see Fig. 3).

Our method RKR follows the dynamic network-based ap-
proach, but it is the first work that learns rectifications for the
layer weights and outputs to adapt the model to any task. Even
though our method is dynamic network-based, it does not use the
parameter isolation approach, which incrementally reserves a set
of model parameters for new tasks. Therefore, our model will
not run out of model capacity to accommodate future tasks. Our
method introduces a significantly less number of parameters to
learn the weight rectifications and scaling factors, e.g., for CIFAR-
100 tasks using the ResNet-18 architecture, RKR introduces only
0.5% additional parameters per task. When the task label is
available during testing (task-aware), RKR outperforms the state-
of-the-art methods in this setting (see Fig. 3, Table 5). We also
extend our approach to work when the task labels are not available
during test time (task-agnostic) and empirically show that our
approach significantly outperforms the existing methods in this
setting (see Fig. 6, Table 5). Unlike iTAML, our approach also
does not need to fine-tune the network during testing to adapt it to
the predicted task.

2.2 Zero-Shot Learning

In the zero-shot learning (ZSL) problem, the objective of the
network is to identify categories that are not part of the training
data. Seen classes are those classes that are part of the training
data. In contrast, unseen classes are the classes that are not
seen during training. The generalized zero-shot learning problem
is a harder and more practical setting, in which the test set
contains samples from both the seen and unseen classes. Zero-
shot learning methods utilize side information in the form of
class embeddings/attributes that encode the semantic relationship
between classes. The most popular approach for zero-shot learning
is to learn an embedding space where the image data and the
class embedding are close to each other [29]. Another popular
approach is to generate images/features of unseen classes by using
their class embeddings [30], [31]. The authors in [32] propose f-
CLSWGAN, which uses conditional Wasserstein GANs, to gener-
ate features for unseen classes. Cycle-WGAN [30] improves upon
f-CLSWGAN by using reconstruction regularization in order to
preserve the discriminative features of classes.

CADA-VAE [33] uses variational auto encoders to model
visual features and class attribute embeddings. It then uses the
learned latent embeddings to train a zero-shot classifier. Recently,
the authors in [34] proposed an approach LZSL for the task

incremental generalized zero-shot learning problem. The LZSL
approach performs selective parameter retraining and knowledge
distillation to preserve old domain knowledge and prevent catas-
trophic forgetting in the image feature encoder. We extend our pro-
posed method RKR to the task incremental generalized zero-shot
learning setting [34]. In this setting, RKR “rectifies” the weights
and outputs of the image features encoder network in order to
perform continual learning and prevent catastrophic forgetting.
Our approach works in this setting irrespective of whether the
model has access to task/dataset labels (task-aware) or not (task-
agnostic) during testing. We compare our approach with LZSL
for both the task-aware and task-agnostic generalized zero-shot
incremental learning settings. We also empirically show that our
task-agnostic RKR even outperforms the task-aware LZSL method
(see Table 10).

3 PROBLEM DEFINITION

3.1 Task Incremental Learning
In the task incremental learning setting, the network receives a
sequence of tasks containing new sets of classes. When a new task
becomes available, the previous task data are not accessible. The
objective of task incremental learning is to obtain a model that
performs well on the current task as well as the previous tasks.

3.2 Task Incremental Generalized Zero-Shot Learning
The task incremental generalized zero-shot learning setting also
involves training the model on a sequence of tasks, but each task
contains a set of seen and unseen classes, and the final model
should perform well on the seen and unseen classes of the current
task as well as the previous tasks. For this problem, we follow
the setting defined in [34], where each task is a separate dataset.
When a new task becomes available for training, the older tasks
are no longer accessible for further training/fine-tuning.

4 PROPOSED METHOD

4.1 Rectification-based Knowledge Retention
We propose a task incremental learning approach called
Rectification-based Knowledge Retention (RKR) that applies net-
work weight rectifications and scaling transformations to adapt the
network to different tasks.

Let us assume that we have a deep neural network with N
layers, i.e., {L1, L2..., LN}. Each layer can be a convolutional
layer or a fully connected layer. Let Θl represent the parameter
weights of layer Ll. If we train this network on a task containing
a set of classes, the network will learn the parameter weights Θl

for each layer l ∈ {1, 2, .., N}. However, if we then train the
network on a new task (with a new set of classes), it will learn
new parameter weights Θ∗l to work for this task and will lose
information regarding the previous tasks (catastrophic forgetting).

We propose to avoid this problem using the dynamic network-
based approach. For each task, we learn the rectifications needed
to adapt the layer weights of the network to work for that task.
Let Rt

l refer to the weight rectification needed to adapt the lth

layer of the network to work for task t. We use a rectification
generator (RG) for learning these rectifications. RG uses very few
parameters to learn the weight rectifications as described in Sec.
4.2. The weight rectifications Rt

l are added to the layer weights
Θl for each task t (Figs. 1, 2).

Θt
l = Θl ⊕Rt

l (1)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 1: RKR for a convolutional layer. The weight rectifications Rt
l produced by the rectification generator (RGt

l) are added to the
layer weights (Θl) of the convolutional layer l for task t. The task-adapted convolution layer weights (Θt

l) are applied to the input Il
to produce the layer output Ol. The scaling factor generator (SFGt

l) produces scaling factors F t
l that are applied to Ol to produce the

scaled layer output (Ot
l).

where Θl refers to weights of layer l of the network, Rt
l refers to

the rectifications to be learned for the weights of the layer l for
task t, Θt

l refers to the rectified weights of the layer l for task t,
⊕ refers to element-wise addition. The layer weight Θl is trained
only on the first task and is adapted using the weight rectifications
Rt

l (that are learned for all tasks) to obtain Θt
l .

Apart from the weight rectifications, we also learn scaling
factors to perform affine transformations on the intermediate
outputs generated by each layer of the network. We use a scaling
factor generator (SFG) to learn the scaling factors. In the case of
a fully connected layer l, the scaling factors F t

l have the same
size as the layer output Ol, and we multiply them element-wise
to each component of Ol (Fig. 2). In the case of a convolutional
layer l, the scaling factors F t

l have the same number of elements
as the number of feature maps in Ol, and we multiply them to the
corresponding feature maps of Ol (Fig. 1). These learned scaling
factors represent the rectifications needed to adapt the intermediate
network outputs to the corresponding task.

Ot
l = Ol ⊗ F t

l (2)

where Ol refers to the output from the layer l of the network, F t
l

refers to the scaling factors learned for the output of the layer l of
the network for task t, ⊗ refers to the scaling operation, and Ot

l

denotes the scaled layer output for task t. Our approach applies
the weight rectifications and scaling factors to adapt the network
for any task t.

4.2 Reducing Parameters for Weight Rectification
4.2.1 Convolutional Layers
The weight rectifications for a convolutional layer is required
to be of the same size as the convolutional layer weights. Let
Wf ,Hf ,Cin be the width, height and number of channels of each
filter of the convolutional layer Ll and Cout be the number of
filters used in Ll. Therefore, the total size of the convolutional
layer weights is Wf ×Hf ×Cin×Cout. The weight rectification
Rt

l for layer Ll has to be of the same size. In order to reduce
the number of parameters needed to generate these weight rectifi-
cations, we use a rectification generator (RG). The rectification
generator (RG) learns two matrices of smaller size i.e., LM t

l

of size (Wf ∗ Cin) × K and RM t
l of size K × (Hf ∗ Cout),

where ∗ represents scalar multiplication. Here, K � (Wf ∗Cin)
and K � (Hf ∗ Cout). This process ensures that we introduce

Fig. 2: RKR for a fully connected layer. The weight rectifications
Rt

l produced by the rectification generator (RGt
l) are added to

the layer weights (Θl) of the fully connected layer l for task t.
The task-adapted fully connected layer weights (Θt

l) are applied
to the input Il to produce the layer output Ol. The scaling factor
generator (SFGt

l) produces scaling factors F t
l that are applied to

Ol to produce the scaled layer output (Ot
l).

very few parameters to generate these weight rectifications. The
product of these two matrices produces the weight rectifications
which are reshaped to the size Wf ×Hf ×Cin×Cout and added
to the convolutional layer weights element-wise. Therefore, RG
computes the weight rectifications Rt

l for task t as:

Rt
l = MATMUL(LM t

l , RM t
l) (3)

where MATMUL refers to matrix multiplication.
We apply the adapted convolution layer weights (Θt

l) to the
input (Il) of size, say, W ×H × Cin, to obtain an output of size
W ′ × H ′ × Cout (See Fig. 1). Here, W , W ′ refer to the width
of the feature maps before and after applying the convolution.
H , H ′ refer to the height of the feature maps before and after
applying the convolution. We then apply scaling transformation to
the output Ol. The scaling factor generator (SFG) learns a scaling
parameter for each feature map. Therefore, SFG introduces a very
insignificant number of parameters, i.e., Cout, which is equal to
the number of feature maps in Ol.

EPconv =
K ∗ (Wf ∗ Cin + Hf ∗ Cout) + Cout

Wf ∗Hf ∗ Cin ∗ Cout
∗ 100 (4)

where EPconv refers to the percentage of extra parameters intro-
duced by our approach for each convolutional layer.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

4.2.2 Fully Connected Layers
The weight rectifications Rt

l for the fully connected layers require
to be of the same size as the layer weights Θl. Let Θl be of
size Hin × Hout. Here Hin and Hout refer to the size of input
and output of the fully connected layer, respectively. In order to
reduce the number of parameters needed to generate the weight
rectifications, the rectification generator (RG) learns two matrices
of smaller size, i.e., LM t

l of size Hin × K and RM t
l of size

K ×Hout. Here, K < Hin and K < Hout. Therefore, the total
parameters added will not be significant. The product of these two
matrices will give the weight rectifications of size Hin × Hout

which we add to the layer weights Θl element-wise to produce
the adapted layer weight Θt

l . Therefore, RG computes the weight
rectifications Rt

l for task t as follows:

Rt
l = MATMUL(LM t

l , RM t
l) (5)

where MATMUL refers to matrix multiplication.
We apply the adapted fully connected layer weights (Θt

l) to
the input (Il) of size Hin, to obtain an output (Ol) of size Hout

(See Fig. 2). We then apply scaling transformation to the output
Ol. The scaling factor generator (SFG) learns a parameter for each
component of Ol. Therefore, SFG introduces a very insignificant
number of parameters, i.e., Hout.

EPfc =
K ∗ (Hin + Hout) + Hout

Hin ∗Hout
∗ 100 (6)

where, EPfc refers to the percentage of extra parameters intro-
duced by our approach for each fully connected layer.

Therefore, our approach introduces very few parameters per
task to learn weight rectifications and scaling factors in the
incremental learning setting, e.g., for the ResNet-18 architecture
RKR introduces only 0.5% additional parameters per ImageNet-
1K task. Intuitively, this simulates separate networks for each task
using very few parameters, e.g., our model for ImageNet-1K with
10 tasks has (100 + 10 ∗ 0.5)% capacity. However, directly using
separate networks will lead to an impractical model with (100 ∗
10)% capacity.

4.3 Testing Process with Access to Task Labels
In the task-aware test setting, the model has access to task labels
during testing [22], [24], [26], and each test sample consists of the
test image (xi), the actual class label (yi), and the task label (ti).
Given the trained deep neural network with layers L1, L2, ..., LN ,
we use the weight rectifications, and scaling factors learned for
each network layer for task ti to quickly adapt the network.
Specifically, we add the weight rectifications to the network layer
weights using Eq. 1 and scale the intermediate outputs of the
network using Eq. 2 to adapt the network to the given task. Finally,
we perform classification on the test example using this adapted
network to predict its class label.

4.4 Testing Process without Access to Task Labels
In the task-agnostic test setting, the model does not have access
to task labels during testing and the test data is received in the
form of a continuum with an unknown task t (similar to [5]).
Let DC = {(xi, yi, ti)}NDC

i=1 refers to a data continuum with
NDC test examples from the same task t, such that ti = t,∀i ∈
{1, 2, ..., NDC}. However, the task label (t) is not known to the
model.

Our proposed approach requires the task label to adapt the
network to the given task. Therefore, in the task-agnostic test
setting, we have to identify the task of the data continuum before
carrying out the testing process. Let us consider a simple approach
for identifying the task label of the data continuum. First, we adapt
the network to any task t by applying the weight rectifications and
scaling factors for that task. Next, we obtain the output logits
for each example in DC for task t and store the maximum logit
value for each example in DC for that task. Next, we compute
the average maximum logit (AML) by taking the mean of the
maximum logit values for all examples in DC for task t. We
repeat this process for all the tasks. Therefore, we have the average
maximum logit for each task for this data continuum. Ideally, the
task for which the average maximum logit of the data continuum
is the highest should be the correct task of the data continuum.
However, in our approach, the model has not been jointly trained
on all the tasks. Therefore, given a test data continuum from a
particular task ta, a model adapted to another task tb (a 6= b) has
never seen such type of data. However, neural networks can still
produce high logits even for images of classes that the network
has never been trained on ([35], [36], [37]). As a result, the above
process may lead to high average maximum logit even for the
incorrect tasks, i.e., AML for tb may be higher than AML for ta
in the above example. Therefore, this is a problem that needs to
be addressed. A naive solution can be to train the model jointly on
the complete data from all the tasks. However, this is not possible
in the incremental learning setting. Therefore, we propose a novel
approach to address this issue. Specifically, we propose to jointly
learn a single hyper-parameter per task that will be used to re-
weight the average maximum logit of each task for the given data
continuum (see Eqs. 7, 8). We refer to these hyper-parameters as
the task weight (TW) hyper-parameters.

AMLti = Avg(Max(Mti(DC))) (7)

tp = arg maxti(TWt1 ∗AMLt1 , TWt2 ∗AMLt2 , · · ·) (8)

Where, AMLti refers to the AML of DC for task ti. Mti

refers to the model adapted to task ti. Mti(DC) refers to the
Mti model being applied to each example in DC. Max refers to
the function that that finds the maximum logit for each example
in DC. Avg refers to the function that computes the average of
the maximum logits of the examples in DC. TWti refer to the
TW hyper-parameter for task ti. TWti ∗AMLti refers to the re-
weighting of the AML for task ti using the TW hyper-parameter
for task ti. arg maxti refers to the function that finds the task
for which the re-weighted AML is maximum. tp refers to the
predicted task.

In order to find the suitable values of the TW hyper-
parameters, we use the validation data. The validation data consists
of only one data continuum from each task. We perform a task
prediction operation using the validation data and find the most
suitable TW hyper-parameters for this operation. Please note
that one validation data continuum will have a single predicted
task. Therefore, one validation data continuum corresponds to a
single data point for task prediction. Consequently, for t tasks,
we will have only t data points in the validation set. The TW
hyper-parameter values obtained using these few data points will
not be generic enough to properly work for any given test data
continuum. Therefore, we create multiple corrupted data points

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

from each validation data continuum by randomly replacing a
few samples of a validation data continuum of a particular task
with samples from the validation data continuum of the remaining
tasks. Since we replace very few samples in the validation data
continuum, the majority of the samples in the corrupted data con-
tinuum still belong to the original task, and therefore, we assume
that the task label of the new corrupted data continuum is the same
as the original validation data continuum. This process introduces
a type of noise/corruption in each validation data continuum and
helps the identified TW hyper-parameters to be more generic.
For each new corrupted validation data continuum, we adapt the
network to each seen task t one by one and obtain the AML for
each task as described earlier. Next, we multiply the AML of
each task with the TW hyper-parameter of the corresponding task.
Finally, we compare the weighted AML of each task to obtain the
task with the highest weighted AML for the corrupted validation
data continuum. We use a cross-entropy loss on the predicted and
actual task of the validation data continuum to optimize the TW
hyper-parameters for very few iterations (2-5 iterations requiring
a total of about 2-3 seconds on a GeForce GTX 1080 Ti graphics
processing unit). Finally, during testing, the optimal TW hyper-
parameters are used to re-weight the task-wise AML for each test
data continuum before comparing the task-wise AML.

We also improve our approach for task prediction further by
using data augmentation approaches during testing. We use dif-
ferent data augmentation approaches to create new views of a test
data continuum. We use the same data augmentation approaches
for this process that are used for training the model. This is
because, in the case of an augmented view of the data continuum,
the model adapted to the correct task has already seen similar data
with this augmentation, and therefore, its AML will still remain
high. However, a model adapted to any incorrect task has not
seen similar data with this augmentation, and therefore, there is
a low possibility that the same wrong task will still have a high
AML for different augmented views of that data continuum. As a
result, when we consider the task-wise mean of the AML across all
the differently augmented views of the same test data continuum,
there will be a higher possibility that the correct task will have the
highest mean AML. We validate this finding for a data continuum
in Table 9. This observation can be employed to further improve
the task prediction accuracy of our approach.

Based on the above observation, we propose our final testing
procedure for the task-agnostic setting as follows. First, we create
multiple views of the given test data continuum DC by applying
different data augmentation approaches. Next, for each augmented
view of the data continuum, we obtain the task-wise average
maximum logit using the process mentioned earlier. We re-weight
the task-wise AMLs using the corresponding TWs obtained using
the process described earlier. Finally, we take an average of the
re-weighted AML per task across all the differently augmented
views of the same test data continuum and predict the task with
the highest mean re-weighted AML as the task of the given test
data continuum (see Eqs. 9, 10, 11). After obtaining the predicted
task tp, we quickly adapt the network to the corresponding task
by adding the weight rectifications to the network layer weights
using Eq. 1 and scaling the intermediate outputs of the network
using Eq. 2. Our approach does not require any fine-tuning or
updates in this process as opposed to iTAML [5]. Finally, we use
this adapted network to predict the class labels of the examples in
the data continuum. For a fair comparison, we use the same data
continuum size as used by [5].

AML
vj
ti = Avg(Max(Mti(DCvj))) (9)

AMLr
ti = Avg(TWti ∗AMLv1

ti , TWti ∗AMLv2
ti , · · ·) (10)

t∗p = arg maxti(AMLr
t1 , AMLr

t2 , · · ·) (11)

Where, DCvj refers to an augmented view of DC using data
augmentation vj . AML

vj
ti refers to the AML of DCvj for task ti.

Avg(TWti ∗AMLv1
ti , TWti ∗AMLv2

ti , · · ·) refers to computing
the mean of the re-weighted AMLs for different augmented views
of DC for task ti. AMLr

ti refers to the mean re-weighted AML
of DC for task ti. t∗p refers to the predicted task.

We empirically validate all the design choices in our approach
in Sec. 5.7.

5 TASK INCREMENTAL LEARNING EXPERIMENTS
(NON ZERO-SHOT SETTING)
5.1 Datasets
We perform the task-aware incremental learning experiments on
the CIFAR [38], SVHN [39], ImageNet-100 and ImageNet-1K
[40] datasets for the non zero-shot setting. We perform the non
zero-shot task-aware incremental learning experiments on CIFAR-
100 with 10 classes per task (10 tasks). For the split CIFAR-10/100
experiments, we use all the classes of CIFAR-10 for the first task
and randomly choose 5 tasks of 10 classes each from CIFAR-100.
So we have 6 tasks for this setting. In the case of ImageNet-1K,
we group the 1000 classes into 10 tasks of 100 classes each. In the
case of ImageNet-100, we group the 100 classes into 10 tasks of
10 classes each. For the task-agnostic experimental setting where
the model does not have access to task labels at test time, we
perform experiments on the SVHN, CIFAR-100, ImageNet-100,
and ImageNet-1K datasets. We perform experiments in this setting
on the CIFAR-100 with 5, 10, and 20 classes per task resulting in
20, 10, and 5 tasks, respectively. In the case of SVHN, we have 5
tasks with 2 classes each. The number of tasks in ImageNet-100
and ImageNet-1K are 10 as in the previous setting.

5.2 Implementation Details
In our approach, we learn weight rectifications and scaling factors
for each convolutional layer and fully connected layer of the
network (except the classification layer). We train the complete
network on the first task (base network). For every new task, we
only learn weight rectifications and scaling factors for all network
layers to adapt them to the new task.

For the CIFAR-100 experiments, we use the ResNet-18 ar-
chitecture [41]. For the split CIFAR-10/100 experiments, we use
the ResNet-32 architecture [41]. For the task-agnostic CIFAR-
100 experiments, we also perform experiments using the ResNet-
18/3 architecture for a fair comparison with [5]. ResNet-18/3 is
basically the ResNet-18 architecture, but the filters in each layer
are reduced by three times. In the above experiments, we train the
network for 150 epochs for each task with the initial learning rate
as 0.01, and we multiply the learning rate by 0.1 at the 50, 100,
and 125 epochs. We also perform experiments with the LeNet
architecture [42] on the CIFAR-100 tasks with 10 classes per
task. We train the network on each task for 100 epochs with the
initial learning rate as 0.01 and multiply the learning rate with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 3: Task incremental experimental results (task-aware) for the
CIFAR-100 dataset with 10 classes per task using ResNet-18. ‘∗’
denotes replay-based approach.

0.5 at the 20, 40, 60, and 80 epochs. For the SVHN dataset, we
perform experiments with the ResNet-18 architecture. For a fair
comparison with [5], we also use the ResNet-18/3 architecture for
the task-agnostic SVHN experiments. We train the network on
each task for 150 epochs with the initial learning rate as 0.01 and
multiply the learning rate with 0.1 at the 50, 100, and 125 epochs.
For the ImageNet-100 and the ImageNet-1K experiments, we use
the ResNet-18 architecture and train the network for 70 epochs
for each task with the initial learning rate as 0.01, and we multiply
the learning rate by 0.2 at the 20, 40, and 60 epochs. We use the
SGD optimizer in all our experiments. We perform experiments
with RKR using K = 2 since this is a good choice considering
the accuracy/extra-parameters trade-off as shown in Table 2.

Our method can utilize task labels during testing (task-aware)
similar to [22], [24], [26] and can also perform well without
using task labels during testing (task-agnostic). For the task-
agnostic testing, our method is evaluated on a data continuum
similar to [5]. For the CIFAR-100 experiments, the data continuum
size is 20 for the 5, 10, 20 task experiments. For the SVHN
experiments, the data continuum size is 50. For the ImageNet-
100 and ImageNet-1K experiments, the data continuum size is
50 and 100, respectively. We use the same data continuum size
as [5] for a fair comparison. In the procedure for identifying the
suitable values for the TW hyper-parameters, we create multiple
corrupted versions of each validation data continuum by replacing
20% examples with examples from the validation data continuum
of the remaining tasks. We validate this choice in Table 8. We
run the process for identifying the TW hyper-parameters for only
2 iterations for the CIFAR-100, and SVHN datasets and for 5
iterations for the ImageNet dataset using a learning rate of 1e1.
We run all the experiments for 5 randomly chosen task orders,
each with a different first task, and report the average accuracy.

5.3 Task-Aware CIFAR Results
For the task-aware incremental learning experiments on the
CIFAR-100 dataset with 10 classes per task, we perform exper-
iments with various methods such as CCLL [26], SI [17], EWC
[16], iCARL [6], RPS [23], Superposition [27] and PackNet [28].

Methods Capacity Accuracy
L2T [24] 100% 48.73%
EWC [16] 100% 53.72%
P&C [19] ICML’18 100% 53.54%
PGN [20] 171% 54.90%
RCL [21] NIPS’18 181% 55.26%
DEN [22] ICLR’18 181% 57.38%
APD [24] ICLR’20 135% 60.74%
CCLL [26] NIPS’20 100.7% 63.71%
RKR-Lite (Ours) 100.7% 66.32%
RKR (Ours) 104.3% 69.58%

TABLE 1: Task incremental experimental results (task-aware) for
the CIFAR-100 dataset with 10 classes per task using LeNet.

Fig. 4: Task incremental experimental results (task-aware) on
split CIFAR-10/100 using ResNet-32 to check for catastrophic
forgetting. We report the accuracy achieved for each task when
the network is trained on that task (marked as during) and after
the network has been trained on all the tasks (marked as after).

CCLL uses task labels at test time, and we modify SI and EWC to
use task labels during testing for a fair comparison. We observe in
Fig. 3 that our approach RKR outperforms all existing methods
in this setting. RKR outperforms CCLL [26] by an absolute
margin of 5.1% in the overall accuracy. Our approach performs
consistently better than all other methods as more tasks arrive.

RKR applies the weight corrections to adapt the network to the
new task, which is very natural and intuitive because training on a
new task changes the network layer weights and, consequently,
the corresponding features. In contrast, CCLL [26] adapts the
network to the new task by only calibrating the convolutional layer
output feature maps that are biased to the initial task. This is the
reason why we see a significant performance gap between RKR
and CCLL. This problem becomes even more apparent if the new
task is very different from the initial task. In such a case, the
features extracted by the model trained on the initial task will not
be relevant to the new task, and it will be very difficult to calibrate
the feature maps to correctly estimate the feature maps of the new
task. For example, on taking MNIST images in the initial task
and taking 10 tasks of CIFAR-100 as the subsequent tasks, the
performance gap between RKR and CCLL increases from 5.1%
to 16% absolute margin.

We also perform the task-aware non zero-shot incremental
learning experiments on the CIFAR-100 dataset with 10 tasks
using the LeNet architecture (20-50-800-500) as used in [24]. All
the methods compared in Table 1 use task labels during testing
(task-aware). The results in Table 1 indicate that RKR outperforms
existing state-of-the-art methods. We also report the results for
RKR-Lite, which uses only weight rectifications for the convo-
lutional layers and only scaling factors for the fully connected

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 5: Results for 5 runs of the task incremental learning experi-
ments (task-aware) on the CIFAR-100 dataset with 10 tasks using
ResNet-18 with RKR.

K % Params. ↑ % FLOPs ↑ Accuracy
1 0.3355% 8.6× 1e-4% 85.55%
2 0.5426% 8.6× 1e-4% 87.60%
4 0.9569% 8.6× 1e-4% 87.90%
8 1.7854% 8.6× 1e-4% 88.49%

TABLE 2: Task incremental experimental results (task-aware) for
the CIFAR-100 dataset with 10 tasks using ResNet-18 with RKR
for different K values. We report the average accuracy of 10 tasks.

layers. RKR-Lite introduces the same number of parameters as
CCLL but outperforms it by an absolute margin of 2.61%.

Split CIFAR-10/100: For the split CIFAR-10/100 tasks, we
use the ResNet-32 architecture and compare our method RKR with
CCLL, and HNET [43], which are the state-of-the-art methods for
this setup and use task labels during testing. We observe in Fig. 4
that RKR not only prevents catastrophic forgetting just like CCLL
and HNET but also outperforms these methods. Therefore, RKR
helps in avoiding catastrophic forgetting without significantly
affecting the network’s ability to learn each task properly.

Different First Task: As mentioned in Sec. 4.1, Θl is trained
only on the first task. Therefore, we perform experiments with
different first tasks. From Fig. 5, we observe that the performance
of RKR is stable for different first tasks with different task orders.

Value of K: We perform experiments on the CIFAR-100
dataset using ResNet-18 with RKR for different values of K.
The results in Table 2 indicate that K = 2 is a good choice
while considering extra-parameters/accuracy trade-off. Therefore,
we use K = 2 for all our experiments. We also observe that the
FLOPs increase due to RKR is insignificant.

Significance of Components: We observe in Table 3 that
without weight corrections the model performs lower by absolute
margins of 7.3% and 8.4% for CIFAR-100 using LeNet and
ResNet-18, respectively. Without scaling, the model performance
suffers slightly. This is because LeNet and ResNet-18 contain
primarily convolutional layers and the scaling factors are more
effective for fully connected layers. In the convolutional layers,
we learn a single scaling factor for an entire feature map (one
channel of the convolutional layer output). Whereas, in the fully
connected layer, we learn a scaling factor for each component
of the fully connected layer output. Consequently, the scaling
factors learned for the fully connected layers are more effective
at properly adapting it to the given task. We observe in task
incremental generalized zero-shot learning that scaling helps to
improve the RKR performance (Sec. 6.4). This is because the
visual feature encoder under consideration in that setting contains
only fully connected layers.

Base Network Training: We perform experiments to study

Arch. Wt. Rect. Scaling % Params. ↑ % FLOPs ↑ Acc.
LeNet 7 3 0.0497% 6.4× 1e-4% 62.3%

3 7 0.3795% 0.0% 69.1%
3 3 0.4292% 6.4× 1e-4% 69.6%

Res-18 7 3 0.1283% 8.6× 1e-4% 79.2%
3 7 0.4143% 0.0% 87.5%
3 3 0.5426% 8.6× 1e-4% 87.6%

TABLE 3: Task incremental experimental results (task-aware) for
the CIFAR-100 dataset with 10 tasks using LeNet, and ResNet-18
with different components of RKR (K = 2). 3 and 7 refer to
presence and absence of the components, respectively.

Base Network Acc.
Random Init. 79.21%

Trained on the First Task t = 1 87.60%

TABLE 4: Task incremental experimental results (task-aware) for
the CIFAR-100 dataset with 10 tasks using ResNet-18 for the RKR
(K = 2) model in which the base network is either randomly
initialized before being frozen (Random Init.) or trained on the
first task (t = 1) before being frozen.

the effect of not training the base network on the first task and
only learning the weight rectifications and scaling factors for all
the tasks. The results in Table 4 indicate that when the base
network is not trained and is only randomly initialized before
being frozen, the model performance falls drastically. This is
because RKR introduces very few rectification parameters per
task, and these few parameters are not sufficient to properly learn
from the training data of the task.

Forward Knowledge Transfer: In our proposed approach,
when we train the model on a new task, we initialize the pa-
rameters of RG and SFG from the previous task. If we train
these parameters from scratch for every new task, the model
performance falls by an absolute margin of 1.45% for CIFAR-
100 using ResNet-18. This demonstrates the forward transfer of
knowledge in RKR.

5.4 Task-Aware ImageNet Results
We observe in Table 5, that RKR significantly outperforms
the state-of-the-art CCLL method for both the ImageNet-100
and ImageNet-1K datasets. Specifically, our method outperforms
CCLL by absolute margins of 0.8% and 3.1% (top-5 accuracy)
for the ImageNet-100 and ImageNet-1K datasets, respectively,
even though both RKR and CCLL introduce around 0.5% extra
parameters per task. It should also be noted that CCLL introduces
0.98% extra FLOPs in the model, whereas RKR introduces only
2.8× 1e-4% extra FLOPs, which is very insignificant.

5.5 Task-Aware SVHN Results
We report the results for the task-aware non zero-shot incremental
learning experiments for the SVHN dataset in Table 6. The
reported result is the average class prediction accuracy for the final
fifth session (A5) in which the model has already been trained on
all the five tasks of SVHN. We observe that our proposed method
RKR outperforms CCLL using the ResNet-18 architecture.

5.6 Task-Agnostic SVHN Results
For the task-agnostic SVHN non zero-shot task incremental learn-
ing experiments, we compare RKR with several methods such as
EWC [16], Online-EWC [19], SI [17], MAS [15], RPS-Net [23]
and iTAML [5]. We report the final session accuracy (A5) for
all the methods. In Table 6, we observe that our method RKR

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Datasets Method Task 1 2 3 4 5 6 7 8 9 Final Acc.

ImageNet-100/10

LwF [12] TPAMI’18 Aware 99.3 95.2 85.9 73.9 63.7 54.8 50.1 44.5 40.7 36.7
CCLL [26] NIPS’20 Aware 99.8 99.0 99.2 98.6 98.4 98.5 98.2 97.7 97.8 97.9
RKR (Ours) Aware 99.6 99.1 99.2 99.0 99.0 99.0 98.9 98.5 98.6 98.7+0.8

iCaRL∗ [6] CVPR’17 Agnostic 99.3 97.2 93.5 91.0 87.5 82.1 77.1 72.8 67.1 63.5
RPS-Net∗ [23] NIPS’19 Agnostic 100.0 97.4 94.3 92.7 89.4 86.6 83.9 82.4 79.4 74.1
iTAML∗ [5] CVPR’20 Agnostic 99.4 96.4 94.4 93.0 92.4 90.6 89.9 90.3 90.3 89.8
RKR (Ours) Agnostic 99.6 99.1 99.2 99.0 99.0 99.0 98.9 98.5 97.16 97.8+9.0

ImageNet-1K/10

CCLL [26] NIPS’20 Aware 91.4 88.3 86.5 86.6 84.6 83.5 82.7 81.7 81.2 81.3
RKR (Ours) Aware 90.2 88.7 88.1 88.2 86.6 85.7 85.0 84.2 83.8 84.4+3.1

iCaRL∗ [6] CVPR’17 Agnostic 90.1 82.8 76.1 69.8 63.3 57.2 53.5 49.8 46.7 44.1
RPS-Net∗ [23] NIPS’19 Agnostic 90.2 88.4 82.4 75.9 66.9 62.5 57.2 54.2 51.9 48.8
iTAML∗ [5] CVPR’20 Agnostic 91.5 89.0 85.7 84.0 80.1 76.7 70.2 71.0 67.9 63.2
RKR (Ours) Agnostic 90.2 88.7 86.9 87.7 83.9 82.2 79.0 78.1 77.2 77.0+13.8

TABLE 5: Task incremental learning experiments (task-aware and task-agnostic) on the ImageNet-100 and ImageNet-1K datasets with
10 tasks. The reported accuracy for each task is the average of all accuracies up to that task. ‘∗’ denotes replay-based approach.

Methods Task SVHN(A5)

GEM∗ [11] Aware 75.61%
CCLL [26] Aware 98.20%
RKR (Ours) Aware 99.04%

EWC [16] Agnostic 18.21%
Online-EWC [19] Agnostic 18.50%
SI [17] Agnostic 17.33%
MAS [15] Agnostic 17.32%
RPS-Net∗ [23] Agnostic 88.91%
iTAML∗† [5] Agnostic 93.97%
RKR† (Ours) Agnostic 97.71%
RKR (Ours) Agnostic 98.12%

TABLE 6: Task incremental experimental results (task-aware and
task-agnostic) for the SVHN dataset with 5 tasks. The result for the
other methods have been taken from [5], [26]. ‘∗’ denotes replay-
based methods. † denotes model using ResNet-18/3 architecture.

with ResNet-18/3 outperforms all the compared methods and also
outperforms iTAML (which also uses ResNet-18/3) by an absolute
margin of 3.74%. We also observe that RKR with ResNet-18
outperforms all the methods. The average task prediction accuracy
for RKR is over 98% for this setting.

5.7 Task-Agnostic CIFAR Results
For the task-agnostic non zero-shot incremental learning experi-
ments on the CIFAR-100 datasets, we compare our approach RKR
with various methods such as DMC [14], MAS [15], LwF [12], SI
[17], EWC [16], RWalk [18], iCARL [6], RPS [23] and iTAML
[5]. Fig. 6 shows the results for the non zero-shot experiments for
the CIFAR-100 experiments with 5, 10, and 20 classes per task,
respectively. From the results, we observe that as the number of
tasks increases, the performance of iTAML and other methods
drop significantly. However, the performance of RKR remains
relatively stable as the number of tasks increases. Our results
indicate that for the 10 classes per task experiments, our proposed
method RKR with ResNet-18/3 significantly outperforms iTAML
(which also uses ResNet-18/3) by an absolute margin of 6.22%.
Similarly, for the 20 and 5 classes per task experiments, RKR
with ResNet-18/3 significantly outperforms iTAML by absolute
margins of 7.07% and 5.4%, respectively. RKR with ResNet-
18 outperforms all other methods in each of these settings. The
average task prediction accuracy for our method is over 90% for
these experiments.

Significance of Components of the Task-Agnostic Testing
Process: We observe in Table 7 that using the task weight
hyper-parameters improves the model performance by an absolute

TW Aug Acc.
7 7 84.19%
3 7 85.71%
3 3 87.00%

TABLE 7: Task incremental experimental results (task-agnostic)
for the CIFAR-100 dataset with 10 tasks using ResNet-18 with
different components of the task-agnostic testing process for RKR
(K = 2). Aug refers to using data augmentation approaches in
our proposed testing process.

Corruption 0% 10% 20% 30%
Acc. 86.23% 86.37% 87.00% 86.10%

TABLE 8: Task incremental experimental results (task-agnostic)
for the CIFAR-100 dataset with 10 tasks using ResNet-18 for RKR
(K = 2) with different corruption levels in the validation data
continuum used for obtaining TW values.

margin of 1.52% for CIFAR-100 using ResNet-18. Additionally,
using data augmentation approaches during the testing process as
described in Sec. 4.4 further improves the model performance by
an absolute margin of 1.29%.

Level of Corruption: In our proposed approach, we introduce
corruption into the validation data continuum to increase the data
points for the process of identifying suitable values for the TW
hyper-parameters. We perform experiments to determine the most
suitable level of corruption. We observe in Table 8 that 20%
corruption is the most suitable level of corruption.

Effectiveness of using Data Augmentation in the task-
agnostic testing process: As discussed in Sec. 4.4, differently
augmented views of the same data continuum help in correctly
identifying the correct task of the DC. The results in Table 9
indicate that even though the original DC has the highest AML for
the wrong task, the average AML for the correct task across the
differently augmented views of the DC is the highest and thereby,
helps to correctly identify the task of the DC.

5.8 Task-Agnostic ImageNet Results

We perform task-agnostic non zero-shot incremental learning
experiments on the large-scale ImageNet-100 and ImageNet-1K
datasets. The results in Table 5 indicate that RKR significantly
outperforms existing methods. Specifically, RKR significantly
outperforms iTAML by absolute margins of 9.0% and 13.8% for
the ImageNet-100 and ImageNet-1K datasets. The average final
session task prediction accuracy for RKR is over 99% and 90%
for ImageNet-100 and ImageNet-1K in this setting.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 6: Task incremental experimental results (task-agnostic) for the CIFAR-100 dataset with 5, 10 and 20 classes per task using
ResNet-18/3 and ResNet-18. 5, 10 and 20 classes per task corresponds to 20, 10 and 5 tasks. Results for the other methods have been
taken from [5]. ‘∗’ denotes replay-based approach.

Tasks

0 1 2 3 4 5 6 7 8 9

DC 0.68 0.59 0.84 0.58 0.63 0.86 0.63 0.66 0.70 0.84
DC Aug. 1 0.72 0.63 0.85 0.68 0.67 0.81 0.71 0.66 0.80 0.81
DC Aug. 2 0.63 0.64 0.83 0.66 0.67 0.78 0.68 0.65 0.69 0.79
DC Aug. 3 0.71 0.62 0.87 0.60 0.64 0.75 0.68 0.71 0.77 0.84

Average 0.69 0.62 0.85 0.63 0.65 0.80 0.68 0.67 0.74 0.82

TABLE 9: AML values for a random test data continuum of the
CIFAR-100 dataset (10 classes at a time) corresponding to the
10 tasks. DC represents the original data continuum. DC Aug.
1, DC Aug. 2, and DC Aug. 3 refer to 3 differently augmented
views of DC obtained using the horizontal flip, rotation, and crop
data augmentation approaches, respectively. Average represents
the task-wise mean of the AML. Bold AML value for a DC refers
to the maximum AML for that DC. The correct task of this DC is
task 2.

6 TASK INCREMENTAL LEARNING EXPERIMENTS
(GENERALIZED ZERO-SHOT SETTING)
The authors in [34] propose a task incremental generalized zero-
shot learning setting using CADA-VAE [33] as the base architec-
ture. This setting involves training the network on a sequence of
datasets containing seen and unseen classes for generalized zero-
shot learning. The image/visual features encoder in the network is
common for all datasets and suffers from catastrophic forgetting
in this setting. We apply our proposed approach RKR to solve the
task incremental generalized zero-shot learning problem. Specifi-
cally, we learn weight rectifications and scaling factors to adapt the
image/visual features encoder to any previously seen dataset/task
without requiring any fine-tuning. For further details, please refer
to the supplementary materials.

6.1 Testing Process
In the task-aware incremental generalized zero-shot learning set-
ting, the model has access to the dataset/task label during test time
[34]. Therefore, RKR quickly adapts the image encoder to the
respective dataset using the corresponding weight rectifications
and scaling factors using Eqs. 1, 2 and performs the generalized
zero-shot classification.

We also explore a task-agnostic incremental generalized zero-
shot learning setting, where the model does not have access to

the dataset label during test time, and instead, at test time, we
receive a seen/unseen class test data continuum with an unknown
dataset/task. In order to solve this problem, we modify our ap-
proach similar to the non zero-shot setting. We follow the process
for predicting the task as described in Sec. 4.4 to predict the dataset
of the test data continuum in this setting.

6.2 Datasets
We experiment with four benchmark datasets for the task in-
cremental generalized zero-shot learning (GZSL) problem i.e.
Attribute Pascal and Yahoo (aPY) [44], Animals with Attributes
1 (AWA1) [45], Caltech-UCSD-Birds 200-2011 (CUB) [46], and
SUN Attribute dataset (SUN) [47]. We extract the image features
of 2048 dimensions from the final pooling layer of an ImageNet
pre-trained ResNet-101. We follow the training split proposed in
[45] so that the test classes do not overlap with the training classes.

6.3 Implementation Details
In this setting, RKR applies the weight corrections and scal-
ing transformations to the visual features encoder of CADA-
VAE framework used in this setting (refer to the supplementary
materials for further details). We use K = 16 to generate
weight rectifications in this setting and report the average results
of 5 runs for our method. The CADA-VAE framework in this
setting contains only fully connected layers. The SCM module in
CCLL [26] only calibrates the convolutional layer outputs (feature
maps). Therefore, CCLL is not compatible with CADA-VAE. We
compare our method RKR with LZSL [34] and with the baseline
methods proposed in [34] i.e., a) Sequential Fine-tuning (SFT):
model is fine-tuned on new tasks sequentially, and the model
parameters are initialized from the model trained on the previous
task, b) L1 regularization (L1): model weights are initialized
with the weights of the model trained on the previous task, and
the model is trained with an L1-regularization loss between the
previous and current network weights, c) L2 regularization (L2):
same as (b) but with L2-regularization loss, d) “Base": model
trained sequentially on all tasks without using any incremental
learning methods or fine-tuning, e) “Original": trains separate
networks for each task.

For the task-agnostic setting, we use a test data continuum of
size 100. LZSL [34] also requires dataset/task label during testing.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Method Task Total aPY AWA1 CUB SUN
Mem. U S H U S H U S H U S H

Base Aware 100% 6.69 0.59 1.09 5.14 0.92 1.56 0.87 0.67 0.76 43.40 33.95 38.10
SFT Aware 100% 24.24 23.21 23.71 47.27 55.18 50.92 35.46 34.74 35.10 38.47 36.10 37.20
L1 Aware 200% 26.42 29.79 28.01 49.64 58.23 53.59 35.11 32.31 33.65 40.14 34.11 36.88
L2 Aware 200% 24.08 23.61 23.84 46.71 59.07 52.17 35.53 33.24 34.35 42.08 32.33 36.56
LZSL Aware 200% 29.11 43.29 34.81 51.17 63.66 56.73 38.82 45.81 42.03 42.43 31.78 36.34
RKR(Ours) Aware 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87
LZSL Agnostic 200% 27.94 43.29 33.96 51.17 63.66 56.73 36.49 45.81 40.62 38.19 31.78 34.69
RKR(Ours) Agnostic 113% 31.05 51.34 38.70 57.03 69.36 62.59 47.52 49.22 48.36 42.22 36.01 38.87
Original Aware 400% 30.36 59.36 40.18 57.30 72.80 64.10 53.50 51.60 52.40 35.70 47.20 42.60

TABLE 10: Classification accuracy (%) of the task incremental GZSL experiments (task-aware and task-agnostic) on the sequence of
datasets aPY, AWA1, CUB, and SUN for our method RKR and other methods. LZSL [34] is the state-of-the-art method.

aPY AWA1 CUB SUN
U S H U S H U S H U S H

33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

AWA1 aPY CUB SUN
U S H U S H U S H U S H

61.93 66.49 64.13 30.96 55.25 39.68 48.06 50.36 49.18 47.08 31.78 37.95

CUB AWA1 aPY SUN
U S H U S H U S H U S H

51.11 53.88 52.46 56.02 70.01 62.24 30.82 53.39 39.08 46.25 32.05 37.87

SUN AWA1 CUB aPY
U S H U S H U S H U S H

45.28 36.67 40.52 57.81 67.91 62.46 47.51 49.48 48.47 31.21 57.87 40.55

TABLE 11: Experimental results (task-aware) for RKR with
different first dataset in the task incremental GZSL problem.

We use the same settings for identifying the suitable values for the
TW hyper-parameters as described in Sec. 5.2. We run the process
for identifying the TW hyper-parameters for only 2 iterations
using a learning rate of 1e1 in this setting. Therefore, for a fair
comparison, we apply the same dataset prediction approach to
LZSL.

6.4 Task-Aware Results
Table 10 compares the performance of our method (task-aware)
with the baselines, and LZSL [34] using the three evaluation
metrics: unseen average class accuracy (U), seen average class
accuracy (S), and harmonic mean of the two (H). The sequence
of tasks/datasets is aPY, AWA1, CUB, and SUN, for a fair
comparison with the other methods.

Table 10 also reports the total memory required by each
method for the four tasks. LZSL requires 200% memory for the
image feature encoder as it stores the image features encoder
trained on the previous task to calculate the knowledge distillation
loss. The L1 and L2 baselines also require 200% memory as they
store the image features encoder trained on the previous task to
calculate the L1/L2 loss between the weights of the two encoders.
The “Original" model trains four separate networks for the four
tasks and requires 400% total memory. Our method RKR requires
around 3.28% additional parameters for each task. Therefore, on
four tasks, RKR requires a total of about 113% memory for the
image features encoder.

The “Base" model performs extremely badly on the first three
tasks and manifests a clear case of catastrophic forgetting. SFT
performs better than the “Base" model since it fine-tunes the model
on the new task. However, its performance starts dropping for
the older tasks as it learns new tasks. The forgetting is lower in
SFT but is still substantial. We observe similar forgetting for the
L1 and L2 baselines. Our method RKR significantly outperforms
LZSL [34] as well as all the baseline methods. Specifically, RKR
outperforms the state-of-the-art method LZSL by absolute margins

of 5.65%, 6.91%, 6.33%, and 2.53% for the aPY, AWA1, CUB,
and SUN datasets, respectively. We also compare the average H
values across the four datasets. The average H values are 10.2%,
36.73%, 38.03%, 36.73% and 42.48% for base, SFT, L1, L2 and
LZSL [34] respectively. The average H value for RKR is 47.83%,
and that of the “Original" model is 49.82%. Therefore, RKR is
significantly closer to the “Original" model as compared to LZSL.

Different First Task: Table 11 contains the results for differ-
ent sequences of tasks/datasets having different first dataset. The
H values for the AWA1 dataset with the first dataset as aPY, CUB,
and SUN are 63.64%, 62.24%, and 62.46%. Considering the fact
that aPY, CUB, and SUN have a large variation in the number of
classes (aPY = 32, CUB = 200, SUN = 717), this variation in the
result is minor. We observe the same pattern for the other three
tasks with different first tasks. Therefore, our method works well
for this setting, irrespective of the choice of the first task.

Significance of Components: We observe in Table 12 that
without weight rectifications, RKR performs lower by absolute
margins of 6.8%, 9.28%, and 6.24% for the AWA1, CUB, and
SUN datasets, respectively. Similarly, without scaling, RKR per-
forms lower by absolute margins of 3.71%, 4.57%, and 3.59% for
the AWA1, CUB, and SUN datasets, respectively. Therefore, both
weight rectifications and scaling factors are vital in this setting.

Value of K: Table 13 reports performances of RKR with dif-
ferent values of K . We observe that RKR with K = 16 performs
close to RKR with K = 32 for most of the datasets but requires
significantly less total memory, i.e., 113% vs. 126%. Therefore,
we choose K = 16 for all our experiments in this setting, which
significantly outperforms the state-of-the-art method.

Forward Knowledge Transfer In RKR, when a new task
becomes available for training, we initialize the RG and SFG
parameters from the previous task. We also experiment with
training these parameters from scratch for each task. Table 14
reports the performance of our method RKR (task-aware) with the
two types of initialization for the RG and SFG parameters. When
we initialize these parameters from scratch, the model performs
lower by absolute margins of 3.72%, 7.57%, and 7.14% from
the other case, for AWA1, CUB, and SUN datasets, respectively.
Therefore, forward transfer of knowledge takes place in RKR.

6.5 Task-Agnostic Results

Table 10 compares the performance of our method with LZSL
[34] in the test setting where the model does not have access
to the dataset/task labels (task-agnostic) during testing. The se-
quence of tasks/datasets is aPY, AWA1, CUB, and SUN, for a
fair comparison with LZSL. We observe that RKR significantly
outperforms LZSL even in this setting for all the datasets. This
is even more significant considering we have applied the same

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Wt. Scaling aPY AWA1 CUB SUN
Rec. U S H U S H U S H U S H
3 7 32.34 52.78 40.10 52.50 69.80 59.93 45.12 42.54 43.79 40.97 30.97 35.28
7 3 29.97 52.08 38.05 52.82 61.53 56.84 39.17 39.00 39.08 36.81 29.30 32.63
3 3 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

TABLE 12: Classification accuracy (%) of the task incremental generalized zero-shot learning (task-aware) experiments on the aPY,
AWA1, CUB and SUN datasets using RKR with different combinations of its components. Wt. Rec. refers to weight rectifications.

K Train aPY AWA1 CUB SUN
Mem. U S H U S H U S H U S H

1 101% 30.33 58.78 40.01 55.66 69.49 61.81 40.11 40.68 40.39 40.56 30.50 34.82
4 104% 31.10 56.55 40.13 55.44 69.16 61.55 39.37 47.95 43.24 42.71 30.78 35.77
16 113% 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87
32 126% 33.60 51.67 40.72 59.50 69.61 64.16 49.04 51.08 50.04 45.00 34.92 39.33

TABLE 13: Classification accuracy (%) of the task incremental generalized zero-shot learning (task-aware) experiments using our
proposed RKR with different values of K .

Initialization aPY AWA1 CUB SUN
U S H U S H U S H U S H

Random 33.39 51.34 40.46 54.11 67.13 59.92 37.84 44.25 40.79 36.11 28.29 31.73
Previous 33.39 51.34 40.46 58.79 69.36 63.64 47.52 49.22 48.36 42.22 36.01 38.87

TABLE 14: Classification accuracy (%) of the task incremental generalized zero-shot learning (task-aware) experiments using our
proposed RKR with different types of initialization: 1) random 2) from previous task.

dataset prediction approach to LZSL. In fact, the task-agnostic
RKR also significantly outperforms the task-aware LZSL method
that uses task labels during testing. For the CUB and SUN datasets,
the task prediction accuracy is 100% for our method. The average
dataset prediction accuracy in this setting is over 99%.

7 CONCLUSION

In this paper, we proposed a novel Rectification-based Knowledge
Retention (RKR) approach to address the non zero-shot and zero-
shot task incremental learning problems. We showed how RKR
learns weight rectifications for the network weights and scaling
factors for rectifying the intermediate outputs of the network
in order to adapt the network to work for any given task. Our
proposed method works for both the task-aware and task-agnostic
test settings. We experimentally showed that our method signifi-
cantly outperforms the state-of-the-art methods. We validated the
components of our method using various ablation experiments.
In the future, we would like to apply our approach to other
computer vision tasks such as incremental object detection and
segmentation.

REFERENCES

[1] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
Learning and Motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[2] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–1, 2021.

[3] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding model for
zero-shot learning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 2021–2030.

[4] P. Singh, P. Mazumder, P. Rai, and V. P. Namboodiri, “Rectification-based
knowledge retention for continual learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[5] J. Rajasegaran, S. Khan, M. Hayat, F. S. Khan, and M. Shah, “itaml:
An incremental task-agnostic meta-learning approach,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 588–13 597.

[6] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2001–2010.

[7] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free continual
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 11 254–11 263.

[8] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang, Y. Cheng, S. Jui,
and J. v. d. Weijer, “Semantic drift compensation for class-incremental
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6982–6991.

[9] R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremental
learning,” in International Conference on Learning Representations
(ICLR), 2018. [Online]. Available: https://openreview.net/forum?id=
SJ1Xmf-Rb

[10] N. Kamra, U. Gupta, and Y. Liu, “Deep generative dual memory
network for continual learning,” arXiv preprint arXiv:1710.10368, 2017.
[Online]. Available: https://arxiv.org/pdf/1710.10368.pdf

[11] D. Lopez-Paz and M. A. Ranzato, “Gradient episodic memory for
continual learning,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc.,
2017, pp. 6467–6476.

[12] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, 2018.

[13] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 233–248.

[14] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-
C. Jay Kuo, “Class-incremental learning via deep model consolidation,”
2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), Mar 2020.

[15] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 139–
154.

[16] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al.,
“Overcoming catastrophic forgetting in neural networks,” Proceedings
of the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526,
2017.

[17] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 3987–3995.

[18] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” Lecture Notes in Computer Science, p. 556–572, 2018.

[19] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh,
R. Pascanu, and R. Hadsell, “Progress & compress: A scalable framework
for continual learning,” in ICML, 2018, pp. 4535–4544.

[20] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural

https://openreview.net/forum?id=SJ1Xmf-Rb
https://openreview.net/forum?id=SJ1Xmf-Rb
https://arxiv.org/pdf/1710.10368.pdf

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

networks,” arXiv preprint arXiv:1606.04671, 2016. [Online]. Available:
https://arxiv.org/pdf/1606.04671.pdf

[21] J. Xu and Z. Zhu, “Reinforced continual learning,” in Advances in Neural
Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran
Associates, Inc., 2018, pp. 899–908.

[22] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning
with dynamically expandable networks,” in International Conference
on Learning Representations (ICLR), 2018. [Online]. Available:
https://openreview.net/forum?id=Sk7KsfW0-

[23] J. Rajasegaran, M. Hayat, S. H. Khan, F. S. Khan, and L. Shao, “Random
path selection for continual learning,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 12 669–12 679.

[24] J. Yoon, S. Kim, E. Yang, and S. J. Hwang, “Scalable and
order-robust continual learning with additive parameter decomposition,”
in International Conference on Learning Representations (ICLR), 2020.
[Online]. Available: https://openreview.net/forum?id=r1gdj2EKPB

[25] A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep adap-
tation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 3, pp. 651–663, 2020.

[26] P. Singh, V. K. Verma, P. Mazumder, L. Carin, and P. Rai, “Calibrating
cnns for lifelong learning,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 15 579–15 590.

[27] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen, “Su-
perposition of many models into one,” Advances in neural information
processing systems, vol. 32, 2019.

[28] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[29] L. Chen, H. Zhang, J. Xiao, W. Liu, and S.-F. Chang, “Zero-shot
visual recognition using semantics-preserving adversarial embedding
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1043–1052.

[30] R. Felix, V. B. Kumar, I. Reid, and G. Carneiro, “Multi-modal cycle-
consistent generalized zero-shot learning,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 21–37.

[31] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal, “A gener-
ative adversarial approach for zero-shot learning from noisy texts,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1004–1013.

[32] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating
networks for zero-shot learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 5542–5551.

[33] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata, “Gener-
alized zero-and few-shot learning via aligned variational autoencoders,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8247–8255.

[34] K. Wei, C. Deng, and X. Yang, “Lifelong zero-shot learning,” in Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, C. Bessiere, Ed. International Joint Conferences
on Artificial Intelligence Organization, 7 2020, pp. 551–557, main track.

[35] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu networks
yield high-confidence predictions far away from the training data and
how to mitigate the problem,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 41–50.

[36] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” Advances in Neural Information Processing Systems, vol. 33,
pp. 21 464–21 475, 2020.

[37] J. J. Thiagarajan, B. Venkatesh, P. Sattigeri, and P.-T. Bremer, “Building
calibrated deep models via uncertainty matching with auxiliary interval
predictors,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 04, 2020, pp. 6005–6012.

[38] A. Krizhevsky, G. Hinton et al., “Learning multiple layers
of features from tiny images,” 2009. [Online]. Available: http:
//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[39] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsupervised
feature learning,” in NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011. [Online]. Available:
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision, vol.
115, no. 3, pp. 211–252, 2015.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[43] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe,
“Continual learning with hypernetworks,” in International Conference
on Learning Representations (ICLR), 2020. [Online]. Available:
https://openreview.net/forum?id=SJgwNerKvB

[44] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects
by their attributes,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2009, pp. 1778–1785.

[45] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 9, pp. 2251–2265, 2018.

[46] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,
“The caltech-ucsd birds-200-2011 dataset,” 2011. [Online]. Available:
https://authors.library.caltech.edu/27452/1/CUB_200_2011.pdf

[47] G. Patterson and J. Hays, “Sun attribute database: Discovering, anno-
tating, and recognizing scene attributes,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2012, pp. 2751–2758.

Pratik Mazumder received his M.Tech.-Ph.D.
joint degree from Indian Institute of Technology,
Kanpur. He is currently an Assistant Professor
in the CSE department at IIT Jodhpur, India. His
research interests include data-efficient learning
techniques, few-shot learning, zero-shot learn-
ing and continual learning. He has published
papers at prestigious international conferences
and journals such as CVPR, ECCV, NeurIPS,
AAAI, ICASSP, WACV, PR, Knowledge-based
Systems, Neurocomputing, and others.
Pravendra Singh received his Ph.D. degree
from Indian Institute of Technology, Kanpur. He
is currently an Assistant Professor in the CSE
department at IIT, Roorkee, India. His research
interests include model compression, zero/few-
shot learning, continual learning, deep learn-
ing. He has published papers at prestigious
international conferences and journals, includ-
ing CVPR, ECCV, WACV, NeurIPS, AAAI, IJ-
CAI, ICASSP, IJCV, PR, Neurocomputing, IEEE
JSTSP, and others.
Piyush Rai received his Ph.D. in Computer Sci-
ence from University of Utah. He was a postdoc-
toral fellow at UT Austin, and thereafter he was
a research faculty in ECE at Duke University. He
is currently an Associate Professor in the CSE
department at IIT Kanpur, India. His research
interests include Bayesian modeling and infer-
ence, probabilistic latent variable models, few-
shot and continual learning. He is also a recip-
ient of various awards, some of which include
IBM Faculty Award, Google India Faculty Award,

Visvesvaraya Young Faculty Fellowship. He has published papers at
prestigious international conferences and journals, including ICML,
CVPR, NeurIPS, AAAI, IJCAI, IJCV, IEEE JSTSP, MLJ, and others.

Vinay P. Namboodiri received his M.Tech. and
Ph.D. degrees from the Indian Institute of Tech-
nology, Bombay. He was a postdoctoral fellow
at KU Leuven. He is currently a faculty mem-
ber at University of Bath. He was previously an
Associate Professor in the CSE department at
IIT Kanpur, India. His research interests include
visual recognition with scarce supervision, multi-
modal deep learning, explainable AI. He has
served as an area chair for CVPR, ICCV, ACCV,
WACV and BMVC. He has published papers

at prestigious international conferences and journals, including CVPR,
ICCV, ECCV, NeurIPS, AAAI, IJCAI, IJCV,IEEE TIP, PR, Neurocomput-
ing, and others.

https://arxiv.org/pdf/1606.04671.pdf
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=r1gdj2EKPB
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://openreview.net/forum?id=SJgwNerKvB
https://authors.library.caltech.edu/27452/1/CUB_200_2011.pdf

	Introduction
	Related Works
	Incremental Learning
	Zero-Shot Learning

	Problem Definition
	Task Incremental Learning
	Task Incremental Generalized Zero-Shot Learning

	Proposed Method
	Rectification-based Knowledge Retention
	Reducing Parameters for Weight Rectification
	Convolutional Layers
	Fully Connected Layers

	Testing Process with Access to Task Labels
	Testing Process without Access to Task Labels

	Task Incremental Learning Experiments (Non Zero-shot Setting)
	Datasets
	Implementation Details
	Task-Aware CIFAR Results
	Task-Aware ImageNet Results
	Task-Aware SVHN Results
	Task-Agnostic SVHN Results
	Task-Agnostic CIFAR Results
	Task-Agnostic ImageNet Results

	Task Incremental Learning Experiments (Generalized Zero-Shot Setting)
	Testing Process
	Datasets
	Implementation Details
	Task-Aware Results
	Task-Agnostic Results

	Conclusion
	References
	Biographies
	Pratik Mazumder
	Pravendra Singh
	Piyush Rai
	Vinay P. Namboodiri

