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Abstract—Nowadays, electricity markets and carbon trading 

mechanisms can promote investment in renewable sources but also 

generate new uncertainties in decision-making. In this paper, a 

two-stage planning model is presented, considering supply-side 

and demand-side uncertainties in the distribution network and the 

interaction uncertainty from the main grid. First, these uncertain 

factors are depicted by the ambiguity sets based on the 

Wasserstein metric and historical data. Then, a two-stage 

Wasserstein distributionally robust optimization (WDRO) model 

is formulated to decide the optimal planning strategy for 

renewable energy generators (REGs) and energy storage systems 

(ESSs). Both 1-norm and ∞-norm Wasserstein metric constraints 

are considered to satisfy the decision-maker preference in 

different aspects. Furthermore, a systematic solution methodology 

with a three-step process is developed to solve the proposed 

WDRO. Numerical results from a modified IEEE 33-node system 

and a practical 130-node system demonstrate the advantages of the 

two-stage WDRO model and the effectiveness of the solution 

method. 

 
Index Terms—Two-stage planning model, Wasserstein metric, 

WDRO, decision maker’s preference. 

NOMENCLATURE 

A. Indices(Sets) 
a  Index for different uncertain factors. 
i , j , k  Index for distribution network buses. 

l  Index for data samples. 
t  Index for hourly intervals. 

  Uncertainty Set.  

 

B. Parameters 
d  Discount rate. 
N  Number of data samples. 

REGN , ESN  Number of REGs and ESSs. 

ˆ
NP  Empirical distribution on basis of 

historical data. 

L ,j tP , L ,j tQ  Active and reactive load demand in bus 

j at time t. 

REG ,j tP  REG outputs of in bus j at time t. 
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REGT , EST  Lifetime of REG and ESS. 

dT , yT  Operation time. 

ijr , ijx  Resistance and reactance of branch ij. 

minU , maxU  Lower bound and upper bound of 

voltage in the distribution network. 

̂  Dataset containing all historical data. 

( )

1
ˆ l

t , ( )

2
ˆ l

t , ( )

3
ˆ l

t , ( )

4
ˆ l

t  The l-th data sample about different 

uncertain factors at time t. 

 , 1 ,  The radius of Wasserstein ball. 

 , 1 ,   The confidence of Wasserstein metric. 

ESD , ESR  
Charging and discharging efficiency of 

ESSs. 

ope  Coefficient of annual operational cost. 

REG , ESC , ESP  Capital cost of REGs and ESSs. 

CO2 , te  Carbon trading price and nodal carbon 

intensity from the main grid. 

LMP,t  Location marginal price from the main 

grid at time t. 

ES ,0iE , ES ,24iE  Initial state of charge ESSs. 

 

C. Variables 

CO2,tC , CO2,tC  Carbon trading cost. 

E,tC , E,tC  Power trading cost. 

REGC , ESC , opeC  Annual capital cost of REGs, 

ESSs and devices operation. 

ES ,i tE  Operation strategy of ESSs. 

,ij tI ,
,i tU  Branch current and node 

voltage. 

,j tP , ,j tQ  Active and reactive power 

injected in node j at time t. 

,ij tP , ,jk tP , ,ij tQ , ,jk tQ  Active and reactive power in 

different branches. 

1t , 2t , 3t , 4t  Four kinds of uncertainties at 

time t. 
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l

t  Uncertain variables robust 

deviation of original samples. 

REG,iS , ESC,iS , ESP,iS  Capacity of REGs and ESSs. 

 

I. INTRODUCTION 

OWADAYS, excessive greenhouse gas emissions 

have caused numerous environmental issues [1], such 

as global warming and frequent extreme weather 

events. To address this concern, investing in REGs and ESSs in 

the power industry attracts great attention and leads to an 

investment boom [2]. The distributed system operator (DSO) 

usually installs REGs and ESSs on the grid side. They can 

reduce power purchase fees and carbon tax under power and 

carbon trading mechanisms, thereby creating more economic 

benefits. However, these mechanisms also bring more 

uncertainties that do not have typical probability distributions, 

resulting in difficulties and challenges in decision-making. 

Hence, it is significant to formulate a credible and tractable 

mathematical model to determine the planning strategy for 

REGs and ESSs under multiple uncertainties. 

In the past few years, many researchers have concentrated on 

the coordinated planning of REGs and ESSs in the distribution 

network. For instance, Conte et al. [3] proposed an optimal 

planning method for the integrated battery and photovoltaic 

power plant, which can produce photovoltaic power and 

provide droop-based primary frequency regulations to the main 

grid. In [4],[5], a two-stage planning of REGs and ESSs was 

formulated to minimize the comprehensive costs of the DSO. 

Oskouei et al. [6] presented an unified decision-making 

structure that consists of network partitioning and optimal 

planning of REGs and ESSs. However, most research does not 

consider economic profits generated by carbon emission 

reductions when the DSO invests in REGs and ESSs. To fill this 

knowledge gap, a deterministic planning model of REGs and 

ESSs considering energy price and transmission access fee was 

formulated in [7] preliminarily, but no uncertain factors were 

considered.   

Generally, decision-makers should lay stress on the uncertain 

factors in finding the optimal planning strategy, which satisfies 

different scenarios comprehensively. In the coordinated 

planning of REGs and ESSs, most literature expounds supply-

side and demand-side uncertainties, which refer to the uncertain 

outputs of REGs and the randomness in demand respectively 

[8]-[11]. In addition, the DSO also has interaction uncertainties 

with the main grid under the power and carbon trading 

mechanisms. It is analogous to the uncertain transaction fee of 

integral energy, which has been considered in the optimal 

scheduling of distributed energy systems [12]. However, these 

uncertain factors do not attract much attention in the 

coordinated planning of REGs and ESSs, particularly the 

uncertainties of locational marginal price (LMP) and nodal 

carbon intensity (NCI) in the main grid [13],[14]. 

To address the aforementioned uncertainties, numerous 

studies have been conducted in this area. Stochastic 

optimization (SO) is a simple but practical modeling paradigm 

that has been widely applied in decision-making. Hemmati et 

al. [15] developed a stochastic expansion planning in 

microgrids, incorporating renewable energy resources and 

energy storage systems. Zhu et al. [16] proposed an energy 

storage capacity sizing method by using numerous solar power 

outputs and load samples. Generally, SO often makes the 

optimal decision through known probability distributions or a 

family of typical scenarios. However, the decision-maker 

usually does not know the probability distributions hiding 

behind historical samples in advance. Without a large number 

of data samples, the distribution is often partially observed 

through limited data samples and the out-of-sample 

performance is usually disappointing [17]. Even if there are 

adequate samples, the performance of SO is also unsatisfying 

because of high computational complexity [18]. Robust 

optimization (RO) is another common method for decision-

making under uncertain factors. Golpira et al. [9] expounded a 

multi-objective risk-based robust optimization approach for 

energy management under demand and supply uncertainties. 

RO often models uncertain variables by intervals and is only 

concerned with the worst-case scenario. Compared to SO, RO 

has the advantages of improving decision robustness and 

reducing computational complexity. However, RO often leads 

to the excessive conservativeness of the scheme because the 

worst-case scenario appears with an extremely low probability.  

In recent years, DRO has gained increasing popularity by 

overcoming the disadvantages of SO and RO [19]. The 

traditional DRO can be divided into two categories. The first 

category of DRO is based on the moment ambiguity set which 

contains all distributions satisfying moment constraints [19]. 

With increasing uncertainty variables, the optimized results 

might deviate from the true probability distributions [20]. The 

second category is based on several worst-case scenarios 

clustering from historical data [21]. However, the 

characteristics of the worst-case scenario have to be known in 

advance for extracting them from clustering results. It might be 

difficult when several uncertainties are considered 

simultaneously. To address these issues, Wasserstein metric-

based DRO has attracted many attentions. In [22]-[25], a 

WDRO model was proposed for economic dispatch and unit 

commitment in the power system with variable renewable 

energy resources. Y. Zhou et al. [26] and Y. Wang et al. [27] 

extended this approach to the resilient operation and economic 

scheduling in the integrated energy system respectively. 

However, these methods only utilize one type of Wasserstein 

metric, which is not adequate enough to limit the ambiguity set 

from different dimensions. Furthermore, very few papers 

propose a two-stage planning model to decide the optimal 

allocation of REGs and ESSs in the distribution network under 

multiple uncertainties. 

Based on the abovementioned analysis, this paper proposes a 

two-stage WDRO model for the coordinated planning of REGs 

and ESSs. The main contributions of this work can be 

summarized as follows. 

1) Both supply-side and demand-side uncertainties from the 

distribution network and interaction uncertainty from the main 

N 
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grid are considered in this paper. These uncertainties are 

depicted by ambiguity sets based on Wasserstein metric and 

historical data, which are more proper to model the interaction 

uncertainties without any typical distributions, such as LMP 

and NCI. 

2) A two-stage WDRO planning model with 1-norm and ∞-

norm Wasserstein metric constraints is formulated to decide the 

planning and operation schemes for REGs and ESSs. This 

model can comprehensively depict the characteristics of 

ambiguity sets from general differences and local deviations on 

basis of decision-maker’s preference. 

3) A systematic solution methodology is developed to solve 

the proposed two-stage WDRO planning model with second-

order cone constraints. Specifically, this model is converted 

into a tractable reformulation with linearized power flow, from 

which the worst-case distribution of uncertainty variables can 

be obtained. Through the known distribution, the original 

model is transformed into a mixed-integer second-order cone 

programming (MISOCP) and solved by a commercial optimizer 

efficiently. 

The rest of this paper is organized as follows. Section 2 

presents a Wasserstein ambiguity set to describe the multiple 

uncertainties in the decision-making. Section 3 formulates a 

two-stage WDRO model to obtain the optimal planning 

strategies for REGs and ESSs. The solution methodology for 

this model is developed in Section 4. Section 5 validates the 

advantages of the proposed two-stage WDRO model and the 

performance of the solution methodology by a modified IEEE 

33-node system and a practical 130-node system. Section 6 

provides a summary and concluding remarks. 

II. WASSERSTEIN AMBIGUITY SET FOR MULTIPLE 

UNCERTAINTIES IN DECISION-MAKING 

To decide the optimal planning strategies, DSO should lay 

stress on multiple uncertain factors, including supply-side 

uncertainty, demand-side uncertainty and interaction uncertainty. 

The former two correspond to the output of REGs and demand 

characteristics in the distribution system. The latter one refers to 

the uncertainties generated by the power and carbon trading 

mechanisms in the main grid, such as LMP and NCI. Notably, 

carbon trading prices determined by the government [28]are 

often comparatively stable,  and thereby they are assumed to be 

deterministic in this paper.  

Assuming that the decision-maker has collected hourly 

historical data in N days about the aforementioned information. 

Then, a dataset Atrain= { (1)̂ , (2)̂ ,…, ( )ˆ l ,…, ( )ˆ N } is constructed 

by the LMP, NCI, renewable output and demand characteristics 

in each hour. ( )ˆ l denotes four kinds of historical data 

respectively, i.e. ( )ˆ l = { ( )

1̂
l ,

( )

2
ˆ l , ( )

3
ˆ l , ( )

4
ˆ l }. The empirical 

distribution from the historical data can be defined as follows. 

( )ˆ

1

1ˆ
l

N

N

l

P
N


=

=  
                                   (1) 

To quantitatively measure the distance between the empirical 

distribution and any other distributions, the Wasserstein metric 

is defined as follows [24]. 

2W
ˆ ˆˆ( , ) min (d ,d )Nd P R


= −            (2) 

By analyzing this definition in details, the essence of the 

Wasserstein metric is an optimization problem, where the 

decision variable Ф is a joint distribution of ̂  and  . It can be 

viewed as the minimum cost of the transportation plan Ф for 

moving one probability distribution to another. 

Based on the Wasserstein metric, a Wasserstein ambiguity set 

that contains all distributions analogous to the empirical 

distribution is constructed. This set can be described by the 

Wasserstein ball of radius κ centered at the empirical distribution.  

W
ˆ ˆ( ) { : ( ) 1} { : ( , ) }N NB P R R R d P R =  =       (3) 

Notably, radius κ is closely related to the performance of the 

Wasserstein ambiguity set and the following formulas provide 

the relationship between the confidence level and the radius on 

the basis of some statistical methods [29]. 
2

W 2
ˆ{ ( , ) } 1 exp( )NP d R P N

D


   = − −                (4) 

2 1
ln( )

1
D

N



=

−
                                 (5) 

where D is a constant that can be derived by the following 

optimization problem. 

( )

0
1

ˆ ˆ1 1
min 2 (1 ln( ))

2

lN

l

D e
N



 

−


=

= + 
 

               (6) 

Where ̂  is the sample mean. 

Note that there are several advantages of this Wasserstein 

ambiguity set. First, it is centered on the empirical distribution 

derived from finite data samples, while restricting the 

distributional uncertainty on the basis of the Wasserstein metric. 

This feature is more appropriate to depict multiple uncertainties 

in the decision-making where the distribution is often partially 

observable through a finite amount of historical data. Then, there 

is a statistical guarantee that the true probability distribution is 

contained in the Wasserstein ball with a certain confidence level. 

Lastly, the decision-maker can change the radius of the 

Wasserstein ball to control the conservatism of optimized results. 

Note that if the radius of the Wasserstein ball is reduced to 0, it 

is identical to the original empirical distribution. 

III. TWO-STAGE WDRO MODEL FOR RENEWABLE SOURCES 

AND ENERGY STORAGE SYSTEMS PLANNING 

In this section, a data-driven Wassterstein DRO is formulated 

as a two-stage optimization, in which the planning strategy is 

determined in the first stage and the operation strategy is 

optimized in the second stage. The location and capacity of 

devices resulted from the first stage will affect the energy 

purchase and operation of ESSs in the second stage.  

A. Objective Function 

The objective is to minimize the comprehensive cost of the 

DSO, including the annual capital cost, and operation cost of 

REGs and ESSs, and the annual energy trading cost from the 

power consumption and equivalent carbon emissions. 
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ES, 0,
REG ES ope E, CO2,

,
0

min max min ( )
d

t t

T

y t t
P P

t

F C C C T C C
=

= + + + +


 (7) 

REG

REG

REG

REG REG REG,

1

(1 )

(1 ) 1

N

iT
i

d d T
C S

d


=

+
=

+ −
                    (8) 

ES

ES

ES

ES ESC ESC, ESP ESP,

1

(1 )
( )

(1 ) 1

N

i iT
i

d d T
C S S

d
 

=

+
= +

+ −
           (9) 

ope ope REG ES( )C C C= +                           (10) 

E, LMP, 0.t t tC P=                                (11) 

CO2, CO2 0.t t tC e P=                            (12) 

Eqs. (8)-(10) represent the capital cost of REGs, the capital cost 

of ESSs and related operation cost. Eqs. (11)-(12) indicate the 

energy trading costs. 

B. Constraints 

1) Wassertein metric constraints 

2W1 1
1

ˆ ˆˆ( , ( )) min (d ,d )N t dd P R t T 


= −         (13) 

W1 1 1
ˆ{ ( , ) }NP d R P                         (14) 

2W
ˆ ˆˆ( , ( )) min (d ,d )N t dd P R t T  

 
= −         (15) 

W
ˆ{ ( , ) }NP d R P                         (16) 

Both 1-norm Wasserstein metric and ∞-norm Wasserstein 

metric are considered in this paper. The former one is related to 

the general difference between probability distributions and the 

latter one represents the local deviation between probability 

distributions. If κ1 or κ∞ reduces to 0, this problem will be 

equivalent to the SO. 

2) Power flow constraints 

, L , ESD , ESR , REG , ,j t j t j t j t j tP P P P P t j= − + −       (17) 

, L , ,j t j tQ Q t j=                           (18) 

2

, , , ,

end( ) head( )

( ) ( ) ,ij t ij ij t jk t j t

i j k j

P r I P P t j
 

− = +     (19) 

2

, , , ,

end( ) head( )

( ) ( ) ,ij t ij ij t jk t j t

i j k j

Q x I Q Q t j
 

− = +     (20) 

2 2 2 2 2

, , , , ,2( ) ( ) ,j t i t ij ij t ij ij t ij ij ij tU U r P x Q r x I t ij= − + + +    (21) 

2 2 2

, , , ,( ) ( ) ( ) ,ij t ij t ij t i tP Q I U t ij+ =    (22) 

2 2 2 2

, , , , , ,2
2 2 ,ij t ij t ij t i t ij t i tP Q I U I U t ij−  +    (23) 

Eqs. (17)-(18) represent the power injection and Eqs. (19)-

(20) indicate the law of power conversation. Eq. (21) is Ohm’s 

law over branch ij and Eq. (22) is converted into a second-order 

cone formulation (23). 

3) Operation constraints of energy storage 

ESD , ESP0 i t iP S                              (24) 

ESR , ESP0 i t iP S                             (25) 

ES , ESC ,i t iE S t i                           (26) 

 

ES , 1 ES , ESD , ESD ESR , ESR/ ,i t i t i t i tE E P t P t t i + = −  +       (27) 

ES ,0 ES ,24=i iE E j                            (28) 

The charge/discharge constraints of the energy storage 

system are represented by Eqs. (24)-(26). Eq. (27) denotes the 

relationship between charge power, discharge power and the 

state of charge. Eq. (28) indicates that the initial and final states 

of the energy storage are the same. 

4) Additional constraints 
2 2 2

min , max ,j tU U U t j                   (29) 

0. 0tP t                                    (30) 
2 2 2

Lij ijP Q S+                                  (31) 

Eq. (29) represents the security constraint of the distribution 

network. Moreover, the DSO is cast as a price taker in the 

trading mechanism and the reverse power flow injected into the 

main grid is not allowed in (30). Eq. (31) is the load factor 

constraint and χ is the load factor requirement in the network. 

IV. SOLUTION METHODOLOGY OF TWO-STAGE WDRO 

By analyzing the WRO model in details, the dual problem of 

the second-stage optimization is difficult to obtain. On one hand, 

if the dual problem is based on the minimum problem about PES,t 

and P0,t, the second-order constraint (23) in the distribution 

network has quadratic terms, such as 2P , which will increase 

the difficulty in formulating the dual problem. On the other hand, 

if the dual problem is based on the maximum problem about ξ, 

new difficulty will occur when both 1-norm Wasserstein metric 

and ∞-norm Wasserstein metric are considered simultaneously. 

Therefore, a systematic solution method is developed to solve 

the two-stage WDRO model in this section. As shown in Fig.1, 

this method contains the following three steps. First, the two-

stage WDRO is simplified by the linearized power flow and 

transformed into a tractable formulation. Then, the Column and 

Constraint Generation (CCG) algorithm is used to solve the 

reformulation model [25] and the probability distribution of 

uncertain variables can be obtained. Finally, the original model 

is transformed into the MISOCP with  known distribution and 

the optimal planning strategy is obtained from the MISOCP 

model easily. 

A. Original Model Tractable Transformation 

Based on the linearized power flow, the power flow 

constraints (19)-(23) can be simplified as follows [30]. 

, , ,

end( ) head( )

( ) ,ij t jk t j t

i j k j

P P P t j
 

= +                  (32a) 

, , ,

end( ) head( )

( ) ,ij t jk t j t

i j k j

Q Q Q t j
 

= +                (32b) 

, , , ,( ) ,j t i t ij ij t ij ij tU U r P x Q t ij= − +                 (32c) 

Meanwhile, (31) is a typical quadratic constraint, which can 

be linearized by the polygonal approximation method [30]. 

,0 ,1 ,2 L 0b ij b ij bP Q S b Z  + +                  (33) 

where γa,0, γa,1 and γa,2 are the coefficients of each linear term. 

Therefore, the original DRO model can be transformed into a 

linear programming with Wassertein ambiguity set constraint. In 

the following formulas, y represents the decision variables in the 

first-stage, i.e. location and capacity of REGs and ESSs. ξ and x  
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Fig. 1. Flow chart of solving the two-stage WDRO. 

 

 

denote the uncertain factors and operation strategies of ESSs 

optimized in the second-stage. 

T T T

1 2

0

min max min ( )
dT

t t

t

F  
=

= + + 1 2
y x

E y F x F x       (34a) 

s.t. 

0y                                       (34b) 

REG =
3

y F                                     (34c) 

 −
1 2 3

G x G G y                               (34d) 

3 4t t dt T − −  
1 2 3 4

J x = J F F           (34e) 

Eqs. (13)-(16)                                  (34f) 

Eq. (34b) denotes the linear inequality constraint in the first 

stage, and Eqs. (34c)-(34e) indicate the linear equality and 

inequality constraints in the second stage. 

If the convexity of the optimization problem can be ensured, 

then Eqs. (34a)-(34e) coincide with the following tractable 

formulation [17]. 

T ( ) ( ) T

1 1

0 1

( ) ( ) T

2 2

1 ˆmin max min [( )

ˆ( ) ]

dT N
l l

t t

t l

l l

t t

F
N

 

 

= =

= + −

+ −

 1

2

y x
E y F x

F x

  (35a) 

s.t. 

0y                                        (35b) 

REG =
3

y F                                     (35c) 

 −
1 2 3

G x G G y                                (35d) 

( ) ( )

3 3

1

( ) ( )

4 4

1

1 ˆ( )

1 ˆ( )

N
l l

t t

l

N
l l

t t d

l

N

t T
N

 

 

=

=

− −

− −  





1 2 3

4

J x = J F

F

        (35e) 

( ) ( ) ( ) ( )

1 2 3 4 1

1

1
( + + + )

N
l l l l

t t t t d

l

t T
N

    
=

        (35f) 

( )

1

1
, 1,2,3,4

N
l

at d

l

t T a
N

 

=

     =       (35g) 

 

B. Solution Method for Reformulation Model 

The reformulation model also has a two-stage structure, 

which can be solved by the wildly used CCG algorithm. 

According to different objectives, the reformulation model is 

decomposed to the following master problem and subproblem, 

and the optimal values of decision variables are derived by 

iteration.  

1) Master problem of the reformulation model 
Tmin +

y
E y                                (36a) 

s.t. 

( ) T ( ) T
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The master problem is related to the decision-making of 

planning strategy in the first stage. In this problem, the values of 

uncertainty variables (i.e. ( )

1
ˆ l k  , ( )

2
ˆ l k  , ( )

3
ˆ l k  , ( )

4
ˆ l k  ) are input 

parameters, obtained from the optimal solution of the 

subproblem. 

2) Subproblem of the reformulation model 
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REG, 1 =k


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The subproblem represents the decision-making of operation 

strategies in the second stage. This problem is a max-min 

optimization, which is difficult to solve directly. By the strong 

duality theorem, it is reformulated to the following monolithic 

form.  and
t are the vectors of dual variables. 

T T

1

0

( ) ( ) ( ) ( )

3 3 4 4

1 1

max ( ) [

1 1ˆ ˆ( ) ( )]

dT

S k t

t

N N
l l l l

t t t t

l l

f

N N
   



+

=

= =

= − + −

− − −



 

2 3 2

3 4

G G y J

F F


 

    (38a) 

s.t. 
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 REG, 1 =k



+ 3y F                                   (38b) 

 

( ) ( ) T ( ) ( ) T T

1 1 2 2

0 1

T

0

1 ˆ ˆ[( ) ( ) ]
d

d

T N
l l l l

t t t t

t l

T

t d

t

N

t T

   
= =

=

− + − −

− =  





1 2 1

1 0    

F F G

J





       (38c) 

( ) ( ) ( ) ( )

1 2 3 4 1

1

1
( + + + )

N
l l l l

t t t t d

l

t T
N

    
=

         (38d) 

( )

1

1
, 1,2,3,4

N
l

at d

l

t T a
N

 

=

     =       (38e) 

3) CCG algorithm 

CCG algorithm is an efficient method to solve the two-stage 

optimization. The master problem and subproblem provide the 

upper bound and lower bound for the iteration respectively. The 

detailed process is shown as follows. 

Step 1: Set LB=0, UB=+∞ and initialize the index k=0. 

Step 2: Solve the master problem and update the lower bound 

LB=max{LB, T

1 1k k
 

+ ++E y }. 

Step 3: Solve the subproblem and update the upper bound 

LB=min{LB, T

1k Sf


+ +E y } 

Step 4: Check the convergence: If UB−LB≤γ, the iteration 

terminates. Otherwise, update k=k+1, add new constraints and 

go back to step 2. 

C. MISOCP Model with Known Distribution 

To modify the optimal results based on the linearized power 

flow, a MISOCP model with the worst-case probability 

distribution ξ* from Section IV-B is constructed. In this model, 

the worst-case distribution of uncertainty is known so that the 

original Wassertein DRO can be simplified to the following 

MISOCP. 

DEG ESC ESP ES, 0,
REG ES ope E, CO2,

, , , ,
0
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d

t t

T

y t t
S S S P P

t

C C C T C C
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N
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=
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, L , ESD , ESR , REG ,
ˆ ˆ , ,l l

j t j t j t j t j tP P P P P t j l = − + −        (39d) 

( )

, L ,
ˆ , ,l

j t j tQ Q t j l=                            (39e) 

Eqs. (8)-(10), (19)-(23), (24)-(30), (33)             (39f) 

In Eqs. (39b)-(39e), all uncertain variables are replaced by the 

optimized probability distribution. Essentially, this MISOCP 

model is a multi-scenario optimization, which can be solved by 

many commercial optimizers, such as IBM CPLEX. 

V. CASE STUDIES 

A. System Parameters 

In this section, the modified IEEE 33-node system is chosen 

to verify the proposed model. The specific parameters of this 

system are shown in [31]. As a typical representative of 

renewables, photovoltaic panels (PVs) are chosen in this paper. 

Assume that the proper candidate locations for PVs and ESSs of 

the IEEE-33-node system are illustrated in Fig.2. and the 

specific  

 
Fig. 2. Modified IEEE 33-node system. 

 

 
Fig. 3. 130-node system from northern China. 

 

 
Fig. 4. Mean value of different load characteristics. 

 

 

capital cost is presented in [15]. Meanwhile, in Fig.3, a practical 

system configuration with 130 nodes from northern China [32] 

is selected to discuss the applicability of the proposed model in 

the real world. The line capacity of this system is 2MW. The 

historical samples about PVs outputs are derived from [33] and 

the mean values of different load characteristics are presented in 

Fig.4. The carbon trading price is set as 15 $/tonCO2 [28]. 

All experiment is conducted on an Intel-i7 computer with 

16GB RAM and 3.4 GHz basic frequency. All simulations are 

performed by the CPLEX solver on the YALMIP platform. The 

confidence levels β1 and β∞ of the Wasserstein metric constraints 

are set to 90% and 70%. 

 

B. 33-node System Test 

1) Planning Strategies under Different External Factors 
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To demonstrate the significance of external factors such as 

LMP and NCI, the following two districts are considered.  

 
(a)  

 
(b) 

Fig. 5. Mean value of LMP and NCI in different time and districts. 

 

 
Fig. 6. Mean value of energy purchasing with different planning strategies. 

 

 

Data samples from the residential load are chosen in this test. 

Planning strategy I: Install REGs and ESSs in District I which 

has few renewables so the LMP and NCI are relatively higher. 

Planning strategy II: Install REGs and ESSs in District II 

which has huge renewable so that the LMP and NCI are 

relatively lower. 

Fig.5(a) and (b) illustrate the mean values of LMP and NCI in 

District I and District II respectively. The optimal planning 

strategies for PVs and ESSs in the two districts are shown in 

Table I, and the annual costs of different planning strategies are 

shown in Table II. 

Comparing the planning strategies for PVs and ESSs in Table 

I, the total investment capacity of PVs in District I is 850 kW 

more than that in District II, and the optimal scheme 

 

TABLE I 

PLANNING STRATEGIES IN DIFFERENT DISTRICTS 

 

District 
Location 

number  

PV capacity 

(kW) 

ESS capacity 

(kW·h) 

ESS power 

(kW) 

District I 
9, 17 1300, 450 400, 300 100, 100 

24, 32 1100, 900 400, 400 100, 100 

District II 
9, 17 800, 400 0, 0 0, 0 

24, 32 900, 800 0, 0 0, 0 

 

TABLE II 

ANNUAL COST OF DIFFERENT PLANNING STRATEGIES 

 

District 
Planning 

strategy 

Annual cost (104$) 

CDG CES CE CCO2 F 

District  

I 

Without 

planning 
0 0 136.3 12.9 149.2 

Planning 

strategy I 
27.5 3.5 71.7 7.6 110.3 

District 

II 

Without 

planning 
0 0 70.4 8.9 79.3 

Planning 

strategy II 
21.4 0 50.1 5.8 77.3 

 

in District I also needs further investment in ESSs. Meanwhile, 

more benefits will be obtained by DSO in district I if the 

planning strategy for PVs and ESSs is adopted. Essentially, 

these phenomena have a close relationship with the development 

of local renewables, reflected in the LMP and NCI from the main 

grid. If there are few renewables, such as District I, the LMP and 

NCI are relatively higher and the DSO will create more benefits 

by investing in PVs and ESSs. By contrast, only few benefits 

can be obtained by the investor. Different planning schemes and 

economic profits convincingly demonstrate that the DSO 

should attach great importance to the interaction uncertainty 

from the main grid, such as LMP and NCI, which have an 

enormous impact on the optimal decision-making. 

Furthermore, Fig.6 presents the mean value of energy 

purchased from the main grid in typical time when different 

planning strategies are implemented in the distribution network. 

At 12 am, energy purchase from the main grid significantly 

decreases in strategies I and II because of PVs outputs. At 6 a.m. 

and 6 p.m., strategy I can realize less energy purchase than 

strategy II for the effectiveness of ESSs. Therefore, the 

coordinated planning of REGs and ESSs can reduce the reliance 

on the main grid and prompt the autonomy capacity of the 

distribution network. 

 

2) Benefits Analysis of Wasserstein DRO 

In this section, District I with few renewables is chosen to 

verify the effectiveness of the Wasserstein DRO. The original 

problem is optimized by four different methods, SO, RO, 

traditional DRO and Wasserstein DRO. The optimal 

comprehensive costs of these methods are presented in Fig.7. In 

SO, the decision-maker utilizes the finite data samples directly 

to obtain the optimal planning strategy. RO and traditional DRO  
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Fig. 7. Comprehensive cost of four methods with different sample size. 

 

 
Fig. 8. Comprehensive cost of different confidence level 

 

 

often models uncertain factors by the uncertain interval and 

moment-based ambiguity set respectively. In Wasserstein DRO, 

a novel ambiguity set with Wasserstein metric is formulated on 

basis of data samples.  

Apparently, the optimal value of SO is the least conservative 

and it tends to be stable with the increase in historical data. 

However, when data samples are not adequate enough, such as 

N=10, underlying scenarios of uncertain variables are not fully 

considered. In this case, although this method has the least 

comprehensive cost, the robustness of the planning scheme and 

security of network operation cannot be guaranteed. On the 

contrary, RO has great robustness for it only considers the worst-

case scenario and then generates the most conservative planning 

strategy. Both traditional DRO and Wasserstein DRO are less 

conservative than RO because these methods consider the 

probability of the worst-case scenario. However, the objective 

value of the traditional DRO with the moment ambiguity set is 

constant with the increase in historical samples. It is because the 

moment information is not adequate enough to describe the true 

probability distributions. By comparison, the Wasserstein DRO 

can reduce the optimal value of decision-making gradually with 

the increase in sample size. The true probability distribution 

hiding behind the historical data can be well-characterized by 

the Wasserstein ambiguity set. Simultaneously, improbable 

distributions can be excluded with the increasing data samples, 

resulted in a high confidence level. In a nutshell, the Wasserstein 

DRO not only combines the advantages of SO and RO, but also 

overcomes the defects of traditional DRO, especially when 

multiple uncertainties occur in the decision-making. 

Furthermore, both 1-norm Wasserstein metric and ∞-norm 

Wasserstein metric are considered in the proposed WDRO 

model. As is shown in Fig.8, the objective value increases with 

the rising confidence level of both Wasserstein metric 

constraints. It is because that higher confidence level will 

expand the size of the Wasserstein ambiguity set and enhance 

the robustness of the planning strategy. Note that if the 

confidence level of ∞-norm Wasserstein metric is quite low, the 

objective value is almost the same as the variation in the 

confidence level of 1-norm Wassertein metric. This 

phenomenon demonstrates that ∞-norm Wasserstein metric is 

less conservative than 1-norm Wasserstein metric under the 

same confidence level. Essentially, 1-norm Wasserstein metric 

is related to the general difference between probability 

distributions and ∞-norm Wasserstein metric represents the 

local deviation between probability distributions. The proposed 

method combines them together rather than considering only 

one Wasserstein metric. Hence, it can depict the ambiguity set 

from two dimensions comprehensively to satisfy the decision 

maker’s preference in different aspects and obtain a less 

conservative result. 

 

3) Effectiveness Analysis of Solution Methodology 

In this section, the performance of the proposed solution 

methodology is validated. The following different methods are 

used by comparing the absolute error, relative error and solution 

time. For simplification, assuming that only the interaction 

uncertainty from the main grid and 1-norm Wasserstein metric 

constraint is considered.  

Method I: The dual problem is formulated on basis of 

uncertain variables. Then, the original model is transformed into 

a min-min optimization problem with second-order cone 

constraint which can be solved by the commercial optimizer 

directly. Note that this dual problem is much easier to construct 

because it only has 1-norm Wasserstein metric constraint about 

uncertain variables. 

Method II: Through the linearized power flow, the dual 

problem is formulated on basis of operation variables and then 

the original model is transformed into a min-max optimization 

which can be solved by the CCG algorithm. 

Method III: Utilizing the optimal probability distribution from 

Method II, a multi-scenario optimization with the known 

distribution is formulated. Essentially, it is also a MISOCP 

model without any difficulties to solve. 

In Table III, the performance of the aforementioned methods 

is presented. Although the simplification in Method II reduces 

the difficulty in solving the original Wasserstein DRO 

effectively, the accuracy of Method II cannot be guaranteed 

without calculating the network loss. By comparison, Method III 

overcomes the defect of Method II by reformulating a MISOCP 

model with the known distribution. Hence, the solution 

methodology proposed in this paper performs well in solving the 

Wasserstein DRO with second-order cone constraint because it 

enhances the accuracy of the model solution without sacrificing 

efficiency. 
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TABLE III 

PERFORMANCE COMPARISON IN SOLUTION METHODS 

 

Solution 

method 

Objective value 

(104$) 
Absolute error 

(104$) 
Relative 

error 

Time 

(s) 

Method I 102.50 0 0 10s 

Method II 100.26 2.24 2.19% 33s 

Method III 102.47 0.03 0.03% 35s 

 

TABLE IV 

OPTIMAL PLANNING SCHEME OF TYPICAL LINES  

IN 130-NODE SYSTEM 

 

Line 

Number 

Original 

load factor 
Load Type 

Location and capacity 

(kW) 

PV ESS 

F1 50% Resident 5, 800 5, 300 

F5 50% Industry 32, 600 32, 300 

F7 50% Commerce 47, 1000 47, 200 

F20 60% Industry 129, 700 129, 500 

F2 50% 

Combined 

resident and 

commerce 

13, 850 13, 300 

 

C. 130-node System Test 

In this section, a practical distribution system with 130 nodes 

is selected to verify the effectiveness of the proposed method in 

the real world. The optimal planning schemes for PVs and ESSs 

in several typical lines are shown in Table IV and specific 

analysis is as follows. 

First, PVs and ESSs often have the same optimal location 

which is approximate to the middle of each distribution network. 

It is because the same location can not only avoid the network 

loss in storing PV outputs, but also reduce the excessive PV 

power injection which may lead to voltage violation in the 

network. Meanwhile, siting in the middle of each distribution 

network is beneficial to make a further reduction in the energy 

loss. 

Then, comparing F1, F2, F5 and F7, there is a huge difference 

in planning schemes for PVs and ESSs under different load 

characteristics. More specifically, if the load characteristic is 

more analogous to PV outputs, such as commercial load, the 

optimal capacity for PVs will increase while that for ESSs will 

decrease. Generally speaking, DSO’s investment for PVs can 

decline energy consumption cost in distribution systems 

obviously due to the extremely low marginal cost in PVs. The 

decision-maker tends to allocate as many PVs as possible until 

it reaches the limits of system security constraints. By contrast, 

ESSs are hardly ever allocated alone because of the relatively 

higher cost. Hence, the planning scheme can generate more 

benefits if the load characteristic is more appropriate for taking 

advantage of PV outputs. 

In addition, comparing planning schemes in line F5 and F20, 

the optimal allocation capacity of PVs and ESSs is larger when 

the original loads are heavier. It is easy to imagine that the 

decision-maker will allocate more PVs under the heavier loads 

for economic benefits. However, load factor constraint tends to 

be the main factor impacting ESS capacity rather than the 

economy. To support the first circuit outage in each line with 

one contact switch, the maximum load factor cannot exceed 50%, 

while the original load factor of line F20 has reached 60%. Note 

that the peak load of industry occurs at night so that PVs 

allocation cannot tackle this issue. In this case, a larger capacity 

of ESS is needed to satisfy the load factor constraint. 

VI. CONCLUSION 

This paper expounded a two-stage WDRO model for REGs 

and ESSs planning in the distribution network where both 

internal uncertainty and interaction uncertainty were 

considered. This model adopts 1-norm and ∞-norm Wasserstein 

metric constraints comprehensively to reflect the decision 

maker’s preference in different aspects. Then, a three-step 

solution method was developed to solve this WDRO with the 

second-order cone constraint. Case studies are performed in a 

modified IEEE 33-node system and a practical 130-node 

system. Numerical results represent the significance of 

considering the internal and external influence 

comprehensively in the decision-making since load 

characteristic, LMP and NCI vary in different districts and these 

factors often lead to different optimal planning schemes. 

Furthermore, results also validate that the proposed WDRO can 

combine the advantages of SO and RO and provide a less 

conservative planning scheme on basis of decision-maker’s 

preference from different dimensions. The future work will 

focus on different REG and ESS investors in the distribution 

network and introduce game theory in the proposed model to 

describe the interaction between different investors. 
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