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Background. Control of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many 
years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These “stopping 
decisions” are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity 
of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more 
sensitive, molecular diagnostics has been proposed.

Methods. Through statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using 
an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve 
decision making regarding stopping or continuing PC for the control of S. mansoni.

Results. We found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of 
more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a 
cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, 
if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% 
person-years of heavy infection).

Conclusions. We conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related 
costs than in the direct health impact of improved parasite control.
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Neglected tropical diseases (NTDs) are a group of diseases that 
cause a significant health and socioeconomic burden that most
ly impacts the poorest parts of the world [1]. Preventive chemo
therapy (PC) is a central component in the control and 
elimination of several NTDs, including trachoma and helminth 
infections like schistosomiasis [2]. PC constitutes the blanket 
treatment of populations in endemic areas, regardless of indi
viduals’ infection status. With regular distribution and high 
enough population coverage, PC is effective at reducing infec
tion levels and morbidity in endemic populations. PC may 
even lead to complete local interruption of transmission, 

although sustainable large-scale elimination should also be 
expected to require behavioral and structural interventions 
such as improved access to water, sanitation, and hygiene 
[3, 4]. For the sustainability of NTD control, guidelines 
by the World Health Organization (WHO) recommend 
that PC is scaled down or stopped when infection levels 
in target populations have decreased to sufficiently low lev
els. This is also the case for the disease schistosomiasis 
(SCH), which is caused by a parasitic helminth infection 
that is currently primarily controlled via school-based PC 
with the drug praziquantel.

SCH is transmitted via contamination of freshwater bodies 
with human feces or urine and intermediate freshwater snail 
hosts that release cercarial infective stages [5]. In Africa, the ma
jority of human SCH infections are caused by 2 species, where the 
adult male-female worm pairs either reside in the venules of the 
intestines (Schistosoma mansoni) or the bladder (Schistosoma 
haematobium). In endemic areas, infection levels typically peak 
in school-aged children (SAC), although adults can also harbor 
a substantial fraction of the worm population [6, 7]. 
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The distribution of adult worms across the human population is 
highly overdispersed, meaning that a few individuals are infected 
with many worms (up to hundreds or thousands [8]) but most 
individuals carry only a few or no worms [5]. As a result, a single 
treatment with praziquantel, which kills approximately 86% of 
the adult worms [9], is unlikely to eliminate infection in individ
uals with higher infection intensities. These individuals, along 
with untreated individuals, are important reservoirs of infection 
from which transmission continues between PC rounds. 
Therefore, PC must be implemented repeatedly and at sufficient
ly high coverage levels in order to successfully reduce infection to 
low levels [10].

An increasing number of SCH-endemic areas are approaching 
a point where, after 5 to 6 years of PC, it may be possible to scale 
down or even stop PC if the prevalence of infection in SAC is low 
enough (eg, 2%) [11]. The WHO-recommended diagnostic tech
nique to measure infection levels is microscopy-based detection of 
SCH eggs by either Kato-Katz (KK) fecal smears or urine filtration, 
or a point-of-care circulating cathodic antigen test (S. mansoni 
only) [12]. However, an often-raised concern is that egg detection 
methods are suboptimal due to their poor sensitivity to detect low- 
intensity infections [13–15], which constitute the majority of in
fections, especially after repeated PC rounds. The concern is 
that decisions based on low-sensitivity tests may lead to prema
turely stopping PC and that infection levels will quickly bounce 
back. Another concern is that when population infection levels 
are very low, the cost of a survey based on the currently recom
mended diagnostics may be higher (due to required high sample 
sizes) in some settings than the delivery of a round of PC itself [13]. 
It has therefore been suggested that policy decisions should be 
based on more sensitive new molecular tests [16]. And ideally, sur
veys employing such new tests should be performed as a single 
field visit, and the cost of the assessment should be less than the 
cost of 2–3 rounds of PC [14, 15].

In this study, we investigate the extent to which the use of 
more sensitive diagnostic techniques can contribute to im
proved decision making for PC. We hypothesize that the use 
of better diagnostic techniques may improve the identification 
of populations that do and do not need PC, leading to the same 
or improved health impact, possibly with fewer PC treatments 
distributed. Here, we focus on populations that are endemic for 
S. mansoni (intestinal SCH) where PC is targeted at SAC. We 
employ an existing SCH transmission model [17–20] to simu
late the impact of PC and the outcome of different diagnostics 
strategies to inform stopping decisions for PC. To accurately 
capture how the sensitivity of KK changes with individual 
worm burden, we analyzed historical data representing 7 days 
of duplicate S. mansoni egg counts from Burundi [21]. We 
then compared the performance of decision strategies based 
on single and duplicate KK, as well as a range of new hypothet
ical diagnostic tests with higher sensitivity for detection of low- 
intensity infections.

METHODS

Mathematical Model for Trends of S. mansoni Infection During and 
After PC

We employed a published previously age-structured individual- 
based stochastic model [17–20]. The model assumes that 
S. mansoni worms are monogamous and that their distribution 
has a negative binomial form. The within-host section of the mod
el describes the evolution of the worm burden in individuals as a 
function of age. The model was implemented in Python, for which 
the code can be found at: https://github.com/NTD-Modelling- 
Consortium/ntd-model-sch/tree/Endgame_v2. A mathematical 
description of a deterministic version of the model is provided 
in the Supplementary Data. There, we also describe how we 
adhered to the PRIME-NTD principles (Policy-Relevant Items 
for Reporting Models in Epidemiology of Neglected Tropical 
Diseases) [22].

The model was expanded with mechanisms to dynamically 
stop PC during the simulation, conditional on a survey result be
ing under a user-defined threshold. Furthermore, to better cap
ture the sensitivity of KK variants, we updated model concepts 
for simulation of egg counts by adding structured variation of 
egg counts by day and by repeated slide, which were governed 
by 2 shape parameters kday and kslide (lower values indicate high
er variation and values k ≥ 5 are suggestive of little evidence for 
overdispersion; for technical details, see Supplementary Data). 
We further added model concepts for new hypothetical diagnos
tic tests that can detect individual worms. To capture that the 
sensitivity of such tests increases with the intensity of infection, 
we defined sensitivity St of test t as a function of the number of 
adult worms N and the probability Pt that the test can detect a 
single worm. This means that 1 − Pt is the probability that a 
worm will escape detection and that (1 − Pt)N is the probability 
that all N worms will escape detection. Therefore, overall test 
sensitivity was defined as St = 1 − (1 − Pt)N .

Quantification of Diagnostic Variation in Fecal Egg Counts Based on 
Kato-Katz

To quantify the 2 shape parameters kday and kslide that govern var
iation in individuals’ fecal egg counts by day and slide, we analyzed 
a historical dataset comprising 7 days of duplicate S. mansoni egg 
counts from 200 individuals in Burundi [21]. These data were 
based on KK slides of 1/40 = 0.025 gram feces, which deviates 
from the recommended 1/24 = 0.417 gram that is typically used 
nowadays. Egg counts were modeled using a Bayesian statistical 
model, assuming that counts follow an overdispersed Poisson dis
tribution that captures variation between individuals, between 
days, and between repeated slides based on the same fecal sample 
[23] (for technical details, see Supplementary Data).

Simulating the Impact of Different Diagnostic Strategies for Decisions to 
Stop PC

Simulations were run for a population of 3000 humans, which 
was taken to represent a small homogenous transmission area. 
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Transmission conditions in terms of the basic reproductive 
number R0 (recording the average transmission level in the 
population) and a shape parameter k (individual exposure het
erogeneity) were allowed to vary randomly between repeated 
simulations such that the baseline prevalence of infection in 
SAC was between 0% and 25% (based on single KK). For 
each set of transmission conditions, we simulated 5 years of 
PC targeting SAC at 90% coverage. One year after the fifth 
PC round, just prior to a sixth round, a survey was simulated 
that tested 450 SAC (about half of SAC) with one of various di
agnostic strategies (details below). If the survey resulted in a 
prevalence estimate under the user-defined threshold, PC was 
automatically stopped after the sixth PC round, and if not, 
PC was continued and another survey was done 4 years later. 
Surveys were simulated every 4 years until a decision to stop 
PC was reached.

Decisions to stop PC were based on either single KK, dupli
cate KK (2 slides based on the same fecal sample), or 1 of 6 hy
pothetical new diagnostic tests that were characterized in terms 
of test sensitivity and specificity. The sensitivity of the new diag
nostic tests was formulated as a per-worm-probability Pt to be 
detected. Values of Pt were chosen such that the lowest value 
corresponded to the sensitivity of duplicate KK to detect infec
tions with 1–2 worm pairs (assuming each worm pair contrib
utes α = 0.34 eggs to a single KK of 1/24 gram, as in the 
transmission model). The specificity of new diagnostic tests 
was assumed to be 99% or 100%; the specificity of KK was as
sumed to be 100%. To stop PC, we considered 3 thresholds 

for the measured infection prevalence in SAC (1%, 2%, or 
5%), which were chosen for illustrative purposes as in an earlier 
modeling study [11]. Simulations were performed for 200 ran
dom transmission conditions, and for each of these, simulations 
were repeated 3 times (with different random number seeds) for 
a total of 600 repeated simulations per diagnostic strategy. 
Simulations with a baseline prevalence of 0% were discarded.

RESULTS

Model Quantification for Sensitivity of Kato-Katz and New Hypothetical 
Diagnostic Tests

Based on the Burundian KK data, we estimated that 
within-individual variation in egg counts by day and slide was 
considerable, with the shape parameters of the corresponding 
gamma distributions estimated at kday = 1.68 (95%- Bayesian 
credible interval: 1.40 − 2.03) and kslide = 2.37 (95%- BCI: 
1.99 − 2.82). This means that variation in egg counts was driven 
more so by temporal sources (lower k) than slide-by-slide varia
tion (higher k). As the data were based on 1/40 grams of feces 
per KK slide, we translated our estimate of kslide to a value k′slide 
for KK slides based on 1/24 grams of feces by setting 
k′slide = kslide ·

40
24 = 3.95. Together, kday and k′slide translated to a co

efficient of variation of individual-level egg counts of 
1.00 (95%- BCI: .94 − 1.07). The sensitivity of single and dupli
cate KK tests (based on the same fecal sample) is shown for a range 
of worm burdens in Figure 1.

In case of 2 to 4 adult worms (or the equivalent of 1 to 2 
worm pairs), the new hypothetical diagnostic test with low 

Figure 1. Estimated sensitivity of diagnostic tests as a function of the number of adult worms. The estimated sensitivity of Kato-Katz (KK) is conditioned on the point 
estimate for variation in egg counts by day (kday = 1.68) and slide (kslide = 2.37 · 40

24 = 3.95, representing slides based on 1/24 gram of feces), and the assumption 
that, on average, each worm pair contributes α = 0.34 eggs to a single KK of 1/24 gram, as in the individual-based stochastic model. KK1×1 and KK1×2 indicate single 
and duplicate KK slides, respectively.
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sensitivity (Pt = 22.5%, ie, 40% per worm pair, solid line in 
Figure 1) performed similarly to a duplicate KK (black dotted 
line). Between 4 and 20 adult worms (2–10 worm pairs), the 
sensitivity of this test approached 100%, whereas the sensitivity 
of duplicate KK only reached around 95% for 10 worm pairs. 
Therefore, for our simulations of different diagnostic strategies, 
we adopted 3 values of Pt for new hypothetical diagnostic tests: 
22.5% (low), 36.8% (moderate), and 55.3% (high), which corre
spond to a 40%, 60%, and 80% probability of detection per 
worm pair.

Simulating the Impact of Different Diagnostic Strategies for Decisions to 
Stop PC

We next predicted infection trends under different diagnostic 
strategies, based on 546 of 600 simulations for which the base
line infection prevalence was >0% (Supplementary Figure 1). If 
the decision to stop PC was based on KK as a diagnostic tech
nique, the expected infection trends were very similar for single 
and duplicate KK (Figure 2, black lines). Furthermore, if using 
a new hypothetical test with sensitivity for low worm burdens 
similar to KK ( Pt = 22.5%), the predicted trends were very sim
ilar to when using KK itself (red solid lines). For a 1% decision 
threshold, more sensitive diagnostic tests only marginally 
changed expected trends (red dashed and dotted lines in left 
panel). For the 2% threshold, tests that were more sensitive 
(dashed and dotted lines) or less specific (blue lines) resulted 
in the decision to stop PC to be made later, on average, leading 
to slightly lower infection prevalence. For the 2% threshold and 
settings with a baseline prevalence of 5%–10%, infection levels 
visibly rebounded, although slightly less markedly so for the 

more sensitive and less specific diagnostic tests. The same 
was the case for the 5% threshold (right panel).

To assess the impact of different diagnostic strategies for de
cisions to stop PC, we quantified the disease burden in terms of 
the average number of person-years with heavy intensity infec
tions (all ages) from the start of the first survey (year 5) till 
15 years later, and compared this to the average number of 
PC rounds that was distributed during the same period. In 
Figure 3, we see that for settings with a baseline prevalence of 
5%–10%, stopping PC based on single KK and a threshold of 
2% resulted in about 9.5 person-years of heavy infection per 
1000 capita per year and distribution of on average 11.0 PC 
rounds. For most diagnostic strategies, a less stringent thresh
old of 5% resulted in fewer PC rounds (4.3 up to 11.1, depend
ing on the diagnostic used), but came at the cost of a higher 
disease burden (up to 12.6 person-years of heavy infection 
per 1000 capita per year). The exception was the highest sensi
tive test with 99% specificity, which performed very similar to 
single KK combined with a 2% threshold. More conservative 
diagnostic strategies (a 1% threshold or use of more sensitive 
or less specific tests) led to a comparable or slightly lower dis
ease burden, but at the cost of slightly more PC rounds. For the 
other 2 baseline prevalence categories, these patterns were qual
itatively similar (Supplementary Figure 2). The probability of 
achieving 0% prevalence of infection within 20 years from 
the start of PC was 0% for settings with a baseline prevalence 
in SAC of ≥5%, regardless of diagnostic strategy. Only for set
tings with a baseline prevalence in SAC of <5%, the probability 
was between 4% and 6% (Supplementary Figure 3) with only 
small differences between diagnostic strategies.

Threshold: 1% Threshold: 2% Threshold: 5%

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

2

4

6

8

10

12

14

Time since start of PC (years)

P
re

va
le

nc
e 

of
 in

fe
ct

io
n 

in
 S

A
C

ba
se

d 
on

 s
in

gl
e 

K
at

o−
K

at
z 

(%
)

Single Kato−Katz

Duplicate Kato−Katz

New test: sens 22.5%, spec 100%

New test: sens 36.8%, spec 100%

New test: sens 55.3%, spec 100%

New test: sens 22.5%, spec 99%

New test: sens 36.8%, spec 99%

New test: sens 55.3%, spec 99%

Figure 2. Model-predicted average trends of Schistosoma mansoni infection in school-aged children (SAC) under different diagnostic strategies for the decision to stop 
preventive chemotherapy (PC). The 3 panels pertain to different prevalence thresholds (1%, 2%, and 5%) for making the decision to stop PC. Trend lines represent averages 
over repeated simulations across 3 categories of baseline prevalence in SAC (<5%, 5%–10%, and 10%–25%). Note that for the scenario with 1% decision threshold (left 
panel), tests with 99% specificity were not simulated as these were considered incompatible with the threshold. PC was assumed to be implemented annually at 90% 
coverage of SAC. Abbreviations: sens, sensitivity; spec, specificity; PC, preventive chemotherapy; SAC, school-aged children.
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DISCUSSION

We illustrate that for local decisions to stop PC, the currently 
recommended diagnostic technique, KK, using a 2% decision 
threshold, almost fully minimizes the disease burden (in terms 
of person-years with heavy infection) with the lowest possible 
number of PC rounds to reach that impact. New diagnostics 
with higher sensitivity for detection of low-intensity infections 
may lead to a marginally lower disease burden, but at the cost of 
additional PC rounds. The same outcome can also be achieved 
by lowering the decision threshold for KK-based decisions to 
1%. If decision thresholds for surveys based on new improved 
tests are adjusted upward (here to 5%) to account for higher test 
sensitivity, there is a risk of prematurely stopping PC. In the 
real world, this would mean that PC would have to be restarted 
(for which we do not consider the cost here); without PC, infec
tion levels would likely bounce back, and via human mobility 
could even lead to reintroduction of infection in areas where 
transmission was previously interrupted. This aspect of reintro
duction is currently not considered in existing SCH transmis
sion models, which do not include a spatial component.

Our findings support the recently updated WHO guidelines 
for SCH control, which conclude that there is good evidence to 
support the continued use of KK to detect S. mansoni in the 
context of PC programs [12]. These guidelines further support 

the use of point-of-care circulating cathodic antigen tests, 
which are far more sensitive than KK [24]. We show that if 
such more sensitive tests are used to inform policy decisions, 
a higher prevalence criterion should be used to avoid unneces
sarily long continuation of PC. This is especially relevant as the 
WHO diagnostic technical advisory group stated that the cost 
of a survey should be less than the cost of 2–3 rounds of 
MDA [14, 15]. However, diagnostic-specific decision criteria 
remain to be developed. This will require more in-depth anal
yses of the differences and correlation between results from KK 
and alternative diagnostic tests such as circulating cathodic an
tigen tests, and what survey designs are most cost-efficient for 
decision making (eg, what age groups to test, how many, and 
when).

This study was inspired by the notion that more sensitive di
agnostic tests might contribute to more accurate decisions to 
stop or continue PC by improving the identification of areas 
that do and do not need PC [16]. Hypothetically, this would 
lead to the same or higher health impact with possibly fewer 
PC treatments distributed. However, if making local decisions 
about PC, we found that there is little to gain in terms of health 
impact by the use of new diagnostics. In fact, given the high ef
ficacy of praziquantel, the health impact of PC against schisto
somiasis is primarily driven by which age groups are targeted 
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Figure 3. Model-predicted person-years with heavy Schistosoma mansoni infection in the general population versus the number of rounds of school-based preventive 
chemotherapy (PC) under different diagnostic strategies for the decision to stop PC. PC was assumed to be implemented annually at 90% coverage of school-aged children 
(SAC). Symbols and colors represent different diagnostic strategies to make decisions about stopping PC. Person-years with heavy infection and number of PC rounds were 
calculated only for the last 15 years of the simulation, that is, from the point of the first survey at year 5 onward and after the sixth PC round had taken place. This means that 
at most, 14 PC rounds could have been delivered after the first survey. The result shown here represent settings with baseline prevalence of infection in SAC of 5%–10%. For 
results in other baseline prevalence settings, see Supplementary Figure 2. Abbreviations: sens, sensitivity; spec, specificity; PC, preventive chemotherapy.
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and the achieved population coverage [7, 25]. As for the accu
racy of decisions to stop or continue PC, more sensitive tests 
(when combined with an appropriate decision threshold) 
should be expected to increase the probability of achieving 
elimination after stopping PC, although our simulation study 
was not powered enough to demonstrate this. In general, deci
sion accuracy is mainly determined by pre-PC infection levels, 
the survey design (selection of study sites and age groups), the 
sample size (number of sites and number of persons per site), 
and the decision criterion for stopping PC [11, 26–28]. 
Previous work has shown that the use of more sensitive diag
nostic tests may allow for smaller sample sizes to achieve sim
ilar levels of accuracy in decision making, thus potentially 
saving costs [27]. A fair comparison of diagnostic tests with re
gard to the trade-off of cost and accuracy of policy decisions 
would require detailed cost data and information on the diag
nostic variability of each diagnostic [29].

In this study, we simulated decisions to stop PC for relatively 
small areas (∼3000 people) and did not consider that currently, 
decisions are made for larger areas where the distribution of 
SCH may be highly focal. Given this focality and the finite stock 
of praziquantel, it has been suggested that more focalized PC 
distribution and decision making may be warranted [16]. For 
more focal decision making, new diagnostics may well be 
more cost-efficient than Kato-Katz because of feasibility of im
plementation (eg, a point-of-care lateral flow test) or lower cost 
per test. Quantification of these potential benefits would re
quire either of 2 approaches. The first is to explicitly model 
transmission of infection and mobility of humans in larger geo
graphically heterogeneous areas, for which initial attempts have 
been made for onchocerciasis [30, 31], another helminth tar
geted with PC. The second approach would be a Monte Carlo 
simulation study of the cost and performance of spatial survey 
designs. Such a study would have to be informed by data on 
spatial heterogeneity in prevalences collected in an area where 
the average prevalence is around the decision threshold after 
multiple years of PC, analyzed with either mixed effects models 
[32] or geospatial models.

In this study we did not explicitly consider costs of PC, diag
nostics, or consequences of suboptimal policy decisions. To bet
ter inform and design cost-efficient policies and decision 
strategies for the control of SCH, but also NTDs in general, there 
is an urgent need for estimates of the cost of making a “wrong 
decision.” What are the costs of continuing PC for too long, 
or the costs of stopping PC too early? The first is relatively 
straightforward and may be captured well enough by simply 
counting the cost per PC rounds or distributed treatment. The 
second, however, is much more challenging as from a program 
or societal perspective, in addition to the “saved cost” on PC 
rounds, one should also capture the cost of having to restart 
PC, which may require renewed investments. Hopefully, such 
investments are limited as national NTD control programs 

have matured over the last decade and are becoming more 
and more integrated across NTDs, meaning that stopping PC 
against 1 NTD may be less likely to lead to loss of expertise 
and infrastructure. However, this is speculation, and it is prob
ably safer to assume that we would rather implement a few PC 
rounds too many than to stop PC too early.

In conclusion, we illustrate that compared to KK, the use of 
more sensitive tests for decisions to stop or continue PC at a lo
cal level will at best only marginally improve the health impact 
of PC programs against SCH, at the cost of potentially imple
menting additional PC rounds. However, more sensitive diag
nostic tests may still help to correctly identify the last cases of 
infection and to improve the cost-efficiency of SCH control 
via lower cost per survey and improved feasibility of conduct
ing surveys locally.
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