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Abstract

Despite the progress we have recorded in
scaling multilingual machine translation (MT)
models and evaluation data to several under-
resourced African languages, it is difficult to
measure accurately the progress we have made
on these languages because evaluation is often
performed on n-gram matching metrics like
BLEU that often have worse correlation with
human judgments. Embedding-based metrics
such as COMET correlate better; however, lack
of evaluation data with human ratings for under-
resourced languages, complexity of annotation
guidelines like Multidimensional Quality Met-
rics (MQM), and limited language coverage of
multilingual encoders have hampered their ap-
plicability to African languages. In this paper,
we address these challenges by creating high-
quality human evaluation data with a simplified
MQM guideline for error-span annotation and
direct assessment (DA) scoring for 13 typologi-
cally diverse African languages. Furthermore,

we develop AFRICOMET—a COMET evalu-
ation metric for African languages by lever-
aging DA training data from high-resource
languages and African-centric multilingual en-
coder (AfroXLM-Roberta) to create the state-
of-the-art evaluation metric for African lan-
guages MT with respect to Spearman-rank cor-
relation with human judgments (+0.406).

1 Introduction

Recent advances in machine translation (MT) have
focused on scaling multilingual translation models
and evaluation data to hundreds of languages, in-
cluding multiple under-resourced languages (Fan
et al., 2021a; NLLB-Team et al., 2022; Bapna et al.,
2022; Kudugunta et al., 2023). However, it is dif-
ficult to measure accurately the progress we have
made on these under-resourced languages because
popular n-gram matching metrics like BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ChrF (Popović, 2015) fail to capture se-
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mantic similarity beyond the lexical level. Variants
of these metrics have been developed when scaling
to many languages like spBLEU (Fan et al., 2021a)
but they often achieve worse correlation to human
judgements (Freitag et al., 2022) when compared to
embedding-based metrics like BERTScore (Zhang
et al., 2020), BLEURT (Sellam et al., 2020) and
COMET (Rei et al., 2020).

While embedding-based metrics are currently
favored for evaluation in machine translation (Fre-
itag et al., 2022), the application of these metrics to
under-resourced languages faces three challenges:
(1) lack of high-quality training and evaluation data
for these languages significantly hampers the de-
velopment of reliable metrics; (2) the complexity
of the Multidimensional Quality Metrics (MQM)
framework (Lommel et al., 2014), presents a steep
learning curve for non-expert bilingual evaluators,
complicating the process of obtaining accurate hu-
man assessments; and (3) the limited language cov-
erage of multilingual large language models such as
XLM-Roberta (Conneau et al., 2020), restricts their
applicability to various low-resource languages, as
discussed in Alabi et al. (2022).

Addressing these challenges, recent works have
utilized the Direct Assessment (DA) scoring anno-
tations (Graham et al., 2013) collected by the or-
ganisers of WMT (Rei et al., 2022a) and leveraged
the transfer learning capabilities of multilingual
encoders to evaluate unseen languages (Rei et al.,
2022b; Zerva et al., 2022a). However, the dearth
of evaluation data for under-resourced languages
such as African languages still remains a significant
hurdle in validating these methods. What’s worse,
as Rei et al. (2020) highlighted, the performance
of these approaches is often unpredictable for lan-
guages that were not included in the pre-training
phase of multilingual language models.

In this paper, we address the challenges of em-
powering the COMET evaluation metric—the state-
of-the-art evaluation metric (Rei et al., 2022a) to
various under-resourced African languages. To
overcome the scarcity of evaluation datasets, we
create AFRIMTE—a human evaluation dataset fo-
cusing on MT adequacy evaluation for 13 typologi-
cally diverse African languages. This is achieved
through a participatory research methodology, en-
suring a comprehensive and representative data col-
lection process (Nekoto et al., 2020). To address
the complexities associated with the MQM guide-
lines for MT adequacy, we introduced a more sim-
plified version harmonized with the principles of

Direct Assessment, specifically adapted to suit non-
expert evaluators. This adaptation aims to enhance
usability and accessibility, making the evaluation
process more approachable for a broader range
of evaluators. Finally, we tackle the challenge of
empowering the COMET evaluation metric, recog-
nized as the foremost metric in the field according
to Rei et al. (2022a), for a range of under-resourced
African languages. We develop the first COMET
model specifically designed for African languages,
which were previously uncovered by the available
state-of-the-art COMET models.

To summarise, our contributions are as follows:

1. Development of a simplified MQM Guide-
line: We propose a simplified Multidimen-
sional Quality Metrics (MQM) framework tai-
lored for non-expert translators. This initiative
aims to standardize and elevate the quality of
human evaluation of machine translation (MT)
models.

2. Creation of African-centric Human Evalu-
ation Datasets: We develop high-quality hu-
man evaluation datasets focusing on machine
translation adequacy for 13 typologically-
diverse African languages. This endeavor en-
riches the resources available for evaluating
MT models in underrepresented languages.

3. Benchmark Models for COMET: We estab-
lish benchmark COMET systems for African
languages by employing transfer learning
techniques from existing, well-resourced Di-
rect Assessment data and utilizing multilin-
gual pre-trained language models.

4. Open Access to Resources: In our commit-
ment to fostering ongoing research in the do-
main of African machine translation evalua-
tion, we are releasing all evaluation datasets,
code, and models publicly 1. This move en-
sures that researchers and practitioners in the
field can easily access and leverage these re-
sources for future advancements.

2 AFRIMTE: African Machine
Translation Evaluation Dataset

The section outlines the data and machine trans-
lation engines utilized for annotation and details

1The resources will be publicly available at https://
github.com/masakhane-io/africomet.

https://github.com/masakhane-io/africomet
https://github.com/masakhane-io/africomet


the design of our annotation guidelines, the con-
duct of the annotation procedure, the data quality
assurance process, the quantitative analysis on the
collected data.

2.1 Dataset and MT Engine

Our annotation efforts focus on the dev and devtest
subsets from the FLORES-200 dataset (NLLB-
Team et al., 2022), covering 13 language pairs:
Darija-French (ary-fra), English-Egyptian Arabic
(eng-arz), English-French (eng-fra), English-Hausa
(eng-hau), English-Igbo (eng-ibo), English-Kikuyu
(eng-kik), English-Luo (eng-luo), English-Somali
(eng-som), English-Swahili (eng-swh), English-
Twi (eng-twi), English-Xhosa (eng-xho), English-
Yoruba (eng-yor), and Yoruba-English (yor-eng) 2.
Moreover, to assess the performance of machine
translation evaluation across diverse domains, we
extend our annotation collection to include texts
from News, Ted talk, Movie, and IT domains for
English-Yoruba translation. This aspect of our
study follows the methodologies established in
prior research by Adelani et al. (2021) and Shode
et al. (2022), ensuring a comprehensive and
domain-varied evaluation.

To acquire machine translation outputs, we
employed two open-source translation engines:
NLLB-200 (NLLB-Team et al., 2022) and M2M-
100 (Fan et al., 2021b). For the English-French
and English-Swahili language pairs, we generated
translations using M2M-100, while for all other
language pairs, we utilized NLLB-200. This de-
cision was informed by the notably high quality
of the NLLB-200 translations for English-French
and English-Swahili, which were so proficient that
our evaluators found minimal errors. However, for
certain languages, such as English-Xhosa, we con-
tinued to use the high-quality translations provided
by NLLB-200. This scenario of near-flawless ma-
chine translation outputs from NLLB-200 offers
a valuable context for testing the robustness and
sensitivity of our evaluation methods in scenarios
where translation errors are minimal.

2.2 Annotation Guidelines and Tool

Recent findings (Freitag et al., 2021) have indicated
that DA annotations sourced from non-professional
crowd annotators tend to be inconsistent and unre-
liable for assessing the quality of high-performing

2We follow the language codes used in FLORES-
200, https://github.com/facebookresearch/flores/
tree/main/flores200

machine translation (MT) systems. This led us to
consider adopting the standardized MQM guideline
framework. This framework provides an extensive
methodology for assessing translation errors, by
defining various error dimensions, collected along-
side the severity and priority of translation errors.
However, the complex nature of the MQM frame-
work presents a significant learning hurdle for non-
expert evaluators, which was recognized during the
training phase of annotation. To address this issue,
we develop a novel approach that combines the
strengths of MQM and DA annotations. We pro-
pose a simplified version of the MQM guidelines,
designed to be more accessible to non-expert eval-
uators. This approach involves evaluators identify-
ing error spans using the simplified MQM frame-
work before assigning DA scores. This integration
of MQM-based error detection aims to enhance the
quality and accuracy of DA annotations, while mak-
ing the process more manageable for non-expert
evaluators.

In our study, leveraging our simplified multidi-
mensional MQM guideline for machine translation
adequacy, we prompt evaluators to conduct a de-
tailed error span highlighting for each translation.
Afterwards, evaluators are asked to assign a DA
score by closely adhering to our guideline for scor-
ing similarly as outlined in Adelani et al. (2022).
The step of error-span highlighting precedes the
assignment of DA scores, allowing for a more nu-
anced and precise evaluation process.

2.2.1 Annotation Guidelines
We guide our evaluators to evaluate the adequacy of
translations along two dimensions—error highlight-
ing and overall Direct Assessment (DA) score as-
signment. The process involves presenting the eval-
uators with both the source text and the machine-
translated output. They are instructed to identify
and highlight text spans that contain errors in the
source text, such as omissions and mistranslations,
as well as in the target text, including additions,
mistranslations, and untranslated segments. These
specific error categories are derived and adapted
from the original MQM framework 3, providing a
structured approach to error identification and as-
sessment. Subsequently, evaluators were instructed
to assign a value between 0 and 100 to indicate the
extent to which the original meaning was preserved
in the translation. In this scale, "0" is defined as
"Nonsense/No meaning preserved," while "100"

3https://themqm.org/

https://github.com/facebookresearch/flores/tree/main/flores200
https://github.com/facebookresearch/flores/tree/main/flores200


Annotation Guidelines

You are asked to compare the meaning of a source segment and its translation. You will be presented with one pair of segments at a time, where a segment may 
contain one or more sentences. For each pair, you are asked to read the text closely and do the following:

1. Highlight the text spans that convey different meaning in the compared segments. After highlighting a span in the text, you will be asked to select the category 
that best describes the meaning difference using the following categories:

Source Text:
Omission: The highlighted span in the source text corresponds to information that does not exist in the translated text.
Mistranslation: The highlighted span in the source does not have the exact same meaning as the highlighted span in the translated text. 

Translation Text: 
Addition: The highlighted span in the translation corresponds to information that does not exist in the source text.
Mistranslation: The highlighted span in the translation does not have the exact same meaning as the highlighted span in the source segment.
Untranslated: The highlighted span in the translation is a copy of the highlighted span in the source segment but should be translated in the target language.

You can highlight as many spans as needed.

2. Assess the translation adequacy on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning: The meaning of the translation is completely consistent with the source.

Figure 1: The annotation guidelines for error span highlighting [the first part] and DA score assignment [the second
part].

Figure 2: The screenshot of the user interface with an annotated task comprising the source sentence and its
corresponding translation in English-Yoruba.

signifies "Perfect meaning." Echoing the insights
from Adelani et al. (2022), we acknowledged that
such an evaluation scale is inherently subjective.
To mitigate this subjectivity and provide clearer
benchmarks, we established two intermediate lev-
els within the rating scale: one at 33, labeled as
"Some meaning preserved," and another at 67, des-
ignated as "Most meaning preserved". The guide-
lines are shown in Figure 1. The first part is the
guideline for error span highlighting, and the sec-
ond part is the guideline for DA score assignment.

2.2.2 Annotation Tool

For the purpose of collecting annotations in accor-
dance with our tailored annotation guidelines, we

extended Annopedia, 4 an open-source tool 5 to
suit the needs of MT evaluation for adequacy. The
customized tool provides a user-friendly interface
specifically designed for machine translation evalu-
ation tasks. It is adept at accommodating both the
DA scoring and the error-span highlighting for our
simplified MQM annotation guideline. Evaluators
can intuitively highlight fine-grained error spans in
presented texts and assign DA scores on an assess-
ment scale bar, and they will be informed of the
chosen DA score once they finish annotations for a
specific translation. A screenshot of the interface is
displayed in Figure 2. Each evaluator worked with
the tool independently.

4https://github.com/marek357/
best-dissertation-frontend

5Tool is accessible online at https://mt.annopedia.
marekmasiak.tech

https://github.com/marek357/best-dissertation-frontend
https://github.com/marek357/best-dissertation-frontend
https://mt.annopedia.marekmasiak.tech
https://mt.annopedia.marekmasiak.tech


Figure 3: Translation quality of all qualified annotated translations as measured by raw DA scores across all
language pairs and domains in ascending order, with medians displayed in the plot.

LP original # qualified # dev # devtest #

ary-fra 520 394 207 187
eng-arz 520 518 268 250
eng-fra 520 515 265 250
eng-hau 520 490 250 240
eng-ibo 520 240 120 120
eng-kik 520 410 208 202
eng-luo 520 499 257 242
eng-som 520 434 208 226
eng-swh 520 352 195 157
eng-twi 520 516 269 247
eng-xho 520 494 251 243
eng-yor 520 484 245 239
eng-yor (it) 250 217 - 217
eng-yor (movie) 250 219 - 219
eng-yor (news) 250 237 - 237
eng-yor (ted) 250 224 - 224
yor-eng 520 439 227 212

Table 1: Counts of qualified annotations for language
pairs in dev and devtest sets, with English-Yoruba ex-
clusively as devtest in domain-Specific datasets.

2.3 Quality Assurance

In this study, we implemented a stringent evalua-
tion protocol for each translation result, involving a
minimum of two bilingual native speakers as evalu-
ators, each with a Bachelor’s degree or higher. The
evaluators were presented solely with the source
text and its corresponding translation. They were
encouraged to highlight specific error spans in line
with our simplified MQM guidelines first, and then
provide a relevant DA score based on the DA guide-
lines before submission. To prepare for the offi-
cial annotation process, each evaluator annotated
20 random samples from all language pairs and

domain-specific datasets. Following the individual
evaluations, we organized a discussion among the
evaluators to review any annotation errors and to ad-
dress any inconsistencies in their assessments. This
preliminary step was designed to familiarize them
with the annotation guidelines and the range and
nature of translations in the datasets. It is important
to note that, despite strong encouragement, not all
evaluators consistently highlighted error spans. As
a result, some annotations may have low DA scores
but lack corresponding error span highlightings.
In our data analysis, particularly when exploring
the relationship between detailed issue detection
and overall DA scoring, such annotations without
error-span highlightings will be excluded.

After all evaluators completed their annotations,
we compiled the data and excluded translations
exhibiting DA score inconsistencies beyond a 34-
point range. This threshold, established by our DA
guidelines, was critical for ensuring the reliabil-
ity of our annotation outcomes. To reduce biases
among evaluators, we normalized the DA scores
at the evaluator level to get the z-scores. The final
scores for our benchmark modeling were deter-
mined by averaging these z-scores across evalua-
tors for each translation.

After filtering out inconsistencies among evalua-
tors, we present the counts of qualified translation
annotations across each language pair within the
dev and devtest sets in Table 1: annotations for
English-Egyptian Arabic exhibit the highest consis-
tency among evaluators, whereas annotations for
English-Igbo show the lowest.

We calculate inter-annotator agreement using the
method outlined in (Pavlick and Tetreault, 2016).



For each instance, we randomly designate one an-
notation as Annotator 1, and the average of the
other annotations represents the assessment of label
2. Next, we calculate the Pearson correlation coef-
ficient between the two sets of annotations. This
procedure of annotation assignment and correlation
calculation is repeated 100 times. The resulting
inter-annotator agreement for our gathered assess-
ments is 0.797, indicating a strong and consistent
agreement among the evaluators.

2.4 Quantitative Analysis

Overall Translation Quality Since the datasets,
apart from the domain-specific English-Yoruba
ones, are multi-way parallel and originate from
the same sources, comparing the DA scores across
different languages is a reasonably controlled com-
parison. We show the distribution of the raw DA
scores across all language pairs and domains in Fig-
ure 3 6. Notably, English-Swahili translations gen-
erated by the M2M-100 engine exhibit the lowest
translation quality (median DA: 58.67), whereas
the English-Xhosa translations produced by the
NLLB-200 engine demonstrate the highest transla-
tion quality (median DA: 100). Additionally, the
Darija-French translations display the greatest vari-
ance in translation quality.

Error Counts vs. DA score Equipped with an-
notation datasets predominantly comprising both
overall DA scores and fine-grained error span detec-
tions, we aim to investigate the correlation between
these two aspects. As previously mentioned in
Section 2.3, we encountered instances where anno-
tations had low DA scores without associated error
span highlighting. To ensure a focused analysis on
the relationship between detailed error spans and
overall DA scores, we have selectively filtered out
any annotations with DA scores below 80 that do
not include error span highlighting. Subsequent
to this filtering, we illustrate the counts of error
words within each issue category and the asso-
ciated sentence-level quality scores measured by
DA scores in Figure 4. Mistranslation emerges
as the most common error category across all lan-
guage pairs, and therefore as the primary culprit
for lower DA scores. Interestingly, compared with
translations across other language pairs and do-
mains, translations of the English-Yoruba Movie
dataset exhibit a higher incidence of Omission er-

6We still include domain-specific English-Yoruba annota-
tions in the plot

rors, whereas translations of English-Yoruba IT are
more prone to Addition errors.

CRITERIA SPEARMAN KENDALL
DA score Z-score DA score Z-score

Mistranslation -0.675 -0.544 -0.546 -0.422
Omission -0.318 -0.304 -0.263 -0.246
Addition -0.207 -0.211 -0.172 -0.172
Untranslated -0.156 -0.119 -0.130 -0.097

Total Issue -0.791 -0.687 -0.640 -0.533

Table 2: Correlation between error counts and sentence-
level translation quality across various issue categorizes.

In order to better understand how error cate-
gories at the span level influence annotators’ judg-
ment at the sentence level, we have calculated and
reported Spearman-rank and Kendall-rank correla-
tion coefficients between various error counts and
assessment scores (raw DA scores and normalized
z-scores) in Table 2. These coefficients suggest that
Mistranslation, as the most prevalent error type,
exhibits a moderate to high negative correlation
with raw DA scores, indicating its significant in-
fluence on the sentence-level DA evaluations of
annotators. Furthermore, the total counts of issues
correlate strongly and negatively with both raw DA
scores and normalized z-scores, further affirming
the significance of our adapted simplified MQM
guidelines.

3 AFRICOMET: Benchmark System

In this section, we will introduce how we de-
velop our MT evaluation systems for African lan-
guages. In our comparative analysis, we bench-
mark our systems against (1) the widely recog-
nized n-gram and character-based evaluation met-
rics, SacreBLEU (Post, 2018) and chrf++ (Popović,
2017), and (2) the cutting-edge neural, pre-trained
language model-based COMET metric (Rei et al.,
2020, 2022a), that has not been trained on African
languages.

3.1 Experimental Settings

3.1.1 Training Data
Beginning in 2017, the organizers of the WMT
News translation tasks have been gathering an-
notations using the Direct Assessment (DA)
method (Graham et al., 2013). We employ these
DA datasets, which are also utilized by the COMET
metric (COMET22) (Rei et al., 2022a), as train-
ing data for our systems. In addition, another



Figure 4: Error Counts with each issue category and sentence-level translation quality measured by DA scores
across all language pairs and domains.

large sourced DA annotation is the MLQE-PE
datasets (Fomicheva et al., 2020), which is typi-
cally used for WMT Quality Estimation Shared
Tasks (Specia et al., 2020, 2021; Zerva et al.,
2022b). The training corpus comprised of DA an-
notations from the 2017 to 2020 WMT News trans-
lations and the MLQE-PE dataset is collectively
referred to as “WMT Others”.

Moreover, a more recent and relevant DA dataset
is the human evaluation dataset from the WMT
2022 Large-Scale Machine Translation Shared
Task for African Languages (Adelani et al., 2022),
comprising human evaluations of 99 source seg-
ments from the FLORES-101 test set across eight
translation systems for 46 language pairs using the
Direct Assessment method. We refer to this anno-
tation dataset as “WMT African”.

Statistical summaries of the “WMT Others” and
“WMT African” datasets are provided in Table 6
and Table 7, respectively, located in Appendix A.
Any duplicate annotations have been excluded from
these training sets. During preprocessing, to facil-

itate interpretability and manage the unbounded
nature of the quality scores, we apply the min-max
scaling on the normalized z-scores adjusting their
range to fall between 0 and 1.

3.1.2 Model configurations

Our investigation revolves around three key ques-
tions: (1) the feasibility of constructing an MT
evaluation system that leverages transfer learning
from other languages to African languages, (2) the
potential benefits of an additional MT evaluation
dataset in African languages for modeling, and (3)
the impact of using African language-enhanced
pre-trained models on the performance of MT eval-
uation.

Our MT evaluation model takes as input the
triplets consisting of the source sentence, its ma-
chine translation, and the corresponding reference,
training a regression model to predict normalized
scores that have been scaled between 0 and 1. The
dev subsets within AFRIMTE will serve as valida-
tion sets in the development of our benchmark MT



evaluation system for African languages, with the
devtest sets designated as test sets.

We construct our models upon the Estimator
framework (Rei et al., 2020), utilizing a variety of
pre-trained language models as the underlying en-
coders: XLM-Roberta-large (XLM-R-L) (Conneau
et al., 2019), InfoXLM-large (InfoXLM-L) (Chi
et al., 2020), and two African language enhanced
pre-trained models AfriBERTa-large (AfriBERTa-
L) (Ogueji et al., 2021) and AfroXLM-Roberta-
large (AfroXLM-R-L) (Alabi et al., 2022). Among
these, XLM-R-L and InfoXLM-L have been used
in the development of COMET22 (Rei et al.,
2022a) and CometKiwi (Rei et al., 2022b) for the
WMT 2022 MT Evaluation and Quality Estimation
Shared Tasks; AfriBERTa-L and AfroXLM-R-L
are both based on the XLM-Roberta-large architec-
ture, with the former being a multilingual model
trained from scratch on texts in 11 African lan-
guages, and the latter adapted the XLM-Roberta
model on data from 17 African languages.

We train our models with the open-sourced code-
base of COMET metric 7. Training for each model
is executed on a single NVIDIA A100-SXM4-
80GB graphics card, with a configured batch size
of 16 and a gradient accumulation across 2 batches.
We follow the default settings of other hyper-
parameters of the COMET metric.

3.1.3 Evaluation
We report Pearson correlation, Spearman-rank cor-
relation, and Kendall-rank correlation coefficients
to assess the correlation between automated scores
predicted by our models and the human-annotated
scores, with the Spearman-rank correlation coef-
ficient designated as our primary monitoring met-
ric. Additionally, to ensure statistical significance,
we use Perm-Both hypothesis test (Deutsch et al.,
2021), using 200 re-sampling runs, and setting
p = 0.05. These evaluations are specifically con-
ducted on the devtest subsets of the AFRIMTE
dataset across various language pairs and domains.

3.2 Main findings
In this section, we will present our experimental
results for our investigations around three key ques-
tions: (1) the feasibility of constructing an MT
evaluation system for African languages that lever-
ages transfer learning from other languages; (2) the
benefits of an additional MT evaluation dataset in
African languages; and (3) the impact of African

7https://github.com/Unbabel/COMET

language-enhanced pre-trained models on MT eval-
uation performance.

3.2.1 Transfer learning with African
validation data only

Initially, we develop our MT evaluation systems
that leverage transfer learning from a variety of
other languages to African languages. Essentially,
we train our models on the “WMT Others” dataset
and employ the dev sets within our AFRIMTE
dataset as validation sets. As outlined in Sec-
tion 3.1.2, to explore the impact of different pre-
trained models on building MT evaluation sys-
tems, we conduct experiments based on XLM-R-
L, InfoXLM-L, AfriBERTa-L, and AfroXLM-R-L
for comparison. In addition, we benchmark our
models against the COMET metric, specifically
COMET22 (Rei et al., 2022a), which uses the same
training data but differs in validation, employing ad-
ditional MQM data for English-German, Chinese-
English, and English-Russian from the WMT 2021
News Shared Task.

Results of Spearman-rank correlation coeffi-
cients and Perm-Both hypothesis test results are
shown in Table 3. Given that “WMT Others”
dataset does not include any African language, the
results in Table 3 illuminate the effectiveness of
different pre-trained models in zero-shot scenar-
ios involving African languages when we com-
pare “Ours” with COMET22. Among various
pre-trained models, AfroXLM-R-L demonstrates
a promising ability to transfer learning from other
languages to African languages. It achieves the
highest Spearman-rank correlation among various
pre-trained models considered on a considerable
portion of language pairs.

Analyzing Spearman-rank correlations within
four domain-specific English-Yoruba datasets
show that models trained based on AfroXLM-R-L
and InfoXLM-L have the potential to surpass the
performance of COMET22. When utilizing the 13
FLORES development sets in African languages
as validation sets, these models further illustrate
the benefit of targeted pre-trained language models
in enhancing domain-specific machine translation
evaluation.

Moreover, out of the 17 devtest sets evaluated,
AfroXLM-R-L achieves the top rankings in 12 lan-
guage pairs, surpassing other models except for
InfoXLM-L. This underlines the significance of
tailored, language-specific pre-trained models in
improving downstream NLP performance, espe-



N-gram based Metrics Baseline Models based on various Pre-trained Encoders (Ours)

LP SacreBLEU chrf++ COMET22 XLM-R-L AfroXLM-R-L AfriBERTa-L InfoXLM-L

ary-fra 0.332 0.328 0.533 0.551 0.567 0.387 0.627
eng-arz 0.324 0.321 0.503 0.486 0.532 0.336 0.596
eng-fra 0.246 0.280 0.489 0.510 0.495 0.446 0.525
eng-hau 0.200 0.301 0.430 0.401 0.515 0.394 0.378
eng-ibo 0.339 0.424 0.373 0.413 0.592 0.453 0.229
eng-kik 0.273 0.295 0.202 0.281 0.389 0.298 0.303
eng-luo 0.182 0.279 0.062∗ 0.201 0.283 0.239 0.232
eng-som 0.161 0.279 0.474 0.466 0.554 0.340 0.412
eng-swh 0.481 0.565 0.738 0.739 0.688 0.603 0.773
eng-twi 0.204 0.178 0.096∗ 0.103∗ 0.157 0.223 0.145
eng-xho 0.090∗ 0.161 0.071∗ 0.070∗ 0.191 0.151 0.071∗

eng-yor 0.210 0.204 0.150 0.193 0.287 0.270 0.313
eng-yor (it) 0.295 0.346 0.334 0.256 0.266 0.374 0.487
eng-yor (movie) 0.238 0.221 0.334 0.338 0.372 0.325 0.353
eng-yor (news) 0.114 0.122∗ 0.168 0.196 0.200 0.100 0.129
eng-yor (ted) 0.027∗ 0.002∗ 0.123∗ 0.177 0.324 0.227 0.280
yor-eng 0.308 0.408 0.502 0.460 0.490 0.405 0.461

Avg. (Spearman / Perm-Both) 0.237 / 2.47 0.277 / 2.06 0.328 / 1.82 0.344 / 1.76 0.406 / 1.35 0.328 / 1.88 0.371 / 1.35

Table 3: Spearman-rank correlation coefficients for models trained on the “WMT Others” training set using various
pre-trained encoders. Values marked with ∗ indicate a p-value greater than 0.05. For each devtest set, values in bold
represent the highest ranking obtained from the Perm-Both hypothesis test (Deutsch et al., 2021). Comprehensive
results of this test are detailed in Table 8. Averaged Spearman-rank correlation and Perm-Both rankings are presented
in the last row.

cially in linguistically diverse contexts such as
those found in African languages.

Another interesting observation is that despite
AfriBERTa-L being pre-trained exclusively in
African languages, suggesting potential under-
representation of other languages, it nonetheless
proves capable of facilitating transfer learning
when trained on languages outside of its initial pre-
training scope. However, its overall performance
lags notably behind that of AfroXLM-R-L, likely
owing to its smaller, Africa-specific pre-training
data. To delve deeper into this issue, we conducted
experiments using a variety of training data set-
tings, the results of which are detailed in Table 11
in Appendix A. The outcomes of these experiments
suggest that exclusive training in African languages
does not inherently improve model performance
and remains inferior to transferring from a broader
range of other languages with larger datasets.

3.2.2 Impact of an additional African MT
evaluation dataset

To discuss the potential benefits of an additional
MT evaluation dataset in African languages, we
carry out experiments based on AfroXLM-R-L
across three distinct training data configurations:
(1) “WMT African”, (2) “WMT Others”, and
(3) a merged dataset of WMT African and WMT
Others, which we refer to as “WMT Combined”.

The results, including Pearson, Spearman-rank,
Kendall-rank correlation coefficients, and Perm-
Both hypothesis test results, are detailed in Table 4.

Surprisingly, the “WMT Others” dataset alone
yields highest Spearman-rank and Kendall-rank
correlations than the “WMT Combined” dataset.
While “WMT Combined” secures the highest Pear-
son correlation, it slightly negatively impacts both
Spearman-rank and Kendall-rank correlations. Ex-
amining all of the three correlation coefficients
and the Perm-Both hypothesis test results reveals
that models trained on “WMT Others” and “WMT
Combined” significantly outperform the model
trained solely on “WMT African”. The difference
in performance is likely due to the relatively lim-
ited size of “WMT African”, indicating a scarcity
of data when compared to “WMT Others”.

3.3 The benchmark system

We develop a MT evaluation system that is bench-
marked against the state-of-the-art COMET met-
ric (COMET22), achieving a Spearman-rank corre-
lation with human judgments of 0.406 for African
languages. This system is trained using the “WMT
Others” datasets, with the AfroXLM-Roberta-
large model serving as the pre-trained foundation
for model training. The established benchmark
emerges as the state-of-the-art systems that can be
recommended for future use.



Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 0.307 0.287 0.201 0.595 0.567 0.406 0.567 0.547 0.388
eng-arz 0.215 0.270 0.177 0.526 0.532 0.371 0.517 0.506 0.351
eng-fra 0.380 0.276 0.190 0.515 0.495 0.351 0.545 0.501 0.355
eng-hau 0.676 0.354 0.240 0.682 0.515 0.365 0.764 0.489 0.342
eng-ibo 0.357 0.406 0.290 0.551 0.592 0.435 0.452 0.562 0.417
eng-kik 0.618 0.256 0.172 0.582 0.389 0.270 0.654 0.368 0.254
eng-luo 0.416 0.255 0.181 0.427 0.283 0.191 0.404 0.275 0.187
eng-som 0.479 0.388 0.271 0.470 0.554 0.398 0.590 0.546 0.390
eng-swh 0.642 0.533 0.373 0.729 0.688 0.508 0.735 0.692 0.515
eng-twi 0.436 0.124∗ 0.082∗ 0.396 0.157 0.104 0.484 0.203 0.139
eng-xho 0.519 0.092∗ 0.072∗ 0.473 0.191 0.150 0.573 0.200 0.155
eng-yor 0.597 0.127∗ 0.083∗ 0.463 0.287 0.201 0.668 0.285 0.202
eng-yor (it) 0.712 0.251 0.172 0.590 0.266 0.183 0.797 0.247 0.172
eng-yor (movie) 0.550 0.274 0.188 0.464 0.372 0.261 0.613 0.349 0.242
eng-yor (news) 0.468 0.066∗ 0.045∗ 0.508 0.200 0.136 0.614 0.204 0.141
eng-yor (ted) 0.404 0.084∗ 0.058∗ 0.539 0.324 0.224 0.608 0.220 0.151
yor-eng 0.406 0.386 0.256 0.512 0.490 0.345 0.511 0.495 0.346

Avg. (Corr / Perm-Both) 0.481 / 1.94 0.261 / 1.94 0.179 / 2.12 0.531 / 1.65 0.406 / 1.00 0.288 / 1.12 0.594 / 1.06 0.393 / 1.12 0.279 / 1.18

Table 4: Correlation coefficients (Pearson, Spearman-rank, Kendall-rank) for models trained based on AfroXLM-
Roberta-Large with varied training data settings. Values marked with ∗ indicate a p-value greater than 0.05. For
each devtest set, values in bold represent the highest ranking obtained from the Perm-Both hypothesis test (Deutsch
et al., 2021). Comprehensive results of this test are detailed in Table 9. The average of correlation coefficient (Corr)
and Perm-Both rankings are presented in the last row.

Baseline Models based on Various Pre-trained Encoders (Ours)

CometKiwi
InfoXLM-L AfroXLM-R-L

WMT Others WMT Combined WMT Others WMT Combined

LP Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

ary-fra 0.517 0.495 0.578 0.526 0.591 0.515 0.475 0.507 0.398 0.459
eng-arz 0.611 0.592 0.612 0.616 0.593 0.599 0.551 0.516 0.538 0.509
eng-fra 0.527 0.495 0.552 0.522 0.553 0.523 0.418 0.478 0.391 0.399
eng-hau 0.314 0.245 0.364 0.241 0.737 0.275 0.652 0.482 0.670 0.435
eng-ibo 0.205 0.188 0.175 0.181 0.287 0.200 0.644 0.631 0.628 0.631
eng-kik 0.277 0.247 0.322 0.283 0.642 0.307 0.631 0.415 0.687 0.449
eng-luo 0.237 0.161 0.253 0.171 0.397 0.190 0.333 0.217 0.344 0.211
eng-som 0.266 0.357 0.281 0.327 0.394 0.353 0.302 0.482 0.260 0.442
eng-swh 0.787 0.756 0.803 0.763 0.790 0.750 0.644 0.587 0.596 0.541
eng-twi 0.097∗ 0.026∗ 0.135 0.061∗ 0.546 0.136 0.290 0.061 0.390 0.058∗

eng-xho 0.127 -0.030∗ 0.151 0.006∗ 0.543 0.071∗ 0.437 0.085∗ 0.447 0.085∗
eng-yor 0.327 0.231 0.354 0.280 0.767 0.232 0.738 0.392 0.763 0.437
eng-yor (it) 0.375 0.388 0.385 0.402 0.822 0.328 0.654 0.318 0.730 0.311
eng-yor (movie) 0.151 0.041∗ 0.215 0.087∗ 0.710 0.336 0.557 0.314 0.611 0.353
eng-yor (news) 0.104∗ 0.078∗ 0.130 0.088∗ 0.563 -0.035∗ 0.508 0.186 0.529 0.208
eng-yor (ted) 0.217 0.289 0.223 0.274 0.480 0.082∗ 0.518 0.189 0.535 0.202
yor-eng 0.070∗ 0.098∗ 0.097 0.122∗ 0.342 0.265 0.181 0.208 0.284 0.295

Avg. (Corr / Perm-Both) 0.306 / 2.65 0.274 / 2.12 0.331 / 2.41 0.291 / 1.76 0.574 / 1.18 0.302 / 1.59 0.502 / 1.76 0.357 / 1.35 0.518 / 1.59 0.354 / 1.53

Table 5: Correlation coefficients (Pearson, Spearman-rank) for reference-free QE models trained based on AfroXLM-
Roberta-Large and InfoXLM-Large with varied training data settings. Values marked with ∗ indicate a p-value
greater than 0.05. For each devtest set, values in bold represent the highest ranking obtained from the Perm-Both
hypothesis test (Deutsch et al., 2021). Comprehensive results of this test are detailed in Table 10. The average of
correlation coefficient (Corr) and Perm-Both rankings are presented in the last row.

4 Reference-free Evaluation

Utilizing the annotated AFRIMTE dataset, we are
able to develop reference-free models that predict
the quality of machine translations in the absence
of reference texts. This approach aligns with the
research domain of machine translation quality
estimation (QE), as explored in works by Spe-
cia et al. (2010), Fan et al. (2019), Kepler et al.
(2019), Chatzikoumi (2020), and Ranasinghe et al.

(2020). For this purpose, we adopt the reference-
free COMET architecture (Rei et al., 2020), albeit
without including references in the input. Select-
ing AfroXLM-R-L and InfoXLM-L as pre-trained
models, we train reference-free models under the
“WMT Others” and “WMT Combined” data set-
tings. We compare our developed reference-free
QE systems with CometKiwi (Rei et al., 2022b),
which also adopts “WMT Others” for training data
and is built based on the InfoXLM-L architecture.



QE systems are typically evaluated based on
Pearson and Spearman-rank correlations, as high-
lighted by Zerva et al. (2022b), and our experi-
mental results are presented in Table 5. The results
demonstrate that the model trained on the “WMT
Others” dataset substantially surpasses the base-
line CometKiwi system under the same pre-trained
model setting, namely InfoXLM-L in terms of both
Pearson and Spearman-rank correlations. This un-
derscores the viability of applying transfer learning
from DA datasets in other languages to African
languages for the MT quality estimation task. Ad-
ditionally, incorporating DA datasets in African
languages notably enhances the Pearson correla-
tion across both training data settings, with a more
pronounced improvement using InfoXLM-L and a
slight enhancement with AfroXLM-R-L. Moreover,
employing African language-enhanced pre-trained
models further boosts performance in both Pearson
and Spearman-rank correlations.

Finally, a key area of our research involves exam-
ining the disparity between the more challenging
reference-free models and the simpler reference-
based models in MT quality estimation, to deepen
our understanding and bridge this gap. As illus-
trated in Tables 3 and 4, there is a Spearman-rank
correlation gap of 0.04 (0.371−0.331) when using
InfoXLM-L as the pre-trained model and training
on the ’WMT Others’ dataset, in comparison to
reference-based models. Additionally, when utiliz-
ing AfroXLM-R-L as the pre-trained model, the
gaps in Pearson correlation are 0.029 (0.531 −
0.502) and 0.076 (0.594 − 0.518) for the “WMT
Others” and “WMT Combined” training datasets,
respectively. Similarly, the gaps in Spearman-rank
correlation are 0.049 (0.406 − 0.357) and also
0.049 (0.393− 0.354) for training on “WMT Oth-
ers” and “WMT Combined”, respectively. All these
gaps in correlation coefficients are less than 0.05,
indicating a relatively close performance between
the MT evaluation models and the MT quality esti-
mation models, highlighting key areas for further
development in efficient and accurate MT qual-
ity estimation models. Overall, both InfoXLM-L
and AfroXLM-R-L are promising in building su-
perior QE systems compared to the state-of-the-art
CometKiwi system.

5 Conclusion

This study tackles the challenges of adapting the
COMET metric for machine translation evalua-

tion in various under-resourced African languages.
We have developed a simplified MQM annota-
tion guideline, created the AFRIMTE dataset en-
compassing 13 typologically-diverse African lan-
guages, and established benchmark COMET sys-
tems AFRICOMET, thereby addressing pivotal
issues in this domain. Based on our experimental
results, it is feasible to employ transfer learning
techniques from existing, well-resourced Direct
Assessment data and utilize African language en-
hanced multilingual pre-trained language models to
build MT evaluation systems for African languages.
Our dedication to open access, demonstrated by the
release of all datasets, code, and models, aims to
bolster ongoing research and development in the
field of machine translation evaluation.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.
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LP Annotation Count Median Mean Std

ces-eng 27847 75.00 69.12 25.18
deu-ces 13804 56.00 53.35 32.97
deu-eng 99183 81.00 73.00 27.06
deu-fra 6691 78.00 71.04 27.44
eng-ces 60937 69.00 62.48 29.09
eng-deu 121420 90.00 80.79 23.2
eng-est 13376 51.00 51.82 29.83
eng-fin 34335 53.00 53.04 30.3
eng-guj 6924 48.50 49.70 28.16
eng-jpn 9578 72.67 68.31 20.45
eng-kaz 8219 57.50 54.16 28.86
eng-lit 8959 60.00 57.40 29.77
eng-lvs 5810 40.00 43.09 29.36
eng-mar 26000 71.75 70.08 10.15
eng-pol 10572 74.00 69.57 22.36
eng-rus 62749 75.00 67.98 27.26
eng-tam 7890 74.00 70.06 19.14
eng-tur 5171 50.00 48.10 33.92
eng-zho 90805 77.00 73.65 20.27
est-eng 29496 70.00 63.48 28.85
fin-eng 46145 75.00 66.29 29.17
fra-deu 3999 83.00 76.13 23.86
guj-eng 9063 58.00 55.70 29.61
jpn-eng 8939 76.00 70.72 24.8
kaz-eng 6789 72.00 64.72 28.09
khm-eng 4722 69.00 61.60 28.01
lit-eng 10315 77.00 70.23 25.31
npi-eng 9000 33.67 37.92 19.51
pol-eng 11816 80.12 76.14 21.62
pbt-eng 4611 70.00 64.14 25.61
ron-eng 9000 76.33 68.76 27.31
rus-eng 79280 84.00 75.38 25.24
sin-eng 9000 50.00 50.45 28.33
tam-eng 7577 72.00 65.45 26.68
tur-eng 30186 71.00 63.51 29.17
zho-eng 126947 79.00 73.37 24.67

Total Count 1027155

Table 6: Statistical summary of WMT Others across language pairs: annotation counts, and the median, mean, and
standard deviation of the DA scores. Language codes correspond to those specified in FLORES-200 (Goyal et al.,
2022).



LP Annotation Count Median Mean Std

afr-eng 778 78.0 64.14 32.1
afr-ssw 594 68.0 55.32 29.76
amh-eng 594 72.5 60.32 33.4
eng-afr 593 63.0 62.23 30.74
eng-amh 594 55.0 48.37 27.87
eng-hau 592 69.0 58.58 38
eng-ibo 593 71.0 53.59 42.6
eng-kin 594 57.5 53.60 38.32
eng-lug 594 60.0 51.05 38.02
eng-nya 594 81.0 60.44 39.92
eng-orm 594 43.5 43.80 34.17
eng-sna 593 92.0 75.79 36.3
eng-ssw 594 58.0 50.87 33.69
eng-swh 591 85.0 71.13 32.83
eng-tsn 792 80.0 64.48 35.6
eng-xho 594 87.5 61.87 37.56
eng-yor 594 71.0 57.79 35.29
eng-zul 792 84.0 66.19 38.45
fra-lin 594 89.0 70.83 36.68
fra-swh 592 65.0 56.70 30.04
hau-eng 789 83.0 69.94 32.36
hau-ibo 594 48.0 46.74 38.42
ibo-eng 790 82.0 61.38 38.45
ibo-hau 593 69.0 51.78 37.19
ibo-yor 594 52.0 45.48 36.52
kin-eng 590 84.0 65.21 38.05
lin-fra 592 86.5 69.66 36.5
lug-eng 792 42.0 45.95 35.54
nya-eng 594 70.0 58.20 34.64
orm-eng 594 23.0 40.93 39.88
sna-eng 784 91.0 78.65 31.58
som-eng 594 70.0 58.17 34.95
ssw-eng 791 80.0 62.11 40.01
ssw-tsn 594 75.5 66.37 28.07
swh-eng 779 86.0 71.26 33.02
swh-fra 591 83.0 68.68 31.65
swh-lug 594 14.0 30.40 33.41
tsn-eng 791 63.0 54.25 35.24
tsn-tso 594 70.5 63.66 29.68
tso-eng 787 70.0 59.34 36.18
xho-eng 789 85.0 71.72 31.83
xho-zul 594 68.0 49.45 36.56
yor-eng 792 63.0 57.45 33.69
yor-ibo 594 80.0 67.69 33.09
zul-eng 788 90.0 68.47 38.54
zul-sna 593 82.0 64.89 42.39

Total 30022

Table 7: Statistical summary of WMT African across language pairs: annotation counts, and the median, mean,
and standard deviation of DA scores. Language codes correspond to those specified in FLORES-200 (Goyal et al.,
2022).



N-gram based Metrics Baseline Models based on various Pre-trained Encoders (Ours)

LP SacreBLEU chrf++ COMET22 XLM-R-L AfroXLM-R-L AfriBERTa-L InfoXLM-L

ary-fra 3 3 2 2 2 3 1
eng-arz 4 4 2 3 2 4 1
eng-fra 2 2 1 1 1 1 1
eng-hau 4 3 1 2 1 2 2
eng-ibo 2 2 2 2 1 2 3
eng-kik 2 1 3 2 1 1 1
eng-luo 2 1 3 1 1 1 1
eng-som 4 3 2 2 1 3 2
eng-swh 4 3 1 1 2 3 1
eng-twi 1 1 2 2 2 1 2
eng-xho 2 1 2 2 1 1 2
eng-yor 2 2 3 2 1 1 1
eng-yor (it) 2 2 2 3 3 2 1
eng-yor (movie) 2 2 1 1 1 1 1
eng-yor (news) 1 1 1 1 1 2 1
eng-yor (ted) 3 3 2 2 1 2 1
yor-eng 2 1 1 1 1 2 1

Average 2.47 2.06 1.82 1.76 1.35 1.88 1.35

Table 8: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Spearman-rank correlation
coefficients for models trained on the “WMT Others” training set using various pre-trained encoders. The averaged
ranks are presented in the last row.

Training Data Settings

Pearson Spearman Kendall

LP WMT African WMT Others WMT Combined WMT African WMT Others WMT Combined WMT African WMT Others WMT Combined

ary-fra 3 1 1 2 1 1 2 1 1
eng-arz 3 1 1 3 1 2 3 1 2
eng-fra 2 1 1 2 1 1 2 1 1
eng-hau 2 2 1 2 1 1 3 1 1
eng-ibo 3 1 2 2 1 1 2 1 1
eng-kik 1 2 1 2 1 1 2 1 1
eng-luo 1 1 1 1 1 1 1 1 1
eng-som 2 2 1 2 1 1 2 1 1
eng-swh 2 1 1 2 1 1 3 2 2
eng-twi 1 2 1 1 1 1 2 2 1
eng-xho 1 2 1 2 1 1 2 1 1
eng-yor 2 3 1 2 1 1 2 1 1
eng-yor (it) 2 3 1 1 1 1 1 1 1
eng-yor (movie) 2 3 1 2 1 1 2 1 1
eng-yor (news) 2 1 1 2 1 1 2 1 1
eng-yor (ted) 2 1 1 3 1 2 3 1 2
yor-eng 2 1 1 2 1 1 2 1 1

Average 1.94 1.65 1.06 1.94 1 1.12 2.12 1.12 1.18

Table 9: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson, Spearman-rank,
Kendall-rank correlation coefficients for models trained based on AfroXLM-Roberta-Large with varied training
data settings. The averaged ranks are presented in the last row.



Baseline InfoXLM-L AfroXLM-R-L
Correlation LP CometKiwi WMT Others WMT Combined WMT Others WMT Combined

Pearson

ary-fra 2 1 1 2 3
eng-arz 1 1 2 2 2
eng-fra 1 1 1 2 2
eng-hau 4 3 1 2 2
eng-ibo 3 4 3 1 1
eng-kik 4 3 1 2 1
eng-luo 2 1 1 1 1
eng-som 2 2 1 1 2
eng-swh 1 1 1 2 3
eng-twi 3 3 1 2 1
eng-xho 2 2 1 1 1
eng-yor 3 3 1 2 1
eng-yor (it) 4 4 1 3 2
eng-yor (movie) 5 4 1 3 2
eng-yor (news) 3 3 1 1 1
eng-yor (ted) 2 2 1 1 1
yor-eng 3 3 1 2 1

Average 2.65 2.41 1.18 1.76 1.59

Spearman

ary-fra 1 1 1 1 1
eng-arz 2 1 2 3 3
eng-fra 2 1 1 2 3
eng-hau 3 3 3 1 2
eng-ibo 3 3 3 1 1
eng-kik 2 2 2 1 1
eng-luo 2 2 1 1 1
eng-som 2 3 2 1 2
eng-swh 1 1 1 2 3
eng-twi 2 2 1 2 2
eng-xho 3 2 1 1 1
eng-yor 3 2 2 1 1
eng-yor (it) 1 1 1 1 1
eng-yor (movie) 3 2 1 1 1
eng-yor (news) 2 1 2 1 1
eng-yor (ted) 1 1 2 1 1
yor-eng 3 2 1 2 1

Average 2.12 1.76 1.59 1.35 1.53

Table 10: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson and Spearman-rank
correlation coefficients for reference-free QE models trained based on AfroXLM-Roberta-Large and InfoXLM-Large
with varied training data settings. The averaged ranks are presented in the last row.



Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 0.255 0.214 0.154 0.409 0.387 0.275 0.385 0.384 0.275
eng-arz 0.091∗ 0.111∗ 0.075∗ 0.305 0.336 0.226 0.307 0.312 0.205
eng-fra 0.341 0.292 0.202 0.430 0.446 0.315 0.418 0.429 0.301
eng-hau 0.608 0.328 0.224 0.573 0.394 0.276 0.722 0.399 0.276
eng-ibo 0.292 0.300 0.211 0.379 0.453 0.317 0.340 0.475 0.327
eng-kik 0.559 0.229 0.155 0.463 0.298 0.207 0.477 0.231 0.160
eng-luo 0.285 0.146 0.099 0.364 0.239 0.163 0.378 0.189 0.127
eng-som 0.361 0.256 0.180 0.332 0.340 0.240 0.380 0.302 0.212
eng-swh 0.522 0.464 0.323 0.665 0.603 0.434 0.660 0.558 0.394
eng-twi 0.411 0.223 0.150 0.367 0.223 0.150 0.381 0.224 0.150
eng-xho 0.391 0.104∗ 0.082∗ 0.370 0.151 0.119 0.461 0.122 0.096
eng-yor 0.564 0.180 0.122 0.388 0.270 0.186 0.615 0.218 0.148
eng-yor (it) 0.721 0.430 0.303 0.595 0.374 0.257 0.766 0.300 0.207
eng-yor (movie) 0.511 0.320 0.217 0.447 0.325 0.227 0.588 0.364 0.252
eng-yor (news) 0.339 0.043∗ 0.029∗ 0.313 0.100 0.066 0.488 0.105 0.068
eng-yor (ted) 0.403 0.159 0.109 0.357 0.227 0.154 0.534 0.166 0.114
yor-eng 0.215 0.218 0.144 0.397 0.405 0.279 0.377 0.390 0.267

Avg. (Corr) 0.404 0.236 0.163 0.421 0.328 0.229 0.487 0.304 0.211

Table 11: Correlation coefficients (Pearson, Spearman-rank, Kendall-rank) for models trained based on AfriBERTa-
L with varied training data settings. Values marked with ∗ indicate a p-value greater than 0.05. The average of
correlation coefficient (Corr) are presented in the last row.
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