
ISPRS Journal of Photogrammetry and Remote Sensing 210 (2024) 198–211

0924-2716/© 2024 The Author(s). Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A novel algorithm for ocean chlorophyll-a concentration using MODIS 
Aqua data 

Julian Merder a,*, Gang Zhao a,1, Nima Pahlevan b,c, Robert A. Rigby d, 
Dimitrios M. Stasinopoulos d, Anna M. Michalak a 

a Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA 
b NASA Goddard Space Flight Center, Greenbelt, MD, USA 
c Science Systems and Applications, Inc. (SSAI), Lanham, MD, USA 
d School of Computing and Mathematical Sciences, University of Greenwich, UK   

A R T I C L E  I N F O   

Keywords: 
Chlorophyll-a Algorithm 
MODIS Aqua 
Ocean Color 
GAMLSS 
Chlorophyll-a Uncertainty 
Water Quality Thresholds 

A B S T R A C T   

The ability to infer ocean chlorophyll-a concentrations (Chla) from spaceborne instruments is key to assessments 
of global ocean productivity and monitoring of water quality. Here, we present a novel parametric algorithm, 
OCG, trained on a set of global in situ high-performance liquid chromatography (HPLC) data that leverages Level- 
3 remote sensing reflectance (Rrs) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
aboard the Aqua satellite. The OCG algorithm leverages more bands than existing algorithms and also provides 
pixel-wise uncertainty assessments that enable the calculation of the probability of exceeding specific Chla 
thresholds. This feature has significant implications for water quality management, particularly in monitoring 
harmful algal blooms. The OCG surpasses existing algorithms in bias and accuracy without overfitting, especially 
in coastal areas, where it outperforms the current standard product (CI OC3) by 20 % in median symmetric 
accuracy. Moreover, the OCG reduces the signed symmetric percentage bias (SSPB) in coastal regions from 41 % 
(CI OC3) to below 5 %. Globally, the OCG algorithm yields lower Chla in coastal regions, the Southern Ocean and 
the Mediterranean Sea, and higher values in the open ocean, particularly in ocean gyres and polar regions. For 
the Chesapeake Bay and the Baltic Sea, for example, daily OCG estimates for 2002 to 2021 are, on average, 2.9 g/ 
L and 3.7 g/L lower than CI OC3 estimates, respectively. The presented approach also shows great potential for 
other existing and upcoming sensors, enabling widespread application in remote sensing.   

1. Introduction 

Phytoplankton represents the foundation of oceanic food webs and is 
responsible for nearly half of the net primary production on Earth (Field 
et al., 1998). It shapes nutrient cycles and is the motor of the biological 
carbon pump (Volk and Hoffert, 1985) by transferring organic carbon 
from the surface to the deep ocean, thus highly influencing the global 
carbon balance (Brewin et al., 2021; Falkowski et al., 1998). Chloro
phyll-a represents the predominant photosynthetic pigment in phyto
plankton (Björn et al., 2009). As a proxy for phytoplankton abundance 
and ocean color (Huot et al., 2007; O’Reilly et al., 1998), monitoring of 
the chlorophyll-a concentration (Chla) builds the empirical basis 
required for understanding past, present, and future phytoplankton 

variability, eutrophication status, and water quality. Because of its 
critical role in the characterization of Earth’s climate, Chla is one of the 
essential climate variables as identified by the Global Climate Observing 
System and, as such, provides critical input to the United Nations 
Framework Convention on Climate Change (Bojinski et al., 2014; Holl
mann et al., 2013). 

The use of satellite remote sensing is currently the only way to view 
the entire surface ocean and to monitor Chla at high temporal and 
spatial resolutions (Brewin et al., 2021). To enable such analyses, the 
remote sensing community has historically employed two algorithmic 
approaches to derive Chla, namely empirical algorithms (Dierssen, 
2010) and semi-analytical algorithms (IOCCG, 2006). Empirical algo
rithms, often referred to as ocean color algorithms (OC), make use of the 
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special absorption properties of chlorophyll-a and use the satellite- 
derived water-leaving radiance or remote sensing reflectance (Rrs) to 
estimate Chla from space (O’Reilly et al., 1998; O’Reilly and Werdell, 
2019). These algorithms typically use the ratio of blue to green Rrs bands 
as explanatory variables (Groom et al., 2019; O’Reilly and Werdell, 
2019) to leverage maximum and minimum absorption of chlorophyll-a 
in these spectral regions, respectively. Rather than solely relying on 
observed data, semi-analytical algorithms incorporate physical models 
(i.e., radiative transfer models) of light interaction with water constit
uents to estimate Chla (IOCCG, 2006; Werdell et al., 2018). By incor
porating these physical principles, semi-analytical algorithms provide a 
more mechanistic understanding of the processes influencing the 
observed remote sensing signal. However, as semi-analytical algorithms 
are often difficult to parametrize, empirical algorithms have been shown 
to usually outperform semi-analytical algorithms (Brewin et al., 2015b). 

Current empirical OC algorithms, however, are also reported to 
exhibit biases over large-scale regions such as the Mediterranean Sea 
and the Southern Ocean (Bélanger et al., 2007; Volpe et al., 2007; Zeng 
et al., 2016). Moreover, because the standard OC algorithms are opti
mized for the open ocean, they show clear degradation in performance 
in coastal areas (IOCCG, 2000) where they are known to overestimate 
concentrations (Darecki and Stramski, 2004; McKee et al., 2007; Novoa 
et al., 2012; Tzortziou et al., 2007; Werdell et al., 2009). Although 
coastal shelves only represent about 7 % of the ocean surface, they 
contribute 10–30 % to the global primary production (Bauer et al., 
2013) that, in turn, supports over 90 % of the global fish catch (Pauly 
et al., 2002). Coastal areas play a highly dynamic and essential role in 
the global carbon budget and can be either net carbon sources or sinks 
(Bauer et al., 2013). Reasons for biased Chla estimates are high con
centrations of suspended inorganic particles and colored dissolved 
organic matter as well as bathymetry, all of which add to the optical 
properties of such systems that are classified as Case 2 waters (IOCCG, 
2000). 

To improve the performance of the OC algorithms, regional, 
specialized, or adjusted algorithms have been developed. The most 
prominent one is the Color Index (Hu et al., 2012), which exhibits 
improved performance in the open ocean or more specifically at low 
Chla. For this reason, the NASA Ocean Biology Processing Group 
blended the Color Index with OC algorithms at low Chla concentrations 
(Hu et al., 2019; O’Reilly and Werdell, 2019) to create the currently 
employed NASA Chla products (https://oceancolor.gsfc.nasa.gov/atbd/ 
chlor_a/). Overestimations at high Chla and Case 2 waters, however, 
remain unaffected. Algorithms optimized for those conditions, which 
often go beyond the blue and green band ratio by incorporating infor
mation from other Rrs bands, show improved performance in Case 2 
waters or specific geographic regions (Al Shehhi et al., 2017; Brewin 
et al., 2015a; Darecki and Stramski, 2004; Gitelson et al., 2008; Gohin 
et al., 2002; Son and Kim, 2018), but cannot be used for the open ocean 
without a reparameterization (Cui et al., 2014; McKee et al., 2007). 
Another approach to improve performance has been to merge data and 
Chla estimates from different satellites or sensors (Brewin et al., 2014; 
IOCCG, 2007). Although such approaches greatly improve the spatio
temporal coverage of Chla, they introduce inter-sensor inconsistencies 
(Hammond et al., 2018) and are not guaranteed to remove observed 
biases or to yield improved estimates relative to single-sensor products 
(Moradi, 2021). In recent years, machine-learning approaches have also 
become widespread within the remote sensing community (Han et al., 
2023) in an effort to improve the performance of Chla estimates from 
remote sensing (Hieronymi et al., 2017; Ioannou et al., 2013; Pahlevan 
et al., 2020; Smith et al., 2021), but results from such models are often 
difficult to interpret and reproduce (Rudin, 2019). A simple, parametric 
empirical algorithm that performs well in both the open ocean and 
coastal waters globally is thus still missing. 

In addition, the quantification of the uncertainty associated with 
Chla estimates is also a highly desirable feature for ocean color products 
(Dierssen, 2010; Henson et al., 2010; IOCCG, 2019) for a variety of 

applications. Previous approaches to quantify estimation uncertainty 
have tried to classify Chla uncertainty into uncertainty clusters or global 
uncertainty regions (Liu et al., 2021; Moore et al., 2009), to assess un
certainty by merging multiple Chla estimates from different satellite 
sensors (Melin, 2010; Mélin et al., 2016), or to derive uncertainty 
metrics from neural networks (Saranathan et al., 2023; Werther et al., 
2022a). A straightforward, robust, and parametric approach for quan
tifying the uncertainty of Chla estimates from a single set of Rrs obser
vations, however, is also still missing. 

This study aims to develop a new, easily accessible, and transparent 
(i.e., parametric) empirical algorithm to improve Chla estimates for both 
coastal and open ocean waters and to provide estimates of the Chla 
uncertainty. To achieve this, we use Generalized Additive Models for 
Location Scale and Shape (GAMLSS) (Rigby and Stasinopoulos, 2005; 
Stasinopoulos and Rigby, 2007), which is a distributional regression 
(Rigby and Stasinopoulos, 2005) that estimates the full conditional 
distribution of Chla. This makes it possible to obtain pixel-wise uncer
tainty estimates and can also be used to gauge the magnitude of Chla 
extremes or to calculate exceedance probabilities for Chla thresholds. 
The latter is commonly used to track eutrophication status and assess the 
risk of harmful algal blooms (Gokul et al., 2019; Kress et al., 2019; Topcu 
and Brockmann, 2021) making the GAMLSS approach ideal for coastal 
water quality management, even in cases where specific Chla thresholds 
vary between countries, regions or along salinity gradients (Maciel et al., 
2022; Topcu and Brockmann, 2021; Williams et al., 2009). 

The development of the new algorithm, named OCG (Ocean-Color- 
GAMLSS), is based on Level-3 Mapped Rrs imagery (NASA Goddard 
Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Pro
cessing Group, 2018) from the Moderate Resolution Imaging Spectror
adiometer (MODIS) on board of the Aqua satellite (Esaias et al., 1998). 
We compare the performance of the OCG to state-of-the-art OC algo
rithms, with a particular focus on the Color Index corrected OC3 (CI 
OC3) (Hu et al., 2019, 2012; O’Reilly and Werdell, 2019), which rep
resents the current NASA standard product for MODIS Aqua. We then 
apply the OCG algorithm globally to illustrate the differences in Chla 
relative to the CI OC3 algorithm across various geographic regions. 

2. Data 

In general, two types of variables are required to train empirical 
algorithms. One is a set of measured explanatory or independent vari
ables, in this case, Level-3 Rrs spectral bands, while the other is the 
dependent variable, in this case in situ Chla. 

In contrast to classical OC algorithms, we performed model training 
on satellite-derived Rrs values (satellite matchups) instead of in situ Rrs 
values because by pairing satellite-derived Rrs with in situ measured 
Chla, the impacts of uncertainty from both sensor calibration and at
mospheric correction are collectively accounted for (Hu et al., 2013; 
Smith et al., 2021). The satellite matchup datasets were constructed by 
pairing in situ measured Chla with the MODIS Aqua Level-3 Mapped Rrs 
imagery (NASA Goddard Space Flight Center, Ocean Ecology Labora
tory, Ocean Biology Processing Group, 2018) from July 2002 to 
December 2021. Specifically, for each in situ location we searched for the 
overlapping pixel at 2.5 arcminute resolution (approximately 4.64 ×
4.64 km at the equator) on the same calendar day and extracted data for 
all ten Rrs bands in the visible spectrum, i.e., Rrs(412), Rrs(443), 
Rrs(469), Rrs(488), Rrs(531), Rrs(547), Rrs(555), Rrs(645), Rrs(667), 
Rrs(678). 

Level-3 satellite data has several benefits, such as the inclusion of 
high-quality products that pass a set of quality-control steps as part of 
standard NASA Level-3 products mapped onto a geo-referenced Earth 
grid (Scott and Werdell, 2019). Previous studies using Level-2 data often 
used a ~ 4.64 × 4.64 km pixel box centered on the in situ observation 
locations to extract satellite spectral information using a time window of 
three hours (Savtchenko et al., 2004; Seegers et al., 2018), but such a 
short time window limits the number of observations available for 
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training. Although Level-3 data has a wider temporal window between 
the time of in situ measurement and the time of the satellite observation, 
the performance metrics applied to Level-3 data have been shown to 
remain comparable to Level-2 data (Scott and Werdell, 2019). The 
spatial and temporal mismatch between in situ Chla observations and 
remote sensing information affects both Level-2 and Level-3 data and 
represents a source of uncertainty, as does the uncertainty of the Rrs 
values themselves. While these sources of uncertainty are not charac
terized directly here, they contribute to the overall GAMLSS model 
uncertainty to be investigated in future studies. 

The in situ Chla data used here are a compilation of multiple vessel 
surveys and databases assembled for the validation of ocean color al
gorithm estimates (Valente et al., 2019) and include global in situ Chla 
values measured by both high-performance liquid chromatography 
(HPLC) and fluorometric and spectrophotometric methods. A detailed 
description of the data can be found in Valente et al. (2019). We used 
only HPLC data for model fitting because their accuracy is superior to 
fluorometric or spectrophotometric methods (Pinckney et al., 1994). 
Satellite matchups led to 2069 available in situ HPLC Chla measurements 
(Fig. 1) for model fitting. However, we also considered the 5033 fluo
rometric and spectrophotometric satellite matchups in an additional 
algorithm evaluation (Supplementary Figure 1). For the latter set, we 
only used the data points where no simultaneous HPLC measurement 
exists to retain an independent dataset. 

We compared the new OCG algorithm to the current state-of-the-art 
CI OC3 algorithm globally. The data used for this comparison represents 
global Rrs data assembled with the same resolution as in the model 
training, spanning daily estimates within the period of July 2002 to 
December 2021. Locations with no band information were excluded. 

3. Description of the OCG algorithm 

3.1. Existing OC algorithms 

Classical OC algorithms assume that Chla has a conditional 
lognormal distribution (O’Reilly and Werdell, 2019). This means that 
models are trained on log-transformed (base 10) in situ measured Chla, 
and the conditional distribution of log Chla is then normally distributed 
with a mean (μ), which is a function of explanatory variables, and a fixed 
standard deviation (σ). Existing OC algorithms use a 4th-order poly
nomial of a logarithmized (base 10) ratio between blue and green Rrs 
bands to represent μ (O’Reilly and Werdell, 2019). More specifically, the 
numerator is the maximum of the bands Rrs(443) and Rrs(488) for the 
OC3 algorithm, and the denominator Rrs(547). For OC2, the numerator 
is based on Rrs(488) only. Hence, the OC2 and OC3 algorithms use a 
quartic polynomial with a single explanatory variable but this single 
term involves two or three bands, respectively. The back transformation 

of OC models to the original Chla scale is done by calculating ten to the 
power of μ, and as such the estimates represent the median Chla estimate 
rather than its mean (Campbell, 1995). Those median Chla estimates are 
then merged with the Color Index as this has been found to improve the 
performance of OC algorithms for low Chla (Hu et al., 2012). The Color 
Index corrected OC algorithms (e.g., CI OC3) use the Color Index esti
mate (Hu et al., 2019, 2012) when Chla of the Color Index estimate falls 
below 0.25 ug/L and uses the weighted average between the Color Index 
and respective OC estimate between 0.25 and 0.35 ug/L. At Color Index 
estimates above 0.35 ug/L the estimate of the OC algorithm is used 
(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). Other thresholds for 
blending have been employed in the past (Hu et al., 2019; O’Reilly and 
Werdell, 2019). The CI OC3 algorithm is the current standard algorithm 
for MODIS Aqua (O’Reilly and Werdell, 2019, https://oceancolor.gsfc. 
nasa.gov/atbd/chlor_a/). 

By modeling only μ but keeping σ constant, OC algorithms as well as 
machine learning algorithms such as (Bayesian) neural networks 
(O’Reilly and Werdell, 2019; Saranathan et al., 2023; Werther et al., 
2022a) leave out important properties of the underlying data. This is 
because σ can also depend on the values of Rrs bands themselves. 
Moreover, Rrs bands may also impact the skewness and kurtosis of a 
distribution. This has not only an impact on model performance (Sta
sinopoulos and Rigby, 2007) but direct implications for the creation of 
uncertainty estimates, which is currently ignored (Saranathan et al., 
2023; Werther et al., 2022a; Werther et al., 2022b). 

3.2. GAMLSS approach for estimating uncertainty, quantiles, and 
exceedance probabilities 

Unlike existing approaches, the OCG algorithm is based on the 
GAMLSS approach, which is a distributional regression that models all 
parameters of a distribution as functions of explanatory variables (Rigby 
and Stasinopoulos, 2005; Stasinopoulos et al., 2017). GAMLSS models 
are fitted using the “gamlss” package and relevant add-ons for visuali
zation of results in “R” (Stasinopoulos and Rigby, 2007; Stasinopoulos 
et al., 2022). Characterization of the conditional distribution of Chla 
makes it possible to estimate potential Chla extreme event magnitudes 
(e.g., the 0.95 quantile) or the exceedance probability of water-quality- 
relevant Chla thresholds. The principle is illustrated in Fig. 2a. 

Moreover, the estimated conditional distribution of Chla can be used 
to produce pixel-wise uncertainty estimates. Pixel-wise uncertainty can 
be specified in many ways, such as the quartile coefficient of dispersion, 
which is calculated as the interquartile range (the 0.75 quantile estimate 
minus the 0.25 quantile estimate) divided by the sum of the 0.75 and 
0.25 quantile estimates, the quartile-based coefficient of variation 
(qCV), which is calculated as the Chla interquartile range divided by the 
Chla median estimate, or simply as the difference between any selected 
quantiles. Here, we use qCV as a measure of pixel-wise uncertainty for 
global mapping and the difference between the 0.75 and 0.25 quantile 
for visualizing uncertainty at individual locations (see section 5). 

In this study, we selected the Box-Cox t-distribution (BCTo) as a 
conditional Chla distribution (Rigby and Stasinopoulos, 2006), because 
it is a more flexible distribution in terms of representing skewness and 
kurtosis relative to the lognormal distribution and performed better 
compared to all alternative distributions examined (Supplementary 
Table 1). BCTo is a four-parameter distribution with parameters μ,σ,ν,τ, 
where μ relates to the location (i.e., median), σ to the scale, ν to the 
skewness and τ to the kurtosis of the distribution (Rigby et al., 2019; 
Rigby and Stasinopoulos, 2006). This means that μ and σ are defined 
differently than in the lognormal distribution. A comparison between a 
BCTo and a lognormal distribution is shown in Fig. 2b. Because the BCTo 
distribution can model heavier tails than the lognormal distribution, it is 
more robust to outliers. The BCTo distribution for random variable Y has 
the probability density function: 

Fig. 1. Spatial distribution of satellite matchups with in situ HPLC Chla ob
servations used to train the OCG model. The marginal densities of points are 
presented at the top and right. 
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(1)  

where T has a t-distribution with τ degrees of freedom and fT(.) and FT(.)

are the probability density function and cumulative distribution func
tion of T, respectively, and where μ > 0, σ > 0, -∞ < ν < +∞ and τ > 0. 
Note that because y > 0 the BCTo distribution models a positive response 
variable. 

GAMLSS then uses link functions to relate the parameters to their 
explanatory variables, which for μ, σ and τ are the natural logarithm, and 
for ν the identity link. The log link implies that the fitted OCG model 
parameter is exponentiated to represent estimates on the original 
parameter scale. 

3.3. Band selection and robustness 

We used the Bayesian information criterion (BIC) (Schwarz, 1978) 
for band selection, which identifies the best tradeoff between maxi
mizing the model likelihood and minimizing the number of parameters 
in the model to find a parsimonious model that avoids overfitting 
(Konishi and Kitagawa, 2008). BIC is asymptotically equivalent to a 
leave-many-out cross-validation (Shao, 1997). We tested if trans
formations of bands including the natural logarithm and power trans
formations including those to the power of 0.1, 0.2, 0.3, 1/3, 0.4, 0.5, 
0.6, 0.7, 2/3, 0.8, 0.9, 1 and − 1 improve the model fit. Each band could 
be included in the model for each distribution parameter μ, σ, ν, τ using 
any of the transformations described above, but a band could only 
appear once in the model for each parameter. Because the tested power 
transformations only build a subset of all possible transformations, we 
also investigated whether a non-linear P-spline (smoothing spline), that 
can also capture non-monotonic relationships, was superior to any of the 
above-tested transformations (Stasinopoulos et al., 2017). The model 

with the band combination exhibiting the lowest BIC is selected as the 
final model in a stepwise selection procedure (Stasinopoulos and Rigby, 
2007). 

We assessed the robustness of band selection by bootstrapping the 
data used to fit the OCG 1000 times. Bootstrapping resembles cross- 
validation but does not explicitly divide the data into an a priori 
training and test dataset (James et al., 2013). In each of the 1000 
bootstrap samples, observations are selected randomly with replace
ment until the same number of observations is reached as in the original 
data. Analogous to cross-validation, bias and accuracy (see section 
3.3.1) can thus be evaluated on both the observations used for refitting 
and band selection (Btrain) and the observations not included by chance 
in a particular bootstrapped set (Btest) (on average 36.8 % of the ob
servations based on Efron and Tibshirani, 1997). Selected bands for each 
parameter (i.e., μ, σ, ν, τ) and their transformations in those 1000 boot
strap runs were compared to those in the original model selection to 
assess the statistical marginal robustness (i.e., significance) of a band in 
the final model. 

3.4. Benchmarking and validation 

We compared the OCG algorithm to the original OC3 and OC2 as well 
as their Color Index corrected versions. Because the current OC algo
rithms are fitted on different data than the ones used in this study, we 
also refitted the OC3 and OC2 algorithms on the data used here (see 
section 2) under the assumptions of a lognormal conditional distribution 
as well as a Box-Cox t-distribution (BCTo). We also adjusted the four 
refitted OC algorithms by the Color Index, but this had no significant 
effect on model performance (not shown). 

3.4.1. Comparing the performance of Chla estimates 
To compare the different models based on their median Chla esti

mates, we used the median symmetric accuracy (MdSA) to quantify 
accuracy and the signed systematic percentage bias (SSPB) to quantify 
bias (Morley et al., 2018; Pahlevan et al., 2022; Werther et al., 2022a). 
These are defined as: 

MdSA = 100(exp(M(|lnQi| ) ) − 1 ) (2)  

SSPB = 100 sgn(M(lnQi) )(exp(|M(lnQi) | ) − 1 ) (3) 

Fig. 2. Principle of GAMLSS estimation and comparison of a BCTo and a lognormal distribution. Panel a) shows how GAMLSS models predict the full conditional 
distribution (shaded area) of Chla from a single combination of Rrs values. This means that in addition to the classical median estimate (black line), GAMLSS can also 
be used to estimate other quantities, such as the 0.95 quantile (red dashed line) or the 0.25 and 0.75 quantiles (blue dashed lines) useful for quantifying estimation 
uncertainty. The true chlorophyll-a concentration falls somewhere into this distribution (e.g., green line) The probability of the true Chla value being higher than a 
chosen threshold e.g., 1 µg/L (orange area) can be calculated from the fitted cumulative distribution function (1 - cdf) at 1 µg/L. Panel b) shows the fitted distribution 
of a random daily pixel as estimated by the OCG algorithm using a BCTo (μ = 1.26, σ = 0.50, ν = 0.01, τ = 5) distribution and by the OC3 using a lognormal 
distribution (μ = 1.26, σ = 0.30). Note that both algorithms have the same median estimate (black line) in this case. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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where M(.) represents the median function, sgn(.) the sign function and 
Qi = m̂i/yi, where m̂ is the median Chla estimate and y the observed 
Chla value, i is the data point index, and ln() is the natural log. 

The MdSA can be interpreted as the median percent increase from 
the smaller value of the estimated and observed Chla pair to the larger of 
these two, while a positive SSPB can be interpreted as the median 
percent change from the observed to the estimated Chla value. Addi
tionally, we also calculated the commonly used Root Mean Squared 
Logarithmic Error (RMSLE) to assess accuracy, which represents the 
Root Mean Squared error on log10 Chla (O’Reilly and Werdell, 2019). 

Further, we were interested in how the algorithms compare at 
different Chla magnitudes. For this, we divided the Chla median esti
mates into bins in analogy to the Trophic State Index for the freshwater 
systems (Carlson, 1977; Pahlevan et al., 2020). 

We also grouped the data based on their bathymetry, which allowed 
us to compare the difference in performance in the open ocean versus 
coastal regions. We selected 130 m as the bathymetry threshold to group 
the data into coastal and open ocean samples, as this represents the 
typical depth for continental shelf breaks (Pinet, 2003). 

To gauge how the new OCG approach would compare against OC 
algorithms when retrained on new data available in the future, we also 
calculated MdSA, SSPB, and RMSLE for the fitted models during boot
strapping on Btest (see section 3.2). This bootstrapping approach has 
several advantages (James et al., 2013) over common held-out ap
proaches (O’Shea et al., 2021; Smith et al., 2021; Werther et al., 2022a). 
An obvious disadvantage of held-out approaches is that it is a significant 
waste of data (Steyerberg, 2018), as only a portion of the available data 
is used to fit the model. Moreover, it is unclear how to optimally split the 
data (Harrell et al., 1996; Steyerberg et al., 2001). The Btest data sets 
created under bootstrapping instead represent many (e.g., 1000) test 
data sets, making it possible to quantify the uncertainty in the perfor
mance metrics. Moreover, bootstrapping not only tests if specific pa
rameterizations (i.e., coefficients, selected bands) of two algorithms lead 
to differences in performance, but by refitting the OCG and OC algo
rithms in each bootstrapping iteration bootstrapping compares the 
overall performance of the OCG approach to that of the OC approach. 

3.4.2. Comparing models based on BIC and distributional assumptions 
For the OCG algorithm trained on the original data as well as for the 

refitted OC algorithms, we compare their BIC values as an additional 
assessment of model performance. Generally, a BIC difference of two 
constitutes evidence that one model is better than the other, while a 
difference greater than ten indicates a very strong difference in the 
performance (Burnham et al., 2002; Raftery, 1995). This comparison is 
frequently used as a stand-alone comparison in many research fields 
such as ecology or medicine (Aho et al., 2014; Brewer et al., 2016; 
Chowdhury and Turin, 2020). 

We also investigated how well the fitted conditional Chla distribu
tion matches the observations, which is needed to accurately estimate 
uncertainty, quantiles, and Chla exceedance probabilities. For this, we 
compared the sample quantiles with the theoretical quantiles via 
detrended Quantile-Quantile plots. Calculations are based on normal
ized quantile residuals (or z-scores) (Dunn and Smyth, 1996; van Buuren 
and Fredriks, 2001). A quantile residual is calculated by inserting the 
observed value of the response variable (Chla) into its cumulative dis
tribution function that is expected for its Rrs values, thus representing 
the quantile that the observed value represents in the fit. The true 
quantile residual values are uniformly distributed but are transformed to 
z-scores by inserting the quantile residuals into the inverse cdf of the 
standard normal distribution. The deviations of the ordered normalized 
quantile residuals from their expected normal quantiles are then plotted 
against the expected normal quantiles (Stasinopoulos et al., 2022). 

4. Model parameterization and performance 

4.1. Model parameterization 

The final OCG algorithm as fitted on the 2069 available in situ HPLC 
Chla measurements, with bands selected via BIC, is given by Chla having 
a Box-Cox t-distribution, BCTo(μ, σ, ν, τ): 

μ = exp
(
− 19.2 + 28.3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(412)

√
− 240.1Rrs(443) − 2.4ln(Rrs(488)

)

− 333.2Rrs(547) + 114.5
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(555)

√
+ 6.8

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(667)

√ )

(4)  

σ = exp(0.8 − 32.6Rrs(443) + 0.2ln(Rrs(555)) )
(5)  

υ = 0.2 − 62.9Rrs(412) (6)  

τ = exp(1.6) ≅ 5.0 (7)  

where μ represents the median estimate of Chla [μg/L], while σ, υ and τ 
model the scale and shape (skewness and kurtosis) of the BCTo distri
bution and are unitless. Note that coefficients are rounded here to the 
first decimal place and that the code provided with this study should be 
used for accurate estimates of Chla and uncertainty (see code accessi
bility). The partial effects that show the relationship of the explanatory 
variables to the predictors of the response variable distribution param
eters (i.e., log μ, log σ, ν, and log τ) are shown in Fig. 3. We assume the 
covariance structure of bands does not change over space or time such 
that multicollinearity between bands does not impact future model 
performance; however, this assumption would need to be retested under 
future ocean conditions. Due to the inter-band correlations, especially 
those for the parameter μ, we abstain from drawing any inference on the 
functional relationships between Chla and the individual bands. 

For the parameter μ (Eq. (1) and (4), the transformed bands 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(412)

√
, Rrs(443), ln Rrs(488), Rrs(547), 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(555)

√
, and 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(667)

√

were selected via BIC. The bands Rrs(443), Rrs(488), and Rrs(547)
represent bands that are also part of the classical OC-family of algo
rithms (O’Reilly et al., 1998; O’Reilly and Werdell, 2019). The green 
band Rrs(555) lies very close to Rrs(547), but its square root transform 
still increases the likelihood of the model without overfitting as indi
cated during bootstrapping (see section 4.2). The band Rrs(412) lies in 
the violet light spectrum and is often the brightest band detected over 
the open ocean (O’Reilly and Werdell, 2019). The square root trans
formation indicates the contribution of the band to the estimate of μ 
saturates on the log link scale. This also holds for the Rrs(667) band, 
which lies close to the second absorption peak of chlorophyll-a (Bricaud 
et al., 1998). The use of bands close to 412 nm and 670 nm was explored 
in a recent study and its use in chlorophyll-a algorithms encouraged 
(O’Reilly and Werdell, 2019), further supporting our findings. 

For the scale parameter σ (Eq. (1) and (5), Rrs(443) and ln Rrs(555)
are selected in the final model. The scale parameter represents the 
dispersion parameter for the BCTo distribution; thus, these bands impact 
the Chla uncertainty (qCV) directly. The untransformed band Rrs(412) is 
selected as the only variable in the model for the skewness parameter ν 
(Eq. (1) and (6) of the Chla distribution. A decreasing ν increases the 
skewness and hence the heaviness of the right tail of the BCTo distri
bution, thus making Rrs(412) also an important variable in quantifying 
the upper percentiles of Chla (extreme events). No band was selected for 
τ (Eq. (1) and (7), such that τ was constant at 5.0, revealing that the 
distribution is highly leptokurtic with heavy tails. The fitted median of 
the OCG model is consistent with the observed Chla (Supplementary 
Figure 2). The coefficients of the OC2 and OC3 refits are depicted in 
Supplementary Table 2. 
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4.2. Robustness of band selection 

Bootstrapping of the band selection process (see section 3.3) in
dicates that for the parameter μ, the blue and green bands 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(412)

√
, 

Rrs(443), ln Rrs(488), Rrs(547), 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(555)

√
are all selected very robustly 

in over 80 % of the 1000 bootstrap samples (Fig. 4). For the red band 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rrs(667)

√
, this sensitivity analysis shows less consistency. Although 

Rrs(667) is a selected band in over 75 % of bootstrapped samples, its 
untransformed version is selected almost as often as its square root 
transformation. 

For σ, the bootstrapping analysis reveals that while ln Rrs(555) is 
selected in over 60 % of cases, Rrs(443) is not often selected and may be 
of lesser importance, which needs to be reevaluated when more in situ 
Chla data will be available in the future. The opposite holds for Rrs(547), 
which is not selected in the model of the original data but is selected 
quite frequently during bootstrapping. For the parameter υ, the violet 
band Rrs(412) is selected in over 60 % of the bootstrap samples, con
firming the importance of this band in the algorithm and the estimate of 
Chla and pixel-wise uncertainty. 

Transformations of bands are commonly and robustly selected dur
ing bootstrapping; however, especially the log transformation (e.g., 
Rrs(488)) for μ may produce outliers when their value approaches zero. 
This is not a problem unique to the OCG algorithm; it is also observed in 
classical OC algorithms when the blue-green ratio nears zero and the 
logarithm becomes undefined. To minimize the impact of this issue, we 
recommend carefully evaluating Chla estimates at very low Rrs magni
tudes or only analyzing pixels above a predefined intensity threshold, e. 
g., Rrs(488) > 0.0001. Here, no Rrs(488) values below this threshold 
were present, and the use of such a threshold was therefore unnecessary. 

4.3. Comparison of the Chla median estimate performance 

The final OCG algorithm (Eq. (1), 4, 5, 6, 7) outperforms existing 
models, including the Color Index corrected OC2 and OC3 and the 
refitted OC2 and OC3 algorithms under both a lognormal (Fig. 5, green 
diamonds) and a BCTo distribution (Supplementary Figure 3). Overall, 
the OCG model leads to an MdSA of 40 %, a RMSLE of 0.27, and a SSPB 
of below 1 %, while the CI OC3 has an MdSA of 49 %, a RMSLE of 0.32, 
and a SSPB of over 12 % (Fig. 5, Supplementary Table 3). 

Assessing the performance for open ocean versus coastal regions 
reveals that the high biases (SSPB) in the OC algorithms are originating 
from coastal regions (Fig. 5a, Supplementary Table 3), where the CI OC3 
reaches an SSPB value of 41 %. This bias is inherent to the OC algorithm 
approach in general, as evident from the SSPB distribution of 1000 
bootstrapping runs in the original and refitted OC algorithms (Fig. 5a, 
violins). In contrast, the OCG algorithm only exhibits a 5 % SSPB, and 
the bootstrapping analysis shows that both small positive or small 
negative biases occur across the bootstrapped samples, indicating no 
consistent bias. For the open ocean, all algorithms have low bias except 
for Chla estimates above 2.6 µg/L (Fig. 5a, largest orange dots, Sup
plementary Figure 3) where CI OC2 and CI OC3 exhibit a clear positive 
SSPB. 

In coastal regions, the accuracy of the OCG algorithm as represented 
by MdSA is more than 20 % better than that of the CI OC3 algorithm 
(Fig. 5b), while in the open ocean, it is comparable to OC algorithms. 
The OCG algorithm also consistently exhibits a lower RMSLE than the CI 
OC3 (Fig. 5c), with a 0.31 RMLSE for coastal regions and a 0.24 RMLSE 
for the open ocean, compared to the CI OC3 algorithms’ 0.37 and 0.28 
RMSLE, respectively. We also find that the accuracy is lowest for Chla 
estimates > 2.6 µg/L across all algorithms for the open ocean (Fig. 5b,c). 

Fig. 3. Partial effects of the bands on the predictors of the parameters, i.e., log μ (red), log σ (blue), and ν (green). The shaded areas correspond to the 95% confidence 
intervals. The black tick marks along the horizontal axis represent the distribution of data points. Inference from these plots should be done with caution as the bands 
are correlated, especially Rrs(547) and Rrs(555). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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However, an independent median regression (Fasiolo et al., 2021) of the 
model residuals plotted against the model log-median estimate, reveals a 
better fit for the OCG algorithm throughout the full Chla range and in 
particular under eutrophic conditions (Fig. 6, Supplementary Fig. 4). 

The evaluation when using independent non-HPLC data, i.e., ob
servations made using other approaches (see section 2), further supports 
the OCG algorithm’s superior performance (Fig. 5, Supplementary 
Figure 3, blue squares). It is interesting to note that, independent of the 
algorithm, fluorometric and spectrophotometric approaches compare 
generally poorly in coastal regions. However, this is more likely an issue 
related to the accuracy of these Chla measurements in coastal regions 
(Pinckney et al., 1994). 

4.4. Comparison of BIC and distributional assumptions 

Despite having more parameters, the BIC of the OCG fitted on the 
complete data is significantly lower than the BIC of all the refitted OC 
models, indicating that the improvement in fit outweighs the increase in 
model complexity. For example, the refitted OC2 and OC3 algorithms 

using a BCTo distribution have a BIC that is 424 and 528 above that of 
the OCG algorithm, respectively. The refitted OC2 and OC3 algorithms 
using the original lognormal distribution have BICs that are 552 and 691 
above those of the OCG algorithm. Given that a difference of 10 repre
sents strong evidence of a superior model (Burnham et al., 2002; Raf
tery, 1995), the differences here show unequivocal support for the OCG 
model (see also section 3.4.2). 

We find that the OC2 and OC3, as well as their Color Index corrected 
versions, deviate from their assumption of a conditional lognormal 
distribution of Chla (Fig. 6; Supplementary Figure 5). This is true for 
both the original and refitted OC algorithms that assume a lognormal 
distribution. This is particularly concerning for the upper tail, which is 
crucial for estimating the potential magnitude of extreme concentra
tions, i.e., the upper quantiles of Chla, but also affects the accuracy of 
other quantiles such as the median estimate (Fig. 5). 

5. Illustrative applications 

We applied the OCG algorithm to daily global Rrs between July 2002 

Fig. 4. Sensitivity analysis of the band selection process for the OCG algorithm (Eq. (1). Bars indicate how often a band and its transformation were selected for each 
parameter during bootstrapping. The band transformation used in the final OCG algorithm based on the non-bootstrapped data is colored green. The diagonal lines 
indicate cases where a band was not selected. If a power transformation is not listed in a panel, it was not selected at all throughout the bootstrapping. Similarly, P- 
splines were never selected during bootstrapping. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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and December 2021, and compared estimates to those from the CI OC3 
algorithm i.e., the current standard product (Fig. 7a,b). 

We find that the OCG algorithm generally estimates higher values of 
Chla in the open ocean (Fig. 7c); although the absolute magnitude of 
differences is small for many open ocean regions (e.g., the subtropical 
gyres), the relative discrepancies are large (Fig. 7d). As subtropical gyres 
account for approximately 40 % of the Earth surface (McClain et al., 
2004), these large relative differences may have huge impacts on our 
understanding of global carbon cycling (Emerson et al., 1997). Another 
recent study also reported an underestimation of Chla for the OC algo
rithms in the tropical Pacific (Pittman et al., 2019). In general, these 
observed differences are consistent with biases observed based on the 
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) where the Rrs(412) to 
Rrs(443) band ratio was found to be a good indicator for the direction of 
this bias (Szeto et al., 2011), further emphasizing the benefit of 
including Rrs(412) in the OCG algorithm (O’Reilly and Werdell, 2019). 

Inspecting the South Pacific Gyre as a specific example, we find that 
the OCG algorithm estimates markedly higher Chla between 160◦W and 

145◦W (Fig. 8a) compared to the CI OC3 algorithm. On average, daily 
estimates between July 2002 to December 2021 from the OCG algorithm 
are 0.0089 µg/L higher. In addition, the OCG algorithm estimates a 
smoother decrease of Chla towards the center of the gyre. As the South 
Pacific Gyre represents the largest ocean desert with very low produc
tivity, which is hypothesized to be expanding under global warming 
(Polovina et al., 2008), the highest accuracy is essential for monitoring 
this unique ecosystem under climate change. The Chla values within the 
gyre are usually higher in austral winter, likely resulting from photo
acclimation rather than biomass increase (Behrenfeld et al., 2016); 
however, for the OCG algorithm, this peak is reached slightly earlier 
compared to the CI OC3 (Supplementary Figure 6), which warrants 
further investigation in the future. The OCG algorithm also yields higher 
Chla around Easter Island at the edge of the gyre (Fig. 8a) which may 
indicate an island mass effect (enhanced phytoplankton concentration 
near island-reef ecosystems) in this region (Gove et al., 2016) that is 
underestimated by the CI OC3. 

The OCG algorithm also estimates higher Chla in the high-latitude 

Fig. 5. The OCG algorithm outperforms the OC algorithms in (a) bias (SSPB, Eq. (3), (b) accuracy (MdSA, Eq. (2), and (c) RMSLE. This is especially evident for 
coastal regions. OC2 and OC3 represent the standard ocean color algorithms, CI OC2 and CI OC3 their Color Index corrected versions. OC2 refit and OC3 refit 
correspond to the standard ocean color algorithms refitted to the dataset used in this study assuming a lognormal distribution. Green diamonds indicate the SSPB, 
MdSA, and RMSLE of each algorithm on the complete HPLC data, whereas orange dots show the performance in selected chlorophyll-a bins. The exact values and 
number of points in each bin are presented in Supplementary Table 3. The blue squares correspond to MdSA, SSPB, and RMSLE estimated on in situ chlorophyll-a data 
that was not based on HPLC measurements and therefore not included in the original model calibration. The violins correspond to the performance metrics calculated 
on the left-out points during the bootstrapping (Btest) and thus represent the distribution of the performance metrics. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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polar regions, although some Antarctic circumpolar regions show lower 
estimates relative to the CI OC3 algorithm (Fig. 7). This pattern is 
consistent with the expected impact of sea ice and special optical water 
properties on the accuracy of Chla estimates that rely only on the blue- 
to-green band ratio, such as the OC3 algorithm (Bélanger et al., 2007; 
Dierssen and Smith, 2000; Zeng et al., 2016), leading to 

underestimations by these existing algorithms in high Chla regions and 
overestimations in low Chla regions. 

Conversely, the OCG algorithm predicts lower Chla in coastal regions 
and the oligotrophic Mediterranean Sea (Fig. 7) consistent with the 
observed positive bias for OC algorithms (Fig. 5a). Previous studies have 
also shown that OC algorithms overestimate Chla in the Mediterranean 

Fig. 6. Independent median regression to model the relationship between normalized quantile residuals of the models and their median estimates shows that the 
OCG algorithm exhibits no residual outliers or trends. The fit should be as close to a horizontal line as possible centered at zero; otherwise, estimates are biased. CI 
OC2 and CI OC3 represent the Color Index corrected versions of the standard ocean algorithms. OC2 refit and OC3 refit correspond to the standard ocean color 
algorithms refitted to the dataset used in this study assuming a lognormal distribution. Gray points indicate quantile residuals. 

Fig. 7. The OCG algorithm estimates differ from the CI OC3 algorithm in several global regions. Panel a) shows the median across daily OCG estimates at a 4.64 ×
4.64 km spatial resolution for July 2002 to December 2021[µg/L]. Panel b) shows the same but for the standard CI OC3 algorithm [µg/L]. Panel c) shows differences 
[µg/L] between the OCG and CI OC3 algorithms, where green indicates that OCG estimates higher Chla than CI OC3 [µg/L]. Panel d) shows the ratio between a) and 
b), where green indicates that OCG estimates are higher than those from CI OC3. White areas represent areas with no data. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Sea (Volpe et al., 2007), further supporting the performance of the OCG 
algorithm. Similarly, overestimations in coastal or Case 2 regions with 
complex optical properties have also been reported previously for OC 
algorithms (Darecki and Stramski, 2004; McKee et al., 2007; Novoa 
et al., 2012; Tzortziou et al., 2007; Wynne et al., 2022). 

Using the Chesapeake Bay and Baltic Sea as specific examples, the 
OCG algorithm predicts a smoother transition towards land, indicating 
that the OCG algorithm is less impacted by low bathymetry and high 
concentrations of dissolved organic matter (Fig. 8b,c). The OCG algo
rithm estimates between 2002 and 2021 are on average 2.9 µg/L lower 
for the Chesapeake Bay and 3.7 µg/L lower across the Baltic Sea relative 
to the CI OC3 algorithm, matching overestimations observed for CI OC3 
(Tzortziou et al., 2007; Werdell et al., 2009). In addition, the OCG al
gorithm predicts a smoother seasonality in these regions (Supplemen
tary Figure 6). 

As described in section 3.2, the OCG algorithm predicts the full 
conditional distribution of Chla. This enables deeper insights into the 
discrepancies observed between the two algorithms by calculating 
which quantile the CI OC3 estimate represents in the conditional dis
tribution of Chla predicted by the OCG algorithm. The closer this value is 
to 0.5, the more similar the median estimates of both algorithms are. 
When looking at the typical median over daily quantile estimates at each 
location, the highest discrepancies are evident along global coastlines 

and in ocean gyres but can now be interpreted in relation to the Chla 
uncertainty. For the center of the South Pacific Gyre, for example, the CI 
OC3 represents an OCG quantile estimate below 0.1 (Fig. 9a,b), indi
cating that the CI OC3 is predicting very low and unlikely values. In 
other words, the probability for those locations to have Chla greater than 
the CI OC3 is typically over 90 % according to the OCG algorithm. 
Conversely, for parts of Southeast Asia and Oceania, the quantile that CI 
OC3 estimates represent in the OCG algorithm can be greater than 0.9, 
indicating that CI OC3 estimates are very high and would be rather rare 
(occurring less than 10 % of the time) based on the OCG algorithm. On 
average, the typical estimate from the CI OC3 falls at the 0.42 quantile of 
the OCG algorithm estimate, although there is considerable geographic 
variability (Fig. 9b). 

The estimate of the full conditional distribution of Chla also makes it 
possible to quantify per-pixel uncertainty for every estimation time and 
location. This is illustrated in Fig. 10a for a prototypical location in the 
Chesapeake Bay (see white square in Fig. 8b) for 2017. For this location, 
the CI OC3 algorithm estimates are frequently above the daily 0.75 
quantile estimates of the OCG algorithm, indicating large differences. 
The CI OC3 algorithm also predicts much higher extremes and vari
ability. We use the quartile-based coefficient of variation (qCV; see 
section 3.1) as an illustrative example of how uncertainty can be visu
alized for the OCG algorithm. Typical qCV values globally (median over 

Fig. 8. Selected regional comparisons of the OCG and CI OC3 algorithms. Panels show the median across daily estimates for the period of July 2002 to December 
2021 at 4.64 × 4.64 km spatial resolution with estimates for (a) the South Pacific Gyre, (b) the Chesapeake Bay, and (c) the Baltic Sea. The white squares correspond 
to the pixels chosen for visualizing the time series plots in Fig. 10 and Supplementary Figure 6. 
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daily qCV estimates for each location) are lowest for the ocean gyres and 
highest along the coasts (Fig. 9c), which is consistent with the transition 
from Case 1 to Case 2 waters where Chla becomes higher and the 
inherent optical water properties are more affected by dissolved organic 
matter and inorganic contents (IOCCG, 2000). Areas such as the North 
Sea or the East Sea exhibit the highest qCV (Fig. 9c), which means that in 
those regions the uncertainty of Chla relative to its median estimate is 
very large. 

The ability to characterize the full conditional distribution of the 
predicted Chla also opens the door to additional types of analyses as 
mentioned before. The OCG algorithm can be used to quantify the 
probability of exceeding any particular Chla threshold. Fig. 10b gives an 
example of such an application, showing the daily probability of ex
ceedance for three Chla thresholds in 2017 for the same location in the 
Chesapeake Bay as in Fig. 10a. In this way, the OCG algorithm expands 
the toolbox for monitoring marine ecosystems and for water quality 
assessment. Estimating specific quantiles (e.g., the 0.95 quantile) may 
also be valuable in assessing possible high Chla magnitudes observed in 
harmful algal blooms. 

We note that the GAMLSS approach used to create the OCG algo
rithm can be extended to any ocean color sensor in principle. In the 
future, with more in situ Chla data available, the GAMLSS approach and 
band selection may also be extended by incorporating interactions be
tween bands or complementary environmental data to further improve 
the accuracy of Chla estimates or to build models designed for specific 
taxa such as cyanobacteria. 

6. Conclusions 

We introduce a novel global Chla algorithm trained on Level-3 
products and in situ chlorophyll-a concentrations measured by high- 
performance liquid chromatography. The OCG surpasses the state-of- 
the-art CI OC3 algorithm in RMSLE in both coastal regions and the 
open ocean. Improved accuracy over existing algorithms is particularly 
pronounced in coastal regions, where the OCG achieves a 20 % 
improvement in accuracy (MSA) and reduces CI OC3 overestimations of 
41 % (SSPB) to below 5 %. Our analysis challenges the assumed 
lognormal distribution used in OC algorithms, and introduces a novel 
distributional regression framework, using the BCTo distribution to 
accurately capture the conditional distribution of Chla. This new 
framework also provides estimates of pixel-wise uncertainty, quantile 
estimates beyond the median Chla, and exceedance probabilities for 
Chla thresholds. The transparent distributional regression framework of 
OCG holds promise for seamless adaptation to current and future sensors 
or usage of hyperspectral data (Begliomini et al., 2023), enabling 
enhanced predictions of water quality and harmful algal blooms. 

On a global scale, OCG yields reduced Chla concentrations in coastal 
regions, the Southern Ocean, and the Mediterranean Sea. Conversely, it 
indicates elevated values in expansive open ocean regions and specif
ically in ocean gyres and polar regions. Notably, regions like the East Sea 
and North Sea exhibit the highest relative pixel-wise uncertainties. The 
features of the OCG offer valuable new opportunities for identifying and 
reassessing Chla trends during the MODIS Aqua mission and will help 
advance our understanding of marine ecosystems and ocean 
productivity. 

Code and data accessibility 

To provide easy access to the OCG algorithm we supply code in the 
“R” language to allow easy calculations given Level-3 MODIS Aqua 
remote sensing reflectance data under https://github.com/JulianMerde 
r/OCG-prediction. We also provide code to show how to fit a GAMLSS 
model based on the data used in this study (based on Valente et al., 
2019). 

Fig. 9. Fitting the full conditional distribution of chlorophyll-a concentrations 
makes it possible to draw inferences based on the probability distribution of 
estimated concentrations. Panel (a) shows the median over the period of July 
2002 to December 2021 of the quantile of the daily OCG conditional distribu
tion of chlorophyll-a concentrations that corresponds to the CI OC3 estimate for 
that day. Brown corresponds to regions where the OCG estimates tend to be 
lower than CI OC3 estimates (mostly coastal regions) while green corresponds 
to regions where the OCG estimates are higher than CI OC3. Panel (b) shows a 
histogram of the values presented in panel (a), revealing that for most locations 
the CI OC3 estimates correspond to OCG quantile estimates below 0.5. This is 
due to the many open ocean pixels where CI OC3 underestimates Chla. Panel (c) 
shows the median of the daily qCV [unitless], i.e., the median relative esti
mation uncertainty of the OCG model, showing that the relative uncertainty of 
estimates is highest near the coasts. White areas represent areas with no data. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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International Ocean-Colour Coordinating Group (IOCCG), Reports of the 
International Ocean-Colour Coordinating Group, No. 18, Dartmouth, NS, Canada. 
https://doi.org/10.25607/OBP-696. 

James, G., Witten, D., Hastie, T., Tibshirani, R. (Eds.), 2013. An Introduction to 
Statistical Learning: with Applications in r, Springer Texts in Statistics. Springer, 
New York.  

Konishi, S., Kitagawa, G., 2008. Information criteria and statistical modeling. Springer 
series in statistics, Springer, New York.  

Kress, N., Rahav, E., Silverman, J., Herut, B., 2019. Environmental status of Israel’s 
Mediterranean coastal waters: setting reference conditions and thresholds for 
nutrients, chlorophyll-a and suspended particulate matter. Mar. Pollut. Bull. 141, 
612–620. https://doi.org/10.1016/j.marpolbul.2019.02.070. 

Liu, X., Steele, C., Simis, S., Warren, M., Tyler, A., Spyrakos, E., Selmes, N., Hunter, P., 
2021. Retrieval of chlorophyll-a concentration and associated product uncertainty in 
optically diverse lakes and reservoirs. Remote Sens. Environ. 267, 112710 https:// 
doi.org/10.1016/j.rse.2021.112710. 

Maciel, F.P., Haakonsson, S., Ponce de León, L., Bonilla, S., Pedocchi, F., 2022. 
Challenges for chlorophyll-a remote sensing in a highly variable turbidity estuary, an 
implementation with Sentinel-2. Geocarto Int. 1–26 https://doi.org/10.1080/ 
10106049.2022.2160017. 

McClain, C.R., Signorini, S.R., Christian, J.R., 2004. Subtropical gyre variability observed 
by ocean-color satellites. Deep Sea Res. Part II 51, 281–301. https://doi.org/ 
10.1016/j.dsr2.2003.08.002. 

McKee, D., Cunningham, A., Dudek, A., 2007. Optical water type discrimination and 
tuning remote sensing band-ratio algorithms: application to retrieval of chlorophyll 
and Kd(490) in the irish and celtic seas. Estuar. Coast. Shelf Sci. 73, 827–834. 
https://doi.org/10.1016/j.ecss.2007.03.028. 

Melin, F., 2010. Global distribution of the random uncertainty associated with satellite- 
derived chl a. IEEE Geosci. Remote Sensing Lett. 7, 220–224. https://doi.org/ 
10.1109/LGRS.2009.2031825. 
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