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A B S T R A C T

Imminent robotic and human activities on the Moon and other planetary bodies would benefit from advanced
in situ Computer Vision and Machine Learning capabilities to identify and quantify microparticle terrestrial
contaminants, lunar regolith disturbances, the flux of interplanetary dust particles, possible interstellar dust,
𝛽-meteoroids, and secondary impact ejecta. The YOLO-ET (ExtraTerrestrial) algorithm, an innovation in this
field, fine-tunes Tiny-YOLO to specifically address these challenges. Designed for coreML model transference to
mobile devices, the algorithm facilitates edge computing in space environment conditions. YOLO-ET is deploy-
able as an app on an iPhone with LabCam® optical enhancement, ready for space application ruggedisation.
Training on images from the Tanpopo aerogel panels returned from Japan’s Kibo module of the International
Space Station, YOLO-ET demonstrates a 90% detection rate for surface contaminant microparticles on the
aerogels, and shows promising early results for detection of both microparticle contaminants on the Moon and
for evaluating asteroid return samples. YOLO-ET’s application to identifying spacecraft-derived microparticles
in lunar regolith simulant samples and SEM images of asteroid Ryugu samples returned by Hayabusa2 and
curated by JAXA’s Institute of Space and Astronautical Sciences indicate strong model performance and transfer
learning capabilities for future extraterrestrial applications.

1. Introduction

Extraterrestrial microparticles though millimetres or less in size,
bear wide-ranging significance for understanding planetary system ori-
gins, delivery of water and life precursor materials to Earth and other
planetary bodies, developing planetary protection measures, and iden-
tifying the distribution of potential resources in the Solar System. Mis-
sions to low Earth orbit, the Moon, asteroids and deep space destina-
tions have already created a substantive inventory of these particles
including:

1. Micrometeorites (MMs) — With their smaller mass, lower de-
celeration through the atmosphere and gentler Earth impact,
some surviving micrometeorites are found to be relatively un-
altered, with unmelted portions giving direct evidence of their
precursor bodies and evolutionary sequence. MMs are gener-
ally categorised as meteoroids reaching the Earth’s surface, and

∗ Corresponding author at: School of Natural Sciences Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom.
E-mail address: l.pinault@ucl.ac.uk (L.J. Pinault).

recovered like meteorites, with sizes in the 10s to 100s of
μm (Dartois et al., 2013; Prasad et al., 2018; Rojas et al., 2021);

2. Interplanetary Dust Particles (IDPs) — Finer grained and cap-
tured in the stratosphere, with sizes up to 10 μm, IDPs are
effectively a category of MMs, and are also presumed to be
of asteroidal and cometary origin, like Antarctic Micromete-
orites (AAMs) and Cosmic Spherules (CSs), fully melted and re-
condensated meteoroids recovered from the deepsea floor; (Flynn,
1994; Kurat et al., 1994);

3. Interstellar Dust Particles (ISPs) — Originating from outside our
Solar system and owing to the Sun’s Galactocentric orbit and
other influences, these particles can travel at Earth encounter
speeds of up to ∼100 km s−1 or greater hypervelocities (Taylor
et al., 1996);

4. Lunar and asteroidal regoliths — The Apollo and Luna missions
of 1969–1976 and the Chang ’e 5 mission of 2020 returned dust
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particles from the Moon to Earth, and the asteroid sample re-
turns by Hayabusa in 2010 (Nakamura et al., 2011), Hayabusa2
in 2020 (Yada et al., 2022) and OSIRIS-REx in 2023 (Goldwin,
2023) also successfully added to Earth’s inventory; and

5. Anthropogenic contaminants — Fragments from spacecraft ex-
teriors, engines, spacesuit microfibres and outgassed materials
from extravehicular activities are produced in both normal oper-
ations and as a result of material degradation and microparticle
impacts in space. These are likely to accompany human and
robotic activities on the Moon (e.g. Yano et al., 1994, 1997;
Yamagishi et al., 2021).

Each of these categories of microparticles in and from the space
environment has its own significance, but many are also interrelated,
and in practice, on lunar and asteroid surfaces they may be mixed or
amalgamated together. Micrometeorites may offer direct comparison
to past asteroid and lunar sample returns for example, affording a re-
calibration of terrestrial micrometeorite collections by overcoming the
selective biases of atmospheric entry, an important step toward better
understanding Solar system formation processes (e.g. Genge et al.,
2020).

Almost all microscopic analyses of extraterrestrial samples involve
a detailed examination of their petrological features, textures, min-
eralogy, and chemical composition, drawing on a depth of research
expertise, judgement and experience to offer classification suggestions
and understand origins and implications for the early solar system
and more. Besides a heavy experience requirement, the equipment
required for these undertakings can be their own burden. Even the most
recent automated micro-scanning systems in extraterrestrial sample
labs, while increasingly powerful, are substantially sized and practically
immobile (Sasaki et al., 2019). Their power-intensive requirements,
slow speeds of operation and high consumption of computing resources
can lead to lengthy processing times. Here we introduce a novel ap-
proach using Computer Vision and AI Machine Learning combined
with advanced on-device optical and computing technologies, that can
serve as an important complement to researchers’ experience and a
companion to their field efforts. These advancements can overcome
the limitations of current systems to rapidly and accurately identify,
localise, and classify microparticles making it a more robust and prac-
tical solution for in situ anthropogenic contaminant and extraterrestrial
sample analyses.

In this study, we seek to harness the potential of AI Machine
Learning to address a specific challenge in the planetary sciences: the
identification and classification of micron to millimetre scale extrater-
restrial particle impacts and features. The application of AI in image
classification is a topic of fast-growing interest across various fields;
our specific contributions are rooted in the novel application of these
techniques to the unique domain of extraterrestrial particles, alongside
the development of a specialised dataset and tailored training processes
for their data handling.

We collect data from ‘F (false)’ samples which are not captured
micrometeoroids but rather anthropogenic contaminants identified on
the surfaces of the Tanpopo aerogel panels exposed outside of the
JAXA Kibo module of the International Space Station. The data were
prepared and imaged using a digital optical microscope, recording,
and processing techniques designed for rapid and automated identifi-
cation followed by initial morphological classification of the identified
features by experienced space scientists (Section 2).

Following data acquisition and archiving, we introduce YOLO-ET
(You Only Look Once ExtraTerrestrial), a modified YOLO deep learning
algorithm trained on the aerogel panel images to provide an opti-
mised pipeline for detecting these ‘F’ sample features (Section 3). We
then analyse the performance of the trained model on unseen data
in (Section 4.2) and conclude with discussions on the applications to
anthropogenic contaminants introduced to lunar simulants, as well as
micro-scaled features within asteroid Ryugu samples, and their poten-
tial correlations to micrometeorites from the TransAntarctic Mountains
in (Section 6.1) and (Section 6.2) respectively.

2. Data acquisition and archiving

2.1. Astrobiology project Tanpopo

Tanpopo is Japan’s first space experiment for astrobiology utilising
the Exposure Facility of the Japan Experimental Module (JEM) of
the International Space Station (ISS), designed for the exposure of
extremophile microbes and astronomical organic analogues, and for the
collection of potentially organic-bearing micrometeoroids impacting
the ISS before entering the Earth’s atmosphere, in order to explore
the potential for and any evidence of two-way interplanetary transport
of life precursors and life (Yamagishi et al., 2014). For impacting
microparticles, including micrometeoroids, space debris, and possi-
ble terrestrial particles that might carry microbes as bioaerosols, the
capture of these particles was achieved using silica aerogel capture
panels (Tabata et al., 2011). These were first placed on the Exposed
Experiment Handrail Attachment Mechanism (ExHAM) unit on the ISS
in 2015–2019 for the Tanpopo mission and followed by the Tanpopo2
mission in 2019–2020 (Fig. 1).

The first set of silica aerogel panels was exposed for one year before
being returned to Earth (Kawaguchi et al., 2016), and these aerogel
panels were examined under the microscope in clean room facilities at
the Institute of Space and Astronautical Sciences (ISAS) in Sagamihara
Japan (Yamagishi et al., 2021). CLOXS, which stands for ‘‘Captured
particles Locating Observation and eXtracting System’’ (Sasaki et al.,
2019), is a specialised processing machine designed for the Tanpopo
mission (Fig. 2). It processes the returned aerogel from space, placing
them on an X-Y-Z coordinate stage, and autoscans and images them
under the microscope to integrate a microscale map of the entire
aerogel panel by moving the stage in micrometre increments (Fig. 3).
When objects of interest are identified from the integrated mapping
image by a scientist, the coordinates of the region of interest of the
panel are recorded and the X-Y-Z stage can be automatically moved for
revisiting the location for higher magnification investigation. The stack
of the revisited images at different focal length depths may contain true
penetration tracks and surface objects.

The Tanpopo mission’s classification of surface impacts from hy-
pervelocity impactors is pivotal to understanding not only the impact
process, which can lead to vaporisation of the impactor, but also to
glean information about the impactor’s composition and origin from
the remnants it leaves behind. Traditionally this involved laborious
microscopic examination and imaging of 100s of samples, with inherent
human errors, and earlier efforts by the authors focused on track
types—carrot, pit crater, straight, and teardrop. The identified particles
and particle impact tracks (Figs. 4 and 5) in the aerogel that are of
interest are cut out into suitable-sized chips that contain impact tracks
of particles captured in space, where a needle is then used to cut
the aerogel without contamination; this is then distributed to research
groups worldwide for detailed biological and chemical analyses of the
captured microparticles (Yano et al., 2014).

As for microparticles collected on the surface of the Tanpopo aerogel
panels, these are presumed not to be ‘True’ hypervelocity impactors
associated with morphological features (i.e. carrot tracks, pit craters,
straight tracks, and teardrop tracks), but rather ‘False’ incidentally
collected particles impacted at much slower velocities such as material
released by ISS docking and undocking activities, venting materials,
secondary impacts from primary impact ejecta, possible spacecraft
component fibres, and fragments of the aerogel itself. This study has
prioritised accurately classifying surface residual effects of these ‘F’
samples, such as sputter, fibre, block, bar, and aerogel fragments.
Semi-automated methods have been employed to enhance classification
but until the work of this project, matching the expertise of human
scientists has remained a challenge, requiring a series of manual re-
sizings, whitening, and contrast adjustments to secure even modest
levels of confidence. Given the abundance of samples, continuous
improvement in automated techniques is essential to accurately assess
the microparticle remnants.
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Fig. 1. Progressive zoom-in sequence of the Tanpopo astrobiology mission onboard the International Space Station (ISS), showing the placement of silica aerogel panels on the
Kibo Exposed Facility for capturing impacting microparticles (Yamagishi et al., 2021). The sequence depicts the ISS with highlighted Kibo module, the ExHAM unit where aerogel
panels are mounted, and close-up views of an impact crater on the aluminium frames of the panel and an aerogel panel in which an intact captured micrometeroid is discovered
by subsequent analyses.

Fig. 2. Schematic representation of the CLOXS system, illustrating the precise arrange-
ment of the micro-manipulator, aerogel holder, LED lighting, and XYZ stages mounted
on an assembly stand, all coordinated by manipulator and microscope controllers,
and integrated into a central control PC system for meticulous particle extraction and
analysis.

2.2. Machine learning dataset

This research focuses on the Tanpopo1-2 missions 2015–2020 col-
lection of aerogel surface features larger than ∼100 μm in the
10 cm × 10 cm aerogel panels captured at typically 100x to 245x mag-
nifications. The total number of ‘F’ sample images in the collection is
over 4000. In consideration for the computational power and memory
limitations required to train machine learning models with large image
input sizes, our data sample consists of 395 images, which is less than
10% of the total ‘F’ samples, in .jpeg format each 480 × 704 pixels
in size. Our dataset is limited by the lack of annotated data (image-
label pairs). With the open-source Python widget Bbox, we additionally
manually annotate each image with a bounding box around each object
(some images contain multiple particles and others none), and a class
label of either ‘sputter’, ‘block’, ‘fibre’, ‘bar’, and ‘aerogel fragment’
(Fig. 6).

We note that the images have a variety of hues and brightnesses
as they were captured under different lighting conditions, however in

Fig. 3. The CLOXS system set-up in the ISAS clean room.

Fig. 4. Silica aerogel sample post-impact from a hypervelocity particle experiment,
simulating the conditions for the Tanpopo project. This experiment conducted on Earth
tests the resilience of the aerogel panels designed for microparticle collection onboard
the ISS.
Credit: Tabata et al. (2011).
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Fig. 5. A ‘carrot’ shaped track of a hypervelocity impactor in the Tanpopo silica aerogel
panel returned from the International Space Station. The arrow indicates an impact
direction.

Fig. 6. Examples of Tanpopo surface objects. From left to right, aerogel fragment,
sputter, bar, block and fibre.

the interest of human time-saving we do not preprocess the images
to account for this. Similarly we do not threshold, convert to grey
scale or remove noise in the manner typically used to enhance the
images for human inspection, as this would defeat the gains offered
through the speed of Machine Learning. We are however inspired by
the challenges and building on prior work using these more laborious
methods (Krizhevsky, 2009; Krizhevsky et al., 2012).

We split our data sample into 80% for training (316 images) and
20% for testing (79 images). These are randomly sampled whilst main-
taining the baseline ratio between different classes. The training data
are the images used to optimise the model weights during the training
phase of the model. The test data are not seen during the training
of the model. We note that whilst it is common to additionally set
aside a validation dataset for informing when the model is sufficiently
trained — i.e. not under- or over- fit, our relatively limited data sample
hampers our ability to reserve additional samples for validation, which
could weaken the model’s performance. Machine Learning methods
are data greedy and perform better with more data, so to compensate
for the relative data paucity, we apply automatic augmentation in the
form of flipping the training images vertically, horizontally or both
(corresponding to 180◦ rotation), resulting in a factor of 4 increase to
the training sample (Fig. 7).

3. YOLO-ET: A highly efficient convolutional neural network for
extraterrestrial microparticle detection and classification

3.1. Machine learning

Machine Learning (ML) (see Goodfellow et al., 2016, for a review)
involves constructing layered architectures where each layer performs
specific operations on data. These layers, particularly in neural net-
works, are composed of nodes or neurons with associated weights.
During training, ML algorithms process input data through these layers,
where each operation transforms the data based on the current weights.

Fig. 7. Distribution of training and test data over the different classes. We note that
these do not directly correspond to the number of images, as images can contain
multiple objects of different classes or no objects altogether. Additionally there is
significantly more training data as the augmentation is applied only to the training
sample.

The goal is to optimise the weights to minimise a predefined cost or
loss function (Section 3.3.2), which measures the difference between
the algorithm’s predictions and the actual outcomes. The optimisation
is typically done using techniques like gradient descent, where the
algorithm iteratively adjusts the weights based on the gradient of the
loss, improving the model’s predictions over time (Mitchell, 1997).
Supervised learning, a subset of Machine Learning, involves algorithms
that improve at tasks over time by learning from labelled data. Our
project applies supervised learning to object detection, training models
to recognise and categorise microscopic particles on aerogel panels. The
data consists of pairs of images and their corresponding labels that are
the bounding box coordinates (x and y), height (h), width (w), and
class.

3.2. YOLO

Machine Learning (ML) algorithms employing Deep Learning tech-
niques have been gaining traction in the astronomical sciences for
nearly a decade, with applications ranging from galactic surveys
(Huertas-Company and Lanusse, 2022), dark matter mapping (Jeffrey
et al., 2020) and notably in regard to this work, galactic cluster
detection (Grishin et al., 2023), using a streamlined YOLO technique.
YOLO (Redmon et al., 2016), an acronym for ‘‘You Only Look Once’’,
is a supervised learning approach to real-time object detection in
computer vision. YOLO’s novel architecture enables it to process images
in a single pass, predicting both the bounding boxes and class probabil-
ities (confidence scores) for objects within the image simultaneously.
This contrasts with earlier two-step detection systems (e.g. Girshick,
2015), which would first propose regions and then classify them. The
efficiency of YOLO allows it to detect objects rapidly with a high degree
of accuracy, making it ideal for applications that require real-time
processing.

Like more conventional techniques, YOLO is a type of convolutional
neural network (CNN), consisting of a series of convolutional layers
and pooling layers rather than neurons (Chen et al., 2021). Jaeger
et al. (2021) use a 16-convolutional layer Visual Geometry Group CNN,
VGG-16 (Simonyan and Zisserman, 2014) to classify impact craters on
aluminium foils from the Stardust interstellar dust collector, which are
typically less than one micrometre in size and sparse, making them
difficult to find. While this method excels in accuracy for small objects,
its deep architectures lacks YOLO’s speed, limiting its use in real-time
scenarios. Additionally, it primarily assesses the probability of crater
presence without pinpointing exact locations, and is not optimised for
images containing multiple objects of different classes.

3.3. YOLO-ET

YOLO-ET, is a modification of YOLO optimised for the detec-
tion of extraterrestrial microparticles. Specifically, we employ Tiny
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Fig. 8. TinyYOLOv2 architecture showing the series of convolutional and max pooling layers, with Batch Normalisation marked in yellow. The numbers represent the filter size and
number of filters in each layer and the/represents the stride in the max pooling layers. Batch Normalisation is introduced after convolutional operations and before the activation
functions, and leads to faster convergence during training by reducing internal covariate shift, i.e. the natural tendency to change the mean and variance of the inputs with each
layer. Aside from helping to stabilise the training process by ensuring that the distribution of inputs to each layer remains more consistent during training, Batch Normalisation
also helps regularise the model and reduce overfitting, so that the model can generalise better to unseen data.

Fig. 9. Diagram illustrating the concept of anchor boxes in TinyYOLOv2, showcasing various predefined box shapes and sizes strategically positioned across a Tanpopo aerogel
image in YOLO-ET implementation. These anchor boxes enable the efficient and accurate prediction of object boundaries and classifications within a single pass of the network.

YOLOv2 (Fig. 8), which is a smaller, simplified version of the original
YOLOv2 (Redmon and Farhadi, 2017) with a Darknet-19 base network
(a 19-layer network inspired by the VGG-16 model). For an overview on
the development of YOLO see Jiang et al. (2022). YOLOv2 is designed
to be more compact and faster than YOLO, making it suitable for appli-
cations with limited computational resources, such as mobile devices or
real-time systems (see e.g. Zhou et al. (2022)). While maintaining the
core principles of YOLO’s single-pass detection, YOLOv2 simplifies the
architecture with fewer convolutional layers and filters. In the original
YOLO architecture, bounding box predictions were made relative to
the dimensions of a grid cell; this approach had some limitations
in terms of accuracy, particularly around predicting the correct size
and location of objects. YOLOv2 improved upon this by predicting
bounding box coordinates directly. Instead of the network learning

offsets relative to a grid cell, YOLOv2 learns to predict bounding box
coordinates relative to the location of the grid cell, along with anchor
box dimensions, which makes predictions more precise (Fig. 9). This
reduction in complexity results in faster processing speeds but typically
at the cost of some detection accuracy compared to the full YOLO
model. The ‘‘Tiny’’ version of YOLOv2 is specifically optimised to be
more lightweight and faster, sacrificing some accuracy for the sake of
speed and smaller model size. This makes Tiny YOLOv2 particularly
well-suited for deployment in environments with limited computational
resources, such as mobile devices, embedded systems, or applications
where real-time performance is crucial. We underscore the suitability
of the TinyYOLOv2 architecture for mobile use, which represents a
significant advancement in deploying deep learning models on devices
without the need for high-powered computing resources. YOLO-ET
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thus embraces Tiny YOLOv2’s trade-off between speed and precision,
optimised for scenarios where real-time performance is crucial. For
a deeper understanding of the efficiency and effectiveness of the
TinyYOLOv2 architecture in mobile environments, we direct readers
to the comprehensive study detailed in Zhou et al. (2022). This study
provides empirical evidence supporting our choice of architecture,
demonstrating its superior performance in scenarios demanding high
efficiency and reliability on mobile devices.

3.3.1. Non-maximum suppression
Non-maximum Suppression (NMS) (Neubeck and Van Gool, 2006)

is a post-processing technique commonly used in object detection al-
gorithms and is a key feature in YOLO and YOLOv2, that ensures
each detected object is only recognised once. When an object detection
model predicts multiple bounding boxes for the same object, NMS helps
in selecting the most probable bounding box and discarding the rest. It
does this by comparing the overlap between two boxes (A and B) using
a metric called Intersection Over Union (IOU),

𝐼𝑂𝑈 =
|

|

|

|

𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

|

|

|

|

, (1)

and retaining only the boxes below the defined IOU threshold, and
above the defined confidence score threshold while suppressing the
others. This reduces redundancy and increases both detection inter-
pretability and accuracy. The default IOU threshold and confidence
threshold in our work are 0.5 and 0.3, respectively, providing both a
limited clutter of redundant bounding boxes and a practical level of
accuracy for distinguishing microparticle types.

3.3.2. Loss function
The loss function quantifies the difference between the values pre-

dicted by the model and the actual values in the training data. A key
goal in Machine Learning is to find the set of parameters, the weights
and biases in the context of convolutional neural networks, that can op-
timise toward actual values by iteratively moving toward the minimum
value of the loss function. The slope or derivative of the loss function
with respect to its parameters is defined as its gradient, and moves
in the direction of the steepest increase of the function. Moving in
the opposite direction of the gradient, the algorithm iteratively adjusts
the parameters to reduce loss, referred to as the gradient’s descent.
The learning rate is a hyperparameter that determines the size of the
steps taken toward the minimum — too large, and the algorithm might
overshoot the minimum, too small, and it will converge very slowly,
consuming additional computing resource. Batch sizes determine the
amount of data used to calculate the gradient at each step.

The YOLO loss function specifically combines terms for bounding
box prediction accuracy, object presence confidence, and class pre-
diction, ensuring the model is well-tuned across all aspects of object
detection. In contrast to Grishin et al. (2023)’s work on galaxy clusters,
YOLO-ET retains the comprehensive YOLO loss function, exploiting the
full power of YOLO to simultaneously tackle the presence of multiple
objects of different classes in an image. This is also useful for aerogel-
captured particles, where multiple particles may overlap or appear
at different depths in the aerogel panel, and it is essential for real
world observational tasks in the planetary sciences like searching for
microparticles and tell-tale microcraters in situ on the surface of the
Moon.

Our loss function is defined as follows,

𝐿 = 𝜆coord
𝑠2
∑

𝑖=0

𝐵
∑

𝑗=0
1𝑜𝑏𝑗
𝑖𝑗 [(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)2]

+𝜆coord
𝑠2
∑

𝑖=0

𝐵
∑

𝑗=0
1𝑜𝑏𝑗
𝑖𝑗 [(

√

𝑤𝑖 −
√

𝑤̂𝑖)2 + (
√

ℎ𝑖 −
√

ℎ̂𝑖)2]

+
𝑠2
∑

𝑖=0

𝐵
∑

𝑗=0
1𝑜𝑏𝑗
𝑖𝑗 (𝐶𝑖 − 𝐶̂𝑖)2

+𝜆noobj
𝑠2
∑

𝑖=0

𝐵
∑

𝑗=0
1𝑛𝑜𝑜𝑏𝑗
𝑖𝑗 (𝐶𝑖 − 𝐶̂𝑖)2

+
𝑠2
∑

𝑖=0
1𝑜𝑏𝑗
𝑖𝑗

∑

𝑐∈classes
(𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2, (2)

where, the first two terms, weighted by 𝜆coord, penalise errors in the
position (𝑥, 𝑦) and size (𝑤, ℎ) of predicted bounding boxes compared
to the ground truth. These are crucial for precise localisation. The third
term penalise errors in object scores 𝐶𝑖, distinguishing between object
presence and absence. The fourth term, scaled by 𝜆noobj, specifically
penalise false detections and the final term assesses the classification
error for each class 𝑐 across the objects detected, ensuring accurate class
predictions (Redmon et al., 2016).

3.3.3. Turi Create
We deploy YOLOv2 through Turi Create,1 an open-source machine

learning library developed by Apple. It provides a simplified approach
to creating machine learning models, especially for developers inter-
ested in practical field application. Turi Create supports various types
of models, including classifiers, recommender systems, and image clas-
sifiers, and is particularly known for its ease of use in creating models
for iOS apps. The library is optimised for scalability and performance,
enabling the development and deployment of models on both Macs
and mobile iOS devices. Using Turi Create for object identification,
localisation, and image classification is remarkably straightforward,
allowing more user development time for focusing on the customisation
of the learning model itself. AI Machine Learning is becoming increas-
ingly accessible and user-friendly with applications such as Turi Create
and Microsoft Lobe2 providing highly accessible implementation of AI
including in educational settings.3

This user-friendly entry point into object detection provides a
streamlined experience, but at the cost of customisation depth. This
abstraction means users are not able to fine-tune all model hyperpa-
rameters, i.e. the configuration settings of the network defined before
training begins. In the case of YOLO-ET, these include: the learning
rate — i.e. the magnitude by which the weights are updated during
training, the anchor box dimensions, the NMS (confidence) threshold
and the IOU threshold. It is also not trivial to employ a validation set
directly within the framework. However, TuriCreate still affords some
degree of control, allowing for the adjustment of hyperparameters such
as batch size and maximum iterations, which can significantly influence
model performance and training time.

During training, we experimented with various batch sizes. While
larger batches demand more memory due to the increased number of
images loaded simultaneously, they tend to smooth out the loss curve,
leading to a more stable model. Conversely, smaller batches, although
more memory-efficient, can result in a noisier gradient descent tra-
jectory. High-resolution inputs restricted our batch capacity, thereby
decelerating the training convergence. Nevertheless, larger batches
expedited convergence toward the global minimum of the loss function.
For this project, a batch size of 32 was identified as the most effective,
balancing computational resource demands and learning stability.

In the training of our model, an epoch is defined as one complete
pass through the entire dataset, whereas an iteration is one update of
the model’s weights, which occurs after processing a batch of samples.
Recall our model uses 1264 training images with a batch size of 32,
each epoch consists of 1264/32 = 39.5, approximately 40 iterations.
Setting max_iterations to 2000 means the training process involved

1 https://github.com/apple/turicreate.
2 https://www.lobe.ai/.
3 Lobe requires neither Machine Learning nor coding experience and should

enable a wide range of user engagements. Currently however its templates are
only set up for Image Classification tasks.

https://github.com/apple/turicreate
https://www.lobe.ai/
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roughly 2000/40 = 50 epochs. After experimenting with various num-
bers of max_iterations, 2000 was found to be optimal, striking a balance
between model performance and computational efficiency. This choice
was partly influenced by Turi Create’s constraints on validation set
usage, which limited our ability to employ traditional validation tech-
niques to fine-tune the number of iterations. Instead, we relied on
trial and error in the creation of the model, along with runtime con-
siderations, to determine the most effective training duration. Since
our goal is automated on-device deployment for laboratory and in situ
use in space environments, the trial-and-error component in the model
creation phase to achieve this goal is a practical trade off: the balance of
convenience with a good modicum of configurability makes Turi Create
a practical tool for rapid development, while recognising the limitations
for more advanced experimentation and nuanced model optimisation.

3.3.4. Transfer learning
Our dataset is relatively modest in size even with augmentation, but

in order to train machine learning models effectively requires extensive
datasets and prolonged computational training times. Transfer learning
e.g. Tan et al. (2018) offers a practical solution to this challenge by
utilising a pre-trained model – a model initially trained on a specific
task and dataset – and adapting it to a different, yet related, task or
dataset. This approach can take two forms:

• Direct Application: If the new task closely aligns with the original
training task, the pre-trained model may be used as-is, leveraging
its existing knowledge.

• Modification and Retraining: More commonly, the latter layers of
the network are modified and retrained, while the initial layer
weights are kept fixed. This tailors the model more closely to the
new task and data.

Such a method is advantageous as it significantly reduces the volume
of training data required and shortens the training time compared to
training a model from scratch. This efficiency stems from the model’s
ability to build upon the knowledge already acquired during its initial
training phase.

For further refinement, fine-tuning comes into play. This process
involves making minor adjustments to the model’s weights, already
pre-trained on a large dataset, to achieve a more precise adaptation to
the new task. Turi Create’s implementation of TinyYOLO executes this
process in a user-friendly manner. Initially, the model is pre-trained on
the standard ImageNet dataset (Fei-Fei et al., 2009), which comprises
over 1 million images of 224 × 224 resolution, spanning 1000 classes.
This foundational training equips the model with a broad understand-
ing of various visual features. Subsequently, it undergoes fine-tuning to
adapt to higher-resolution images, specifically to a resolution of 448.
This pre-trained model is further refined using our specialised Tanpopo
dataset to create YOLO-ET. Using a desktop AMRadeon Pro Vega 64X
16 GB GPU, training time takes 0.02, 0.17 and 0.37 s per iteration for
batch sizes of 1, 32 and 64 respectively. The runtime for prediction on
79 test images takes 1.14 s, demonstrating the efficient and practical
application of transfer learning and fine-tuning in customising models
for specific tasks in planetary and astronomical sciences, and opening
the door to tasks that could be readily implemented on-device in
laboratory and spacecraft environments.

4. Evaluation and results

Fig. 10 illustrates the model’s training loss over time. While it may
seem tempting to continue training until the loss approaches zero, it
is critical to halt the training process beforehand to avoid overfitting.
Overfitting occurs when a model becomes excessively attuned to the
training data, to the extent that it perfectly predicts the classes and
localisations. Such hyper-specific learning compromises the model’s
ability to generalise and perform accurately on new, unseen data.
Therefore, identifying the right moment to stop training is essential for

Fig. 10. YOLO-ET training loss of the network over time.

Fig. 11. Training example image depicting a fibre with the ground truth bounding box
in dashed blue and the prediction from the network in red. Units are pixel coördinates.

Fig. 12. Test data example depicting an aerogel fragment with ground truth bounding
box in dashed blue and the network predictions in red. The confidence score of the
detected object is also shown at 42% and 88%. Units are pixel coördinates.

maintaining the model’s effectiveness on diverse datasets. Evaluating
the model on the test set that the model has not encountered during
training, serves as a proxy for real-world, unseen data and provides a
more accurate measure of how well it will perform in the real world in
comparison to the training set (Fig. 11). Fig. 12 shows an example of
the model applied to test data. Note that the NMS/IOU thresholds have
failed at removing the duplicate detection, as both boxes are above the
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Fig. 13. Another output prediction of YOLO-ET applied to test image. The red
box shows the predicted bounding box, the annotated classification and confidence
probability at 72%. Units are pixel coördinates.

30% confidence level and the overlap of the boxes are less than 50%.
Fig. 13 shows another test data example with a single detection. Note
the variations in the hues, brightness and contrast of the images that
typically make such classifications challenging.

4.1. Evaluation metrics

To accurately assess the performance of our network, we utilise
a range of evaluation metrics, each chosen for its specific relevance
and effectiveness in addressing the unique aspects of our problem.
This diverse set of metrics ensures a comprehensive and nuanced
understanding of the network’s capabilities and weaknesses, allowing
for a more targeted and effective optimisation.

4.1.1. Precision and recall
Precision and recall are two fundamental measures used in machine

learning for evaluating the performance of classification models, espe-
cially in scenarios where the classes are imbalanced. Precision measures
the accuracy of the positive predictions made by the model. It is the
ratio of true positives (TP, correct detections) to the total predicted
positives (both true positives and false positives FP).

Precision = TP
TP + FP . (3)

High precision indicates a low false positive rate but does not consider
false negatives (FN, missed detections).

Recall measures the ability of the model to find all the relevant cases
within a dataset. It is defined as,

Recall = TP
TP + FN (4)

High recall indicates that the model is good at finding the positive
instances but does not indicate how many negative instances were
incorrectly labelled as positive.

The trade-off between precision and recall often depends on the spe-
cific requirements of the task. For example with the Tanpopo aerogel-
captured surface samples above, if minimising the mis-identification of
terrestrial debris particles as extraterrestrial in origin were paramount,
then a high precision would help avoid us making incorrect categorisa-
tions. On the other hand high recall is essential when the goal is to
ensure no potential extraterrestrial particle is missed. This might be
prioritised in space environment studies where noting every possible
particle is more critical than the occasional false identification. The
priority, for Tanpopo surface samples, much like in ML applications for
cell pathology, is not to miss anything.

Table 1
Confusion matrix based on the test data set.

Predicted

Positive Negative

Actual Positive 71 15
Negative 17 N/A

Fig. 14. Distribution of FPs and FNs over their classes.

In practice, ML modellers often look at both precision and recall
together, sometimes combining them into a single measure called the
F1 score, which is the harmonic mean of precision and recall:

F1 Score =
2(Precision × Recall)
Precision + Recall (5)

The F1 score provides a balance between precision and recall,
considering both false positives and false negatives.

4.1.2. Average precision
We note that the definition of a TP also depends on the IOU thresh-

old with respect to the ground truth box and confidence threshold.
Average Precision quantifies the model’s performance across different
levels of precision and recall, which are typically varied by adjusting
the threshold for classifying a detection as a true positive. It is calcu-
lated by plotting a Precision–Recall curve, which shows the trade-off
between precision and recall for different thresholds. The area under
this curve (AUC) represents the AP. Essentially, it is the average of
precision values at different recall levels and is specified at a particular
IOU threshold.

Mean Average Precision (mAP) is an extension of AP that is used
when there are multiple classes to be detected. mAP is the mean
of the APs calculated for each class individually. It is computed by
first calculating the AP for each class independently. Then these AP
values are averaged across all classes. This gives a single metric that
summarises the performance across all classes. This is particularly
important here where we need to detect multiple types of objects as
it gives a holistic view of the model’s performance across all these
different classes, making it a more comprehensive and balanced metric.

4.2. Results

The final loss of our network is 0.8605. YOLO-ET correctly detects
90% of the test data with over 50% overlap (IoU) with the ground
truth box. A summary of the results is shown in the confusion matrix
(Table 1). Of the False positives, 47% are incorrectly identified as
block, 35% as bar and only 1 each of fibre and sputter and aerogel
fragment. The FPs are less of a concern as the confidence levels of all
the detections are below 50% with the exception of the AG fragment
with a confidence of 88%. On inspection this detection is a duplicate
detection where 2 bounding boxes are picking up the same object
with high confidence. It is also notable that blocks tend to be detected
but mis-classified with 3 incorrectly classified as Fib and 2 incorrectly
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Table 2
Average precision 50 (IOU > 0.5) and mean average precision from the Turi Create
environment of the trained YOLO-ET applied to the train and test data from Tanpopo
Project aerogel panels. The prioritised classes are grouped morphologically as aerogel
fragments, bar, block, fibre and sputter, and likely represent surface residual effects
of material released by ISS docking and undocking activities, venting materials,
secondary impacts from primary impact ejecta, possible spacecraft component fibres,
and fragments of the aerogel itself.

Class AG fragment Bar Block Fibre Sputter mAP

Train 0.852 0.789 0.938 0.943 0.996 0.903
Test 0.629 0.726 0.698 0.819 0.992 0.773

classified as AG fragment. Fig. 14 shows the distribution of FPs and FNs
over their respective class labels. It is evident that the model performs
best on detecting and classifying sputter which has the least FNs
and FPs. From these values we compute the evaluation metrics, with
model attaining a precision, recall and F1 score of 81%, 83% and 82%
respectively. Additionally, the Turi Create environment provides tools
to easily compute the average precision and mean average precision of
the model. These are summarised in Table 2.

These results well surpass the targets set by the Tanpopo Astrobiol-
ogy Project team of a relatively modest 70% or better recall for surface
objects detected on the aerogel panels returned from the ISS, to help
ensure that objects of interest and/or entry points to greater depths in
the silica aerogel were not being missed. In practice human observers
of inanimate objects outperform most convolutional neural networks
unless fine-tuned, with overall accuracies of 90% (van Dyck et al.,
2021), and YOLO-ET shows performance at these human-comparable
levels. At least as notable however is the savings in human labour and
computing resource with the implementation of YOLO-ET, and its on-
device capabilities for ready real-time use in both laboratory and field
environments.

Our F-sample dataset is proprietary to the Tanpopo Project team and
currently no other published work exists for comparison, however, in
prior work, before the development and implementation of the YOLO-
ET system, a VGG-16 network was used but for object classification not
detection, and Tanpopo aerogel surface object images at 245x magnifi-
cation obtained by the CLOXS system were cropped from 704 × 480
pixels to 224 × 224 pixels and used to train a model with highest
possible recall.

On the cropped images for most of the surface object categories
the project goal of 70% or greater recall was met using the VGG-16
network: 93% for Blocks, 92% for Fibres, and 87% and 83% for Sputter
and Bars respectively. Recall performance on Aerogel Fragments was
poor however, at 29%. To improve performance a series of image pre-
processing tasks were conducted: first a Zero Count Analysis (ZCA)
whitening transform (Krizhevsky, 2009; Krizhevsky et al., 2012) was
employed to accommodate the different colour hues of the aerogel
panels, and next a thresholding sequence, where images were converted
to grey scale, noise-reduced, and pixels re-filled against various thresh-
olds, to help create more distinct object boundaries. Both ZCA and
thresholding techniques brought Sputter recall to 95%, but there was
a somewhat poorer recall performance with thresholding: in the 72%–
79% range for Fibres, Blocks and Bars, and still under 70% for Aerogel
Fragments, at 62%; ZCA for Aerogel Fragments achieved still only 33%
recall.

The low recall rate using the VGG-16 model even with intensive pre-
processing, for just one of the five Tanpopo surface object categories
necessitated continuing need for human inspection of all panels. The
YOLO-ET model and system was thus developed to achieve Tanpopo
project recall performance across all categories, without the need for
labour-intensive cropping and pre-processing techniques, implemented
on a faster network and model that could allow real-time automatic
capture on mobile devices. We compare the YOLO-ET model to the
performance of VGG-16 on unprocessed data (i.e. no thresholding/
ZCA) in Section 4.2 and Section 4.2. Turi Create does not natively

Fig. 15. Test image with multiple objects. True labels are shown as dashed blue boxes
and model predicted by model CV-3 shown in red with confidence scores.

support K-fold cross-validation (CV) as a built-in feature however, but
for purposes of direct comparison with the prior study, we manually
created the folds for 4-fold CV and calculate the average Precision and
Recall across all folds. In 4-fold CV, the dataset is divided into four
equal segments. We then construct and evaluate four distinct models,
each trained on a unique combination of three segments for training
purposes, thereby ensuring that every segment is utilised once as a
testing set. We note that this results in slightly less data available for
training the model (75% versus 80%), but the implementation of CV
allows us to check for robustness in the model which is important when
no validation dataset is available. With no adjustment to Intersection
over Union (bounding box overlap thresholds), YOLO-ET trained with
this slightly smaller dataset demonstrates comparable if not better per-
formance on Precision but slightly worse on Recall. We note however
the models are not directly comparable as the VGG-16 study was an
image classification task, where the objects were perfectly centred
and cropped down. Our model introduces the additional complexity
of object localisation, where images can contain more than 1 object
and are not necessarily centred (Fig. 15). The performance accuracy of
Image Classification-only models is generally higher than with Object
Detection (see e.g. Lin et al. (2018)). But our augmented training
dataset is more diverse and furthermore we note that the false negatives
in the image classification model VGG-16 are defined as the number of
objects incorrectly classified, whereas the false negatives in our model
are both the number of objects that are incorrectly classified and those
that are not detected. The balance between Precision and Recall is a
trade-off, and setting for example a lower confidence threshold and
IoU score would typically result in a higher Recall rate whilst reduc-
ing Precision. Despite the bigger challenges faced by object detection
compared to image classification, by dropping the IoU threshold to 0.3
and the confidence score threshold to 0, the performance of YOLO-ET
evaluated on Precision and Recall exceeds that of VGG-16 across all
folds (Fig. 16).

Jaeger et al. (2021) also offers useful a useful contrast between
Precision and Recall performance in Image Classification versus Object
Detection, a study which explores the automatic detection of impact
craters on aluminium foils utilising a Convolutional Neural Network
(CNN), for Image Classification purposes. Their approach simplifies
the problem to binary classification, focusing solely on distinguishing
circular craters. Despite this simplification, Jaeger et al. employ syn-
thetic data to train their model. This reliance on synthetically generated
craters facilitates their model in achieving an impressive precision
rate of 99.8%. However, it is crucial to note that the model’s Recall
rate stands at 66.7%. This discrepancy between high Precision and
relatively lower Recall underscores the challenges inherent in balancing
these metrics, particularly when training AI models on synthetic versus
authentic datasets.
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Fig. 16. Test image of an object with a low IoU threshold and confidence score of 25.1% that would not typically have made the threshold for positive detection. True labels are
shown as dashed blue boxes and model prediction shown in red with confidence score.

Class AG frag Bar Block Fibre Sputter
VGG-16 0.857 0.811 0.818 0.710 1.000
CV-0 0.929 0.938 1.000 0.944 1.000
CV-1 0.917 1.000 0.933 0.900 1.000
CV-2 1.000 1.000 1.000 1.000 1.000
CV-3 0.824 0.857 0.963 0.947 1.000
CV-avg 0.918 0.949 0.974 0.948 1.000
CV-std 0.063 0.059 0.028 0.035 0.000
Comparison of Precision using a VGG-16 image classification model
and our 4-fold cross-validation runs. CV-avg and CV-std are the
average and standard deviations of the cross-validation runs.

Class AG frag Bar Block Fibre Sputter
VGG-16 0.286 0.833 0.931 0.917 0.872
CV-0 0.812 1.000 1.000 0.850 1.000
CV-1 0.957 1.000 0.933 0.818 1.000
CV-2 0.875 0.500 1.000 0.833 1.000
CV-3 0.933 1.000 0.963 1.000 0.950
CV-avg 0.894 0.875 0.974 0.875 0.988
CV-std 0.056 0.217 0.028 0.072 0.02
Comparison of Recall using a VGG-16 image classification model
and our 4-fold cross-validation runs. CV-avg and CV-std are the
average and standard deviations of the cross-validation runs.

5. Deploying the model

Using the methods developed for this project, we have demonstrated
that applying AI Machine Learning to 2D aerogel images with YOLO-
ET, greatly speeds up and simplifies the identification, localisation,
and classification of Tanpopo aerogel-captured surface particles. These
advances have been demonstrated to speed the object detection training
process, improve accuracy, and consume fewer computing resources, all
while taking advantage of the in-built optics and compact form factor
of a mobile device. Our model requires no pre-processing of the data.
However to truly realise the potential of this model for space missions,
it is imperative to address the dependency on traditional microscopy.
While the CLOXS system represents significant capabilities in that it can
automatically relocate the coordinates of objects of interest and centre
the stages accordingly, the YOLO-ET system can now greatly augment
these capabilities by identifying, localising and classifying objects on
the first pass in real time. The YOLO-ET core Machine Learning models
can be readily translated to a mobile device, in this project as an
App, allowing the iPhone’s camera, enhanced by a LabCam® adaptor,
to act as the object detector for untrained, real-world images, with
the self-contained iPhone and App able to bound and classify new

Table 3
iPhone Pro Max 12 specs.

Camera iPhone Pro Max 12

Ultra Wide 12 MP f/2.4
Wide 12 MP f/1.6
Telephoto 12 MP f/2.2

images based on the core Machine Learning models developed. We
propose the integration of this model into a mobile application for
both laboratory and space environments, harnessing the capabilities of
widely accessible technology like smartphones. This integration marks
a significant step toward edge computing, where data processing is
performed at or near the source of data generation.

5.1. Adapting and integrating LabCam® to CLOXS

Adapting from the most recent developments in field research (e.g.
Ateaque, 2022; Meng et al., 2023), we selected the iPhone Pro Max
12 (Table 3) and the LabCam®,4 a user-friendly combination, for our
initial deployment (Fig. 17). The iPhone’s advanced camera system,
processing power and sophisticated autofocus technology make it an
ideal choice for capturing high-quality images of microparticles. This
autofocus feature is critical for our application, as it ensures that
images are sharp and highly detailed, facilitating accurate Object De-
tection without the need for manual focus adjustments. Moreover, the
convenience, portability and widespread availability of iPhones offer
practical advantages for replicating our methodology across diverse
settings, particularly fieldwork and applications in resource-constrained
environments. While alternatives such as small PCs and specialised AI
cameras exist, the iPhone’s integrated ecosystem and the availability
of sophisticated development tools in Turi Create make it an attractive
choice for implementing advanced AI-driven object detection tasks
directly on the device.

Meanwhile, the LabCam® attachment enhances the iPhone’s capa-
bility to function as a makeshift microscope. It is a portable microscope
that can be easily taken to the sample, rather than the other way
around. This makes it ideal for real-world and real-time in situ detection
of say micro-particle contaminants on the lunar surface. With the ability
to capture images with up to 100x magnification in integration with an
iPhone alone, the LabCam® provides an easy to use, ready system for
microparticle detection. These capabilities are now being translated to
real-time laboratory examination of aerogel panels, to identify, localise

4 https://www.ilabcam.com/.

https://www.ilabcam.com/
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Fig. 17. Adapting the LabCam® and iPhone Pro Max 12 into the ISAS CLOXS system. Left : Clean bench set up to start single-operator imaging and analysis. Note the LabCam®

mount, and 50 mm traverse motorised xy stage, 100 mm traverse stage and joystick controls. Centre: Hozon and LabCam® mounted with iPhone Pro Max 12 for calibration. Right:
Looking remotely ‘down the hole’ of the iPhone Pro Max 12 at a magnified block particle fragment in the aerogel.

and classify 3D tracks and hypervelocity impact particles candidates,
using mobile on-device Machine Learning models.

The combination of the iPhone Pro Max 12, LabCam® mount and
integrated magnification, coupled to the CLOXS system at ISAS allows
real-time processing to a GPU-equipped desktop running our YOLO-
ET algorithms and core Machine Learning model – a full surrogate
of what could be packed and space-hardened into in situ and in-
spaceflight missions. With additional optics added to the system with
LabCam®, the CoreML models developed and experiments described
in this study demonstrate both real-world laboratory identification and
classification of extraterrestrial microparticles and autonomous edge-
computing capabilities for future spacecraft missions to detect, localise
and classify them.

Thus a unique advantage of the methods employed in this study
is that the YOLO-ET imaging and Machine Learning processing and
classification is self-contained, with ‘on-board’ GPU processing whose
form factor and computing power can be readily incorporated into
small spacecraft. With these applications in mind, further experiments
were conducted on identifying and classifying granulated microscopic
spacecraft materials distributed atop lunar regolith simulants, as a
surrogate for in situ detection of anthropogenic contaminants on the
lunar surface. Finally, based on the newly returned ‘ground truth’ of
Scanning Electron Microprobe (SEM) images obtained from the asteroid
Ryugu sample returned by Hayabusa2, as a further demonstration
the model was trained and tested to establish potential correlations
with SEM images from the suite of micrometeorites obtained from the
TransAntarctic Mountains.

6. Discussion

6.1. Experiments with spacecraft microparticles on lunar simulants

An anticipated future use of the CLOXS imaging system as adapted
and coupled with YOLO-ET in this work is examination of Tanpopo-like
aerogel panels deployed and retrieved from the lunar surface. We are
developing a mission concept for aerogel panel deployment to the Moon
as early as the Artemis lunar landing missions, with important opportu-
nities to advance not only the core Tanpopo astrobiology objectives, but
to collect more information and contribute to studies on microparticle
anthropogenic contaminants, lunar regolith disturbances by human ac-
tivities on the Moon, the flux of interplanetary, 𝛽-meteoroids, possible
interstellar dust, and secondary impact ejecta (see e.g. Grün et al.,
2011; Pokornỳ et al., 2019; Szalay et al., 2020; Costello et al., 2021).

Fig. 18. Left: SDR board, Polyimide Arlon 85 with SAC 305 solder and copper layers,
with impregnation material. Right: Nightingale Antenna board, Rogers material with
copper and silver coating and STAMET radome.

Ultimately a ‘Mini-CLOXS’ could support both post-retrieval exam-
ination of aerogel panels returned from the lunar surface and other
missions to Earth laboratories, as well as in situ examination on lu-
nar and other planetary surfaces. A timely factor in bringing these
capabilities to the Moon is to help establish a baseline for forward
contamination caused by robotic and human activities there. A key
element of potential forward contamination are particles of spacecraft,
experimental packages, communications equipment etc. that may be
deposited and distributed around the Moon by (i) routine operations,
including outgassing of propellants and spacesuits, mechanical inter-
faces, vehicle track and wheel movements, etc.; (ii) natural material
degradations from micrometeoroid bombardment, day/night tempera-
ture cycles, interaction with the solar wind etc. and (iii) larger scale
de-orbited and hard-landed material.

With these in mind we aim to take the YOLO-ET algorithm de-
veloped and trained on surface particles captured on the Tanpopo
aerogels, and used the same Turi Create, iPhone, and LabCam® system
described above to test its capabilities for imaging and identifying
spacecraft remnants mixed into lunar regolith simulants.

Samples of both JSC-1 (Appendix A) and Manna Electric lunar
simulant (Appendix B) of 0.05 g each were prepared and evenly de-
posited into 2 cm diameter plastic vials. Test model portions of the
CesiumAstro Nightingale satellite (Fig. 18) whose compositions are
detailed in (Appendix C) were particulated with a band saw, producing
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Fig. 19. Samples of JSC-1 (Appendix A) lunar simulant of 0.05 g each were prepared and evenly deposited into 2 cm diameter plastic vials. Test model portions of the CesiumAstro
Nightingale satellite (Fig. 18) whose compositions are detailed in (Appendix C) were particulated with a band saw, producing spiralled fragments that were then sieved to 80 μm
to approximate average JSC-1 grain sizes, to set the challenge to distinguishing similar sized fragments amongst similar sized grains. From left to right: CesiumAstro ‘A’ particles
from the antenna board; A particles on JSC-1; ‘B’ particles from the Software Defined Radio board; B particles on JSC-1.

spiralled fragments that were then sieved to 80 μm to approximate
average JSC-1 grain sizes, to set the challenge to distinguishing sim-
ilar sized fragments amongst similar sized grains (Fig. 19). YOLO-ET
first trained on a limited data set of images of 80 μm diameter glass
beads, and then spacecraft grade Al, Ti, and CFRP in various lighting
conditions and magnifications, set atop the lunar simulant deposits.
Utilising the specially combined optics of a 4x Hozon lab microscope,
a 10xLabCam®, and an iPhone Pro Max 12 with 1x-12x magnification,
the overall range is 40x to 480x. Optimal experimental resolution for
early training and ground truth experiments in YOLO-ET are 100x; with
next-generation LabCam® and iPhone Pro Max 15, 225x magnification
can be anticipated using purely analogue optics, highly suitable for
spacecraft deployment.

At the optimum magnification of 100x, lighting conditions and
depth, for which an in situ Mini-CLOXS would be designed, early YOLO-
ET training and ground truth experiments have been demonstrated to
show ready identification of Nightingale antenna particles and Software
Defined Radio board microcircuitry particles (Fig. 20), and once opti-
mised the resulting model can be directly exported to CoreML format,
for streamlining integration into the on-device application.

6.2. Asteroid Ryugu sample experiments

As described above, the YOLO-ET convolutional network models
developed and trained on aerogel-captured anthropogenic contaminant
samples of the Tanpopo missions onboard the International Space
Station using a mobile device camera and new processing techniques
greatly speeds and automates their identification and classification.
This technique moves beyond datasets that have already been labori-
ously centred, focused, scaled, photographed, and classed by human
researchers, opening the door to automated transits by microscope
across the Tanpopo aerogel panels at approximately 500 × 500 pixel
increments, at different focal lengths, with images then fed directly
into YOLO-ET — which then uses its object detection/localisation
capabilities to automatically draw bounding boxes around the object or
objects of interest in each image, and to automatically run a confidence
prediction of which class of object it might be, displayed both on the
image and as a searchable table.

Several of the authors have participated in analyses of samples of
the asteroid Ryugu returned by the Hayabusa2 mission (Yada et al.,
2022), and the potential for important time-and-manpower gains with
YOLO-ET seems clear. Hundreds of nano-CT scans were conducted to
create segmented images whose cross-sections helped reveal micro-
scale voids of particular interest. Human-eye examination of void ev-
idence in cross-section allowed re-integration of the images to reveal
the voids in full dimension. This manual process of identifying and

classifying evidence of voids in cross-section is ripe for ML identifi-
cation, classification, and reintegration using the methods developed
in this project. Data from the Ryugu sample A0180 can now form a
robust training data set for applying YOLO-ET to other more porous
and aggregate samples from Ryugu. With time, the 3D optical images,
nano-CT data, and external and internal SEM images from A0180 and
other Ryugu samples can be archived to create further training data for
searching the diversity amongst different groups of Ryugu samples and
for practically comparing characteristic Ryugu micro-structures with
for example structures from unmelted micrometeorites, which to the
human eye seem to show strikingly similar characteristics and features
(Fig. 21).

Accordingly as a demonstration of these abilities YOLO-ET was
also trained on SEM images of the Ryugu asteroid sample A0180, to
establish ‘ground truth’ for characterising features of unmelted microm-
eteorites and unmelted portions of partially melted micrometeorites,
using images of the TransAntarctic Mountains micrometeorite suite
(Fig. 22). Unlike larger falls, micrometeorites are subject to less heating
and alteration as they pass through Earth’s atmosphere, and preserve
important elements of their formation history and composition. By
comparing them for the first time to the ancient base line features of
the indigenous asteroidal and cometary samples returned by spacecraft
such as Stardust, Hayabusa, Hayabusa2 and OSIRIS-REx, it is possible to
re-calibrate current assumptions about e.g. the proportional represen-
tation of CI chondrites amongst terrestrial meteorite collections. Many
of the characteristic features of each are notably subtle, and typically
require considerable training and experience for research practitioners
to deduce. In this work YOLO-ET demonstrates capabilities for learning
and establishing correlations amongst unseen micrometeoritic data sets.

Distinguishable structural elements amongst images of micromete-
orites with unmelted areas include: roughness and irregularities versus
the smoother, glassy appearance of melted portions; differences in
brightness reflecting compositional differences in backscattered elec-
tron images; micro-chondrules, mineral grains and inclusions indicative
of parent body origins, otherwise obliterated in melted regions; and
distinctive boundaries between melted and unmelted areas, with partial
rims characteristically forming around unmelted areas. Based on these
types of parameters we trialled, as a proof of concept, making selections
of areas of interest on the Ryugu A0180 images, using them to train and
predict on a selection of the suite of TransAntarctic Mountain unmelted
micrometeorites. Our YOLO-ET model, trained on a limited dataset of
212 examples (without optimisation), detects features in unseen test
data. While this showcases the model’s potential, the current mean
average precision (mAP) is only 10.1%, indicating significant room for
improvement.
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Fig. 20. Early applications of our machine learning model YOLO-ET demonstrated that they could be trained on known ‘B’ particles of CesiumAstro Nightingale Software Defined
Radio Board to automatically identify unseen ‘B’ particles atop JSC-1 Lunar simulant.

Fig. 21. Exploring potential correlations in major features of indigenous asteroid samples Ryugu A0180, left, with those of unmelted micrometeorite samples from the TransAntarctic
Mountain micrometeorites suite.
Image Credits: Genge et al. (2023) and Van Ginneken et al. (2012).

Fig. 22. Early applications of our machine learning model YOLO-ET show that training on a Ryugu sample automatically identifies similar features on unmelted TransAntarctic
micrometeorites.
Image Credits: Genge et al. (2023) and Van Ginneken et al. (2012).

6.3. Future work

Future space missions are expected to yield a much larger and
more heterogeneous quantity of microscopic materials than treated in
these experiments. These include new asteroid interceptions, planetary
expeditions, and most especially, robotic and human sample return
missions to the Moon, facilitated by unprecedented cargo return ca-
pacities. With the imminent rise of robotic and human activities on the

Moon, the importance of in situ microscopic examination capabilities to
distinguish these microparticles becomes increasingly important for (i)
identifying and quantifying the flux of anthropogenic contaminants and
lunar surface disturbances and (ii) for controlled experiments to better
understand the flux of exogenous (IDPs, 𝛽-meteoroids, possible inter-
stellar dust) and indigenous (secondary impact ejecta) microparticles,
with important implications for characterising the quantity of volatiles
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Fig. 23. Current and future work: Progressing YOLO-ET on mobile devices from Earth
receiving laboratories to in situ analyses on airless bodies.

held in micro-structures and their resource potential (see e.g. He et al.,
2023) for micro-structure potential.

In addition, researchers may also wish to investigate the possible
panspermia delivery of pre-biotic and biotic materials within our Solar
System (Napier, 2004). In the longer term, there is also the remoter
possibility of discovering trace artefacts of other technological civilisa-
tions from across the Galaxy, pushed by radiation pressure and stellar
winds (Arkhipov, 1996; Crawford, 2006). If such artefacts exist, they
are most likely to be revealed at the microscopic level, upon the mass
examination of many trillions of particles uncovered at the scale of
industrialised lunar and asteroid mining.

By moving from more conventional Machine Learning approaches
to the YOLO-ET model specifically developed here for the detection, lo-
calisation and classification of microparticles from and in the space en-
vironment, this work has opened the door to rely more on compressed
Machine Learning models, existing high-performance GPU code, and
commercially available software libraries; we are developing, training
and testing algorithms on systems and hardware that would readily
fit into a cubesat class spacecraft, lunar rover, or planetary sampling
missions (Fig. 23).

For future work inspecting silica aerogels for captured microparti-
cles, we are progressing to fully automated scans in real time in the
receiving laboratory clean room environment, and from 2D surface
scans to 3D inspection of hypervelocity impact candidates. Similarly,
the work on 2D slice SEM images of the Ryugu samples correlated to
images of micrometeorites and other asteroid return samples is planned
to be extended to 3D images. Moving from Ryugu to Bennu samples
may be a natural next step (Goldwin, 2023).

This on-device, mini-CLOXS capability can then be made fully
portable and ruggedised to perform scans in situ on airless bodies,
obviating the need, risks, time and costs for sample return to Earth
and better complementing Earth-based studies (Fig. 24).

These capabilities can also be extended from direct observation of
micrometeorite particles on Earth to direct observation of microparti-
cles on other planetary surfaces, without aerogel panel capture. Simi-
larly moving from 2D to 3D scans, these devices can serve as compan-
ions for Earth-based space microparticle curators and assist in a more
complete and integrated cataloguing from both newly collected samples
and the extended prior literature. Ultimately, we aim to help create an
astronaut-portable, 3D real-time scanning capability for microparticle
detection, localisation and classification to assist automated microscopy
on the Moon and other airless bodies.

Many of the particles of interest that might be distinguished on the
surface of the Moon and other airless bodies, whether from cislunar

Fig. 24. Ispace lunar lander rendering. Startups like ispace are contracting for payloads
that could accommodate a mini-CLOXS.
Credit: Ispace.

space operations, asteroid and comet fragment intersections, or possible
interstellar dust, may arrive at hypervelocity impact speeds. Thus in
future work we plan to have materials similar to those used in the
YOLO-ET experiments distinguishing microparticles on lunar regolith
simulants, fired at hyper-velocities into monocrystalline target materi-
als, to better scale and model characteristic microcrater morphologies
as well as their patterns of vaporisation and spallation. It is envisaged
that these tools and techniques can practically be packaged for use on
board future mineral assay and mining devices deployed on the Moon
and asteroids, to help identify micrometeoroids and other microscopic
particles of interest in the surface regoliths.

Finally when contemplating spacecraft-borne YOLO-ET mobile de-
vice systems extended to both fly-bys and orbital missions it could
be useful to adapt the image detection, localisation and classification
processes from the microscopic-particle to the macro scale. Real-time
detection of features of interest on the Moon and asteroids to assist
selection and navigation of surface sample operations, or to monitor
and catalogue spacecraft debris and artefacts, could be amongst the
next useful implementations. Thus the scope of future work also in-
cludes YOLO-ET analyses of Lunar Reconnaissance Orbiter images for
detection and classification of spacecraft hardware on the Moon (Haase
et al., 2012; Lesnikowski et al., 2020).

7. Conclusions

In this work, we have adapted Turi Create’s Object Detection ca-
pabilities to identify and classify features in images of extraterrestrial
microparticle impacts, microstructures, and anthropogenic debris.

1. Training on images from Tanpopo aerogel panels returned from
Japan’s Kibo module of the International Space Station, YOLO-
ET demonstrates a 90% detection rate for all types of anthro-
pogenic contaminants on aerogel surfaces and shows promising
early results for detection of both microparticle contaminants on
the Moon and for evaluating asteroid return samples.

2. YOLO-ET significantly improves on earlier ML processes in time
savings, performance, and more efficient use of computing re-
sources, and thereby can bring value to Tanpopo CLOXS machine
processing by requiring fewer resources to more quickly and
accurately identify samples of interest within the aerogel panels
for extraction, while reducing contamination risk by more ac-
curately and precisely selecting only those samples of interest,
and allowing for the timeliest distribution of extracted samples
to analysis groups around the world.

3. Preliminary tests of YOLO-ET’s application to identifying
spacecraft-derived microparticles in lunar regolith simulant sam-
ples and SEM images of Ryugu asteroid samples indicate strong
model performance and transfer learning capabilities for future
extraterrestrial applications.
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Our research provides insights into the practical challenges and
solutions associated with applying AI in planetary science, especially
in environments where data characteristics differ markedly from those
used to train general-purpose Image Classification models. We detail
our methodology for dataset preparation, model training, and valida-
tion, offering a blueprint for other scientists looking to apply AI in
specialised research areas. Our hope is that this work will inspire fur-
ther research that leverages the power of AI to tackle domain-specific
challenges.
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Appendix A. JSC-1 Lunar simulant components

JSC-1 Specifications https://ares.jsc.nasa.gov/projects/simulants/
jsc-1-1a.html

Appendix B. Components analyses maana electric Mare and high-
lands Lunar simulants

Lunar Mare Simulant Specifications https://maanaelectric.com/sp
ace_solutions/simulant_mare/Lunar Highland Simulant Specifications
https://maanaelectric.com/space_solutions/simulant_highland/

Appendix C. CesiumAstro spacecraft materials ground and sieved
to 80 𝛍m

• SDR-1001 – the credit card-sized board with black solder mask

– CesisumAstro’s Gen1 Software-Defined Radio (SDR) product
for LEO and airborne applications with 100 MHz IBW,
operating from 300 MHz to 6 GHz

– The board construction:

∗ 16-layer PCB constructed of Arlon 85N (polyimide)
and copper layers

∗ Prepreg layers are 85N with 106, 1080, and 2313 glass
weaves

∗ Plating is ENIG (gold over electroless nickel)
∗ Solder mask is Taiyo PSR-4000 MP Black

– Solder applied to pads is SAC305

• SAPA-1 – the board with four patches covered in reflective film

– S-band Antenna Patch Array for LEO applications operating
in the 2.45 GHz region

– The board construction:

∗ 6-layer PCB constructed of Rogers 4350B and copper
layers

∗ Prepreg layers are RO4450F
∗ Plating is ENIG (gold over electroless nickel; latest

revision of the antenna is in ImAg immersion silver
finish)

∗ Solder mask is Taiyo PSR-4000 MP

– The thin film radome on the front face of the antenna is
Stamet-sputtered Kapton (Dunmore MO20295)
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