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The Python functions distributed with this article can be used for calculating the parameters of multichannel 
quantum defect theory models describing excited bound states of complex atoms. These parameters are obtained 
by fitting a model to experimental data provided by the user. The two main formulations of the theory are 
supported, namely the one in which the parameters of the model are a set of eigen channel quantum defects 
and a transformation matrix, and the one where these parameters are the elements of a reactance matrix. 
The distribution includes programs for calculating theoretical energy levels, calculating mixing coefficients and 
channel fractions and producing Lu-Fano plots.

Program summary

Program Title: mqdtfit

CPC Library link to program files: https://doi .org /10 .17632 /nzgygzd96c .1
Developer’s repository link: https://github .com /durham -qlm /mqdtfit

Licensing provisions: BSD 3-clause.

Programming language: Python 3.

Nature of problem: Multichannel quantum defect theory aims at giving a unified description of the excited 
states of multielectron systems whereby the properties of entire series can be predicted from models involving 
a relatively small number of parameters. These parameters are obtained by fitting theory to experimental data, 
in the empirical version of the theory. The present programs specifically concern the application of this theory 
to the bound states of complex atomic systems, such as divalent atoms, for which spectroscopic series are often 
perturbed by isolated states of a different symmetry, making a multichannel description necessary.

Solution method: The functions forming this library are grouped and linked to each other into a single Python 
module. They can be used to calculate the parameters of a given multichannel quantum defect theory model 
by fitting the model to experimental data provided by the user. These parameters are either a set of eigen 
channel quantum defects and a transformation matrix, in the eigenchannel parametrization of the theory, or the 
elements of an orthogonal matrix, in the reactance matrix parametrization of the theory. Given these parameters, 
this software can also be used to calculate theoretical energy levels, calculate coefficients describing the mixing 
between the channels considered and produce Lu-Fano plots.
1. Introduction

Multichannel quantum defect theory (MQDT) aims at giving a uni-

fied description of the excited states of multielectron systems composed 
of a single outer electron and a more compact electronic core. This the-

ory makes it possible to understand the properties of entire series of 

✩ The review of this paper was arranged by Prof. W.A. de Jong.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

states from models involving a relatively small number of parameters. 
These parameters are obtained by fitting theory to experiment in the 
empirical approach we are concerned with, but they may also be calcu-

lated from first principles [1].

MQDT has a long history, starting in the early days of Quantum 
Mechanics [2]. This early work has been considerably extended to mul-
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tichannel cases, initially by Seaton in the 1960s [2,3], and later on by a 
number of other authors. Fano, in particular, pointed out the relevance 
of the “eigenchannel” formulation of the theory in a seminal study of 
the spectrum of molecular hydrogen published in 1970 [4]. This study 
and a contemporary analysis of atomic spectra by Lu and Fano [5] were 
followed shortly afterwards by further pioneering work, notably by Lu 
[6], and Lee and Lu [7]. Apart from more recent extensions, such as 
the inclusion of various observables other than bound state energies 
[8], the general approach to obtaining empirical parameters of MQDT 
models of complex atoms has changed little over the years — see, e.g., 
Refs. [9–12] for recent examples. Work in that area has often been based 
on the eigenchannel formulation of MQDT rather on Seaton’s original 
formulation in terms of a 𝐾 (or reactance) matrix. However, the latter 
is also in use [10,11,13–17]. The calculation yields theoretical energies 
and mixing coefficients (the 𝑍𝑖 coefficients defined below), which in 
turn can be used for calculating spontaneous lifetimes and dispersion 
coefficients — e.g., [10,11,14–16,18].

To the author’s knowledge, only one open source, documented, pub-

licly available computer program for empirical MQDT calculations has 
been published so far, despite the wide relevance of this approach [19]. 
While general in scope, this program does not cover the 𝐾 -matrix for-

mulation of the theory. Moreover, the language in which it is written, 
Fortran 77, may make it impractical to present-day users. The present 
publication aims at filling this gap.

Specifically, its purpose is to offer easy-to-use functions for the con-

struction of empirical multichannel quantum defect models of complex 
atoms. In its present state of development, the code is restricted to mod-

els in which all channels are closed, i.e., to bound states. It provides 
the possibility of fitting the model parameters to a set of experimental 
data, whether these parameters are expressed in terms of eigen channel 
quantum defects and a transformation matrix or in terms of a reac-

tance matrix. The module also includes functions calculating energy 
levels and mixing coefficients and functions plotting channel fractions 
or Lu-Fano plots, given a set of model parameters. The programming 
is kept straightforward so as to facilitate customisation and future ex-

tensions. Revised versions of the code and new related material will be 
made available from the URL https://github .com /durham -qlm /mqdtfit

(a GitHub repository of the Quantum, Light and Matter research group 
of Durham University).

The principles of empirical MQDT and the applications of this 
approach have been reviewed in a number of authoritative articles 
[1,2,8,20,21], however, without any being sufficiently comprehensive 
and succinct for serving as a convenient reference for the programs de-

scribed in this document. These details are reviewed in Section 2, for 
completeness and clarity. Practical advice about fitting MQDT models 
to experimental spectra can be found, e.g., in Refs. [6,7,19,22]. The nu-

merical methods used in this implementation of MQDT theory and other 
specific details are outlined in Section 3. Further information about the 
use of this module can be found in Section 4. A more detailed user man-

ual is joined with the distribution, as are example programs and their 
output. The latter are briefly described in Section 5.

2. Multichannel quantum defect theory of bound systems

Multichannel quantum defect theory concerns systems in which sev-

eral different configurations of the core need to be considered, hence 
different configurations of the (core - outer electron) system. Each of 
these configurations is referred to as a channel. We are primarily in-

terested by the dissociation channels, which are characterised by the 
angular momentum of the outer electron and by the state the core 
would be in if this electron was infinitely far away from it (dissocia-

tion channels are also called scattering channels). We will assume that 
we need to consider 𝑁ch such channels and denote by ℑ𝑖 the ionisa-

tion limit of channel 𝑖 (𝑖 = 1, … , 𝑁ch): in a state of energy 𝔈, channel 
2

𝑖 is open or closed according to whether 𝔈 > ℑ𝑖 or 𝔈 <ℑ𝑖. We reserve 
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the symbols 𝐸 and 𝐼𝑖 for the corresponding energies expressed as wave 
numbers:

𝐸 ≡𝔈∕ℎ𝑐, 𝐼𝑖 ≡ℑ𝑖∕ℎ𝑐, (1)

where ℎ is Planck’s constant.

The programs described here specifically address the case where all 
dissociation channels are closed. The theory is based on two ansätze, 
namely

Ψ(𝑋,𝑟) =
∑
𝑖

𝐶𝑖𝜒𝑖(𝑋)𝜙𝑖(𝑟) (2)

and

Ψ(𝑋,𝑟) =
∑
𝛼

𝐴𝛼

[
𝛼(𝑋,𝑟) cos(𝜋𝜇𝛼) − 𝛼(𝑋,𝑟) sin(𝜋𝜇𝛼)

]
, (3)

where 𝑟 denotes the radial coordinate of the outer electron, 𝑋 repre-

sents all the other relevant coordinates and  is the antisymmetrization 
operator. These two equations both express the wave function of an en-

ergy eigenstate of interest as an antisymmetrized linear combination of 
product wave functions; however, they do so in different ways: Eq. (2)

expresses the wave function directly in terms of the individual dissoci-

ation channels, whereas Eq. (3) expresses it in terms of configurations 
better suited to describing the inner region where all the electrons are 
close to each other and to the nucleus. This other form of the wave 
function appears naturally in calculations based on the diagonalisa-

tion of the (core + outer electron) Hamiltonian in this region. The 
𝛼-configurations are usually referred to as the eigenchannels and the 
constants 𝜇𝛼 as the corresponding eigen quantum defects.

In Eq. (2), the 𝐶𝑖’s are constant coefficients describing the admixture 
of the different dissociation channels in the state Ψ, and, as implied by 
the notation, the 𝜙𝑖 ’s are functions depending only on the radial coor-

dinate of the outer electron while the 𝜒𝑖’s are functions of the angular 
coordinates of the outer electron, of the coordinates of the other elec-

trons and of the spin of all the electrons. Making the approximation 
that the outer electron moves in a Coulomb field when outside the core 
leads to the following equation, in the case of a neutral atom:[
− ℏ2

2𝜇

(
𝑑2

𝑑𝑟2
−

𝑙𝑖(𝑙𝑖 + 1)
𝑟2

)
− 𝑒2

4𝜋𝜖0𝑟

]
𝑢𝑖(𝑟) = 𝜖𝑖𝑢𝑖(𝑟), (4)

where 𝑢𝑖(𝑟) = 𝑟𝜙𝑖(𝑟), 𝜇 is the reduced mass, 𝑒 is the charge of the elec-

tron and 𝜖𝑖 is an energy measured relative to ℑ𝑖. For a state of energy 
𝔈,

𝜖𝑖 =𝔈−ℑ𝑖 = (𝐸 − 𝐼𝑖)ℎ𝑐. (5)

The general solution of Eq. (4) can be expressed in terms of a linear 
combination of regular and irregular Coulomb functions,1 𝑓 (𝜖, 𝑙; 𝑟) and 
𝑔(𝜖, 𝑙; 𝑟). We can thus write

𝑢𝑖(𝑟) = 𝑓 (𝜖𝑖, 𝑙𝑖; 𝑟) cos𝜋𝜈𝑖 + 𝑔(𝜖𝑖, 𝑙𝑖; 𝑟) sin𝜋𝜈𝑖, (6)

where 𝜈𝑖 is a constant.

In Eq. (3), on the other hand, the 𝐴𝛼 ’s are constant coefficients 
whereas the 𝛼 ’s and 𝛼 ’s are functions of the coordinates and spin of 
all the electrons: the 𝛼 ’s are assumed to reduce to linear combinations 
of the functions 𝜒𝑖(𝑋) 𝑓 (𝜖𝑖, 𝑙𝑖; 𝑟)∕𝑟 and the 𝛼 ’s to linear combinations 
of the functions 𝜒𝑖(𝑋) 𝑔(𝜖𝑖, 𝑙𝑖; 𝑟)∕𝑟 when the outer electron is far from

the core. Specifically, we assume that, for sufficiently large values of 𝑟,

1 We take these functions to be the 𝑓 and 𝑔 functions defined, e.g., in 
Refs. [4], [23] and [24], not the 𝑓 and 𝑔 functions defined by Seaton [2,3]. 
In the definition adopted here, these functions are identical to the functions de-

noted 𝔣 and 𝔤 by Lee and Lu [7] and by Dehmer and Fano [25]. They are almost 
identical to Seaton’s functions 𝑠 and 𝑐 [2,3], which are normalised differently: √ √

𝑓 ≡ 2𝑠 and 𝑔 ≡ − 2𝑐.

https://github.com/durham-qlm/mqdtfit
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𝛼(𝑋,𝑟) =
∑
𝑖

𝑈𝑖𝛼 𝜒𝑖(𝑋)𝑓 (𝜖𝑖, 𝑙𝑖; 𝑟)∕𝑟, (7)

𝛼(𝑋,𝑟) =
∑
𝑖

𝑈𝑖𝛼 𝜒𝑖(𝑋), 𝑔(𝜖𝑖, 𝑙𝑖; 𝑟)∕𝑟, (8)

where the coefficients 𝑈𝑖𝛼 are real and do not depend on electron coor-

dinates.

The values of 𝜈𝑖, 𝐶𝑖, 𝜇𝛼 and 𝐴𝛼 for which these two ansätze yield 
physically admissible bound state wave functions are restricted by three 
requirements, namely (1) that 𝜙𝑖(𝑟) goes to 0 for 𝑟 →∞; (2) that Eqs. (2)

and (3) apply not only to the bound states of interest but also to the 
states with energy above the lowest ionisation threshold, for which 
some or all the dissociation channels are open; and (3) that∑
𝑖

𝐶𝑖𝜒𝑖(𝑋)𝜙𝑖(𝑟) ≡
∑
𝛼

𝐴𝛼

[
𝛼(𝑋,𝑟) cos(𝜋𝜇𝛼) − 𝛼(𝑋,𝑟) sin(𝜋𝜇𝛼)

]
(9)

when 𝑟 is sufficiently large.

The first of these requirements implies that the 𝜈𝑖’s are necessarily 
related to the 𝜖𝑖 ’s by the equation [2]

𝜖𝑖 = − 𝜇𝑒4

(4𝜋𝜖0)2ℏ2
1
2𝜈2

𝑖

, 𝑖 = 1,… ,𝑁ch. (10)

(By analogy with the case of atomic hydrogen, the 𝜈𝑖 ’s are often re-

ferred to as effective principal quantum numbers.) In terms of energies 
expressed as wave numbers,

𝐸 − 𝐼𝑖 = −𝑅̃∕𝜈2
𝑖
, 𝑖 = 1,… ,𝑁ch, (11)

where 𝑅̃ is the mass-corrected Rydberg constant for the species consid-

ered.

The second requirement implies, as an indirect consequence of the 
unitarity of the scattering matrix, that the square matrix [𝑈𝑖𝛼] of ele-

ments 𝑈𝑖𝛼 is orthogonal — see, e.g., Refs. [2], [6] or [21].

The last requirement has several consequences, as is explained in 
Appendix A. One finds, in particular, that the coefficients 𝐶𝑖 and 𝐴𝛼

satisfy the following systems of equations:∑
𝑖

𝑈𝑖𝛼 sin[𝜋(𝜈𝑖 + 𝜇𝛼)]𝐶𝑖 = 0, 𝛼 = 1,… ,𝑁ch, (12)

∑
𝛼

𝑈𝑖𝛼 sin[𝜋(𝜈𝑖 + 𝜇𝛼)]𝐴𝛼 = 0, 𝑖 = 1,… ,𝑁ch. (13)

Moreover,

𝐴𝛼 =
∑
𝑖

𝑈𝑖𝛼 cos[𝜋(𝜈𝑖 + 𝜇𝛼)]𝐶𝑖, 𝛼 = 1,… ,𝑁ch (14)

and

𝐶𝑖 =
∑
𝛼

𝑈𝑖𝛼 cos[𝜋(𝜈𝑖 + 𝜇𝛼)]𝐴𝛼, 𝑖 = 1,… ,𝑁ch. (15)

It is necessary, for Eqs. (12) and (13) to have non-trivial solutions, that

det |𝑈𝑖𝛼 sin[𝜋(𝜈𝑖 + 𝜇𝛼)]| = 0. (16)

Given a [𝑈𝑖𝛼] matrix and a set of eigen quantum defects 𝜇𝛼 , this last 
equation determines the 𝜈𝑖 ’s, thus the bound state energies.

Alternatively (see Appendix A), the coefficients 𝐶𝑖 can also be ob-

tained by solving a related system of linear equations, namely∑
𝑗

[
𝐾𝑖𝑗 + 𝛿𝑖𝑗 tan(𝜋𝜈𝑖)

]
𝑐𝑗 = 0, 𝑖 = 1,… ,𝑁ch, (17)

where the 𝐾𝑖𝑗 coefficients are defined by the matrix equation

[𝐾𝑖𝑗 ] = [𝑈𝑖𝛼][𝛿𝛼𝛼′ tan(𝜋𝜇𝛼)][𝑈𝑗𝛼′ ]† (18)

and the 𝑐𝑗 ’s are related to the 𝐶𝑗 ’s by the equation
3

𝐶𝑗 = 𝑐𝑗∕cos(𝜋𝜈𝑗 ). (19)
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The system (17) admits a non-trivial solution under the condition that

det |𝐾𝑖𝑗 + 𝛿𝑖𝑗 tan(𝜋𝜈𝑖)| = 0. (20)

This last equation replaces the condition (16) determining the possi-

ble values of the 𝜈𝑖 ’s, in this alternative formulation. The bound states 
energies are then parametrized by the matrix [𝐾𝑖𝑗 ] rather than by the 
matrix [𝑈𝑖𝛼] and the eigen quantum defects 𝜇𝛼 . The two formulations 
are equivalent as long as Eq. (18) holds. By analogy with similar equa-

tions appearing in scattering theory, the matrix [𝐾𝑖𝑗] is often called the 
reactance (or reaction) matrix. As can be seen from Eq. (18), this matrix 
is symmetric (𝐾𝑖𝑗 = 𝐾𝑗𝑖), its eigenvalues are tan(𝜋𝜇𝛼), 𝛼 = 1, … , 𝑁ch, 
and its eigenvectors are the corresponding columns of the [𝑈𝑖𝛼] matrix.

The ionization thresholds 𝐼𝑖, the [𝐾𝑖𝑗 ] matrix, the [𝑈𝑖𝛼] matrix and 
the eigen quantum defects can, in principle, be calculated from first 
principles. However, in the empirical approach we follow here, the 𝐼𝑖’s 
are derived directly from measurements and the other parameters are 
obtained by fitting the theoretical energies to spectroscopic data, as-

suming that these quantities vary slowly with 𝐸. Either the 𝐾𝑖𝑗 ’s or the 
𝑈𝑖𝛼 ’s and 𝜇𝛼 ’s are directly obtained by fitting, giving two alternative 
formulations of empirical MQDT.

It can be noted that the functions 𝑢𝑖(𝑟) of Eq. (6) are proportional to 
exponentially decreasing Whittaker functions when Eq. (10) is fulfilled. 
Namely, for such values of 𝜈𝑖 [2],

𝑢𝑖(𝑟) = (−1)𝑙𝑖+1𝜈3∕2
𝑖

𝐷(𝜈𝑖, 𝑙𝑖)𝑊𝜈𝑖,𝑙𝑖+1∕2(2𝑟∕𝜈𝑖) (21)

with 𝐷(𝜈𝑖, 𝑙𝑖) = [𝜈2
𝑖
Γ(𝜈𝑖 + 𝑙𝑖 + 1)Γ(𝜈𝑖 − 𝑙𝑖)]−1∕2. Following Seaton [2,3], 

Eq. (2) is usually recast in terms of these functions, as

Ψ=
∑
𝑖

𝑍𝑖𝜒𝑖 𝐷(𝜈𝑖, 𝑙𝑖)𝑊𝜈𝑖,𝑙𝑖+1∕2(2𝑟∕𝜈𝑖)∕𝑟, (22)

where

𝑍𝑖 = (−1)𝑙𝑖+1𝜈3∕2
𝑖

𝐶𝑖 = (−1)𝑙𝑖+1𝜈3∕2
𝑖

∑
𝛼

𝑈𝑖𝛼 cos[𝜋(𝜈𝑖 + 𝜇𝛼)]𝐴𝛼. (23)

The 𝐶𝑖 ’s and 𝐴𝛼 ’s, and thus the 𝑍𝑖 ’s, are defined only to within an 
overall constant factor by Eqs. (12), (13) and (17). The value of this 
factor is constrained by the normalisation of the wave function, Ψ(𝑋, 𝑟): 
its value must be such that the 𝑍𝑖 ’s satisfy the condition [2]∑
𝑖,𝑗

𝑍𝑖𝑀𝑖𝑗𝑍𝑗 = 1, (24)

where2

𝑀𝑖𝑗 = 𝛿𝑖𝑗 +
1
2

𝜇𝑒4

(4𝜋𝜖0)2ℏ2 𝑞𝑖

(d𝐾𝑖𝑗

d𝔈

)
𝑞𝑗

= 𝛿𝑖𝑗 + 𝑅̃ 𝑞𝑖

(d𝐾𝑖𝑗

d𝐸

)
𝑞𝑗 (25)

with

𝑞𝑖 = (−1)𝑙𝑖
(

2
𝜋𝜈3

𝑖

)1∕2

cos(𝜋𝜈𝑖). (26)

The mixing coefficients 𝑍𝑖 and the channel fractions |𝑍𝑖|2 quantify the 
importance of each dissociation channel in the states of interest. The en-

ergy dependence of 𝐾 is often neglected in the normalisation condition, 
in which case the channel fractions sum to unity:∑
𝑖

|𝑍𝑖|2 = 1. (27)

It is often preferable to use different angular momentum coupling 
schemes for the dissociation channels than for the eigenchannels, as the 

2 Note that the energy  appearing in Eq. (6.50) of Ref. [2] is the “Z-scaled 

energy”,  = 2𝔈∕𝑍2 where 𝑍 = 1 for a neutral atom.
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latter refer to a region where the outer electron interacts more strongly 
with the core than in the former. Transforming the mixing coefficients 
from the coupling scheme used for the dissociation channels to one bet-

ter adapted to the eigenchannels can be done by way of an orthogonal 
transformation matrix, [𝑈𝑖𝛼̄], where the index 𝛼̄ (𝛼̄ = 1, … , 𝑁ch) labels 
the channels in the transformed coupling scheme:

𝑍𝛼̄ =
∑
𝑖

𝑈𝑖𝛼̄𝑍𝑖. (28)

In the case of complex atoms, for example, LS-coupling is often better 
suited for describing the eigenchannels, since all the electrons inter-

act strongly in the inner region, whereas jj-coupling is often better 
suited for describing the dissociation channels, since the outer electron 
is nearly free when far from the core. The recoupling matrix can be 
written in terms of Wigner 9-j symbols in this case [7]:

𝑈𝑖𝛼̄ =
√
(2𝑗𝑐𝑖 + 1)(2𝑗𝑒𝑖 + 1)(2𝐿𝛼̄ + 1)(2𝑆𝛼̄ + 1)

⎧⎪⎨⎪⎩
𝑙𝑐𝑖 𝑠𝑐𝑖 𝑗𝑐𝑖
𝑙𝑒𝑖 𝑠𝑒𝑖 𝑗𝑒𝑖
𝐿𝛼̄ 𝑆𝛼̄ 𝐽𝛼̄

⎫⎪⎬⎪⎭ , (29)

where 𝑙𝑐𝑖, 𝑠𝑐𝑖 and 𝑗𝑐𝑖 are the quantum numbers of the core in channel 𝑖, 
𝑙𝑒𝑖, 𝑠𝑒𝑖 and 𝑗𝑒𝑖 the quantum numbers of the outer electron in channel 𝑖, 
and 𝐿𝛼̄ , 𝑆𝛼̄ and 𝐽𝛼̄ the quantum numbers of the LS-coupled system.

The matrix [𝑈𝑖𝛼] is usually written in the form of a product of the 
transformation matrix [𝑈𝑖𝛼̄] and another orthogonal matrix, [𝑉𝛼̄𝛼], the 
latter being itself factorised into a product of 𝑁rot rotation matrices 
[𝑅𝛼̄𝛼(𝑚)]:

[𝑈𝑖𝛼] = [𝑈𝑖𝛼̄][𝑉𝛼̄𝛼] = [𝑈𝑖𝛼̄][𝑅𝛼̄𝛼(1)] [𝑅𝛼̄𝛼(2)]⋯ [𝑅𝛼̄𝛼(𝑁rot )]. (30)

The rotation matrices [𝑅𝛼̄𝛼(𝑚)] are defined as follows: each 𝑚 corre-

sponds to an angle 𝜃𝑚 and to a pair of indices, 𝑝𝑚 and 𝑞𝑚, and

𝑅𝛼̄𝛼(𝑚) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cos𝜃𝑚 if 𝛼̄ = 𝛼 = 𝑝𝑚,

−sin𝜃𝑚 if 𝛼̄ = 𝑝𝑚 and 𝛼 = 𝑞𝑚,

sin𝜃𝑚 if 𝛼̄ = 𝑞𝑚 and 𝛼 = 𝑝𝑚,

cos𝜃𝑚 if 𝛼̄ = 𝛼 = 𝑞𝑚,

1 if 𝛼̄ = 𝛼 ≠ 𝑝𝑚, 𝑞𝑚,

0 for any other values of 𝛼̄ and 𝛼.

(31)

Since [𝑉𝛼̄𝛼] is an 𝑁ch ×𝑁ch orthogonal matrix, at most 𝑁ch(𝑁ch − 1)∕2
rotations are necessary for factorizing [𝑉𝛼̄𝛼] in that way. The angles 𝜃𝑚

are taken to be fitting parameters in empirical MQDT calculations car-

ried out along these lines, together with the eigen quantum defects 𝜇𝛼 . 
In practice, fewer than 𝑁ch(𝑁ch −1)∕2 are usually necessary for achiev-

ing a suitable fit. The factorisation therefore has the double advantage 
of making it possible to reduce the number of fitting parameters and of 
ensuring that the resulting [𝑈𝑖𝛼] matrix is orthogonal.

3. Methods

3.1. Energy dependence of the MQDT parameters

The elements of the [𝐾𝑖𝑗 ] matrix as well as those of the [𝑉𝛼̄𝛼] matrix 
and the eigen quantum defects 𝜇𝛼 are, in principle, energy-dependent. 
However, it is found that this dependence is usually slow and does not 
need to be described to a high level of accuracy in order to obtain bound 
states energies in satisfactory agreement with experiment.

Standard practice in calculations based on the eigenchannel version 
of the theory is to take [𝑉𝛼̄𝛼] to be constant in energy and assume 
a linear dependence on 𝐸 for the eigen quantum defects. Following 
previous work in that area — see, e.g., Refs. [19] and [26] — two alter-

native parametrisations are implemented in the present programs: each 
energy-dependent 𝜇𝛼 is written in terms of two constants, 𝜇(0)

𝛼 and 𝜇(1)
𝛼 , 
4

and either
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𝜇𝛼 = 𝜇(0)
𝛼

+ 𝜇(1)
𝛼

(𝐼𝑠 −𝐸)
𝐼𝑠

, (32)

where 𝐼𝑠 is the first ionisation threshold, or

𝜇𝛼 = 𝜇(0)
𝛼

+ 𝜇(1)
𝛼

(𝐼𝑠 −𝐸)
𝑅̃

. (33)

Neglecting the dependence on 𝐸 of the matrix [𝑉𝛼̄𝛼] makes it possible 
to reduce Eqs. (24) and (25) to the simpler form [7]∑
𝑖

𝑍2
𝑖
+ 2𝑅̃

∑
𝛼

(
d𝜇𝛼

d𝐸

)
𝐴2

𝛼
= 1. (34)

The calculations based on the 𝐾 -matrix version of the theory follow 
Ref. [14], in that this matrix is allowed to vary with energy through 
a linear dependence of its diagonal elements, its off-diagonal elements 
being taken to be constant. As for the eigenchannel formulation, two 
alternative parametrisations of this dependence are implemented in this 
module, one in which the diagonal elements are written as

𝐾𝑖𝑖 =𝐾
(0)
𝑖𝑖

+𝐾
(1)
𝑖𝑖

(𝐼𝑠 −𝐸)
𝐼𝑠

, (35)

and one in which they are written as

𝐾𝑖𝑖 =𝐾
(0)
𝑖𝑖

+𝐾
(1)
𝑖𝑖

(𝐼𝑠 −𝐸)
𝑅̃

, (36)

the coefficients 𝐾 (0)
𝑖𝑗

and 𝐾 (1)
𝑖𝑗

being constant. The off-diagonal elements 
of the 𝐾 -matrix are assumed to be constant:

𝐾𝑖𝑗 ≡𝐾
(0)
𝑖𝑗

, 𝑖 ≠ 𝑗. (37)

3.2. Calculation of theoretical energies

The energies are determined by the condition that Eqs. (11) and 
either Eq. (16) or Eq. (20) are satisfied simultaneously, for a given 𝐾 -

matrix or for given eigen quantum defects and rotation angles. One 
of the channels, channel 𝑗, is given a special role in the calculation. 
Typically, channel 𝑗 would be chosen amongst those dominating the 
series of interest; however, this choice is largely immaterial. In view of 
Eqs. (11), a given value of 𝜈𝑗 corresponds to a value of 𝜈𝑖 for the 𝑖-th 
channel given by the equation

𝜈𝑖 = 𝐹𝑖(𝑗; 𝜈𝑗 ), (38)

where

𝐹𝑖(𝑗; 𝜈𝑗 ) =

[
𝐼𝑖 − 𝐼𝑗

𝑅̃
+ 1

𝜈2
𝑗

]−1∕2

. (39)

The bound state energies are found by identifying the values of 𝜈𝑗 for 
which Eq. (16) or Eq. (20) is satisfied when all the other 𝜈𝑖’s are calcu-

lated as per Eq. (38). The program offers the possibility of finding these 
values through a direct search of the roots of the relevant determinant 
or through a more indirect method outlined below.

For efficiency, the direct search is confined to the vicinity of values 
of 𝜈𝑗 corresponding to experimental energies: given a set of experimen-

tal energies 𝐸 exp
𝑛 , the program searches for a root of the determinant in 

each of the intervals

𝜈
exp
𝑗,𝑛

− 𝛿𝜈(−)
𝑛

≤ 𝜈𝑗 ≤ 𝜈
exp
𝑗,𝑛

+ 𝛿𝜈(+)
𝑛

,

where

𝜈
exp
𝑗,𝑛

= [(𝐼𝑗 −𝐸
exp
𝑛 )∕𝑅̃]−1∕2. (40)

Two different schemes are possible for this: the 𝛿𝜈(+)𝑛 ’s and 𝛿𝜈(−)𝑛 ’s can 
be chosen to be multiples of a single user-defined 𝛿𝜈 or to vary from 

energy to energy.
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For each 𝐸𝑛, in the first scheme, the program explores a sequence 
of search intervals Δ𝑛(0), Δ𝑛(−1), Δ𝑛(1), Δ𝑛(−2), Δ𝑛(2), etc., until one 
is found to contain a root of the determinant. Here

Δ𝑛(𝑝) = [𝜈exp
𝑗,𝑛

− 𝛿𝜈 + 𝑝𝛿𝜈 , 𝜈
exp
𝑗,𝑛

+ 𝛿𝜈 + 𝑝𝛿𝜈], 𝑝 = 0,±1,±2,… (41)

Δ𝑛(𝑝) is deemed not to bracket a root if the sign of the determinant is 
the same at 𝜈exp

𝑗,𝑛
− 𝛿𝜈 + 𝑝 𝛿𝜈 as at 𝜈exp

𝑗,𝑛
+ 𝛿𝜈 + 𝑝 𝛿𝜈. Once a bracketing 

interval is found, a root is narrowed down by the Brent’s method based

brentq function of the scipy.optimize library.

The other scheme determines the 𝛿𝜈
(+)
𝑛 ’s and 𝛿𝜈(−)𝑛 ’s from the dis-

tance between the different experimental energies. Assuming that these 
energies are ordered by increasing values, 𝛿𝜈(+)𝑛 and 𝛿𝜈(−)𝑛 are taken 
such that

𝛿𝜈(+)
𝑛

= 𝛼

(
𝜈
exp
𝑗,𝑛+1 − 𝜈

exp
𝑗,𝑛

)
, 𝛿𝜈(−)

𝑛
= 𝛼

(
𝜈
exp
𝑗,𝑛

− 𝜈
exp
𝑗,𝑛−1

)
, (42)

where 𝛼 is a user-defined numerical factor. These intervals do not vary 
in the course of the calculation, and, as above, the brentq function is 
used to locate the roots of the determinant.

As an alternative on a direct search for the roots of the relevant 
determinant, the program also implements the method described in 
Ref. [14], in which the problem is reformulated in terms of a search 
for the minima of a function. Two channels play a special role in this 
method, channel 𝑗 as above, and channel 𝑘, which must have a dif-

ferent ionisation limit than channel 𝑗 but whose choice is otherwise 
arbitrary. Given a value of 𝜈𝑗 and the corresponding values of 𝜈𝑖 for the 
channels for which 𝐼𝑖 ≠ 𝐼𝑘, those 𝜈𝑖 ’s being obtained from Eq. (38), the 
left-hand side of Eq. (20) is a polynomial of degree 𝑁𝑘 in tan(𝜋𝜈𝑘), 
where 𝑁𝑘 is the number of dissociation channels converging to the 
same ionisation limit as channel 𝑘 (𝑁𝑘 = 1 if channel 𝑘 is the only 
channel with that ionisation limit). Calculating the roots of this polyno-

mial yields 𝑁𝑘 different 𝜈𝑗 -dependent values of 𝜈𝑘 in the interval [0, 1), 
i.e., 𝐺𝑘;1(𝜈𝑗 ), 𝐺𝑘;2(𝜈𝑗 ), . . . , 𝐺𝑘;𝑁𝑘

(𝜈𝑗 ).3 One of these values must coin-

cide with 𝐹𝑘(𝜈𝑘) mod1 at those values of 𝜈𝑗 corresponding to a bound 
state energy. Solving Eq. (20) thus amounts to searching for the zeros 
of the functions 𝐺𝑘;𝑠(𝜈𝑗 ) − 𝐹𝑘(𝜈𝑗 ) mod1, 𝑠 = 1, … , 𝑁𝑘. It has been no-

ticed [15] that this problem is best tackled by searching for the minima 
of the function Ξ2(𝜈𝑗 ), where

Ξ2(𝜈𝑗 ) ≡min [𝐺𝑘;𝑠(𝜈𝑗 ) − 𝐹𝑘(𝜈𝑗 ) mod1]2, 𝑠 = 1,… ,𝑁𝑘. (43)

The calculation is programmed accordingly, using the implementa-

tion of the Brent’s minimisation method offered by the function min-
imize_scalar of the scipy.optimize library. The search intervals 
are as described above, with the difference that their bounds are meant 
to bracket a minimum of Ξ2(𝜈𝑗 ) rather than bracket a root of the rele-

vant determinant. As mentioned in the previous paragraph, calculating 
the 𝐺𝑘;𝑠(𝜈𝑗 )’s involves representing det |𝐾𝑖𝑗 + 𝛿𝑖𝑗 tan(𝜋𝜈𝑖)| as a polyno-

mial of order 𝑁𝑘 in tan(𝜋𝜈𝑘). The (𝑁𝑘 + 1) coefficients of this polyno-

mial are obtained by calculating the determinant at (𝑁𝑘 + 1) different 
values of 𝜈𝑘 [19] and using the polyfit function of the polyno-
mial.polynomial module of the numpy library to fit a polynomial of 
order 𝑁𝑘 to these values. The function polyroots of this module is 
then used to calculate the roots of that polynomial. The required ele-

ments of the 𝐾 -matrix are obtained from the eigen quantum defects and 
the rotation angles, as indicated by Eqs. (18) and (30), in calculations 
based on the eigenchannel formalism.

3.3. Optimization of the MQDT parameters

The MQDT parameters (𝐾 -matrix elements, or eigen quantum de-

fects and rotation angles) can be optimized by 𝜒2-fitting to a set of 

3 Due to the periodicity of the tangent function, the system is also satisfied 
for 𝜈𝑘 = 𝐺𝑘;𝑠(𝜈𝑗 ) ± 1, 𝐺𝑘;𝑠(𝜈𝑗 ) ± 2, etc. However, these other solutions are not 
5

relevant for our purposes.
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experimental energies. These parameters are divided into fitting param-

eters, whose values are variable, and static parameters, whose values 
(normally 0) remain constant. Given a set of experimental energies 
𝐸

exp
𝑛 and associated experimental errors 𝛼exp𝑛 , the program calculates 

the corresponding theoretical energies 𝐸 th
𝑛

as described in Section 3.2

and varies the fitting parameters so as to minimise the value of 𝜒2, 
where

𝜒2 =
∑
𝑛

[(𝐸 exp
𝑛 −𝐸 th

𝑛
)∕𝛼exp𝑛 ]2. (44)

A Nelder-Mead downhill simplex algorithm is used to this effect, 
through the function fmin of the scipy.optimize library. The user 
must provide starting values of the relevant MQDT parameters.

In calculations based on the eigenchannel formulation of the theory, 
the 𝜇(0)

𝛼 ’s and the 𝜃𝑚 ’s are always assumed to be variable fitting param-

eters, whereas each of the 𝜇(1)
𝛼 ’s can be taken to be a static parameter 

(set to a given invariable values) or a variable fitting parameter, to the 
choice of the user. In calculations based on the 𝐾 -matrix formulation of 
the theory, each of the 𝐾 (0)

𝑖𝑗
’s and of the 𝐾 (1)

𝑖𝑖
’s can be defined as being 

static or variable.

3.4. Lu-Fano plots

The program includes a function producing Lu-Fano plots [5], i.e., 
here, plots of 𝜈𝑘 mod1 vs. 𝜈𝑗 , where 𝜈𝑗 and 𝜈𝑘 are the same effective 
principal quantum numbers as in Section 3.2. The experimental data are 
indicated by markers located at the points of co-ordinates (𝜈exp

𝑗,𝑛
, 𝜈exp

𝑘,𝑛
), 

where the 𝜈exp
𝑗,𝑛

’s are defined by Eq. (40) and the 𝜈exp
𝑘,𝑛

’s by the equation

𝜈
exp
𝑘,𝑛

= [(𝐼𝑘 −𝐸
exp
𝑛 )∕𝑅̃]−1∕2. (45)

Theory curves are also plotted, showing how 𝜈𝑘 varies as a function of 
𝜈𝑗 when 𝜈𝑘 is taken equal to 𝐺𝑘;𝑠(𝜈𝑗 ), 𝑠 = 1, … , 𝑁𝑘. These 𝑁𝑘 curves 
pass through the data points when the MQDT model describes the ex-

perimental energies well.

4. General information about the module

4.1. Installation and general comments

The programs forming this library implement the theory and meth-

ods outlined in Section 2 of this document in a generally straightforward 
way. These programs are entirely written in Python 3 and are grouped 
in a single file, forming a single module. This module can be made 
available to other programs by an import statement. Specifically, the 
functions provided by this module can be used (1) to calculate theoreti-

cal energies, mixing coefficients and channel fractions given the details 
of an MQDT model and a set of experimental energies; (2) to optimize 
the parameters of an MQDT model; (3) to evaluate the 𝜒2 statistics 
characterizing the goodness of fit of an MQDT model to a set of experi-

mental energies; and (4) to draw Lu-Fano plots.

The module currently contains 40 functions, amongst which 14 are 
intended to interface with a driving program provided by the user. A 
technical description of the input parameters of each of these functions 
and of the results they return can be found at the start of the respective 
code. A brief description of each of the user-facing functions is given 
in a user manual provided with the distribution. Examples of driving 
programs are also provided and are briefly described in Section 5.

4.2. Using the module

Any use of the module must start by a call to either one of two 
initialisation functions, initialize_eigenchannel or initial-
ize_Kmatrix, respectively for calculations in the eigenchannel for-

mulation of the theory and for calculations formulated in terms of a 
𝐾 -matrix. Calculations in one formulation cannot be mixed with cal-
culations in the other. Various details of the MQDT model are passed 
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to the module through this initialisation call, as well as a list of experi-

mental energies and experimental errors, indices identifying the 𝑗 and 𝑘
channels, and variables controlling either how the theoretical energies 
are calculated or how the energy dependence of the MQDT parameters 
is taken into account.

Initialisation must be followed by a call to search_intervals, 
to set the mesh used in calculations of energies. A list of MQDT pa-

rameters must also be passed to the program, i.e., either the 𝜇(0)
𝑖

’s, 
𝜇
(1)
𝑖

’s and 𝜃𝑚 ’s for eigenchannel calculations, which are passed through

mqdtparams_eigenchannel, or the 𝐾 (0)
𝑖𝑗

’s and 𝐾 (1)
𝑖𝑖

’s for 𝐾 -matrix 
calculations, which are passed through mqdtparams_Kmatrx.

The module provides are a number of possibilities after this initiali-

sation stage:

• call the function optimizeparams, which optimises the parame-

ters of the model;

• call the function print_energies, which calculates and writes 
out theoretical energies;

• call the function list_Zcoeffsandchannelfractions, which 
calculates and writes out the mixing coefficients and channel frac-

tions;

• call the function print_chi2, which calculates and writes out the 
𝜒2 and reduced 𝜒2 values characterising the goodness of fit of the 
model;

• call the function LuFano_plot, which draws a Lu-Fano plot;

• call the function plot_channelfractions, which calculates 
and plots channel fractions.

For convenience, the module also contains the following non-computa-

tional user-facing functions:

• reset_calculation_method, which can be used for changing 
the calculation method after the initialization stage;

• print_channelparams, which writes out the channel parame-

ters passed to the module;

• print_mqdtparams, which writes out the MQDT parameters ob-

tained by or passed to the program.

More information about these functions can be found in the user manual 
joined with this distribution.

The following details should be noted:

1. The experimental energies, experimental errors, ionisation limits 
and calculated energies are generally passed to or from the module 
in terms of the corresponding wave numbers expressed in cm−1.

2. The channels are labelled in numerical order, starting at 1 as it is 
customary in the field. Python arrays containing the correspond-

ing information must be dimensioned accordingly. For example, 
the array Ilim containing the ionisation limits of a 2-channel 
model needs to be created as containing at least three elements, 
e.g., through the statement Ilim = numpy.empty(3), so that

Ilim[1] can be set to 𝐼1 and Ilim[2] to 𝐼2 (Ilim[0] is not 
used).

3. The MQDT parameters are passed between many of the functions 
of this module as a single 1D array rather than as whole matrices or 
separate arrays of eigen quantum defects and rotation angles. The 
way in which these parameters are arranged in this 1D array is not 
important for routine use of this library.

5. Examples

Two example programs are included in this distribution, namely one 
illustrating the use of the module for calculating energies and produc-

ing Lu-Fano plots in the eigenchannel formulation of MQDT, and one 
6

illustrating its use for optimizing the parameters of a 𝐾 -matrix based 
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model and calculating the resulting energies, mixing coefficients and 
channel fractions.

The first program (file ytterbium.py) concerns the 6snd 1D2 and 
6snd 3D2 series of 174Yb. It uses the same model and the same exper-

imental energies and experimental errors as in Tables V and VIII of 
Ref. [9] and reproduces the theoretical energies and Lu-Fano plot of 
Table V and Fig. 4(a) of that reference. The data are read from the file

ytterbiumD2data.dat, also included in this distribution. A copy of 
the output can be found in the files ytterbium_output.txt and Lu-
Fanoplot.pdf.

The other program (file strontium.py) concerns the 5snp 1P1 se-

ries of 88Sr [17]. A copy of the output is also joined with the distribu-

tion, namely the files strontium_output.txt and channelfrac-
tions.pdf.
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Appendix A. About the 𝑪𝒊 and 𝑨𝜶 coefficients

The relations between the 𝐶𝑖 and 𝐴𝛼 coefficients stated in Section 2

are derived in this appendix. The discussion follows Ref. [13].

We start with Eqs. (7), (8) and (9). Identifying the terms in 𝑓 (𝜖𝑖, 𝑙𝑖, 𝑟)
and those in 𝑔(𝜖𝑖, 𝑙𝑖, 𝑟) in this last equation yields, respectively,

𝐶𝑖 cos(𝜋𝜈𝑖) =
∑
𝛼

𝑈𝑖𝛼 cos(𝜋𝜇𝛼)𝐴𝛼 (A.1)

and

𝐶𝑖 sin(𝜋𝜈𝑖) = −
∑
𝛼

𝑈𝑖𝛼 sin(𝜋𝜇𝛼)𝐴𝛼. (A.2)

Multiplying Eq. (A.2) by −𝑖, adding the result to Eq. (A.1) and rearrang-

ing gives

𝐶𝑖 =
∑
𝛼

𝑈𝑖𝛼 exp[𝑖𝜋(𝜈𝑖 + 𝜇𝛼)]𝐴𝛼. (A.3)

Using the orthogonality of the matrix [𝑈𝑖𝛼], one can also deduce, from 
this last equation, that

𝐴𝛼 =
∑
𝑖

𝑈𝑖𝛼 exp[−𝑖𝜋(𝜈𝑖 + 𝜇𝛼)]𝐶𝑖. (A.4)

We choose the wave function Ψ(𝑋, 𝑟) to be real, which is not restrictive 
and implies that the coefficients 𝐴𝛼 and 𝐶𝑖 have a zero imaginary part. 

As the 𝑈𝑖𝛼 ’s are also real, Eqs. (15) and (13) then follow from taking 
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the real and imaginary parts of Eq. (A.3), and Eqs. (14) and (12) follow 
from taking the real and imaginary parts of Eq. (A.4).

Eq. (17) follows from re-writing Eq. (12) in the form∑
𝑗

𝑈𝑗𝛼 cos(𝜋𝜇𝛼)[tan(𝜋𝜈𝑗 ) + tan(𝜋𝜇𝛼)] cos(𝜋𝜈𝑗 )𝐶𝑗 = 0, 𝛼 = 1,… ,𝑁ch,

(A.5)

dividing each equation by cos(𝜋𝜇𝛼), multiplying it on the right by 𝑈𝑖𝛼 , 
and summing over 𝛼. Doing so indeed yields∑
𝑗,𝛼

𝑈𝑗𝛼 tan(𝜋𝜈𝑗 ) + tan(𝜋𝜇𝛼)]𝑈𝑖𝛼𝑐𝑗 = 0 (A.6)

with 𝑐𝑗 = cos(𝜋𝜈𝑗 ) 𝐶𝑗 . Eq. (17) follows since∑
𝛼

𝑈𝑗𝛼 tan(𝜋𝜇𝛼)𝑈𝑖𝛼 =
∑
𝛼

𝑈𝑖𝛼 tan(𝜋𝜇𝛼)𝑈𝑗𝛼 =𝐾𝑖𝑗 (A.7)

by definition of the [𝐾𝑖𝑗 ] matrix, and∑
𝛼

𝑈𝑗𝛼𝑈𝑖𝛼 = 𝛿𝑖𝑗 (A.8)

owing to the orthogonality of [𝑈𝑖𝛼].
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