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Abstract

An administrator is provided with data collected by several practitioners. These data may include in-
conclusive observations. The administrator is required to form a frequency distribution on the states of
nature that would be approved by external auditors as long as it is compatible with the available infor-
mation. We state a novel result on the compatibility of a probability with a finite set of capacities. We
use this result to provide necessary and sufficient conditions for the compatibility of the administrator’s
frequency distribution with the data collected by the practitioners, according to two auditing criteria.
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1 Introduction

Consider the problem confronting a health authority that must make a recommendation on
the composition of viruses in the influenza vaccine. The recommendation is based on the health
authority’s forecast regarding those viruses that are most likely to spread in the upcoming sea-
son. In an attempt to diagnose these viruses, health centers in different regions collect data
on patients. Since vaccines are known to vary in their effectiveness across seasons1 the health
authority wishes to be able to justify its recommendation. Naturally, the health authority is able
to justify its recommendation if it is supported by the data collected by the health centers.

More generally, managers, both in the civil and in the private sectors, often must operate
under conditions of uncertainty. Therefore, it is essential that they be able to prove that the
probability underlying their decisions is based on all available information from all possible
sources.

To study this problem, we consider an administrator who forms a probability over the pos-
sible states of nature. In addition, a group of practitioners collect relevant information on the
matter under consideration and transfer their raw data to the administrator. If the probability
formed by the administrator is supported by the information obtained from each of the practi-
tioners, she should be able to establish that it is well-founded.

*A previous version was titled “Aggregating Non-Additive Beliefs”. We thank two anonymous referees and
an anonymous Advisory Editor for comments that improved this paper considerably.

1The seasonal influenza vaccine is designed to protect against the three or four influenza viruses that are most
likely to spread and cause illness during the upcoming flu season. Twice a year, in February for the northern
hemisphere vaccine and in September for the southern hemisphere vaccine, the World Health Organization pro-
vides recommendations on the composition of the influenza vaccine. More than 100 national influenza centers
in over 100 countries conduct year-round surveillance of influenza that involves receiving and testing thousands
of influenza virus samples from patients and reporting their results to the World Health Organization. See, for
example, Osterholm et al. (2012) for an account of the effectiveness of these vaccines.
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Suppose that the practitioners’ information is given in the form of raw data sets containing
evidence about the states of nature that may have occurred. In some observations the state of
nature that was realized may be known, while in others the outcome may be ambiguous. Cases
in which a physician can perfectly diagnose a patient’s condition correspond to evidence of
a single virus, whereas partially diagnosed cases indicate that an unknown virus, one out of
several possibilities, is the cause. An observation is considered inconclusive if the practitioner
cannot attribute it to a single state of nature, but only to a subset of states of nature, namely,
events.

A raw data set induces a characteristic function that assigns to each event the frequency
of observations for which this exact event is known to have occurred. For example, event
{ω1,ω2} is assigned a number corresponding to the patients with an inconclusive diagnosis –
the practitioner is only able to narrow the set of possible viruses down to ω1 and ω2, but cannot
determine which was actually present.

A processed data set induces a different characteristic function that assigns to each event
the total number of observations for which a subset of states included in this event is known to
have occurred. That is, event {ω1,ω2} is assigned a number corresponding to the number of
patients with either a conclusive diagnosis {ω1} or a conclusive diagnosis {ω2} or an incon-
clusive diagnosis {ω1,ω2}.

A justification of the administrator for her chosen probability distribution will depend on
the type of auditor she needs to convince. The first type of auditor bases its approval on the
raw data set while the second type bases its approval on the processed data set. Any frequency
that does not belong to the core of the corresponding (raw or processed data sets) cooperative
game, must assign to some collection of states a frequency which is too low given the infor-
mation included in the data set. That is, this frequency is not a possible realization in view of
the available data. However, a frequency in the core is a possible realization of the distribution
of outcomes that is consistent with these data. If the data set (raw or processed) includes no
inconclusive evidence, there will be a single frequency in the core. If the data set (raw or pro-
cessed) contains inconclusive evidence, then, there will be several frequencies in the core, each
of which resolves the ambiguity differently.

When there are multiple practitioners, the administrator is able to argue that her probabil-
ity is well-founded if the associated frequency can be decomposed into frequencies in the cores
of the corresponding data set-based cooperative games. Verifying whether the administrator’s
probability meets this requirement is relatively simple when the induced cooperative games
are all convex as in the case of the processed data set auditors (see Lemma 1). Proposition 2
provides a necessary and sufficient condition for the existence of such a decomposition of the
administrator’s probability for the raw data set auditors. This condition can be interpreted as
testing the consistency of the administrator’s frequency against every weighted combination of
events of the raw data.

The processed data set auditors can be viewed as more sophisticated than the raw data
set auditors, approving only those frequency distributions that are consistent with every aspect
of the available data. A comparison between the characterization of probability distributions
compatible with processed and raw data sets reveals a fundamental distinction in the functions
assigned to their corresponding auditors. Processed data set auditors bear the setup cost of
processing the data and subsequently can determine whether the administrator’s frequency dis-
tribution should be accepted by verifying a finite set of conditions. In contrast, raw data set
auditors do not incur any setup costs, but their scope is limited to rejecting a proposed fre-
quency distribution. This limitation arises from the fact that verifying the compatibility of the
probability distribution with the raw data set requires an infinite number of examinations. Since
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raw data set auditors can only perform a finite number of checks they are restricted to rejecting
proposed frequency distributions, much like statistical tests that can only refute the null hy-
pothesis, but cannot accept it. In Appendix B we show that when a property termed Uniform
Optimal Decomposition across Practitioners is fulfilled, the number of required examinations
becomes finite and, therefore, raw data set auditors can accept probability distributions.

Jaffray (1991), Gonzales and Jaffray (1998) and Arad and Gayer (2012) have already
pointed out that imprecise statistical data generate ambiguity that is incorporated in beliefs. In
our setting, a practitioner’s characteristic function, after applying the appropriate transforma-
tion, becomes a special case of non-additive probabilities, also known as capacities. Capacities
allow individuals to express the perceived ambiguity in the problem at hand.2 Lehrer (2009) in-
troduced the concept of the concave integral as a method in which ambiguity-averse individuals
can evaluate alternatives in conditions of uncertainty based on hard facts only (the events that
are known to have occurred). Here, in order to justify her probability, the administrator needs
to establish that it is supported by the non-additive probabilities of the practitioners insofar as
it is a weighted average of probabilities in the cores of their capacities.

Our general result (Proposition 1) states that given a set of capacities on the same set
of states of nature (each with a non-empty core), a prior probability can be represented as a
weighted average of probabilities in the cores of these capacities if and only if for any positive
random variable Y , the weighted average of the expected value of Y according to the concave
integral across capacities is bounded from above by the expected value of Y with respect to the
prior probability. The weights, which are fixed, can represent the experience, quality, political
power, or influence incorporated into the capacities. Proposition 2, which has already been
mentioned above, is a special case wherein practitioners’ information is given in the form of
data sets and the weights are proportional to the number of observations in the practitioners’
data sets.

This method of aggregating probabilities using a weighted average is known in statistics as
the linear opinion pool (Stone (1961)). The literature on decision-making under conditions of
uncertainty provides an axiomatic foundation for the linear opinion pool. Gajdos and Vergnaud
(2013), Crès et al. (2011) and Basili and Chateauneuf (2020) characterize the preference of a
decision-maker who consults with experts to form a belief over an uncertain environment. The
experts’ beliefs are assumed to be non-additive (represented by capacities or sets of probabili-
ties), reflecting their perception of ambiguity in the problem under consideration. The proposed
decision rules give rise to a belief that is a weighted average of experts’ beliefs (which may con-
tain either multiple probabilities as in Gajdos and Vergnaud (2013) and Crès et al. (2011) or a
single probability as in Basili and Chateauneuf (2020)). While this literature aims at convinc-
ing decision makers to adopt beliefs that are weighted average of the practitioners’ beliefs, we
are interested in decision makers that formed their beliefs independently and provide a test that
examines whether their beliefs satisfy this property.

Dempster and Shafer’s theory of evidence (Dempster (1967, 1968), Shafer (1976)) is an
alternative approach to the linear opinion rule for merging beliefs derived from different sources
of evidence, known as Dempster’s rule of combination. However, for the rule to yield mean-
ingful results, it is essential that the evidence from separate sources does not exhibit signifi-
cant contradictions.3 Consequently, Dempster’s rule appears to be more suitable for situations
where evidence is collected for specific problems that naturally do not involve conflicting in-

2See Schmeidler (1989) for a characterization of a decision maker with non-additive beliefs.
3In fact, in the extreme case of complete conflict, Dempster’s rule is not applicable at all.
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formation,4 in contrast to statistical data. This distinction sets it apart from our framework,
which deals with data sets comprising distinct records that have the potential to contradict one
another.

In Section 2 we present the setting for the data sets and the auditors and prepare the ground
for our main result. In Section 3 we introduce the necessary and sufficient condition for the
aggregation of capacities evaluated according to the concave integral (Proposition 1). In Sec-
tion 4 we use Proposition 1 to provide necessary and sufficient conditions for the compatibility
of the administrator’s frequency distribution with the data collected by the practitioners, ac-
cording to two auditing criteria. We discuss the characteristics of each approach and suggest a
compromise. Section 5 concludes. All proofs are relegated to the appendix.

2 Aggregating Data Sets

A Single Data Set

Let Ω = {ω1, ...,ωn} be a finite set of states of nature (n ⩾ 2). A data set is a sequence of T
observations, indexed by i ∈ {1, ...,T}, denoted by D = (B1, ...,BT ) where Bi ∈ 2Ω\{∅,Ω}.5

The event Bi represents the set of all states that may have occurred in observation i. Event
Bi is a singleton when it is clear which state of nature occurred in observation i. However,
observations are assigned to non-singleton events when it is not clear which specific state of
nature within that event has occurred. Following the example of health centers, in certain cases
it may be known that a patient was infected with a type C virus (ruling out other types), but it
is unknown which sub-type infected the patient.

A characteristic function is v : 2Ω → R such that v( /0) = 0.6 We denote the cooperative
game induced by the characteristic function v by G = (Ω,v).

We assume that data sets are cross-sectional (i.e. the order of observations does not affect
the inference) and therefore we can describe the raw data set with T observations in a charac-
teristic function form. Let V : 2Ω → N be a function such that (i) For every event B ⊂ Ω, V (B)
is the number of occurrences of B in raw data set D and (ii) V (Ω) = T . A raw data set in a
characteristic function form is the cooperative game GV = (Ω;V ).

Processing the raw data yields a function U : 2Ω → N such that (i) For every event B ⊂ Ω,
U(B) = ∑b⊆BV (b) is the number of occurrences of B and its subsets (b ⊆ B) in raw data set D
and (ii) U(Ω) = T . A processed data set in a characteristic function form is the cooperative
game GU = (Ω;U).

The mass function in Dempster and Shafer’s theory of evidence (Dempster (1967, 1968),
Shafer (1976)), also known as a basic probability assignment, is closely related to our raw data
set. It represents the degree of belief or support for each hypothesis based on the observed evi-
dence. Our processed data set which is derived from processing the raw data set, is associated
with Dempster and Shafer’s belief function.7

4To illustrate, Shafer’s leading example throughout his book (Shafer, 1976) revolves around Sherlock Holmes
gathering various pieces of evidence related to a single crime.

5Excluding B = ∅ implies that an event that is known to have occurred cannot be empty. Excluding B = Ω

implies that we ignore cases that add no information.
6When it is more convenient, we slightly abuse notation by treating v as a vector of length 2n.
7Technically, the raw data values need to be normalized such that their sum equals 1 to qualify as a valid mass

function. Furthermore, for the processed data to be regarded as a belief function, the mass assigned to the entire
state space in the raw data set must be zero.
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The Administrator

Allowing for inconclusive evidence introduces ambiguity into the decision problem faced
by the administrator. Choosing the composition of viruses in the influenza vaccine requires
an exact assessment of the frequencies of the various types of viruses in the population. The
administrator resolves the ambiguity generated by the inconclusive evidence by forming a fre-
quency distribution of the T observations, that is, a vector X ∈ Rn

+ where Xi is the frequency of
ωi such that ∑

n
i=1 Xi = T .8 The goal of the administrator is to get the approval of the auditors

to the use of this vector of frequencies.

The Auditors

We distinguish between two types of auditors. The first type of auditors verifies that, for
every event B, the sum of frequencies assigned by the administrator to the states included in B
is greater than or equal to the number of occurrences of the exact event B, namely, that for every
non empty B ⊂ Ω, ∑i∈B Xi ≥V (B). That is, these auditors approve X if and only if X ∈C(GV )
where C(G) denotes the core of the cooperative game G = (Ω;V ). We refer to these auditors
as raw data set auditors.

The second type of auditors verifies that, for every event B, the sum of frequencies assigned
by the administrator to the states included in B is greater than or equal to the total number of
occurrences of events that are subsets of B. These auditors, which we refer to as processed data
set auditors, check that for every non empty B ⊂ Ω, ∑i∈B Xi ≥ U(B). That is, these auditors
approve X if and only if X ∈C(GU).9

It is straightforward to show that every frequency distribution that satisfies the processed
data set auditors’ conditions, also satisfies the raw data set auditors’ conditions, but not vice
versa. Consequently, the raw data set auditors can be viewed as less sophisticated than the
processed data set auditors.

Lemma 1. Let V be a raw data set in a characteristic function form and let U be the corre-
sponding processed data set in a characteristic function form.10

1. GU is a convex cooperative game.11

2. C(GU) is non-empty.

3. C(GU)⊆C(GV ).
8We assume that the administrator has a single additive probability distribution. However, we could easily

extend the model so that her belief is represented by a capacity with a non-empty core. In this case it seems natural
to apply the consistency condition imposed by the auditors to each probability in the core of the administrator’s
capacity. Yet, we would have had to determine whether or not this capacity is justifiable if only a subset of
the probabilities in the core of the administrator’s belief satisfy this condition. We prefer to avoid this issue by
restricting the administrator’s beliefs to be additive.

9For simplicity, we abstract from the fact that the realized outcomes must be natural numbers.
10The lemma’s proof of claims 1 and 2 hinges on the definitions of the raw and processed data sets. An

alternative approach is to show that U is a belief function, which is known to induce a convex game whose core is
non-empty.

11A cooperative game G = (Ω,v) is convex if v(S)+v(T )≤ v(S∪T )+v(S∩T ) for every two events S and T .
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Multiple Data Sets

Notation

Let V = {V1,V2, . . . ,Vm} be a collection of characteristic functions on Ω. An m-multi-
Game Ḡ is the pair Ḡ = (Ω;V ). We denote the single cooperative game that is defined by the
jth characteristic function of multi-Game Ḡ by Ḡ j = (Ω;Vj).

Let X ∈ Rn
+, such that ∑

n
i=1 Xi = ∑

m
j=1Vj(Ω). X belongs to the core of multi-Game Ḡ

(X ∈C(Ḡ)) if there are m finite non-negative vectors X1, ...,Xm such that ∀ j : X j ∈C(Ḡ j) and
∑

m
j=1 X j = X .

Raw Data Sets

Let D = {D1,D2, . . . ,Dm} be a collection of m data sets with T = ∑
m
i=1 Ti observations.

Denote by V = {V1,V2, . . . ,Vm} the collection of raw data sets in a characteristic function form
where Vi corresponds to data set Di. Let ḠV = (Ω;V ) be the raw data multi-game.

The administrator wishes to establish that the frequency underlying her decisions is cred-
ible. Let X ∈ Rn

+, such that ∑
n
i=1 Xi = ∑

m
j=1Vj(Ω), be the administrator’s aggregated frequency

distribution (i.e. non-normalized probability, a charge).
We refer to C(ḠV ) as the raw data core of D . Every element X ∈ C(ḠV ), allows the

administrator to prove to the raw data set auditors that her probability, the relative frequencies
of X , is well-founded as it is supported by the information of the practitioners.

We define the processed data multi-game ḠU = (Ω;U ) where U = {U1,U2, . . . ,Um} and
Ui is the processed data set in a characteristic function form that corresponds to data set Di.
We refer to C(ḠU ) as the processed data core of D . Every element X ∈ C(ḠU ), allows the
administrator to prove to the processed data set auditors that her probability is well-founded.

Main Result

Our main result, formally stated in Section 4, provides a necessary and sufficient condition
for the decomposition of an aggregated frequency distribution on T = ∑

m
i=1 Ti observations into

m frequency distributions such that the first is compatible with the requirements of a raw data
set auditor regarding the first data set, the second is compatible with his requirements regarding
the second data set and so on. In order to state the result we first provide a general result on
information aggregation under ambiguity and then we apply it to our setting.

3 Aggregating Concave Integrals

Concave Integrals

Definitions

Capacities are functions v : 2Ω → R+ that satisfy (i) no empty events (v( /0) = 0) (ii) finite-
ness (v(Ω) is finite) and (iii) monotonicity (S ⊆ T ⇒ v(S)≤ v(T )). Concave integrals are
integrals over capacities that are used to evaluate acts in settings with non-additive beliefs.
Concave integrals were introduced by Lehrer (2009) (and later generalized in Even and Lehrer
(2014)) to allow for aversion to ambiguity even when capacities are not convex.12

12In the Choquet expected utility model (Schmeidler (1989)) aversion to ambiguity corresponds to convex ca-
pacities for which the concave integral and the Choquet integral imply the same preferences over random variables
(Lehrer (2009)).
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The concave integral of a finite non-negative random variable Y over the capacity v is given
by

∫ cavY dv = min f∈Fv{ f (Y )} where Fv is the set of all concave and homogeneous functions
of degree one f : Rn

+ → R such that ∀B ∈ 2Ω : f (χB) ≥ v(B) where χB ∈ {0,1}n denotes the
indicator vector of B (χB

i = 1 if ωi ∈ B and χB
i = 0 otherwise).13,14

A decomposition of vector Y is αY : 2Ω → R+ such that ∑B∈2Ω αY (B)χB = Y . Denote
the set of all decompositions of Y by D(Y ) and the optimal decomposition of Y relative to ca-

pacity v by α⋆
Y,v = argmaxαY∈D(Y )

{
∑B∈2Ω αY (B)v(B)

}
.15 Lemma 1(i) in Lehrer (2009) states

that
∫ cavY dv = ∑B∈2Ω α⋆

Y,v(B)v(B), namely, the concave integral can be expressed as a linear
combination of the capacities of events where the weights are the corresponding optimal de-
composition elements. The following remark on the concave integrals of indicator vectors will
become useful.

Remark 1. Let Ω = {ω1, ...,ωn} be a finite set of states of nature, let v be a capacity on Ω.

1. Let Y ∈ Rn
+. If α⋆

Y,v(B)> 0 then v(B) =
∫ cav

χBdv.

2. Let G = (Ω;v) be the cooperative game induced by capacity v.

(a) v(Ω)≤
∫ cav

χΩdv.

(b) C(G) is non-empty if and only if v(Ω) =
∫ cav

χΩdv.

(c) C(G) is empty if and only if v(Ω)<
∫ cav

χΩdv.

Multiple Concave Integrals

Novel Result

We now extend the framework to allow for several capacities. Let V = {v1, . . . ,vm} be
a set of m capacities on Ω and denote V (Ω) = ∑

m
j=1 v j(Ω). Let X ∈ Rn

+, such that ∑
n
i=1 Xi =

∑
m
j=1 v j(Ω), be a non-normalized probability for the set V . A non additive probability (or

normalized capacity) is a monotonic capacity for which the value of Ω equals 1. To con-
vert capacities into non additive probabilities, let the practitioners’ normalized capacities (their
non-additive beliefs) be v̂ j =

v j
v j(Ω) and V̂ = {v̂1, . . . , v̂m}. In addition, denote X̂ = 1

V (Ω)X

and X̂ j = 1
v j(Ω)X

j, so that X̂ becomes a probability on Ω. Finally, denote β j =
v j(Ω)
V (Ω) so that

X̂ = ∑
m
j=1 β jX̂ j.

Proposition 1 is a novel result that characterizes the core of the multi-game induced by V .
It shows that the probability of the decision maker is a β -weighted average of probabilities in
the respective cores of the individuals’ non-additive beliefs if and only if the evaluation of any
positive random variable Y according to the probability (X̂T ·Y ) is higher than or equal to the
β -weighted average of the evaluations based on the individual capacities (

∫ cavY dv̂ j).

13Note that this definition does not require v to be monotonic. Since the raw data sets in our framework
may induce non-monotonic characteristic functions, we prove that the concave integral can also operate on non-
monotonic capacities.

14 We abuse notation by using χ to denote both the set of indicator vectors and the indicator matrix where the
columns are the 2n indicator vectors. Also, all vectors are defined to be column vectors. Row vectors are denoted
by the superscript ‘T‘.

15To show the non-emptiness of D(Y ) consider α such that ∀i ∈ {1, . . . ,n} : α({ωi}) = Yi and for every non-
singleton B ∈ 2Ω, α(B) = 0. α ∈ D(Y ) for every Y .
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Proposition 1. Let X̂ ∈ Rn
+ be a probability on Ω. There exist m vectors X̂ j ∈C( ˆ̄G j) such that

X̂ = ∑
m
j=1 β jX̂ j if and only if for every random variable Y ∈ Rn

+ :
m

∑
j=1

β j

∫ cav
Y dv̂ j ≤ X̂T ·Y .

To sketch the proof, recall that if X is in the core of the multi-game induced by V , it is a
sum of members in the cores of each game in V . We first show, for each capacity v j ∈ V , that
the expectation of any Y ∈ Rn

+ according to a vector in the core of that game is greater than or
equal to its expectation according to the respective concave integral. Then summing over all
capacities implies that the expectation of Y according to X must be greater than or equal to the
sum of the concave integrals of Y over all v j ∈ V .

If X is not in the core of the multi-game induced by V we can construct a violation to the
condition on the sum of concave integrals. Either the core of the multi-game induced by V
is non-empty, in which case, we use a hyperplane separation theorem to construct a violating
example or the core of the multi-game induced by V is empty and then Remark 1.2c implies
that χ

Ω violates the condition.
The final step of the proof is to convert the condition into terms of probabilities and non-

additive capacities.

Remarks

Even and Lehrer (2014) show that the expectation of Y according to the concave integral
is (weakly) higher than the expectation calculated according to the Choquet integral. Hence,
if the individuals were to use the Choquet integral to evaluate random variables instead of
the concave integral, showing that the evaluation of Y using the probability is higher than the
weighted average of the evaluations based on the non-additive beliefs, would be insufficient to
prove that the probability is supported by the individuals’ non-additive beliefs.

In addition, note that it is possible to extend the decision maker’s probability to contain
multiple priors by applying the condition in Proposition 1 to each of them separately (see the
discussion in Footnote 8).

Finally, a technically useful implication of the proof of Proposition 1 is that it provides an
upper bound on the sum of concave integrals in case the core of the multi-game is non-empty.

That is, for every random variable Y ∈ Rn
+ :

m

∑
j=1

∫ cav
Y dv j ≤ min

X∈C(Ḡ)
XT ·Y .

4 Back to Aggregating Data Sets

Main Result: Raw Data Compatibility

Now we can present our main result on the aggregation of data sets.

Proposition 2. Let X ∈ Rn
+ be an aggregated frequency distribution on T = ∑

m
i=1 Ti observa-

tions for the set of m data sets D . X ∈ C(ḠV ) if and only if every random variable Y ∈ Rn
+

satisfies ∑V j∈V

∫ cavY dVj ≤ Y ·X.

Proposition 2 is almost a direct application of the novel Proposition 1.16 The main dif-
ference is that Proposition 1 requires V to be a set of capacities while in Proposition 2 V is
a set of raw data sets which may not be monotonic. In the proof we show that replacing the

16A slight modification of this result was used to prove Proposition 3 in Gayer and Persitz (2016) (see p. 948).
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raw data sets by their monotonic covers generates capacities with the same cores but whose
concave integrals are well-defined.

Usefulness of Proposition 2

To demonstrate how Proposition 2 can be utilized to determine whether a frequency distri-
bution is compatible with the available raw data sets, consider the following example with two
practitioners and three states of nature. Practitioner 1’s data set contains 3 observations that are
all inconclusive, each one containing a pair of states - the first observation includes States 1
and 2, the second observation includes States 1 and 3, and the third observation includes States
2 and 3. Practitioner 2’s data set contains two observations: the first observation is conclu-
sive, containing only State 1, while the second observation is inconclusive including States 2
and 3. Formally, v1({1}) = v1({2}) = v1({3}) = 0, v1({1,2}) = v1({1,3}) = v1({2,3}) = 1,
v1({1,2,3})= 3, v2({1})= 1, v2({2})= v2({3})= 0, v2({1,2})= v2({1,3})= 0, v2({2,3})=
1, and v2({1,2,3}) = 2. An administrator’s frequency distribution that assigns one observation
to State 1 and four observations to State 3 (X = (1,0,4)) can be falsified with the help of Propo-
sition 2. To see this, consider the random variable Y = (1,1,0), then

∫ cavY dv1 = 1∗v1(1,2) =
1, and

∫ cavY dv2 = 1∗ v2({1})+1∗ v2({2}) = 1, however Y ∗X = 1. Thus, by Proposition 2,
the administrator’s frequency distribution is found to be incompatible with the data sets accord-
ing to the raw data set auditors (and therefore also according to the processed data auditors).

Proposition 2 necessitates conducting an infinite number of examinations (one for each
random variable Y ) to ascertain the compatibility of the probability distribution with the raw
data set. Consequently, raw data set auditors who are constrained to executing only a finite
number of checks are limited to rejecting proposed frequency distributions, as demonstrated in
the example above. In Appendix B we study a special class of V that satisfies a property termed
Uniform Optimal Decomposition across Practitioners, which requires only a finite number of
examinations to determine the compatibility of the probability distribution with the raw data
set. In this case raw data set auditors can accept a proposed probability distribution.

Processed Data Compatibility

Proposition 2 presents a condition that if satisfied, a raw data set auditor would accept the
suggested frequency distribution as compatible with the available raw data sets. One can ap-
ply an adequate version of Proposition 2 to U to understand whether a frequency distribution
would be found acceptable by the processed data set auditors as well. In fact, since inclusion
in the processed data core implies inclusion in the raw data core (by Lemma 1), the condition
stated in Proposition 2 is a necessary (though insufficient) condition for an aggregate frequency
to belong to C(ḠU ). Alternatively, recall that Lemma 1 states that the cooperative game in-
duced by a processed data set is convex. By Dragan et al. (1989) (see also Footnote 18 in Gayer
and Persitz (2016)), C(ḠU ) =C(∑Ui∈U GUi), and therefore, compatibility with processed data
set auditors can be established simply by verifying that the frequency distribution is in the core
of the summation game, ∑Ui∈U GUi .

Raw Data Set Auditors vs. Processed Data Set Auditors

If there are no inconclusive observations the auditing criteria of the raw and the processed
data set auditors coincide. Therefore, the difference between these two types lies within the
permissible resolution of inconclusive evidence. To demonstrate, consider a raw data set of 3
observations on 3 states of nature where V ({1}) = 1, V ({2}) = 1, V ({3}) = 0, V ({1,2}) = 1,
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V ({1,3}) = 0 and V ({2,3}) = 0. Raw data set auditors would approve the frequency distribu-
tion X = (1,1,1) since V ({1,2}) < X1 +X2. However, the total frequency attributed to States
1 and 2 understates the total number of observations assigned to the relevant events - {1}, {2}
and {1,2} - since V ({1})+V ({2})+V ({1,2}) > X1 +X2. Therefore, X = (1,1,1) would be
disapproved by the processed data set auditors. For the same reason, the processed data set
auditors would claim that the frequency attributed to State 3 is erroneously overstated since
no observation is assigned to an event that includes State 3. On the other hand, the frequency
distribution Y = (1.5,1.5,0) would be approved by the processed data set auditors (and there-
fore also by the raw data set auditors). Here the inconclusive observation of the event {1,2} is
equally attributed to States 1 and 2, but not to State 3.

Advanced Raw Data Set Auditors

One partial, yet relatively simple, remedy to the overly simplified nature of the raw data
set auditors is to add to the condition in Proposition 2 the requirement that no state of na-
ture is assigned a number larger than the total number of observations that were attributed to
events that contain it, namely, ∀ωi ∈ Ω : Xi ≤ ∑S⊂Ω\{ωi}V (S∪{ωi}). It is easy to see that
this additional requirement rules out X = (1,1,1) as a compatible frequency distribution in the
above-mentioned example.

Clearly, every frequency distribution approved by these advanced raw data set auditors is
approved also by the standard raw data set auditors. In addition, every frequency distribution
approved by the processed data set auditors is approved by these advanced raw data set audi-
tors.17 Therefore, the set of frequency distributions that the advanced raw data set auditors find
compatible falls between that of the standard raw data set auditors and the processed data set
auditors.18

5 Concluding Remarks

We provide a necessary and sufficient condition for the compatibility of a probability dis-
tribution with a set of given non-additive beliefs. The condition is that for any positive random
variable Y , a given weighted average of the expected value of Y according to the concave in-
tegrals across capacities is bounded from above by the expected value of Y with respect to the
prior probability.

This result is applied to a setting wherein an administrator is provided with data collected
by several practitioners. These data may include inconclusive observations and therefore give
rise to many possible frequency distributions. The administrator is required to form a frequency

17To see this, recall that every frequency distribution approved by a processed data set auditor is also approved
by a standard raw data set auditor (Lemma 1). In addition, note that X ∈ C(GU ) implies that for every state
ωi: ∑ω j∈Ω\{ωi} X j ≥ U(Ω\{ωi}). Therefore, for every state ωi: ∑ω j∈Ω\{ωi} X j ≥ ∑S⊆Ω\{ωi}V (S). This implies
that for every state ωi: ∑ω j∈Ω X j −∑ω j∈Ω\{ωi} X j ≤ V (Ω)−∑S⊆Ω\{ωi}V (S). That is, for every state ωi: Xi ≤
∑S⊂Ω\{ωi}V (S∪{ωi}) so the additional requirement is satisfied. This means that every frequency distribution
approved by a processed data set auditor is also approved by an advanced raw data set auditor.

18This set, however, need not coincide with the standard raw data set auditors’ or with the processed data set
auditors’ set of compatible frequency distributions. For example, suppose that there are four states of nature and
four observations that correspond to v({1}) = 1, v({4}) = 1, v({1,2}) = 1 and v({3,4}) = 1 while all other events
were not observed. The frequency distribution (3,0,0,1) is only compatible according to the standard raw data set
auditors, whereas the frequency distribution (2,1,0,1) is compatible also according to the more advanced raw data
set auditors, but not by the processed data set auditors. Finally, the frequency distribution (1,1,1,1) is compatible
according to all three types of auditors.
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distribution on the states of nature that would be approved by external auditors. We consider
two types of auditors, the first type relies on raw data in its inspection, whereas the second type
relies on processed data. We provide necessary and sufficient conditions for the compatibility
of the administrator frequency distribution with the data collected by the practitioners, accord-
ing to both auditing criteria.

A comparison between the characterization of probability distributions compatible with
processed and raw data sets reveals a fundamental distinction in the functions assigned to their
corresponding auditors. Processed data set auditors bear the setup cost of processing the data
and subsequently can determine whether the administrator’s frequency distribution should be
accepted by verifying a finite set of conditions. In contrast, raw data set auditors do not incur
any setup costs, but their scope is limited to rejecting a proposed frequency distribution. This
limitation arises from the fact that verifying the compatibility of the probability distribution
with the raw data set requires an infinite number of examinations (one for each random vari-
able Y ). As a result, raw data set auditors can only perform a finite number of checks and are
therefore restricted to rejecting proposed frequency distributions.

We conclude by proposing a third approach to audit the administrator’s frequency distribu-
tion. The approach taken by the advanced raw data set auditors can be viewed as a reasonable
compromise between the costly approach of the processed data set auditors and the over per-
missiveness of the raw data set auditors.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. (i) U(S) is the number of observations in D that are assigned to events that are subsets of
S, U(T ) is the number of observations in D that are assigned to events that are subsets of T and
U(S∩T ) is the number of observations in D that are assigned to events that are subsets of both
S and T . U(S∪T ) is the number of observations in D that are assigned to events that are subsets
of S∪T , meaning it is at least the number of observations in D that are assigned to events that
are either in S or in T excluding those in S∩T . Hence, U(S∪T ) ≥ U(S)+U(T )−U(S∩T )
and therefore U(S)+U(T )≤U(S∪T )+U(S∩T ). That is, GU is a convex cooperative game.

(ii) C(GU) is non empty since the core of any convex cooperative game is non empty (see
Shapley (1971/72)).

(iii) Recall that ∀B ⊂ Ω : U(B) = ∑b⊆BV (b) and U(Ω) =V (Ω). Let X ∈C(GU) (C(GU)
is non empty) then ∑

n
i=1 Xi =U(Ω) =V (Ω) and ∑ωi∈B Xi ≥U(B) = ∑b⊆BV (b)≥V (B). Thus,

X ∈C(GV ). Hence, C(GU)⊆C(GV ) and C(GV ) is non empty.
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A.2 Proof of Remark 1

Proof. First, note that v(B)≤
∫ cav

χBdv since the decomposition where αχB,v(b) = 0 for every
b ⊂ B and αχB,v(B) = 1 generates a value of v(B) and there might be decompositions of χB that
generate higher values.

Next, suppose v(B)<
∫ cav

χBdv. Then, (i) α⋆
χB,v(B)< 1 and (ii)

v(B)< ∑
b⊂B

α
⋆
χB,v(b)v(b)+α

⋆
χB,v(B)v(B)

Hence,

v(B)<
1

1−α⋆
χB,v(B)

∑
b⊂B

α
⋆
χB,v(b)v(b)

If α⋆
χB,v(B)> 0 then the decomposition where α⋆⋆

χB,v(b)=
α⋆

χB,v
(b)

1−α⋆
χB,v

(B) for all b⊂B and α⋆⋆
χB,v(B)=

0 achieves a strictly higher value than α⋆
χB,v, in contradiction to its optimality.

Hence, v(B)<
∫ cav

χBdv implies α⋆
χB,v(B) = 0.

Now, suppose that Y ∈ Rn
+. By definition,∫ cav

Y dv = ∑
b̸⊂B

α
⋆
Y,v(b)v(b)+ ∑

b⊂B
α
⋆
Y,v(b)v(b)+α

⋆
Y,v(B)v(B)

If v(B)<
∫ cav

χBdv then

∑
b̸⊂B

α
⋆
Y,v(b)v(b)+ ∑

b⊂B
α
⋆
Y,v(b)v(b)+α

⋆
Y,v(B)v(B)≤ ∑

b̸⊂B
α
⋆
Y,v(b)v(b)+ ∑

b⊂B
(α⋆

Y,v(b)+α
⋆
Y,v(B)α

⋆⋆
χB,v(b))v(b)

Since α⋆
Y,v is optimal, the two expressions must be equal. That is, α⋆

Y,v(B) = 0. Hence, v(B)<∫ cav
χBdv implies α⋆

Y,v(B) = 0. Therefore α⋆
Y,v(B)> 0 implies v(B) =

∫ cav
χBdv.

The second part of the remark is almost trivial. The first assertion is a specific case of the
first step of this proof. That is, since v(B) ≤

∫ cav
χBdv then, in particular, v(Ω) ≤

∫ cav
χΩdv.

Next, since D(χΩ) is the set of all balancing weights, by the Shapley-Bondareva Theorem
(Bondareva (1963) and Shapley (1967)) we get that C(G) is non-empty if and only if v(Ω) =∫ cav

χΩdv, while C(G) is empty if and only if v(Ω)<
∫ cav

χΩdv.

A.3 Lemma 2

Lemma 2. Let Ω = {ω1, ...,ωn} be a finite set of states of nature. Let v be a capacity on Ω and
let Y be a finite non-negative random variable on Ω. Denote Ĥ = {h∈Rn

+|∀B ∈ 2Ω :∑ωi∈B hi ≥
v(B)} and the set of its extreme points by H.19 Then,∫ cav

Y dv = min
h∈H

hT ·Y.

Proof. By the definitions of concave integral and optimal decomposition,∫ cav
Y dv = max

α:2n→R+

{
∑

B∈2n
α(B)v(B)

∣∣∣∣ ∑
B∈2Ω

α(B)χB = Y,∀B ∈ 2Ω :α(B)≥ 0
}

19h ∈ Ĥ is an extreme point of Ĥ if there are no h̃, ˜̃h ∈ Ĥ and λ ∈ (0,1) such that h = λ h̃+(1−λ ) ˜̃h.
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Since v and Y are finite and since D(Y ) is non-empty, there is a solution to the maximization
problem. Therefore, by the general strong duality theorem, the dual has the same solution.
Hence, ∫ cav

Y dv = min
h∈Rn

+

{
hT ·Y |∀B ∈ 2Ω : ∑

ωi∈B
hi ≥ v(B)

}
= min

h∈Ĥ
hT ·Y

Ĥ is non empty20 and convex.21 Since hT ·Y is a linear function of h and since Ĥ is convex, the

minimum of hT ·Y is achieved on the extreme points of Ĥ. Thus,
∫ cav

Y dv = min
h∈H

hT ·Y .

A.4 Lemma 3

Lemma 3. Let Ω = {ω1, ...,ωn} be a finite set of states of nature. Let v be a capacity on Ω. If
C(v) is non empty there is a neighborhood U of 1n (a length n vector of ones) such that every
non-negative random variable Y ∈U on Ω satisfies∫ cav

Y dv = min
c∈C(v)

cT ·Y.

Proof. First note that C(v) = {h ∈ Ĥ|∑ωi∈Ω hi = v(Ω)} ≠ /0. Therefore, minc∈C(v) cT ·Y ≥
minh∈Ĥ hT ·Y . Moreover, by the proof of Lemma 2, minc∈C(v) cT ·Y ≥minh∈H hT ·Y =

∫ cavY dv.
Suppose, to the contrary, that there is a sequence Yt that converges to 1n and each element

satisfies minc∈C(v) cT ·Yt >
∫ cavYtdv.

Since by Lemma 2, for every t, minh∈H hT ·Yt =
∫ cavYtdv it must be that for every t,

ht ∈H\C(v) where ht = argminh∈H hT ·Yt . In particular, since ht ∈H\C(v) then htT ·1n > v(Ω).
Let us consider the sequence

∫ cavYtdv. Since (i) H is finite (ii) The elements of H are finite
(iii) Yt is a sequence of finite elements and (iv)

∫ cavYtdv=minh∈H hT ·Yt , the sequence
∫ cavYtdv

is bounded.
Thus,

∫ cavYtdv has a convergent subsequence
∫ cavYsdv. The limit of this subsequence is

lims→∞

∫ cavYsdv =
∫ cav lims→∞Ysdv =

∫ cav 1ndv = v(Ω), the last equality is due to C(v) being
non empty and Remark 1.2b.

Since
∫ cavYsdv converges, every of its subsequences is also convergent, and to the same

limit. Since H is finite, at least one such subsequence is
∫ cavYrdv such that Yr converges to

1n and all its elements correspond to the same hr. For this subsequence limr→∞

∫ cavYrdv =
limr→∞ hrT ·Yr = hrT · {limr→∞Yr}= hrT ·1n. Hence, hrT ·1n = v(Ω). Contradiction.

Hence, there is a neighborhood U of 1n such that every non-negative random variable
Y ∈U satisfies

∫ cavY dv = minc∈C(v) cT ·Y .

A.5 Lemma 4

Lemma 4. Let Ḡ be an m-Multi-Game, Ḡ = (Ω;V ). Then, C(Ḡ) is a closed and convex set.

Proof. For every v j ∈ V , C(Ḡ j) is compact since (i) A set of vectors that satisfies a set of weak
linear inequalities is closed (recall that the empty set is closed) and (ii) A set of non-negative

20For example, by the monotonicity of capacities, (v(Ω), . . . ,v(Ω))′ ∈ Ĥ.
21h, h̄ ∈ Ĥ implies that ∀B ∈ 2Ω, (χB)T h ≥ v(B) and (χB)T h̄ ≥ v(B) and therefore for every λ ∈ [0,1] :

(χB)T (λh+(1−λ )h̄) = λ (χB)T h+(1−λ )(χB)T h̄ ≥ λv(B)+(1−λ )v(B) = v(B)
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vectors that satisfy efficiency is bounded (recall that the capacities are non-negative). Since
C(Ḡ) is the sum of compact individual cores, it is also compact. Thus, C(Ḡ) is a closed set.

To show that C(Ḡ) is a convex set, let Z, Ẑ ∈C(Ḡ). First, for every λ ∈ [0,1] we get that
λZ +(1−λ )Ẑ is a non normalized probability vector for the set V since

n

∑
i=1

(λZ +(1−λ )Ẑ)i =
n

∑
i=1

λZi +(1−λ )Ẑi = λ

n

∑
i=1

Zi +(1−λ )
n

∑
i=1

Ẑi

= λ

m

∑
j=1

v j(Ω)+(1−λ )
m

∑
j=1

v j(Ω) =
m

∑
j=1

v j(Ω)

In addition, since Z, Ẑ ∈ C(Ḡ) there exist 2m vectors Z1, ...,Zm and Ẑ1, ..., Ẑm such that ∀ j:
Z j ∈C(Ḡ j), Ẑ j ∈C(Ḡ j) and ∑

m
j=1 Z j = Z and ∑

m
j=1 Ẑ j = Ẑ. By the convexity of the core of a

single game ∀λ ∈ [0,1], ∀ j: λZ j +(1−λ )Ẑ j ∈ C(Ḡ j). These vectors sum to λZ +(1−λ )Ẑ
since,

m

∑
j=1

[λZ j +(1−λ )Ẑ j] = λ

m

∑
j=1

Z j +(1−λ )
m

∑
j=1

Ẑ j = λZ +(1−λ )Ẑ

Hence, λZ +(1−λ )Ẑ ∈C(Ḡ). Thus, C(Ḡ) is a convex set.

A.6 Proof of Proposition 1

Proof. First suppose that X ∈ C(Ḡ). Then, X is a non normalized probability vector on Ω

for the set V and there are m finite non-negative random variables X1, ...,Xm on Ω such that
∀v j ∈ V : X j ∈C(Ḡ j) and ∑

m
j=1 X j = X .

Recall that for every Y ∈ Rn
+, D(Y ) denotes the non-empty set of all decompositions. For

every random variable Y ∈ Rn
+, for every decomposition αY ∈ D(Y ) and for every capacity

v j ∈ V we get

X jT ·Y = X jT ·
[

∑
B∈2Ω

[
αY (B)×χ

B]]= ∑
B∈2Ω

[
X jT ·

[
αY (B)×χ

B]]=
∑

B∈2Ω

[
αY (B)×

[
X jT ·χ

B]]= ∑
B∈2Ω

[
αY (B)× ∑

ωi∈B
X j

i

]
≥ ∑

B∈2Ω

[
αY (B)× v j(B)

]
Where the first equality is by the definition of a decomposition and the final inequality is true
since ∀v j ∈ V : X j ∈C(Ḡ j) implies that ∀v j ∈ V ,∀B ∈ 2Ω : ∑ωi∈B X j

i ≥ v j(B).
In particular, for every random variable Y ∈ Rn

+ and for every capacity v j ∈ V , X jT ·Y ≥
∑B∈2Ω

[
α⋆

Y,v j
(B)× v j(B)

]
. Hence, by Lemma 1(i) in Lehrer (2009), for every random variable

Y ∈ Rn
+ and for every capacity v j ∈ V , X jT ·Y ≥

∫ cavY dv j. Summing over all capacities,

for every random variable Y ∈ Rn
+ we get XT ·Y =

m

∑
j=1

X jT ·Y =
m

∑
j=1

[
X jT ·Y

]
≥

m

∑
j=1

∫ cav
Y dv j.

Thus, X ∈C(Ḡ) implies that for every random variable Y ∈ Rn
+, XT ·Y ≥ ∑

m
j=1

∫ cavY dv j.
Next suppose X /∈C(Ḡ). Let us first attend to the case where C(Ḡ) is non-empty.
Since C(Ḡ) is closed and convex (by Lemma 4) and since a singleton is closed and convex,

the separating hyperplane theorem guarantees that there is a vector Z = (Z1, ...,Zn) ̸= 0n that
separates X and C(Ḡ). That is, there exists Z ̸= 0n such that for every w∈C(Ḡ), XT ·Z <wT ·Z.
Thus, there exists Z ̸= 0n such that XT ·Z < minw∈C(Ḡ){wT ·Z}.
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For a positive constant c denote by Zc the vector that has Zc
i = Zi+c

c as a representative
element. X and every member of C(Ḡ) are non normalized probability vectors on Ω for the set
V . Therefore, for every w ∈C(Ḡ), ∑

n
i=1 Xi = ∑

n
i=1 wi = ∑

m
j=1 v j(Ω). Hence,

XT ·Zc =
1
c
×(XT ·Z)+(XT ·1n) =

1
c
×(XT ·Z)+(wT ·1n)<

1
c
× min

w∈C(Ḡ)
{wT ·Z}+(wT ·1n) =

min
w∈C(Ḡ)

{1
c
× (wT ·Z)}+(wT ·1n) = min

w∈C(Ḡ)
{1

c
× (wT ·Z)+(wT ·1n)}= min

w∈C(Ḡ)
{wT ·Zc}

Thus, for every positive constant c and for every w∈C(Ḡ) we get XT ·Zc <minw∈C(Ḡ){wT ·Zc}.
Denote w⋆ = argminw∈C(Ḡ){wT ·Zc}. Since w⋆ ∈ C(Ḡ) there exist w1⋆, ...,wm⋆ such that

∀v j ∈ V : w j⋆ ∈ C(Ḡ j) and ∑
m
j=1 w j⋆ = w⋆. Moreover, ∀v j ∈ V : w j⋆ ∈ argminw j∈C(Ḡ j)

{w jT ·
Zc}.22 Therefore, for every positive constant c, XT ·Zc < ∑

m
j=1 minw j∈C(Ḡ j)

{w jT ·Zc}.
For every capacity v j ∈ V , let U j be the neighborhood of 1n that satisfies Lemma 3. That

is,
∫ cavY dv j = minc j∈C(Ḡ j)

{c jT ·Y} for every non negative random variable Y ∈ U j. Let U =

∩ jU j. Therefore,
∫ cavY dv j = minc j∈C(Ḡ j)

{c jT ·Y} for every v j ∈ V and every non negative
random variable Y ∈ U . As a consequence, for every non negative random variable Y ∈ U ,
∑

m
j=1

∫ cavY dv j = ∑
m
j=1 minc j∈C(Ḡ j)

{c jT ·Y}.
Note that (i) Zc goes to 1n when c goes to infinity; (ii) Zc is non-negative for large enough

c and (iii) the w js are the minimizers of minc j∈C(Ḡ j)
{c jT ·Zc}. Let c be large enough so that

Zc ∈U ∩Rn
+. Hence, by Lemma 3:

m

∑
j=1

∫ cav
Zcdv j =

m

∑
j=1

min
w j∈C(Ḡ j)

{w jT ·Zc}> XT ·Zc

Thus, if C(Ḡ) is non-empty, X /∈ C(Ḡ) implies that there exists Y ∈ Rn
+ that does not

satisfy
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y . That is, if C(Ḡ) is non-empty and every Y ∈ Rn

+ satisfies

m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y then X ∈C(Ḡ).

Finally, we attend to the case where X /∈C(Ḡ) and C(Ḡ) is empty. Consider Y = 1n. Thus,
XT ·Y = XT ·1n = ∑

n
i=1 Xi = ∑

m
j=1 v j(Ω), where the final equality is true since X is non normal-

ized probability vector on Ω for the set V .
By definition, C(Ḡ) is empty if and only if ∃v j ∈ V : C(Ḡ j) = /0. Then, by Remark

1.2c, v j(Ω)<
∫ cav 1ndv j. Moreover, by Remark 1.2a, vk(Ω)≤

∫ cav 1ndvk for all vk ∈ V \{v j}.
Therefore,

m

∑
j=1

∫ cav
Y dv j =

m

∑
j=1

∫ cav
1ndv j >

m

∑
j=1

v j(Ω) = XT ·Y

22To see that, suppose that ∃v j ∈ V such that w j⋆ ∈ C(Ḡ j) but w j⋆ /∈ argminw j∈C(Ḡ j)
{w jT ·Zc} while w j⋆⋆ ∈

argminw j∈C(Ḡ j)
{w jT ·Zc}. Then,

w1⋆T ·Zc + · · ·+w j⋆⋆T ·Zc + · · ·+wm⋆T ·Zc < w1⋆T ·Zc + · · ·+w j⋆T ·Zc + · · ·+wm⋆T ·Zc

Denote w̄ = w1⋆ + · · ·+ w j⋆⋆ + · · ·+ wm⋆. Then w̄ ∈ C(Ḡ) and w̄T · Zc < w⋆T · Zc in contradiction to w⋆ =
argminw∈C(Ḡ){w ·Zc}. Hence, ∀v j ∈ V : w j⋆ ∈ argminw j∈C(Ḡ j)

{w j ·Zc}.
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Thus, if C(Ḡ) is empty, for every non normalized probability vector on Ω for the set V , X ∈

Rn
+, there exists Y ∈ Rn

+ such that
m

∑
j=1

∫ cav
Y dv j > XT ·Y . That is, if every Y ∈ Rn

+ satisfies

m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y then X ∈ C(Ḡ). That is, there exist m vectors X j ∈ C(Ḡ j) such that

X = ∑
m
j=1 X j if and only if every Y ∈ Rn

+ satisfies
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y .

The final step of the proof is to normalize the capacities and X . First note that X̂ = X
V (Ω) =

1
V (Ω) ∑

m
j=1 X j = ∑

m
j=1

1
V (Ω)X

j = ∑
m
j=1

v j(Ω)
V (Ω)

X j

v j(Ω) = ∑
m
j=1 β jX̂ j. Thus, since X j ∈ C(Ḡ j) if and

only if X̂ j ∈C( ˆ̄G j), we conclude that X ∈C(Ḡ) if and only if there exist m vectors X̂ j ∈C( ˆ̄G j)
such that X̂ = ∑

m
j=1 β jX̂ j.

Finally,
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y if and only if

1
V (Ω)

m

∑
j=1

∫ cav
Y dv j ≤

1
V (Ω)

XT ·Y . Since∫ cav
Y dv j = ∑

B∈2Ω

α
⋆
Y,v(B)v(B) and since α⋆

Y,v(B) = α⋆
Y,v̂(B), we get that

1
V (Ω)

m

∑
j=1

∫ cav
Y dv j =

1
V (Ω)

m

∑
j=1

v j(Ω)
∫ cav

Y dv̂ j =
m

∑
j=1

β j

∫ cav
Y dv̂ j. In addition,

1
V (Ω)

XT ·Y =
1

V (Ω)

m

∑
j=1

(X j)T ·Y =

1
V (Ω)

m

∑
j=1

v j(Ω)(X̂ j)T ·Y =
m

∑
j=1

β j(X̂ j)T ·Y = X̂T ·Y where the last equality uses X̂ =∑
m
j=1 β jX̂ j.

Therefore, we showed that there exist m vectors X̂ j ∈ C( ˆ̄G j) such that X̂ = ∑
m
j=1 β jX̂ j if

and only if for every random variable Y ∈ Rn
+ :

m

∑
j=1

β j

∫ cav
Y dv̂ j ≤ X̂T ·Y .

A.7 Lemma 5 [see also the discussion in Even and Lehrer (2014)]

Lemma 5. Let V be a raw data set in a characteristic function form and let G be the cooperative
game induced by V . Let Ṽ be the monotonic cover23 of V and let G̃ be the cooperative game
induced by Ṽ . Then, (i) Ṽ is a capacity, (ii) C(G) = C(G̃), (iii) Let Y ∈ Rn

+ be a finite non-
negative random variable on Ω. Then,

∫ cavY dV =
∫ cavY dṼ .

Proof. By the definition of V , we have V ( /0) = 0 and therefore also Ṽ ( /0) = 0. Since Ṽ (Ω) =
max{V (R)|R ⊆ Ω} and V (Ω) is the number of observations we get that Ṽ (Ω) = V (Ω), that is
Ṽ (Ω) is finite. Finally, by definition, a monotonic cover is monotonic. Thus, Ṽ is a capacity.

Before we prove the second part, note that a raw data set in a characteristic function form
induces both a non-negative cooperative game and a non-negative monotonic cover. Therefore,
the elements of C(G) and C(G̃) must be non-negative.

First, since Ṽ (Ω) =V (Ω), ∑i∈{1,...,n} xi =V (Ω) if and only if ∑i∈{1,...,n} xi = Ṽ (Ω).
Next, if x ∈ C(G̃) then ∀B ⊂ Ω : ∑ωi∈B xi ≥ Ṽ (B). That is, if x ∈ C(G̃) then ∀B ⊂ Ω :

∑ωi∈B xi ≥ max{V (R)|R ⊆ B}. In particular, if x ∈C(G̃) then ∀B ⊂ Ω : ∑ωi∈B xi ≥V (B). Thus,
if x ∈C(G̃) then x ∈C(G).

For the other direction, suppose x ∈ C(G). Fix B and let R ⊂ B. Since x ∈ C(G) then
∑ωi∈R xi ≥ V (R). Since x is non-negative, ∑ωi∈B xi ≥ ∑ωi∈R xi. Therefore, ∑ωi∈B xi ≥ V (R).
As a result, if x ∈ C(G) then ∀B ⊂ Ω,∀R ⊆ B : ∑ωi∈B xi ≥ V (R). Thus, ∀B ⊂ Ω : ∑ωi∈B xi ≥

23The monotonic cover of G = (Ω,V ) is G̃ = (Ω,Ṽ ) such that ∀B ⊆ Ω : Ṽ (B) = maxR⊆B V (R).
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max{V (R)|R ⊆ B}. Hence, ∀B ⊂ Ω : ∑ωi∈B xi ≥ Ṽ (B). That is, if x ∈C(G) then x ∈C(G̃).
It is left to be shown that for every finite non-negative random variable, Y ∈ Rn

+, the
concave integral is the same whether it is calculated directly over V or over its monotonic cover
(
∫ cavY dV =

∫ cavY dṼ ).
First, note that, by definition, for every B ∈ 2Ω we have Ṽ (B) ≥ V (B).24 Let αY ∈ D(Y ).

Then, ∑B∈2Ω αY (B)Ṽ (B)≥ ∑B∈2Ω αY (B)V (B). Denote the optimal decomposition of Y relative
to V by α⋆

Y and the optimal decomposition of Y relative to Ṽ by α̃⋆
Y . Thus,

∑
B∈2Ω

α̃
⋆
Y (B)Ṽ (B)≥ ∑

B∈2Ω

α
⋆
Y (B)Ṽ (B)≥ ∑

B∈2Ω

α
⋆
Y (B)V (B)

Hence,
∫ cavY dV ≤

∫ cavY dṼ .
Finally, for every B ⊆ Ω denote by S(B) = argmaxR⊆BV (R) the subset of B that deter-

mines Ṽ (B).25 That is, S(B)⊆ B. Let β : 2Ω → R+ be the following system of weights,

β (R) = ∑
{B∈2Ω|S(B)=R}

α̃
⋆
Y (B)+ ∑

{B∈2Ω|S(B)=B\R}
α̃
⋆
Y (B)

The vector of weights induced by β is denoted by W β .

W β

i = ∑
{R∈2Ω|ωi∈R}

β (R) = ∑
{R∈2Ω|ωi∈R}

∑
{B∈2Ω|S(B)=R}

α̃
⋆
Y (B)+ ∑

{R∈2Ω|ωi∈R}
∑

{B∈2Ω|S(B)=B\R}
α̃
⋆
Y (B)

The first term on the right-hand side is the sum of weights over all the events that include state
ωi and were determined by an event that includes state ωi. The second term on the right-hand
side is the sum of weights over all the events that include state ωi and were determined by an
event that does not include state ωi. Hence, this can also be written as

W β

i = ∑
{B∈2Ω|ωi∈S(B)}

α̃
⋆
Y (B)+ ∑

{B∈2Ω|ωi∈B\S(B)}
α̃
⋆
Y (B) = ∑

{B∈2Ω|ωi∈B}
α̃
⋆
Y (B) = Yi

Thus, β is a decomposition of Y .
Note that,∫ cav
Y dṼ = ∑

B∈2Ω

α̃
⋆
Y (B)Ṽ (B) = ∑

R∈2Ω

∑
{B∈2Ω|S(B)=R}

α̃
⋆
Y (B)Ṽ (B) = ∑

R∈2Ω

∑
{B∈2Ω|S(B)=R}

α̃
⋆
Y (B)V (R)

The second equality is true since every event B has a corresponding event S(B) that determines
it and the third is due to the definitions of monotonic cover and S(B). Thus,∫ cav

Y dV ≥ ∑
R∈2Ω

β (R)V (R)= ∑
R∈2Ω

∑
{B∈2Ω|S(B)=R}

α̃
⋆
Y (B)V (R)+ ∑

R∈2Ω

∑
{B∈2Ω|S(B)=B\R}

α̃
⋆
Y (B)V (R)

=
∫ cav

Y dṼ + ∑
R∈2Ω

∑
{B∈2Ω|S(B)=B\R}

α̃
⋆
Y (B)V (R)≥

∫ cav
Y dṼ

24This is close to the monotonicity with respect to capacities property stated in Section 11.1.2 of Lehrer (2009).
It is not the same since V may be non-monotonic.

25In cases where there is more than one maximizer, we assume, with no loss of generality, that S(B) is the first
in some given list of subsets.
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The first inequality is due to β being a decomposition of Y (but not necessarily the optimal
one). The next equality is by the definition of β while the following equality is due to the result
above. The final inequality results from system of weights and data sets being non-negative.
This completes the proof since

∫ cavY dṼ =
∫ cavY dV .

A.8 Proof of Proposition 2

Proof. The proof uses an intermediate result from the proof of Proposition 1 by which there
exist m vectors X j ∈ C(Ḡ j) such that X = ∑

m
j=1 X j if and only if every Y ∈ Rn

+ satisfies
m

∑
j=1

∫ cav
Y dv j ≤ XT ·Y . Since the monotonic covers of the raw data sets in a characteristic

function form are capacities, by Proposition 1, X ∈C(ḠṼ ) if and only if every random variable
Y ∈ Rn

+ satisfies ∑Ṽ j∈Ṽ

∫ cavY dṼj ≤ Y ·X . By Lemma 5, Ṽ (Ω) = V (Ω), C(G) = C(G̃) and

for every Y ∈ Rn
+ :

∫ cavY dV =
∫ cavY dṼ . Therefore, X ∈ C(ḠV ) if and only if every random

variable Y ∈ Rn
+ satisfies ∑V j∈V

∫ cavY dVj ≤ Y ·X .

B Uniform Optimal Decomposition across Practitioners

We say that a set of raw data sets V satisfies the property of Uniform Optimal Decom-
position across Practitioners if for every random variable Y ∈ Rn

+, for every event B ⊆ Ω and
for every pair of data sets v,v′ ∈ V : α⋆

Y,v(B) = α⋆
Y,v′(B).

Verifying whether a set of raw data sets satisfies Uniform Optimal Decomposition across
Practitioners is not always straightforward. However, in certain cases, this property is known
to hold. For example, Lovász (1983) demonstrates that if all raw data sets are convex, their
optimal decompositions are identical.

The following proposition shows that if the set V satisfies Uniform Optimal Decompo-
sition across Practitioners, then raw data set auditors need only verify the condition stated in
Proposition 2 for χ , the set of indicator vectors (see Footnote 14), a finite subset of random
variables Y , rather than for all random variables Y ∈ Rn

+.

Proposition 3. Let X ∈ Rn
+ be an aggregated frequency distribution on T = ∑

m
i=1 Ti obser-

vations for the set of m data sets D . Suppose that V satisfies Uniform Optimal Decompo-
sition across Practitioners. X ∈ C(ḠV ) if and only if every random variable Y ∈ χ satisfies
∑V j∈V

∫ cavY dVj ≤ Y ·X

The proof of Proposition 3 depends on Proposition 2, which asserts that if X /∈ C(ḠV ),
then there exists a random variable Y , whose sum of the optimal decompositions across the
respective data sets violates the inequality stated in Proposition 2. In the current case, these
optimal decompositions, which are identical for all data sets, due to Uniform Optimal Decom-
position across Practitioners, can be expressed as the same weighted sums of indicator vectors
for all data sets. It then follows that at least one of these indicator vectors, when examined in
isolation, violates the inequality in Proposition 3.

Proof. One direction is trivial: If X ∈ C(ḠV ) then by Proposition 2, every random variable
Y ∈ χ satisfies ∑V j∈V

∫ cavY dVj ≤ Y ·X .
For the other direction we assume that X /∈C(ḠV ) and show that there exists B ⊆ Ω such

that ∑V j∈V

∫ cav
χBdVj > χB ·X .

If X /∈C(ḠV ) then by Proposition 2 there exists Y ∈ Rn
+ such that ∑V j∈V

∫ cavY dVj >Y ·X .
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That is, there exists Y ∈ Rn
+ such that ∑V j∈V ∑B∈2Ω α⋆

Y,V j
(B)Vj(B) > Y ·X . According to Re-

mark 1.1, Vj(B) =
∫ cav

χBdVj for all B ∈ 2Ω and for all Vj ∈ V for which α⋆
Y,V (B) > 0. Con-

sequently, ∑V j∈V ∑B∈2Ω α⋆
Y,V j

(B)
∫ cav

χBdVj > Y ·X . Since the raw data sets satisfy Uniform
Optimal Decomposition across Practitioners we have ∑B∈2Ω α⋆

Y (B)∑V j∈V

∫ cav
χBdVj > Y ·X ,

and since ∑B∈2Ω α⋆
Y (B)χ

B = Y we obtain ∑B∈2Ω α⋆
Y (B)∑V j∈V

∫ cav
χBdV j > ∑B∈2Ω α⋆

Y (B)χ
B ·

X . For this inequality to hold true there must be a B ⊆ Ω such that α⋆
Y,V (B) > 0 for which

∑V j∈V

∫ cav
χBdVj > χB ·X which concludes the proof.
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