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Abstract
The properties of strongly-coupled lattice gauge theories at finite density as well as in
real time have largely eluded first-principles studies on the lattice. This is due to the
failure of importance sampling for systems with a complex action. An alternative to
evade the sign problem is quantum simulation. Although still in its infancy, a lot of
progress has been made in devising algorithms to address these problems. In
particular, recent efforts have addressed the question of how to produce thermal
Gibbs states on a quantum computer. In this study, we apply a variational quantum
algorithm to a low-dimensional model which has a local abelian gauge symmetry. We
demonstrate how this approach can be applied to obtain information regarding the
phase diagram as well as unequal-time correlation functions at non-zero temperature.
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1 Introduction
Much interest has been generated recently regarding the potential of quantum computing
and quantum simulation to address long-standing problems in high-energy physics [1, 2].
Traditionally, lattice gauge theory has been applied in the Euclidean formulation, where
advances in computing power have led to great success in studying properties of strongly-
interacting matter in thermal equilibrium. However, due to the notorious sign problem,
there has been a growing interest in the Hamiltonian formulation and its application to
address non-zero chemical potential and real-time dynamics. For digital quantum com-
puters in the medium term, one problem that has arisen is how to produce thermal states.

In recent years, there has already been an explosion of progress in tackling this prob-
lem. Each approach to producing a thermal state has had to address the issue of how to
produce a mixed state. This can typically be done by enlarging the system size and then en-
tangling the ancillary system with the original system. One idea which takes this approach
to create a Gibbs state via purification is the so-called thermofield double states method
[3]. Another interesting method is known as active cooling [4]. This takes a general initial
state, couples it to a thermal heat bath, and uses the concept of the “Maxwell demon” to
obtain a thermal state at the desired temperature. Alternatively, as the Boltzmann oper-
ator is non-unitary, one can also attempt to directly approximate its action on quantum
states. Using judiciously chosen initial states produced by Haar-random circuits, one can
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Figure 1 Schematic depiction of the hybrid approach used in the VQT algorithm. The action of the
variational circuits VQC1 and VQC2 and the measurements are performed on the quantum device. The results
of the measurements are then sent to the classical device, which is depicted in grey. This information allows
one to construct the cost function and propose a new value for the variational parameters using one’s
optimizer of choice

use this approximation of the Boltzmann operator to obtain Gibbs states for spin models
[5] as well as gauge theories [6].

One can also study the problem of producing thermal states using variational methods.
One such method, the variational quantum thermalizer (VQT), introduced in [7], serves
as a natural extension of the variational quantum eigensolver (VQE) [8, 9] to the case of
non-zero temperature. The latter uses the variational principle at T = 0 to approximate
the ground-state of a Hamiltonian Ĥ by a parametrized ansatz |ψξ 〉, subject to

E0 ≤ 〈ψξ |Ĥ|ψξ 〉. (1)

Similarily, for the case of T �= 0, VQT addresses the problem of finding a variational ap-
proximation ρ̂var to the thermal state, ρ̂Gibbs ∼ e–βĤ for inverse temperature β = 1/T . Sim-
ilar to its zero temperature analogue in Eq. (1), this problem can also be reformulated as
an optimization problem for the free energy with respect to variational parameters ξ , such
that

F ≡ min
ξ

F(ξ ) = min
ξ

(
tr(Ĥρ̂ξ ) + Ttr(ρ̂ξ log ρ̂ξ )

)
, (2)

where the second term on the right-hand side involves the von Neumann entropy S =
–tr(ρ̂ log ρ̂). As the density operator appears non-linearly in the expression for the en-
tropy and thus is not simply determined by a quantum-mechanical expectation value,
several avenues have been taken in the literature: The original formulation of VQT [7]
employs classical sampling of the distribution corresponding to ρξ which necessitates a
model ansatz. Through this ansatz, the entropy is then given classically by a closed-form
expression. To prepare the latent distribution corresponding to ρvar in a quantum cir-
cuit, the noise-assisted variational quantum thermalizer [10] (NAVQT) uses (simulated)
parameterized depolarization gates that allow for the preparation of a mixed state, again
with a closed-form, approximate expression for the entropy in terms of the noise level λ,
which thus becomes a variational parameter. Of particular interest to us, due to both its
simplicity and versatility, is a variant of the VQT introduced in [11], see Fig. 1. While the
first two examples used a classical sampling of input states [7] or stochastic mixtures of
unitary circuits [10], respectively, to create mixed quantum states, the approach in [11]
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utilizes intermediate projective measurements. As measurements are non-unitary opera-
tions, they act as a source of entropy, ultimately leading to a variational approximation of
the thermal state.1

The subject of our study is the Hamiltonian formulation of the Z2 lattice gauge theory
(LGT) in 1 + 1d (Z1+1

2 ), in which we investigate the application of the VQT to this theory.
This is performed in its formulation with a gauge-redundant Hilbert space [13] and its re-
cent, resource-efficient form derived systematically in [14, 15]. In addition, we investigate
several observables of interest at both non-zero temperature T and non-zero chemical
potential μ.

2 Background
2.1 Variational quantum thermalizer
As displayed in Fig. 1, starting from an nq-qubit initial state |ψ0〉 with density matrix ρ0 =
|ψ0〉〈ψ0|, we set up a concatenation of two separate variational circuits VQC1 and VQC2.
The first variational circuit, VQC1, creates the state |ψVQC1〉, which is given by

|ψVQC1〉 ≡ U1(θ )|ψ0〉 =
2nq –1∑

i=0

ai(θ )|i〉. (3)

An intermediate measurement in the computational basis collapses this state and statisti-
cally yields the latent density matrix

ρ1(θ ) =
2nq –1∑

i=0

∣∣ai(θ )
∣∣2|i〉〈i|. (4)

The subsequent application of the variational circuit VQC2 transforms this into

ρ2(θ ,φ) = U2(φ)ρ1(θ )U†
2 (φ) =

2nq –1∑

i=0

∣
∣ai(θ )

∣
∣2U2(φ)|i〉〈i|U†

2 (φ)

≡
2nq –1∑

i=0

pi(θ )|ψi(φ)〉〈ψi(φ)|, (5)

after which a measurement of the energy is performed. Here we defined the probabilities
pi(θ ) ≡ |ai(θ )|2 and the states |ψi(φ)〉 ≡ U2(φ)|i〉. The von Neumann entropy is then calcu-
lated as S = –

∑
i pi log pi, with pi = pi(θ ) ≈ ni/ns, where ni represents the counts for state

i in the computational basis (c.f. Equation (4)) and ns represents the number of shots. By
varying the parameter set ξ = (θ ,φ) in an optimal way, i.e. by minimizing the free energy
F(ξ ), Eq. (2), one obtains a variational approximation to the Gibbs state ρ̂Gibbs ∼ e–βĤ . The
fact that the circuit is broken up into two parts is intended for noisy intermediate-scale
quantum (NISQ) devices, as the depth of each variational circuit can be kept relatively
shallow. This approach, however, will naturally lead to a limitation in the number of states

1For a version of this algorithm using entanglement of the system with nq ancillary qubits followed by a projective mea-
surement on the latter, see [12].



Fromm et al. EPJ Quantum Technology           (2024) 11:20 Page 4 of 14

in Eq. (5), as both the number of shots, ns, and the memory necessary to store the his-
togram describing the counts scales with the dimension of the Hilbert space of the under-
lying problem. We pursue this discussion in further detail in Sect. 3.2.4. In [11], the algo-
rithm was demonstrated to reach convergence for the transverse field Heisenberg-Model
in d = 1, 2. Applying qVQT to gauge theories will introduce the need for a gauge-invariant
algorithm implementation. We show below for the case of Z1+1

2 how this can be achieved.

2.2 Z2 LGT in 1 + 1d
This section briefly outlines our two approaches to Z2 lattice gauge theory in the Hamil-
tonian formulation. In the first approach, introduced in [13] and referred to as the gauge-
redundant formulation, local gauge invariance must be enforced on the states to define the
physical Hilbert space. This can be achieved, for example, by introducing a penalty term
as in [6]. In the second approach, used in [14] and referred to as the resource-efficient
formulation, the matter states are decoupled, and the constraint imposed by Gauss’ law is
built into the Hamiltonian.

2.2.1 Gauge-redundant formulation
In the so-called group basis,Z1+1

2 LGT with a single flavour of staggered fermion is formally
given by the Hamiltonian H = HE + HGM + HM + Hμ with

HE = –ε

L–2∑

n=0

Xn, (6)

HGM =
J
2

L–2∑

n

(
σ x

n Znσ
x
n+1 + σ y

n Znσ
y
n+1

)
, (7)

HM =
m
2

L–1∑

n=0

(–1)nσ z
n , (8)

Hμ = –
μ

2

L–1∑

n=0

σ z
n . (9)

In the above equations, the fermionic creation and annihilation operators have been re-
placed by Pauli matrices living at the sites of the lattice via the usual Jordan-Wigner trans-
formation. Here we have adopted the familiar convention of denoting Pauli operators
acting on the link Hilbert space of the gauge bosons by {X, Y , Z}, and those acting on
the fermionic matter space by {σ x,σ y,σ z}. The occurrence of both gauge-bosonic and
fermionic degrees of freedom implies a gauge redundant Hilbert space. With our choice
of basis, a gauge transformation at site n is defined by [16]

�g(n) = XnXn–1eiπ [ψ†
nψn+ 1

2 ((–1)n–1)],

= (–1)n+1XnXn–1σ
z
n . (10)

We illustrate a gauge-invariant state |ψ〉 of the lattice system in Fig. 2, where the fermionic
states are in the computational basis, and the gauge bosons are in the X-eigenbasis, X|±〉 =
±|±〉. This subspace of the total Hilbert space is needed to compute physical observables.
The particular state shown is known as the strong coupling vacuum state of the theory for
m > 0 and μ = 0.
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Figure 2 Depiction of a gauge-invariant state for Z1+12
LGT with staggered fermions on a lattice with linear
extent L. The links are all in the eigenstate of X with
eigenvalue +1, the even sites are empty (fermions) or
in state |1〉 = |down〉 in our convention, and the odd
sites are filled (anti-fermions), denoted by the state |0〉 = |up〉. We note here that the links at the boundary are
set to unity

2.2.2 Resource-efficient formulation
It turns out that one can eliminate the fermionic matter fields while simultaneously re-
moving the Hilbert space redundancy of the theory. This is accomplished in a two-step
process whereby the fermions are first mapped to hard-core bosons by a unitary transfor-
mation and are then decoupled from the gauge bosons by a second unitary transformation
[14, 15]. This method is, in fact, a very powerful formalism which can also be applied in
arbitrary dimensions to continuous gauge groups such as SU(N) and U(N) [17]. For Z2

LGT in 1 + 1 dimensions, the Hamiltonian in this formulation is as follows

H (2)
E = –

L–2∑

n=0

(
εZn +

J
2

Yn

)
, (11)

H (2)
GM = –

J
2

L–3∑

n=1

Zn–1YnZn+1

–
J
2

(Y0Z1 + ZL–3YL–2), (12)

H (2)
M = –

m
2

L–1∑

n=1

Zn–1Zn –
m
2

(Z0 + ZL–2), (13)

H (2)
μ =

μ

2

L–2∑

n=1

εnZn–1Zn

+
μ

2
(Z0 + εL–1ZL–2). (14)

One notices that the Hamiltonian obtained by performing the above-mentioned transfor-
mations only vaguely resembles the original 1 + 1-dimensional Kogut-Susskind Hamilto-
nian.2 For example, the gauge-matter interaction in Eq. (12) couples sets of three adjacent
links. Similarly, for the term originating from the staggered mass in Eq. (13), one obtains
a coupling between two adjacent links. With this resource-efficient formulation, one can
simulate larger systems without worrying about the elements of the variational circuit
preserving gauge invariance.

3 Implementation and results
The Z2 lattice gauge theory has a discrete chiral symmetry in the massless limit [18] which
can break spontaneously at low T . At large temperatures as well as at large values of the
chemical potential, this symmetry is restored. To benchmark our approximation to the

2With the additional note that the starting point to derive the above Hamiltonian in ref. [14] is actually a Kogut-Susskind
Hamiltonian in the electric basis of Z2 LGT.
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Gibbs state, we calculate the chiral condensate, 〈ψ̄ψ〉, which is sensitive to restoring chi-
ral symmetry. As this is a local, time-independent observable, one would like a second,
time-dependent observable that measures correlations in the system. We chose to study
the unequal-time density-density correlator, which provides information about charge dy-
namics in the system.

3.1 Gauge redundant formulation
In this formulation of the theory, gauge invariance has to be considered explicitly. Apart
from the gauge-invariant initial state (c.f. Figure 2), this not only applies to the variational
circuits VQC1/2 but also to the intermediate measurement during which qubits repre-
senting gauge bosons will be measured in the X-eigenbasis, whereas fermionic qubits are
measured in the computational basis. A schematic depiction of the circuit illustrating the
above-mentioned components is shown in Fig. 1. For VQC1/2, a gauge-invariant gate set
can be constructed by following the general considerations laid out in [19]. This consists of
simply taking the Pauli strings in our Hamiltonian Eq. (6) as elementary building blocks.
Due to the simplicity of the model, the gate set will hence decompose into parameter-
dependent single qubit Rx and Rz gates, together with a 3-qubit gate ∼ eiσ xZσ x+iσ yZσ y stem-
ming from the hopping term in Eq. (6). Following the procedure presented in [20], the
latter can be easily decomposed into single-qubit and entangling gates.3 In Fig. 3, one ob-
serves the resulting circuit layer consisting of a sublayer of single-qubit gates along with a
sublayer of the decomposed multi-qubit gate for a three-qubit system where the �i rep-
resent generic variational parameters. A schematic of the variational circuit layer is also
shown in Fig. 4 (left). Several such layers then yield the VQCi, with parameter sets θ and φ

for i = 1, 2, respectively (Eq. (5)). In practice, we find that using N/2 layers per variational
circuit VQCi yields a good variational approximation for a theory with N matter sites.

With the composition of the variational quantum circuits at hand, we still need to define
the figures of merit quantifying the quality of the optimization step depicted in the classical
block of Fig. 1. In addition to the relative difference in free energy, �F = Fρvar /FρGibbs – 1,
we take the fidelity [22]

F2(ρ1,ρ2) = (Tr
√√

ρ1ρ2
√

ρ2)2, (15)

as a distance measure between two quantum states represented by ρ1 and ρ2, respectively.
In Fig. 5, one sees the results of the classically simulated variational optimization process

Figure 3 Depiction of a single-layer of a variational quantum circuit in the gauge-redundant formulation. The
layer is composed of one sublayer of single-qubit rotation gates and a sublayer containing the decomposed
three-qubit gate which is formed from the gauge-matter term in the gauge-redundant formulation. All
relevant gates contain variational parameters �i

3We would also like to point to ref. [21] which introduces a shearing approach for gauge-invariant Trotterization of abelian
LGTs.
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Figure 4 Schematic of the variational ansatz circuit for the gauge-redundant formulation (left) and the
resource efficient formulation (right). Shown are the single qubit sublayer as well as sublayers resulting from
staggering of gates based on gauge-matter (GM) and mass terms (M) of the respective Hamiltonians. Note
that while in the gauge-redundant formulation (left) alternating qubits encode fermions and gauge-boson,
respectively, qubits in the resource efficient formulation (right) are purely “bosonic”

Figure 5 (Left) The fidelity of the approximation to the Gibbs state produced by VQT on the classical
simulator (ns = 104) and �F as a function of T/m at μ = 0 on a system with N = 4 matter sites, corresponding
to nq = 7 qubits in the gauge-redundant formulation. (Right) The chiral condensate 〈ψ̄ψ〉 calculated on the
same data sets where for clarity the exact result has also been included

for our gauge-redundant theory for N = 4 matter sites corresponding to nq = 7 qubits using
open boundary conditions with a two-layer ansatz in the VQCi. Simulating at aε = am =
0.5, aμ = 0 and a number of shots ns = 104 for varying T/m, chiral symmetry is explicitly
broken in our model. On the left, we plot the performance measures defined above, where
each point corresponds to the minimum in free energy over up to 102 samples, resulting
in optimal parameter sets (θ∗,φ∗). The quality of the approximation by the variational
ansatz decreases slightly in the crossover region until, with increasing T/m, the entropic
term in Eq. (2) becomes dominant, yielding a high-fidelity solution. On the right, the chiral
condensate 〈ψ̄ψ〉 evaluated using ρ2(θ∗,φ∗) is shown as a function of T/m. The displayed
errors were obtained from the variation of the observable over solutions corresponding to
the 20th percentile of the free energy distribution for each set of samples.

3.2 Resource efficient formulation
Turning now to the Hamiltonian Eqs. (11) with matter degrees of freedom eliminated
and gauge invariance built-in, the choice of variational ansatz circuits for the VQCi is in
principle unrestricted, leaving us with the freedom to use, e.g. hardware efficient circuits
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Figure 6 The decomposed three-qubit gate corresponding to the three boson coupling in Eq. (11)

Table 1 Gate depth per sublayer in terms of maximal number of operations on a single qubit,
subject to the unitaries whose schematic is given in Fig. 4. Note that the multi-qubit sublayers
contain staggered multi-qubit gates of the types given in Fig. 3 and Fig. 6

Formulation Single qubit sublayer Gauge-matter sublayer Mass sublayer Total

Gauge-Redundant, Eq. (6) 1 14 – 15
Resource efficient, Eq. (11) 2 13 5 20

such as EfficientSU2 from qiskit’s standard circuit library [23]. As for the set of physical
gates, by inspecting the Hamiltonian one sees that the single and multi-qubit terms can
be employed as elementary ansätze. As an example, the decomposed three-qubit term is
depicted in Fig. 6. An alternation of a single-qubit sublayer containing Rx and Ry gates,
followed by a staggered multi-qubit sublayer, will hence serve as our variational ansatz for
both VQC1/2, where the circuit schematic is shown in Fig. 4 (right). Using the resource-
efficient formulation, for the system size studied in this work (N = 8 matter sites), we found
that already one such alternation per VQCi yielded acceptable results in terms of the above
defined figures of merit, Eq. (15).

This should be contrasted by a comparison of the gate depths of our variational ansätze
for both, the gauge-redundant formulation and the resource efficient formulation. In Ta-
ble 1 we list the gate depth of the corresponding sublayers displayed in Fig. 4. Even though
our choice of ansatz for the resource efficient formulation leads to a higher gate depth, we
expect this to be compensated by the higher number of layers per VQCi required by the
gauge-redundant formulation.

3.2.1 Observables at T ,μ > 0
As was done in the gauge-redundant formulation, we quantitatively investigate the qual-
ity of our variational approximation to the Gibbs state and calculate the chiral condensate.
This has been done as a function of temperature T/m and varying chemical potential μ/m
at ε/m = 0.5 with ns = 104. Owing to the resource efficiency of the formulation, nq = 7 clas-
sically simulated qubits now correspond to twice the system size (N = 8) when compared
to the gauge-redundant formulation. While simulations for varying T/m across the cross-
over region, Fig. 7, show good agreement between exact and simulated results, entering
the transition region for fixed temperature and increasing μ/m, we see that our algorithm
has difficulty to match the exact result. One notes that as we lower the temperature, the
transition becomes more and more discontinuous. In Fig. 8 and Fig. 9, this observation is
confirmed by our estimation of the statistical error which measures the variation of 〈ψ̄ψ〉
over the top 20th percentile of variational solutions. We expect an increase in perfor-
mance can be achieved here by changing from the gradient-free optimization algorithm
(COBYLA) used in this study to gradient-based methods. This is an approach which we
have not pursued further.
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Figure 7 (Left) The fidelity of the approximation to the Gibbs state produced by VQT on the classical
simulator (ns = 104) and �f as a function of T/m for μ = 0 on a system with N = 8 matter sites, corresponding
to nq = 7 qubits in the resource-efficient formulation. (Right) The chiral condensate 〈ψ̄ψ〉 calculated on the
same data sets

Figure 8 (Left) The fidelity of the approximation to the Gibbs state produced by VQT on the classical
simulator (ns = 104) and �f as a function of μ/m for T/m = 0.8 on a system with N = 8 matter sites,
corresponding to nq = 7 qubits in the resource-efficient formulation.(Right) The chiral condensate 〈ψ̄ψ〉
calculated on the same data sets

Figure 9 (Left) The fidelity of the approximation to the Gibbs state produced by VQT on the classical
simulator (ns = 104) and �f as a function of μ/m for T/m = 0.4 on a system with N = 8 matter sites,
corresponding to nq = 7 qubits in the resource-efficient formulation. (Right) The chiral condensate 〈ψ̄ψ〉
calculated on the same data sets

3.2.2 Thermal unequal-time correlators
In addition to the study of quantum systems at finite fermion density, quantum simulation
in the NISQ era and beyond will allow the investigation of real-time observables. These in-
clude thermal unequal-time correlation functions. In general, an unequal-time correlator
of two operators takes the form

CAB(t) ≡ 〈
eiHtAe–iHtB

〉
=

〈
A(t)B

〉
, (16)
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Figure 10 The unequal-time thermal correlation function 〈O0(0)Oi(t)〉 for varying distance i = 1, . . . , 5 (shifted
in magnitude for displaying purposes) at T/m = 1 for N = 8, where Oi = εiZi–1 ⊗ Zi , i.e. the relevant term of the
number operator. The solid lines are the exact solutions while the crosses represent the values calculated with
the Trotterized time-evolution operator (aδt = 0.2) for the variatonal Gibbs state ρvar produced with infinite
statistics

where H is the Hamiltonian of the system and A(t) is the operator in the Heisenberg pic-
ture. In this study, the expectation value in (16) will be taken with respect to our variational
density matrix, ρ2(θ∗,φ∗).

The question of how one measures such a correlation function naturally arises when
studying lattice gauge theories. Fortunately, a general procedure has already been devised
to measure the correlation function of two arbitrary unitary operators A and B on a uni-
versal quantum computer [24, 25]. This procedure is commonly referred to as Ramsey
interferometry and only involves adding a single ancillary qubit entangled with our sys-
tem’s original nq qubits. The time evolution can be performed with a Trotterization of the
time evolution operator whose circuit depth increases linearly with the number of steps.
A variational approach also exists to obtain the time evolution of an arbitrary quantum
state with a fixed circuit depth [15]. In this work, a simple Trotterization has been used.

In Fig. 10 we show the unequal-time thermal density-density correlation function
〈O0(0)Oi(t)〉 at T/m = 1 for N = 8, where Oi ≡ εiZi–1 ⊗ Zi. The different data sets rep-
resent different spatial separations i = 1, . . . , 5 of the density operator on the lattice plotted
as a function of time with a remarkable agreement between simulated and exact results for
the time range displayed. In these classical simulations of our variational quantum circuit,
both VQC1 and VQC2 contain two layers of alternating single and multi-qubit sublayers.
For simplicity’s sake, we have assumed infinite statistics in the computation of ρ2(θ∗,φ∗),
hence excluding shot noise. One is ultimately interested in obtaining transport coefficients
from real-time dynamics. As the latter involves time integrals of unequal-time correlators,
it remains to be seen if such simulations yield sufficient accuracy.

3.2.3 q̄q meson screening
It is useful to check that our algorithm correctly reproduces physical observables, which
are more easily accessible by standard Euclidean methods. As an example, we consider the
thermal expectation value of a gauge-invariant q̄q meson operator, i.e. a quark anti-quark
pair connected by a flux tube [14, 26],

Mi ≡ ψ
†
0

( i–1∏

k=0

Uk

)

ψi, (17)
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Figure 11 The absolute value of the meson string operator as a function of the string length (lattice units) for
N = 8. The results for two temperatures, T/m = 0.5 (left) and T/m = 1.25 (right) are plotted using both the
variational Gibbs state (with infinite statistics) and the exact density matrix. One notices that at larger
temperatures the current variational ansätze give states which deviate from the exact result

where the links Uk are taken in the electric basis, Uk = Xk , used to derive the resource-
efficient expression of the observable [14]. As demonstrated recently with the help of
DMRG [27], at T = 0, this equal-time two-point function shows an exponential decay for
any ε > 0 (see also [28, 29] for recent theoretical work on confinement in Z2 and [30] for
its investigation on quantum hardware). The exponents of a spatial decay are screening
masses, which in this case give the energy of the flux tube and its excitations, whose lin-
ear increase with separation indicates confinement. We expect this behaviour to persist
for small temperatures until the onset of string breaking, when the flux gets increasingly
screened and its energy no longer grows with separation.

Using the same variational setup as described in Sect. 3.2.2, Fig. 11 shows |〈Mi〉| at
T/m = 0.5 (left) and T/m = 1.25 (right), respectively. Whereas the low-temperature corre-
lator exhibits marked similarities to the zero-temperature decay (c.f. [27]), which is accu-
rately captured by the variational Gibbs state, at higher temperatures, the algorithm fails to
reproduce the exact correlator accurately, possibly due to the low complexity of the ansatz
circuits in our simulations (two layers of variational gates for the VQCi). While this pre-
cludes a detailed picture of the long distance behavior with increasing temperature, our
variational calculation does exhibit two qualitative features known from other techniques:
i) the screening masses generally grow with temperature as expected (faster decay); ii) the
difference between high and low temperature is small at short distances, but pronounced
at large distances, because of the flux screening.

3.2.4 Resources and entropy estimation
We now turn to the question of resources in runtime and classical memory. Considering
the limited system sizes currently studied in the NISQ era, estimating the von Neumann
entropy S = –

∑
i pi log pi from the intermediate measurements via pi ≈ ni/ns is a viable

approach. Applying the algorithm with the information flow depicted in Fig. 1 for realistic
system sizes will necessarily involve a certain level of approximation. This stems from the
fact that the number of pi’s grows with the dimension of the Hilbert space, 2nq . One pos-
sible way proposed in [11], is the partitioning of the full nq qubit system into nq/nss inde-
pendent subsystems of size nss in the entropic part of the algorithm (VQC1) that prepares
the latent distribution ρ1(θ ). In the version of the algorithm which employs a classical esti-
mation of the entropy [7] this corresponds to a particular choice of the latent distribution
known as factorized latent space models. It remains to be seen if such an approximation
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Figure 12 The fidelity of the Gibbs state produced using the Taylor-series approximated von Neumann
entropy as a function of T/m at aμ = 0 for various truncation orders K on a system with N = 8 matter sites.
One sees that for low temperatures this approximation works well

is a valid approach for gauge theories where thermalization and subsystem entanglement
are non-trivially connected [31].

There are, however, alternative methods that can be used to estimate the entropy effi-
ciently. For example, it turns out that an evaluation of the Taylor series approximation to
the entropy can be useful [32], i.e.

SK (ρ1) =
K∑

n=0

Cntr
(
ρn+1

1 (θ )
)
, (18)

where

C0 =
K∑

k=1

1
k

, Cj =
K∑

k=j

(
k
j

)
(–1)j

k
, CK =

(–1)K

K
. (19)

Using the e.g. qubit-efficient, repeated SWAP-test to estimate the trace of various pow-
ers of the latent density matrix, tr(ρn+1

1 (θ )), this method requires the addition of N qubits
in the resource efficient formulation. It should be noted that the corresponding circuit
depth for the largest order tr(ρK+1

1 (θ )) is then given by K( N
2 dL + N), not counting the re-

set, and thus still scales polynomially in N for a system size of N matter sites, assuming
conservatively N/2 layers for VQC1 with layer depth dL, given in Table 1. The results of
this approach for the simple gauge theory used in this study are displayed in Fig. 12. For
temperatures up to T/m ∼ 1, only a few orders are needed to give reasonable values of the
fidelity and we attribute the change in ordering in the limit T → 0 to the accuracy of the
minimum found by the gradient-free optimization algorithm.

4 Conclusion
We have explored the use of variational quantum algorithms in producing thermal states.
These approaches were applied to Z2 lattice gauge theory in 1 + 1 dimensions using two
independent formulations, and several observables of interest were computed. We find
this variant of the VQT a suitable algorithm to approximate the thermal states of quantum
systems in the NISQ era as estimating the entropy of larger systems will necessarily lead to
larger approximation errors due to limited statistics. A particular aspect we have left for
future work is the performance of intermediate measurements for mixed-state creation on
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actual quantum devices compared to the usual approach of entangling ancillary systems
followed by a terminal measurement.

A further possible extension of our work is the formulation of the VQT to study non-
Abelian gauge theories at finite temperatures. As the latter will generally come with a
gauge-redundant Hilbert space, even after reformulating in a resource-efficient manner,
this amounts to respecting gauge invariance or equivalent local constraints throughout
the variational quantum circuit.
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