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Abstract 

The photosynthetic activity of phytoplankton in the seas is responsible for an estimated 50-80% 

of the world's oxygen generation. Both phytoplankton and zooplankton require some of this 

synthesized oxygen for cellular respiration. This study aims to better understand how the oxygen-

phytoplankton dynamics are altered due to the Allee effect in phytoplankton development, 

particularly when considering the time-dependent oxygen generation rate. The dynamic analysis 

of the model is dedicated to finding the possible equilibrium points. The analysis reveals that three 

equilibrium points can be obtained. The stability study demonstrates that one of the equilibrium 

points is always stable. The remaining equilibrium points are stable under specific conditions. We 

also identify bifurcations originating from these equilibrium points, including transcritical, 

pitchfork, and Hopf bifurcation. We derive conditions for stable limit cycles (supercritical Hopf 

bifurcation) and, in some cases, establish the non-existence of solutions. Numerical simulations 

are performed to validate our theoretical findings. Furthermore, it is noted that the Allee threshold 

for the phytoplankton population (𝑘0) significantly influences the overall dynamics of the system. 

When 𝑘0 ≤ 0.001, the population of plankton is at risk of extinction. On the other hand, when 

0.001 < 𝑘0 ≤ 0.01, the population of zooplankton is at risk of extinction. When 0.01 < 𝑘0 ≤ 2, 

the solution reaches a stable condition of coexistence. Conversely, when 𝑘0 ≥ 2.1, the solution 

exhibits periodic attractor behavior. 

 

Key-words: Plankton interaction; Strong Allee effect; Dissolved Oxygen; Stability analysis; Hopf 

bifurcation.  

MSC 2020: 34D05, 34D20, 34D23, 34D45, 92D40, 92D25. 
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1. Introduction 

 

Understanding dissolved oxygen dynamics has received much interest because it is such a key 

indicator for the health of the marine ecosystem [1]–[3]. Phytoplankton, the planktonic 

communities most resembling plants, supply the vast majority of the oxygen in the oceans through 

photosynthesis and serve as the foundation of the marine food chain. It is commonly known that 

the amount of oxygen generated by phytoplankton varies significantly due to environmental 

fluctuations such as the rate of salinity, the level of temperature, and the number of nutrients. 

Further, phytoplankton's oxygen production varies dramatically throughout the day and night. 

Therefore, the link between phytoplankton and dissolved oxygen is essential to the survival of 

most species, from the simplest (a single cell) to the most sophisticated (a human being). Changes 

in oxygen production can have profound consequences for marine life [4]. For instance, some 

environmental factors, including temperature, affect phytoplankton's biomass and growth. 

Dissolved oxygen levels in water fluctuate on a daily cycle since oxygen is created during 

photosynthesis (during the day) and absorbed during respiration (at all times). Phytoplankton 

communities are, therefore, valuable indicators of environmental changes [5]–[8]. For example, 

Mondal, Samanta and De la Sen have investigated how the coupled plankton-oxygen dynamics in 

the ocean is affected by a low oxygen production rate which can lead to oxygen depletion and 

plankton extinction [9].  

Most modelers generally select the Logistic growth form as the growth function for the prey 

species without considering the predator species [10]–[12]. However, it is common knowledge 

that the resources available in an ecosystem, such as space, food, and the components of essential 

nutrition, are finite. As the population grows, the average growth rate steadily decreases. The 

average growth rate drops to zero as the population meets the environment's carrying capacity, 𝑘, 

and drops further for any population size greater than 𝑘. Further, a substantial body of research 

suggests that a low population density actually has the opposite effect. The Allee effect is the name 

of this phenomenon, which describes the positive density dependency of population increase in 

areas with low densities [13]. 

On the other hand, the study of theoretical ecology has as its primary goal the identification of the 

various dynamical mechanisms linked with interactions between prey and predator [14]–[16]. An 

example of a particular type of predator-prey interaction that opens up various facets of marine 

ecology is the relationship between phytoplankton and zooplankton. Phytoplankton significantly 

contributes to aquatic ecosystems, including producing an enormous amount of oxygen, managing 

natural resources and water quality, and providing the basis for various food webs [17]–[18]. 

Research on the dynamics of plankton is a fascinating topic. The building blocks of all aquatic 

food chains can be found in plankton, with phytoplankton occupying the first trophic level of the 

food chain [19]. Phytoplankton toxins play a critical environmental function and can not be 

disregarded. Environmental stress factors, optimal environmental circumstances, nutrient-limited 

settings, and other similar characteristics are significant contributors to the release of toxins. Some 

phytoplankton species are notorious for producing and releasing toxic or allelochemicals into the 

environment, which can be detrimental to other plankton species [20]. For instance, Venturino, 
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Chattopadhyay and their colleagues have demonstrated that toxin-producing phytoplankton works 

as a controlling agent for the cessation of plankton blooms [21]. Dhar and Baghel consider the 

effect of dissolved oxygen on the presence of an interacting planktonic population. They conclude 

that the possibility of Hopf-bifurcation in the interior equilibrium could occur if the phytoplankton 

growth rate is chosen as the bifurcation parameter [22]. 

The objective of this research is to investigate the dynamics of the oxygen-plankton model as a 

result of the combined influence of the Allee effect on the growth of phytoplankton and the time-

dependent oxygen production rate in particular. Considering these effects, we propose a DOPZ 

model of dissolved oxygen- phytoplankton- zooplankton interaction with a strong Allee effect on 

phytoplankton growth. This paper's findings provide additional context for [22] by 

• Replacing the linear form in the growth rate of the phytoplankton population with growth 

in the form of the strong Allee effect.  

• In addition, our model includes both toxic and non-toxic phytoplankton, and we assume 

the zooplankton consumes both.  

• Further, we consider that some phytoplankton species have a low chance of being eaten by 

zooplankton by hiding in the various sediments on the seafloor. These sediments provide 

the prey with a place to hide from their predators. 

• Finally, since the phytoplankton performs photosynthesis throughout the day, they release 

oxygen into the atmosphere. this phenomenon has been considered in our model. 

After presenting the construction of our model, then our goal is to observe the impact of the Allee 

threshold on the dynamics of a DOPZ model. In addition, the comprehension of the nonlinear 

dynamics of our model will be discussed by employing different methodologies such as stability 

and bifurcation analysis techniques. Finally, we will verify the accuracy of our analytical results 

by simulating the proposed system numerically. 

 

2. Construction of the Model 

 

Our work involves a 3D model of an aquatic system with three components: phytoplankton 𝑢(𝑡), 

zooplankton 𝑣(𝑡), and concentration of dissolved oxygen  𝑤(𝑡). The following presumptions form 

the basis of the mathematical model that will aid in our understanding of the dynamics of the 

DOPZ system. 

The phytoplankton population is assumed to come in two types, toxic and non-toxic which can 

occasionally release harmful substances [23]. phytoplankton species are assumed to grow 

according to the strong Allee effect type of growth. The term 
𝑟𝑢

(𝑎1+𝑤0−𝑤)
(1 −

𝑢

𝑘
) (

𝑢

𝑘0
− 1) stands 

for the Allee effect type growth of phytoplankton, combining the absorption of dissolved oxygen 

with the growth rate 𝑟, the maximal phytoplankton carrying capacity 𝑘 and the critical 

phytoplankton level 𝑘0 (Allee threshold) such that  0 < 𝑘0 < 𝑘 [11]. When the population density 

drops below the critical threshold 𝑘0, the population starts to decrease, and the population tends to 

extinction. 𝑤0 is the constant concentration of dissolved oxygen that comes from several sources 
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in the water; 𝑎1 is the phytoplankton saturation constant; 𝛿1 denotes the phytoplankton's natural 

death rate; 𝛼1𝑢(1 − 𝑚)𝑣 represents the predation of the available phytoplankton by zooplankton. 

In addition, we consider that some phytoplankton populations have a low chance of being eaten 

by zooplankton by hiding in the various sediments that may be found on the seafloor. These 

sediments provide the prey with a place to hide from their predators [24]. Hence, (1 − 𝑚) 
represents the proportion of unprotected phytoplankton consumed by various zooplankton types. 

Thus the phytoplankton equation has the following form: 

 
 

𝑑𝑢

𝑑𝑡
=

𝑟𝑢

(𝑎1+𝑤0−𝑤)
(1 −

𝑢

𝑘
) (

𝑢

𝑘0
− 1) − 𝛼1𝑢(1 − 𝑚)𝑣 − 𝛿1𝑢. 

 

It is assumed that zooplankton feeds on the two categories mentioned above according to a 

modified Holling type I and II response [22], [25]. Thus, 
𝛼2𝑢(1−𝑚)𝑣

(𝑎2+𝑤0−𝑤)
 denotes the conversion from 

phytoplankton to zooplankton; 𝑎2 is the zooplankton saturation constant; 𝑎𝑢(1 −𝑚)𝑣 stands for 

the predation of toxic phytoplankton by zooplankton; 𝛿2 represents the zooplankton's natural death 

rate. Therfore, the  equation of zooplankton species can be written as 

𝑑𝑣

𝑑𝑡
=
𝛼2𝑢(1 − 𝑚)𝑣

(𝑎2 + 𝑤0 − 𝑤)
− 𝛿2𝑣 − 𝑎𝑢(1 − 𝑚)𝑣 

𝑤(𝑡) represents the oxygen concentration in an aquatic environment. Further, since the 

phytoplankton performs photosynthesis throughout the day, they release oxygen into the 

atmosphere. Additionally, the rate of oxygen depletion can be attributed to various factors, 

including the consumption of oxygen by phytoplankton during the night, the respiration of marine 

animals, and the gradual decline in oxygen concentration that results from chemical reactions that 

take place in the water [26]. Thus, 𝑠(𝑤0 −𝑤) represents the dissolved oxygen concentration that 

comes from other sources, 𝑑𝑢 represents the amount of oxygen produced as a result of the process 

of photosynthesis carried out by phytoplankton. 𝛾1𝑢𝑤 is the consumption of oxygen by 

phytoplankton during the night. 𝛾2𝑣𝑤 denotes the consumption of oxygen by zooplankton. 𝛾 is 

the natural depletion rate of oxygen. In this case, the dissolved oxygen equation can be written as: 

𝑑𝑤

𝑑𝑡
= 𝑠(𝑤0 − 𝑤) + 𝑑𝑢 − 𝛾𝑤 − 𝛾1𝑢𝑤 − 𝛾2𝑣𝑤. 

 

The following set of ordinary differential equations serves as the governing structure for the 

dynamical system of the DOPZ model: 

 𝑑𝑢

𝑑𝑡
=

𝑟𝑢

(𝑎1+𝑤0−𝑤)
(1 −

𝑢

𝑘
) (

𝑢

𝑘0
− 1) − 𝛼1𝑢(1 − 𝑚)𝑣 − 𝛿1𝑢 = 𝑓1(𝑢, 𝑣, 𝑤), 

𝑑𝑣

𝑑𝑡
=
𝛼2𝑢(1 −𝑚)𝑣

(𝑎2 + 𝑤0 − 𝑤)
− 𝛿2𝑣 − 𝑎𝑢(1 − 𝑚)𝑣 = 𝑓2(𝑢, 𝑣, 𝑤), 

𝑑𝑤

𝑑𝑡
= 𝑠(𝑤0 − 𝑤) + 𝑑𝑢 − 𝛾𝑤 − 𝛾1𝑢𝑤 − 𝛾2𝑣𝑤 = 𝑓3(𝑢, 𝑣, 𝑤), 

 

 

            (1) 
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with the initial conditions 𝑢(0) = 𝑢00 ≥ 0, 𝑣(0) = 𝑣00 ≥ 0. All parameters for the dissolved 

oxygen-phytoplankton-zooplankton model (DOPZ) are expected to be positive and clarified in 

Table 1.  

 

 

Table 1. The biological interpretation of the DOPZ system’s parameters. 

Parameters Biological interpretation 
 

𝒓 The growth rate of phytoplankton. 

𝜶𝟏 The capture rate of the available non-toxic phytoplankton by zooplankton. 

𝒎 ∈ (𝟎, 𝟏) The proportion of protected phytoplankton. 

𝜶𝟐 The conversion rate from phytoplankton to zooplankton. 

𝒂 The predation rate of toxic phytoplankton by zooplankton. 

𝜹𝟏 The phytoplankton’s natural death rate. 

𝜹𝟐 The zooplankton’s natural death rate. 

𝒂𝟏 The phytoplankton saturation constant. 

𝒂𝟐 The zooplankton saturation constant. 

𝒘𝟎 The constant concentration of dissolved oxygen that comes from other sources. 

𝒔 The replenishment rate of oxygen in the marine. 

𝒅 The amount of oxygen produced as a result of the process of photosynthesis 

carried out by phytoplankton. 

𝜸 The natural depletion rate of oxygen. 

𝜸𝟏 The consumption of oxygen by phytoplankton during the night. 

𝜸𝟐 The consumption of oxygen by zooplankton. 

 

Further, Figure 1 illustrates the schematic sketch of the DOPZ model. 
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Figure 1: Schematic diagram of the DOPZ model. 

 

In addition, the equations of the DOPZ model are 𝐶1(𝑅+
3), where 𝑅+

3 = {(𝑢, 𝑣, 𝑤), 𝑢 ≥ 0, 𝑣 ≥ 0,

𝑤 ≥ 0}. Therefore, they can be represented as Lipschitzian [27]. Thus, the solution of the DOPZ 

model exists, and it is unique. 

3. Dynamical Evaluation Results 
 

In this section,  the well-posedness of the system and present conclusions about the presence of 

potential equilibrium points are discussed. in addition, the analysis of stability and bifurcation 

around the potential equilibrium points is examined. 

 

3.1 Positivity and Boundedness 

Since we are working with a biological system, the solutions of the DOPZ are essential to be both 

positive and bounded. The boundedness of solutions indicates that none of the populations exhibit 

unlimited growth. The quality of being bound is a crucial aspect of the system's proper functioning, 

as available resources limit it. 

Theorem 1. All solutions of the DOPZ model 𝑢(𝑡), 𝑣(𝑡) and 𝑤(𝑡) with the initial conditions 

(𝑢00, 𝑣00, 𝑤00) ∈ 𝑅+
3  are positively invariant. 

Proof: By integrating the first and second functions of the DOPZ model for 𝑢(𝑡) and 𝑣(𝑡) with a 

positive initial condition (𝑢00, 𝑣00, 𝑤00), we obtain 
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𝑢(𝑡) = 𝑢00 𝑒𝑥𝑝 {∫ [
𝑟

(𝑎1 + 𝑤0 − 𝑤(𝜏))
(1 −

𝑢(𝜏)

𝑘
) (
𝑢(𝜏)

𝑘0
− 1)−𝛼1(1 − 𝑚)𝑣(𝜏) − 𝛿1] 𝑑𝜏

𝑡

0

} 

𝑣(𝑡) = 𝑣00 𝑒𝑥𝑝 {∫ [
𝛼2(1 − 𝑚)𝑢(𝜏)

(𝑎2 +𝑤0 − 𝑤(𝜏))
− 𝛿2 − 𝑎(1 −𝑚)𝑢(𝜏)] 𝑑𝜏

𝑡

0

} 

Then,  

𝑑𝑤 = (𝑠𝑤0 + 𝑑𝑢 − 𝑤(𝑠 + 𝛾 + 𝛾1𝑢 + 𝛾2𝑣)𝑑𝑡 

𝑑𝑤 =

[
 
 
 
 
 

𝑠𝑤0 + 𝑑𝑢00𝑒
∫ [

𝑟

(𝑎1+𝑤0−𝑤(𝜏))
(1−

𝑢(𝜏)
𝑘
)(
𝑢(𝜏)
𝑘0

−1)−𝛼1(1−𝑚)𝑣(𝜏)−𝛿1]𝑑𝜏
𝑡
0

−𝑤(
s + 𝛾 + 𝑐𝑣𝛾1𝑢00𝑒

∫ [
𝑟

(𝑎1+𝑤0−𝑤(𝜏))
(1−

𝑢(𝜏)
𝑘 )(

𝑢(𝜏)
𝑘0

−1)−𝛼1(1−𝑚)𝑣(𝜏)−𝛿1]𝑑𝜏
𝑡
0

−𝛾2𝑣00𝑒
∫ [

𝛼2(1−𝑚)𝑢(𝜏)

(𝑎2+𝑤0−𝑤(𝜏))
−𝛿2−𝑎(1−𝑚)𝑢(𝜏)]𝑑𝜏

𝑡
0

)

]
 
 
 
 
 

𝑑𝑡 

Therefore, after eliminating the non-negative terms, this produces 

 

𝑑𝑤 ≥ [−w(
s + γ + 𝛾1𝑢00𝑒

∫ [
𝑟

(𝑎1+𝑤0−𝑤(𝜏))
(1−

𝑢(𝜏)
𝑘 )(

𝑢(𝜏)
𝑘0

−1)−𝛼1(1−𝑚)𝑣(𝜏)−𝛿1]𝑑𝜏
𝑡
0

+𝛾2𝑣00𝑒
∫ [

𝛼2(1−𝑚)𝑢(𝜏)

(𝑎2+𝑤0−𝑤(𝜏))
−𝛿2−𝑎(1−𝑚)𝑢(𝜏)]𝑑𝜏

𝑡
0

)]𝑑𝑡 

Consequently, by integrating the equation shown above for 𝑤(𝑡), these yields 

𝑤(𝑡) ≥ 𝑤00𝑒𝑥𝑝 {∫ [−(s + 𝛾 + 𝛾1𝑢00𝑒
∫ [

𝑟
(𝑎1+𝑤0−𝑤(𝜏))

(1−
𝑢(𝜏)
𝑘 )(

𝑢(𝜏)
𝑘0

−1)−𝛼1(1−𝑚)𝑣(𝜏)−𝛿1]𝑑𝜏
𝑡̅
0

𝑡

0

+ 𝛾2𝑣00𝑒
∫ [

𝛼2(1−𝑚)𝑢(𝜏)

(𝑎2+𝑤0−𝑤(𝜏))
−𝛿2−𝑎(1−𝑚)𝑢(𝜏)]𝑑𝜏

𝑡̅
0

)]𝑑𝑡̅} 

As a result of the exponential function's definition, any solution, any solution (𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡)) 

that starts inside of 𝑅+
3  with positive initial conditions (𝑢00, 𝑣00, 𝑤00) will remain in 𝑅+

3 . □ 

 

Theorem 2. Assume that 𝛼1 ≥ 𝛼2 + 𝑎, then all solutions 𝑢(𝑡), 𝑣(𝑡) and 𝑤(𝑡) of the DOPZ model 

that initiates in 𝜁 = {(𝑢, 𝑣, 𝑤) ∈ 𝑅+
3 , 𝑢 + 𝑣 ≤

𝑘𝑟(𝑘+𝑘0)

𝛿𝑘0
, 𝑤 ≤

𝑠𝑤0+𝑘𝑑

𝑠+𝛾
}, where 𝛿 = 𝑚𝑖𝑛{𝛿1 + 𝑟, 𝛿2, }, are 

uniformly bounded. 

Proof: From the last equation of the DOPZ model, we obtain. 

𝑑𝑤

𝑑𝑡
≤ 𝑠𝑤0 + 𝑘𝑑 − (𝑠 + 𝛾)𝑤, 
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where 𝑘 is the maximal phytoplankton carrying capacity. Now, by applying the separation of 

variables method, the following is obtained: 

0 ≤ 𝑤(𝑡)  ≤
𝑠𝑤0 + 𝑘𝑑

𝑠 + 𝛾
 (1 − 𝑒−(𝑠+𝛾)𝑡) + 𝑤(0)𝑒−(𝑠+𝛾)𝑡 

Hence,  

0 ≤ 𝑙𝑖𝑚
𝑡→∞

 sup 𝑤(𝑡) ≤
𝑠𝑤0 + 𝑘𝑑

𝑠 + 𝛾
= ℊ. 

Let 𝐿 = 𝑢 + 𝑣, then 

𝑑𝐿

𝑑𝑡
=  
𝑑𝑢

𝑑𝑡
+ 
𝑑𝑣

𝑑𝑡
 

Using the above dissolved oxygen bound and the fact that 𝛼1 ≥ 𝛼2 + 𝑎, the following is obtained  

 

𝑑𝐿

𝑑𝑡
≤  

𝑟𝑢

(𝑎1 + 𝑤0 − ℊ)
(1 −

𝑢

𝑘
) (
𝑢

𝑘0
− 1) − 𝛼1𝑢(1 − 𝑚)𝑣 − 𝛿1𝑢 +

𝛼2𝑢(1 − 𝑚)𝑣

(𝑎2 + 𝑤0 − ℊ)
− 𝛿2𝑣

− 𝑎𝑢𝑣(1 −𝑚) 

i.e., 

𝑑𝐿

𝑑𝑡
≤  

𝑟𝑢

(𝑎1 + 𝑤0 − ℊ)
(1 −

𝑢

𝑘
) (
𝑢

𝑘0
− 1) − 𝛿1𝑢 − 𝛿2𝑣 

By using the maximal phytoplankton carrying capacity 𝑘 the following is obtained: 

𝑑𝐿

𝑑𝑡
≤
𝑘𝑟(𝑘 + 𝑘0)

𝑘0
− (𝛿1 + 𝑟)𝑢 − 𝛿2𝑣 

𝑑𝐿

𝑑𝑡
+  𝛿𝐿 ≤

𝑘𝑟(𝑘+𝑘0)

𝑘0
 , where  𝛿 = 𝑚𝑖𝑛. {𝛿1 + 𝑟, 𝛿2}. Then applying Gronwall's inequality [28], 

the following is obtained: 

0 ≤ 𝐿(𝑢(𝑡), 𝑣(𝑡))  ≤
𝑘𝑟(𝑘 + 𝑘0)

𝛿𝑘0
 (1 − 𝑒−𝛿𝑡) + 𝐿(0)𝑒−𝛿𝑡 , 

hence,  

0 ≤ 𝑙𝑖𝑚
𝑡→∞

 𝑠𝑢𝑝 𝐿(𝑡) ≤
𝑘𝑟(𝑘 + 𝑘0)

𝛿𝑘0
 . 

So, 𝑢(𝑡), 𝑣(𝑡) and 𝑤(𝑡) will remain bounded. □ 

 

Remark 1. Since 𝛼1 indicates phytoplankton depletion owing to zooplankton intake and 𝛼2 and 𝑎  

represent growth and the predation rate of toxic phytoplankton due to plankton interaction 

respectively, it is logical to conclude that 

𝛼1 ≥ 𝛼2 + 𝑎. 
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Since we are dealing with a nonlinear system it is not easy to solve the proposed 

system directly. So the better way to understand the behavior of a non-linear system 

is to study the stability and the possible accruing of a bifurcation near the possible 

equilibrium points [29]. 

 

3.2 Existence of equilibria 

 

The DOPZ model has the following steady states: 

1. The dissolved oxygen equilibrium point (DOEP) is given by 𝐹1 = (0,0, 𝑤̂), where 𝑤̂ =
𝑠𝑤0

𝑠+𝛾
.  

2. The zooplankton free equilibrium point (ZFEP) given by 𝐹2 = (𝑢̅, 0, 𝑤̅), where 𝑤̅ =
𝑠𝑤0+𝑑𝑢

𝑠+𝛾+𝛾1𝑢
> 0 and 𝑢 is the root of the following equation: 

𝑔(𝑢) = 𝐴1𝑢
3 + 𝐴2𝑢

2 + 𝐴3𝑢 + 𝐴4, 

where 𝐴1 = 𝛾1𝑟; 𝐴2 = 𝑟(𝑠 + 𝛾) − 𝛾1𝑟(𝑘 + 𝑘0);  

𝐴3 = −𝑟(𝑘 + 𝑘0)(𝑠 + 𝛾) − 𝛿1𝑘𝑘0𝑑 + 𝑘𝑘0𝛾1(𝑠𝑎1 + 𝑠𝑤0 + 𝑟); 

𝐴4 = 𝑘𝑘0[(𝑟 + 𝛿1𝑎1)(𝑠 + 𝛾) + 𝛿1𝑤0𝛾].  

Clearly,  𝑔(0) = 𝑘𝑘0[(𝑟 + 𝛿1𝑎1)(𝑠 + 𝛾) + 𝛿1𝑤0𝛾] > 0, and  

𝑔(𝑘) = 𝑟2(𝑟(𝛾 +  𝑠) − 𝑟𝛾1(𝑘 + 𝑘0))– 𝑟(𝑟(𝑘 + 𝑘0)(𝛾 + 𝑠) − 𝑘𝑘0𝛾1(𝑟 + 𝑠𝑎1 + 𝑠𝑤0)

+ 𝑑𝑘𝑘0𝛿1) + 𝑟
4𝛾1 + 𝑘𝑘0((𝛾 + 𝑠)(𝑟 + 𝑎1𝛿1) + 𝛾𝛿1𝑤0). 

Therefore, by the intermediate value theorem [30], 𝑔(𝑢) has a positive root say 𝑢 = 𝑢̅ in the 

interval (0, 𝑘) if 𝑔(𝑘) < 0. 

3. The coexisting equilibrium point (CEP) given by 𝐹3 = (𝑢
∗, 𝑣∗, 𝑤∗), where 𝑢∗ =

𝛿2(𝑎2+𝑤0−𝑤
∗)

(1−𝑚)[𝛼2−𝑎(𝑎2+𝑤0−𝑤
∗)]
,  𝑣∗ =

𝑟(𝑘+𝑘0)𝑢
∗−𝑟𝑢∗

2
−𝑟𝑘𝑘0−𝛿1𝑘𝑘0(𝑎1+𝑤0−𝑤

∗)

𝛼1(1−𝑚)(𝑎1+𝑤0−𝑤
∗)𝑘𝑘0

, and 𝑤∗ is the root of the 

following equation: 

 𝐵0𝑤
5 + 𝐵1𝑤

4 + 𝐵2𝑤
3 + 𝐵3𝑤

2 + 𝐵4𝑤 + 𝐵5 = 0, (2) 

where, 𝐵𝑖 , 𝑖 = 1,2,3,4,5 are listed in the Appendix section. Using Descartes's rule of sign [31], 

Equation (2) has a unique positive root, if one of the following sets conditions hold: 

 𝐵0 > 0 and 𝐵2,3,4,5 < 0, 

𝐵0,1 > 0 and 𝐵3,4,5 < 0, 

𝐵0,1,2 > 0 and 𝐵4,5 < 0, 

𝐵0,1,2,3 > 0 and 𝐵5 < 0, 
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𝐵0 < 0 and 𝐵2,3,4,5 > 0, 

𝐵0,1 < 0 and 𝐵,3,4,5 > 0, 

𝐵0,1,2 < 0 and 𝐵4,5 > 0, 

𝐵0,1,2,3 < 0 and 𝐵5 > 0, 

(3) 

 

For 𝑢∗and 𝑣∗to be positive, the following two conditions must be satisfied: 

 𝛼2 > 𝑎(𝑎2 + 𝑤0 − 𝑤
∗), 

𝑟(𝑘 + 𝑘0)𝑢
∗ > 𝑟𝑢∗2 + 𝑟𝑘𝑘0 + 𝛿1𝑘𝑘0(𝑎1 + 𝑤0 − 𝑤

∗). 

 

(4) 

 

3.3 Local Stability 

 

The feature of the eigenvalues of the Jacobian matrix 𝐽(𝑢, 𝑣, 𝑤) at an equilibrium point is directly 

related to the behaviour of the DOPZ model near an equilibrium [32]. The 𝐽(𝑢, 𝑣, 𝑤) of the DOPZ 

model at any point, say (𝑢, 𝑣, 𝑤), can be written as: 

𝐽 =

[
 
 
 
 
 
𝜕𝑓1
𝜕𝑢

𝜕𝑓1
𝜕𝑣

𝜕𝑓1
𝜕𝑤

𝜕𝑓2
𝜕𝑢

𝜕𝑓2
𝜕𝑣

𝜕𝑓2
𝜕𝑤

𝜕𝑓3
𝜕𝑢

𝜕𝑓3
𝜕𝑣

𝜕𝑓3
𝜕𝑤]

 
 
 
 
 

= (𝑎𝑖𝑗)3×3, 

where,  𝑎11 =
2𝑟𝑢(𝑘+𝑘0)−3𝑟𝑢

2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤)𝑘𝑘0
− 𝛼1𝑣(1 − 𝑚) − 𝛿1 𝑎12 = −𝛼1𝑢(1 −𝑚); 𝑎13 =

𝑟𝑢2(𝑘+𝑘0)−𝑟𝑢
3−𝑟𝑘𝑘0𝑢

(𝑎1+𝑤0−𝑤)
2𝑘2𝑘0

2 ; 𝑎21 =
𝛼2𝑣(1−𝑚)

(𝑎2+𝑤0−𝑤)
− 𝑎𝑣(1 −𝑚); 𝑎22 =

𝛼2𝑢(1−𝑚)

(𝑎2+𝑤0−𝑤)
− 𝛿2 − 𝑎𝑢(1 − 𝑚); 𝑎23 =

𝛼2𝑢(1−𝑚)𝑣

(𝑎2+𝑤0−𝑤)
2; 𝑎31 = 𝑑 − 𝛾1𝑤; 𝑎32 = −𝛾2𝑤; 𝑎33 = −(𝑠 + 𝛾 + 𝛾1𝑢 + 𝛾2𝑣). 

Keeping this in mind, we take a look at the DOPZ system around each equilibrium: 

1. The Jacobian matrix at the DOEP 𝐹1 = (0,0, 𝑤̂) is given as: 
 

 

𝐽(𝐹1) = [

−𝑟

(𝑎1 + 𝑤0 − 𝑤̂)
− 𝛿1 0 0

0 −𝛿2 0
𝑑 − 𝛾1𝑤̂ −𝛾2𝑤̂ −𝑠 − 𝛾

] 

 

(5) 

Then,  𝐽(𝐹1) has the eigenvalues 𝜆11 =
−𝑟

(𝑎1+𝑤0−𝑤̂)
− 𝛿1 < 0,  𝜆12 = −𝛿2 < 0, and 𝜆13 = −𝑠 −

𝛾 < 0, which means 𝐹1 is a locally asymptotically stable point. 

 

2. The Jacobian matrix at the ZFEP 𝐹2 = (𝑢̅, 0, 𝑤̅) is given as: 
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𝐽(𝐹2) = [

𝑎11
[2] 𝑎12

[2] 𝑎13
[2]

𝑎21
[2] 𝑎22

[2] 𝑎23
[2]

𝑎31
[2] 𝑎32

[2] 𝑎33
[2]

], 

 

                (6) 

where 𝑎11
[2] =

2𝑟𝑢̅(𝑘+𝑘0)−3𝑟𝑢̅
2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
;  𝑎12

[2] = −𝛼1𝑢̅(1 − 𝑚), 𝑎13
[2] =

𝑟𝑢̅2(𝑘+𝑘0)−𝑟𝑢̅
3−𝑟𝑘𝑘0𝑢̅

(𝑎1+𝑤0−𝑤̅)
2𝑘2𝑘0

2 , 𝑎21
[2] =

0; 𝑎22
[2] =

𝛼2𝑢̅(1−𝑚)

(𝑎2+𝑤0−𝑤̅)
− 𝛿2 − 𝑎𝑢̅(1 − 𝑚); 𝑎23

[2] = 0; 𝑎31
[2] = 𝑑 − 𝛾1𝑤̅;  𝑎32

[2] = −𝛾2𝑤̅;  𝑎33
[2] = −𝑠 −

𝛾 − 𝛾1𝑢̅. 

Then, the characteristic equation of 𝐽(𝐹2) is given by: 

(
𝛼2𝑢̅(1 − 𝑚)

(𝑎2 + 𝑤0 − 𝑤̅)
− 𝛿2 − 𝑎𝑢̅(1 − 𝑚) − 𝜆) [𝜆

2 − 𝑇𝑟(𝐽(𝐹2))𝜆 + 𝐷𝑒𝑡(𝐽(𝐹2))] 

 The eigenvalues of the above equation can be written as follows 

 𝜆21 =
𝛼2𝑢̅(1−𝑚)

(𝑎2+𝑤0−𝑤̅)
− 𝛿2 − 𝑎𝑢̅(1 − 𝑚), 

𝑇𝑟(𝐽(𝐹2)) =
[2𝑟𝑢̅(𝑘+𝑘0)−3𝑟𝑢̅

2−𝑟𝑘𝑘0]−(𝑠+𝛾+𝛾1𝑢̅)(𝑎1+𝑤0−𝑤̅)𝑘𝑘0

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
,  

 𝐷𝑒𝑡(𝐽(𝐹2)) =
[2𝑟𝑢̅(𝑘+𝑘0)−3𝑟𝑢̅

2−𝑟𝑘𝑘0][−𝑠−𝛾−𝛾1𝑢̅]

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
− [

𝑟𝑢̅2(𝑘+𝑘0)−3𝑢̅
3−𝑟𝑘𝑘0𝑢̅

(𝑎1+𝑤0−𝑤̅)
2𝑘2𝑘0

2 ] [𝑑 − 𝛾1𝑤̅]. 

Clearly, 𝐹2 exhibits local asymptotic stability if and only if the following conditions are fulfilled: 

 
𝛿2 + 𝑎𝑢̅(1 − 𝑚) >

𝛼2𝑢̅(1 − 𝑚)

(𝑎2 + 𝑤0 − 𝑤̅)
,

2𝑟𝑢̅(𝑘 + 𝑘0) < 3𝑟𝑢̅3 + 𝑟𝑘𝑘0 + (𝑠 + 𝛾 + 𝛾1𝑢̅)(𝑎1 + 𝑤0 − 𝑤̅)𝑘𝑘0,

𝐷𝑒𝑡(𝐽(𝐹2)) > 0. }
 
 

 
 

 

 

 

 

(7) 

3. The Jacobian matrix at the CEP 𝐹3 = (𝑢
∗, 𝑣∗, 𝑤∗) is given as: 

 

 

𝐽(𝐹3) = [

𝑎11
[3] 𝑎12

[3] 𝑎13
[3]

𝑎21
[3] 𝑎22

[3] 𝑎23
[3]

𝑎31
[3] 𝑎32

[3] 𝑎33
[3]

]. 

 

                   (8) 

where, 𝑎11
[3] =

2𝑟𝑢∗(𝑘+𝑘0)−3𝑟𝑢
∗2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤
∗)𝑘𝑘0

− 𝛿1 − 𝛼1𝑣
∗(1 − 𝑚); 𝑎12

[3] = −𝛼1𝑢
∗(1 −𝑚); 𝑎13

[3] =

𝑟𝑢∗
2(𝑘+𝑘0)−𝑟𝑢

∗3−𝑟𝑘𝑘0𝑢
∗

(𝑎1+𝑤0−𝑤
∗)2𝑘2𝑘0

2 ; 𝑎21
[3] =

𝛼2𝑣
∗(1−𝑚)

(𝑎2+𝑤0−𝑤
∗)
− 𝑎𝑣∗(1 − 𝑚); 𝑎22

[3] = 0, 𝑎23
[3] =

𝛼2𝑢
∗(1−𝑚)𝑣∗

(𝑎2+𝑤0−𝑤
∗)2

,; 𝑎31
[3] =

𝑑−𝛾1𝑤
∗; 𝑎32

[3] = −𝛾2𝑤
∗; 𝑎33

[3] = −𝑠 − 𝛾 − 𝛾1𝑢
∗ − 𝛾2𝑣

∗. 

Therefore, the characteristic equation of 𝐽(𝐹3) is represented as: 
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 𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0, (9) 

where,   

𝐴1 = −(𝑎11
[3] + 𝑎33

[3]), 

𝐴2 = −(𝑎13
[3]𝑎31

[3] + 𝑎23
[3]𝑎32

[3] + 𝑎12
[3]𝑎21

[3] − 𝑎11
[3]𝑎33

[3]), 

𝐴3 = 𝑎11
[3]𝑎23

[3]𝑎32
[3] + 𝑎12

[3]𝑎21
[3]𝑎33

[3] − 𝑎13
[3]𝑎21

[3]𝑎32
[3] − 𝑎12

[3]𝑎23
[3]𝑎31

[3], 

∆= 𝐴1𝐴2 − 𝐴3 = (𝑎11
[3] + 𝑎33

[3]) (𝑎13
[3]𝑎31

[3] − 𝑎11
[3]𝑎33

[3]) + 𝑎11
[3]𝑎12

[3]𝑎21
[3] + 𝑎23

[3]𝑎32
[3]𝑎33

[3] +

𝑎12
[3]𝑎23

[3]𝑎31
[3] + 𝑎13

[3]𝑎21
[3]𝑎32

[3]
. 

Now, from the Routh-Hurwitz criteria [32], 𝐹3 is a LAS  point, under the condition that 𝐴1 >

0, 𝐴3 > 0 and ∆> 0.  

In the following theorem, adequate conditions for the global stability of the CEP, which is given 

by 𝐹3 = (𝑢
∗, 𝑣∗, 𝑤∗) are identified by the Lyapunov method [33]. 

Theorem 3. Assume that 

[𝑑 + 𝑤∗]2 ≤
4𝑐1𝑟

𝑘𝑘0
[(𝑢 + 𝑢∗) − (𝑘 + 𝑘0)][𝑠 + 𝛾 + 𝛾1𝑢 + 𝛾2𝑣]

𝑤∗(𝑣 − 𝑣∗)(𝑤 − 𝑤∗) < [√
𝑐1𝑟

𝑘𝑘0
[(𝑢 + 𝑢∗) − (𝑘 + 𝑘0)] + √𝑠 + 𝛾 + 𝛾1𝑢 + 𝛾2𝑣]

2

𝛼2 > 𝑎 }
 
 

 
 

                  (10) 

then CEP is globally asymptotically stable in 𝑅+
3 . 

Proof:  Define 𝐺3  = 𝑐1 (𝑢 − 𝑢
∗ − 𝑢∗ ln

𝑢

𝑢∗
) + 𝑐2 (𝑣 − 𝑣

∗ − 𝑣∗ ln
𝑣

𝑣∗
)  + 𝑐3 (

𝑤−𝑤∗

2
)
2

, where 𝑐1, 𝑐2 

and 𝑐3 are positive constants to be specified and 𝐺3(𝑢, 𝑣, 𝑤) is a positive definite function of CEP. 

Thus, 

 
𝑑𝐺3

𝑑𝑡
≤ 𝑐1(𝑢 − 𝑢

∗) [−
𝑟𝑢2

𝑘𝑘0
+
𝑟(𝑘+𝑘0)𝑢

𝑘𝑘0
− 𝑟 +

𝑟𝑢∗
2

𝑘𝑘0
−
𝑟(𝑘+𝑘0)𝑢

∗

𝑘𝑘0
+ 𝑟 − 𝛼1(1 −𝑚)(𝑣 − 𝑣

∗] +

𝑐2(𝑣 − 𝑣
∗)[(𝛼2 − 𝑎)(1 −𝑚)(𝑢 − 𝑢

∗)] + 𝑐3(𝑤 − 𝑤
∗) [−(𝑠 + 𝛾)(𝑤 − 𝑤∗) + 𝑑(𝑢 − 𝑢∗) −

𝛾1𝑢(𝑤 − 𝑤
∗) + 𝑤∗(𝑢 − 𝑢∗) − 𝛾2𝑣(𝑤 − 𝑤

∗) + 𝑤∗(𝑣 − 𝑣∗)] 

Therefore, 

𝑑𝐺3
𝑑𝑡

≤ −
𝑐1𝑟(𝑢 − 𝑢

∗)2

𝑘𝑘0
[(𝑢 + 𝑢∗) − (𝑘 + 𝑘0)] − (1 − 𝑚)(𝑢 − 𝑢

∗)(𝑣 − 𝑣∗)[𝑐1𝛼1 − 𝑐2𝛼2 + 𝑐2𝑎]

− 𝑐3(𝑤 − 𝑤
∗)2[(𝑠 + 𝛾) + 𝛾1𝑢 + 𝛾2𝑣] + 𝑐3(𝑢 − 𝑢

∗)(𝑤 − 𝑤∗)[𝑑 + 𝑤∗]

+ 𝑐3𝑤
∗(𝑣 − 𝑣∗)(𝑤 − 𝑤∗) 

By choosing the constants as: 𝑐2 = 𝑐3 = 1 and 𝑐1 =
(𝛼2−𝑎)

𝛼1
, the following is obtained, 
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𝑑𝐺3
𝑑𝑡

≤ −
𝑐1𝑟

𝑘𝑘0
[(𝑢 + 𝑢∗) − (𝑘 + 𝑘0)](𝑢 − 𝑢

∗)2 + [𝑑 + 𝑤∗](𝑢 − 𝑢∗)(𝑤 − 𝑤∗)

− [(𝑠 + 𝛾) + 𝛾1𝑢 + 𝛾2𝑣](𝑤 − 𝑤
∗)2 + 𝑤∗(𝑣 − 𝑣∗)(𝑤 − 𝑤∗). 

After some algebraic computation, we obtain 

𝑑𝐺3
𝑑𝑡

≤ − [√
𝑐1𝑟

𝑘𝑘0
[(𝑢 + 𝑢∗) − (𝑘 + 𝑘0)](𝑢 + 𝑢

∗) + √𝑠 + 𝛾 + 𝛾1𝑢 + 𝛾2𝑣(𝑤 − 𝑤
∗)]

2

+ 𝑤∗(𝑣 − 𝑣∗)(𝑤 − 𝑤∗) 

Then, 
𝑑𝐺3

𝑑𝑡
< 0 under condition (10). Hence, 𝐺3 is a Lyapunov function. Therefore, CEP is globally 

asymptotically stable in 𝑅+
3  if  𝑢, 𝑣 and 𝑤 are controlled as in condition (10).  

  

3.4 Local Bifurcation 

 

Bifurcation theory looks at how the structure of a group of curves, like the solutions to a set of 

differential equations, can change over time. A bifurcation happens when a small, smooth change 

in the values of a system's parameters causes a big change in the way it acts. It is most often used 

in mathematics to study systems that change over time. Local bifurcations happen when 

parameters cross critical thresholds and cause changes in the local stability of equilibria. In this 

section, it is checked to see if there is a chance of local bifurcation. See [27] and [34] for a 

comprehensive treatment. To this end, we rewrite the DOPZ model as follows: 

𝑑𝑈

𝑑𝑡
= 𝐹(𝑈), with 𝑈 = (

𝑢
𝑣
𝑤
), and 𝐹 = (

𝑓1(𝑢, 𝑣, 𝑤)

𝑓2(𝑢, 𝑣, 𝑤)

𝑓3(𝑢, 𝑣, 𝑤)
). 

For a nonzero vector  𝑍 = (𝑧1, 𝑧2, 𝑧3)
𝑇 we set 

 
𝐷2𝐹(𝑧, 𝑧) = [

𝑐11
𝑐21
𝑐31
], 

 

(11) 

where,  

𝑐11 =
[2𝑟(𝑘+𝑘0)−6𝑟𝑢]𝑧1

2

(𝑎1+𝑤0−𝑤)𝑘𝑘0
− 2𝛼1(1 − 𝑚)𝑧1𝑧2 + [

2𝑟𝑢(𝑘+𝑘0)−3𝑟𝑢
2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤)
2 ] [𝑧1𝑧3 +

𝑧1𝑧3

𝑘2𝑘0
2] +

[
2𝑟𝑢2(𝑘+𝑘0)−2𝑟𝑢

3−2𝑟𝑘𝑘0𝑢

(𝑎1+𝑤0−𝑤)
3𝑘2𝑘0

2 ], 

𝑐21 =
2𝛼2(1−𝑚)

(𝑎2+𝑤0−𝑤)
[𝑧1𝑧2 −

𝑢𝑣𝑧3
2

(𝑎2+𝑤0−𝑤)
2] − 2𝑎(1 − 𝑚)𝑧1𝑧2, 

𝑐31 = −2𝛾1𝑧1𝑧3 − 2𝛾2𝑧2𝑧3. 

Jo
urn

al 
Pre-

pro
of



14 

 

 

Theorem 4. For 𝛼2
∗ =

[𝛿2+𝑎𝑢̅(1−𝑚)](𝑎2+𝑤0−𝑤̅)

𝑢̅(1−𝑚)
, the DOPZ model, at 𝐹2 has  

1) no saddle-node bifurcation. 

2) a transcritical bifurcation if  

 (𝑃[2])
𝑇
[𝐷2𝐹(𝐹2, 𝛼2

∗)(𝑍[2], 𝑍[2])] ≠ 0.                 (12) 

3) a pitchfork bifurcation if condition (12) is violated and the following statement is satisfied 

 (𝑃[2])
𝑇
[𝐷3𝐹(𝐹2, 𝛼2

∗)(𝑍[2], 𝑍[2], 𝑍[2])] ≠ 0,                 (13) 

where the notation in (12) and (13) will be introduced during the proof. 

Proof: - At 𝛼2
∗ =

[𝛿2+𝑎𝑢̅(1−𝑚)](𝑎2+𝑤0−𝑤̅)

𝑢̅(1−𝑚)
,  𝐽(𝐹2) has a zero eigenvalue 𝜆21 = 0. Therefore, 𝐽(𝐹2) 

at 𝛼2
∗ becomes 

𝐽∗(𝐹2) = [

2𝑟𝑢̅(𝑘+𝑘0)−3𝑟𝑢̅
2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤)𝑘𝑘0
− 𝛿1 −𝛼1𝑘

𝑟𝑢̅2(𝑘+𝑘0)−𝑟𝑢̅
3−𝑟𝑘𝑘0𝑢̅

𝑇2
2𝑘2𝑘0

2

0 0 0
𝑑 − 𝛾1𝑤̅ −𝛾2𝑤̅ −𝑠 − 𝛾 − 𝛾1𝑢̅

]. 

Now, let 𝑍[2] = (𝑧1
[2], 𝑧2

[2], 𝑧3
[2])

𝑇
 be an eigenvector corresponding to 𝜆21 = 0. Thus 

(𝐽∗(𝐹2) − 𝜆21𝐼)𝑍
[2] = 0, which gives: 

𝑧1
[2]
=

[𝛼1𝑢̅(1−𝑚)𝑒1𝑒3
2+𝑒2𝛾2𝑤̅]𝑧2

[2]

[(𝑒4−𝛾1𝑒3)𝑒1𝑒3+𝑒2(𝑑−𝛾1𝑤̅)]𝑘𝑘0
, 𝑧3
[2] =

(𝑑−𝛾1𝑤̅)𝑧1
[2]
−𝛾2𝑤̅𝑧2

[2]

𝑠+𝛾+𝛾1𝑢̅
  and 𝑧2

[2]  represents any nonzero 

real number, where (𝑒4 − 𝛾1𝑒3)𝑒1𝑒3 + 𝑒2(𝑑 − 𝛾1𝑤̅) ≠ 0 and 

𝑒1 = 𝑠 + 𝛾 + 𝛾1𝑢̅; 𝑒2 = 𝑟𝑢̅
2(𝑘 + 𝑘0) − 𝑟𝑢̅

3 − 𝑟𝑘𝑘0𝑢̅; 𝑒3 = (𝑎1 + 𝑤0 − 𝑤̅)𝑘𝑘0; 𝑒4 =

2𝑟𝑢̅(𝑘 + 𝑘0) − 3𝑟𝑢̅
2 − 𝑟𝑘𝑘0. That means 

 𝑍[2] = (
[𝛼1𝑢̅(1−𝑚)𝑒1𝑒3

2+𝑒2𝛾2𝑤̅]𝑧2
[2]

[(𝑒4−𝛾1𝑒3)𝑒1𝑒3+𝑒2(𝑑−𝛾1𝑤̅)]𝑘𝑘0
, 𝑧2
[2],

(𝑑−𝛾1𝑤̅)𝑧1
[2]
−𝛾2𝑤̅𝑧2

[2]

𝑠+𝛾+𝛾1𝑢̅
 )
𝑇

. 

Let 𝑃[2] = (𝑝1
[2]
, 𝑝2
[2]
, 𝑝3
[2]
)
𝑇
 be an eigenvector associated with 𝜆21 = 0 of the matrix 𝐽2

∗𝑇. Then 

(𝐽2
∗𝑇 − 𝜆21𝐼)𝑃

[2] = 0. By solving this equation for 𝑃[2], 𝑃[2] =

( 𝑝1
[2], 𝑝2

[2],
𝑟𝑢̅2(𝑘+𝑘0)−𝑟𝑢̅

3−𝑟𝑘𝑘0𝑢̅

(𝑎1+𝑤0−𝑤̅)
2𝑘2𝑘0

2(𝑠+𝛾+𝛾1𝑢̅)
)
𝑇

is obtained, where p1
[2]

and p2
[2]

 is any nonzero real number. 

Then, the following is taken into account to check if saddle-node bifurcation meets the criteria of 

Sotomayor's theorem [35]: 

𝜕𝐹

𝜕𝛼2
= 𝐹𝛼2(𝐹2, 𝛼2) = (

𝜕𝑓1
𝜕𝛼2

,
𝜕𝑓2
𝜕𝛼2

,
𝜕𝑓3
𝜕𝛼2

)
𝑇

= (0,
𝑢𝑣(1 − 𝑚)

(𝑎2 + 𝑤0 − 𝑤)
, 0)

𝑇

. 

So, 𝐹𝛼2(𝐹2, 𝛼2
∗) = (0,0,0)𝑇. 
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Therefore, the first criterion for transcritical bifurcation or pitchfork bifurcation holds, whilst 

saddle-node bifurcation cannot arise. Subsequently,  

𝐷𝐹𝛼2(𝐹2, 𝛼2
∗) = [

0 0 0

0
𝑢̅(1 −𝑚)

(𝑎2 + 𝑤0 − 𝑤̅)
0

0 0 0

] 

where, 𝐷𝐹𝛼2(𝑆, 𝛼2) represents the derivative of 𝐹𝛼2(𝑆, 𝛼2) with respect to 𝑆 = (𝑢, 𝑣, 𝑤)𝑇. 

Furthermore, 

𝐷𝐹𝛼2(𝐹2, 𝛼2
∗)𝑍[2] = [

0 0 0

0
𝑢̅(1 − 𝑚)

(𝑎2 + 𝑤0 − 𝑤̅)
0

0 0 0

] [

𝑧1
[2]

𝑧2
[2]

𝑧3
[2]

] 

(𝑃[2])
𝑇
𝐷𝐹𝛼2(𝐹2, 𝛼2

∗)𝑍[2] = (𝑝1
[2], 𝑝2

[2], 𝑝3
[2]) (0,

𝑢̅(1−𝑚)𝑧2
[2]

(𝑎2+𝑤0−𝑤̅)
, 0)

𝑇

=
𝑢̅(1−𝑚)𝑧2

[2]
𝑝2
[2]

(𝑎2+𝑤0−𝑤̅)
≠ 0. 

Therefore, the second condition for transcritical or pitchfork bifurcation holds. 

Next, we assume that condition (12) holds, i.e. 

(𝑃[2])
𝑇
[𝐷2𝐹(𝐹2, 𝛼2

∗)(𝑍[2], 𝑍[2])] ≠ 0. 

This implies that the necessary conditions for a transcritical bifurcation are met.  

Finally, if condition (12) is not satisfied, then the first, second and third conditions of pitchfork 

bifurcation are satisfied according to Sotomayor's theorem. Further, we have 

𝐷3𝐹(𝑧, 𝑧, 𝑧) = [

𝑥11
𝑥21
𝑥31

], 

where, 

𝑥11 = −
6𝑟𝑧1

3

(𝑎1+𝑤0−𝑤)𝑘𝑘0
+ [

2𝑟(𝑘+𝑘0)−6𝑟𝑢

(𝑎1+𝑤0−𝑤)
2 ] [2𝑧1

2𝑧3 +
𝑧1
2𝑧3

𝑘2𝑘0
2] + [

4𝑟𝑢(𝑘+𝑘0)−6𝑟𝑢
2−2𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤)
3 ] [𝑧1𝑧3

2 +

2𝑧1𝑧3
2

𝑘2𝑘0
2 ] +

6𝑟𝑢[𝑢(𝑘+𝑘0)−𝑢
2−𝑘𝑘0]𝑧3

2

(𝑎1+𝑤0−𝑤)
4𝑘2𝑘0

2 ;  

𝑥21 =
2𝛼2(1−𝑚)𝑧3

(𝑎2+𝑤0−𝑤)
2 [𝑧1𝑧2 −

𝑣𝑧1𝑧3

(𝑎2+𝑤0−𝑤)
−

𝑢𝑧2𝑧3

(𝑎2+𝑤0−𝑤)
−

3𝑢𝑣𝑧3
2

(𝑎2+𝑤0−𝑤)
2]; 𝑥31 = 0. 

 

Hence, 
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(𝑃[2])
𝑇
[𝐷3𝐹(𝐹2, 𝛼2

∗)(𝑍[2], 𝑍[2], 𝑍[2])]   = (𝑝1
[2], 𝑝2

[2], 𝑝3
[2]) (−

6𝑟[𝑧1
[2]
]
3

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
+

[
2𝑟(𝑘+𝑘0)−6𝑟𝑢̅

(𝑎1+𝑤0−𝑤̅)
2 ] [2 [𝑧1

[2]]
2
𝑧3
[2] +

[𝑧1
[2]
]
2
𝑧3
[2]

𝑘2𝑘0
2 ] + [

4𝑟𝑢̅(𝑘+𝑘0)−6𝑟𝑢̅
2−2𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤̅)
3 ] [𝑧1

[2] [𝑧3
[2]]

2
+
2𝑧1

[2]
[𝑧3
[2]
]
2

𝑘2𝑘0
2 ] +

6𝑟𝑢̅[𝑢̅(𝑘+𝑘0)−𝑢̅
2−𝑘𝑘0][𝑧3

[2]
]
2

(𝑎1+𝑤0−𝑤̅)
4𝑘2𝑘0

2 ,
2𝛿2+2𝑎𝑢̅(1−𝑚)

(𝑎2+𝑤0−𝑤̅)
[𝑧1
[2]𝑧2

[2]
𝑧3
[2] −

𝑧2
[2]
[𝑧3
[2]
]
2

𝑘2𝑘0
2 ] , 0)

𝑇

. 

= −
6𝑟[𝑧1

[2]
]
3
𝑝1
[2]

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
+ [

2𝑟(𝑘+𝑘0)−6𝑟𝑢̅

(𝑎1+𝑤0−𝑤̅)
2 ] [2 [𝑧1

[2]]
2
𝑧3
[2] +

[𝑧1
[2]
]
2
𝑧3
[2]

𝑘2𝑘0
2 ] 𝑝1

[2] +

[
4𝑟𝑢̅(𝑘+𝑘0)−6𝑟𝑢̅

2−2𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤̅)
3 ] [𝑧1

[2] [𝑧3
[2]]

2
+
2𝑧1

[2]
[𝑧3
[2]
]
2

𝑘2𝑘0
2 ] 𝑝1

[2] +
6𝑟𝑢̅[𝑢̅(𝑘+𝑘0)−𝑢̅

2−𝑘𝑘0][𝑧3
[2]
]
2

(𝑎1+𝑤0−𝑤̅)
4𝑘2𝑘0

2 𝑝1
[2] +

2𝛿2+2𝑎𝑢̅(1−𝑚)

(𝑎2+𝑤0−𝑤̅)
[𝑧1
[2]𝑧2

[2]𝑧3
[2] −

𝑧2
[2]
[𝑧3
[2]
]
2

𝑘2𝑘0
2 ] 𝑝2

[2]
. 

 

This means if condition (13) is satisfied, then the DOPZ model has a pitchfork bifurcation at 𝐹2 

with the parameter 𝛼2
∗. 

Theorem 5. For  𝛾2
∗ =

𝑎11
[3]
(𝑎13

[3]
𝑎31
[3]
+𝑎12

[3]
𝑎21
[3]
+𝑎11

[3]
𝑎33
[3]
−[𝑎33

[3]
]
2
)+𝑎13

[3]
[𝑎31
[3]
𝑎33
[3]
+𝑎21

[3]
𝑎32
[3]
]

[𝑎32
[3]
𝑎33
[3]
+𝑎12

[3]
𝑎31
[3]
]𝑤∗

, where the formulas 

of 𝑎𝑖𝑗
[3] = 𝑑𝑖𝑗 are given in the following proof, the DOPZ model at CEP has a saddle-node 

bifurcation if 

 𝐷2𝐹(𝐹3, 𝛾1
∗)(𝑍[3], 𝑍[3]) ≠ 0. (14) 

 

Proof: - According to 𝐽(𝐹3), given by (8), the DOPZ model at CEP has a zero eigenvalue, say 

𝜆31 = 0, at 𝛾2
∗ =

𝑎11
[3]
(𝑎13

[3]
𝑎31
[3]
+𝑎12

[3]
𝑎21
[3]
+𝑎11

[3]
𝑎33
[3]
−[𝑎33

[3]
]
2
)+𝑎13

[3]
[𝑎31
[3]
𝑎33
[3]
+𝑎21

[3]
𝑎32
[3]
]

[𝑎32
[3]
𝑎33
[3]
+𝑎12

[3]
𝑎31
[3]
]𝑤∗

, where (𝑎32
[3]𝑎33

[3] +

𝑎12
[3]𝑎31

[3]) ≠ 0 and the Jacobian matrix  𝐽∗(𝐹3) = 𝐽(𝐹3, 𝛾2
∗), becomes: 

𝐽∗(𝐹3) = [

𝑑11 𝑑12 𝑑13
𝑑21 𝑑22 𝑑23
𝑑31 𝑑32 𝑑33

] 

𝑑11 =
2𝑟𝑢∗(𝑘+𝑘0)−3𝑟𝑢

∗2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤
∗)𝑘𝑘0

− 𝛼1𝑣(1 − 𝑚) − 𝛿1; 
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𝑑12 = −𝛼1𝑢
∗(1 − 𝑚); 𝑑13 =

𝑟𝑢∗
2(𝑘+𝑘0)−𝑟𝑢

∗3−𝑟𝑘𝑘0𝑢
∗

(𝑎1+𝑤0−𝑤
∗)2𝑘2𝑘0

2 ; 𝑑21 =
𝛼2𝑣

∗(1−𝑚)

(𝑎2+𝑤0−𝑤
∗)
− 𝑎𝑣∗(1 − 𝑚); 𝑑22 =

0; 𝑑23 =
𝛼2𝑢

∗(1−𝑚)𝑣∗

(𝑎2+𝑤0−𝑤
∗)2

; 𝑑31 = 𝑑 − 𝛾1𝑤
∗;  𝑑32 = −𝛾2

∗𝑤∗;  𝑑33 = −𝑠 − 𝛾 − 𝛾1𝑢
∗ − 𝛾2

∗𝑣∗. 

Now, let 𝑍[3] = (𝑧1
[3], 𝑧2

[3], 𝑧3
[3])

𝑇
 be an eigenvector corresponding to 𝜆31 = 0. Thus 

(𝐽∗(𝐹3) − 𝜆31𝐹)𝑍
[3] = 0, which implies: 𝑧1

[3] =
−𝑑23𝑧3

[3]

𝑑21
, 𝑧2
[3] =

(𝑑31𝑑23−𝑑21𝑑33)𝑧3
[3]

𝑑21𝑑23
, where 𝑑21 ≠

0 and 𝑧3
[3]

 represents any nonzero real number. That means 𝑍[3] = (𝑧1
[3], 𝑧2

[3], 𝑧3
[3])

𝑇
. 

Let 𝑃[3] = (𝑝1
[3], 𝑝2

[3], 𝑝3
[3])

𝑇
 be an eigenvector associated with 𝜆31 = 0 of the matrix 𝐽∗(𝐹3). Then 

(𝐽3
∗𝑇 − 𝜆31𝐼)𝑃

[3] = 0. By solving this equation for 𝑃[3], 𝑃[3] = (
−𝑑32𝑃3

[3]

𝑑12
, [
𝑑13𝑑32

𝑑12𝑑23
−

𝑑33

𝑑23
] 𝑃3

[3], 𝑃3
[3]
)
𝑇

is obtained, where 𝑃3
[3]

 is any nonzero real number. 

Now, the following are quantified to ensure that Sotomayor's theorem for saddle-node 

bifurcation holds: 

𝜕𝐹

𝜕𝛾2
= (

𝜕𝑓1
𝜕𝛾2

,
𝜕𝑓2
𝜕𝛾2

,
𝜕𝑓3
𝜕𝛾2

)
𝑇

= (0,0, −𝑣𝑤)𝑇 . 

So, 𝐹𝛾2 = (𝐹3, 𝛾2
∗) = (0,0, −𝑣∗𝑤∗)𝑇and hence (𝑃[3])

𝑇
𝐹𝛾2(𝐹3, 𝛾2

∗) = −𝑣∗𝑤∗𝑝3
[3]
≠ 0. 

Hence, the first requirement for saddle-node bifurcation is satisfied, but transcritical or pitchfork 

bifurcation is not possible. Subsequently,  

 𝐷2𝐹(𝐹3, 𝛾1
∗)(𝑍[3], 𝑍[3]) = (

2𝑟(𝑘+𝑘0)−6𝑟𝑢
∗[𝑧1

[3]
]
2

(𝑎1+𝑤0−𝑤
∗)𝑘𝑘0

− 2𝛼1(1 − 𝑚)𝑧1
[3]𝑧2

[3] +

[
2𝑟𝑢∗(𝑘+𝑘0)−3𝑟𝑢

∗2−𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤
∗)2

] [𝑧1
[3]𝑧3

[3] +
𝑧1
[3]
𝑧3
[3]

𝑘2𝑘0
2 ] +

2𝑟𝑢∗[𝑢∗(𝑘+𝑘0)−𝑢
∗2−𝑘𝑘0][𝑧3

[3]
]
2

(𝑎1+𝑤0−𝑤
∗)3𝑘2𝑘0

2 ,
2𝛼2(1−𝑚)

(𝑎2+𝑤0−𝑤
∗)
[𝑧1
[3]𝑧2

[3] −

𝑢∗𝑣∗[𝑧3
[3]
]
2

(𝑎1+𝑤0−𝑤
∗)2
] − 2𝑎(1 − 𝑚)𝑧1

[3]𝑧2
[3], −2𝛾1𝑧1

[3]𝑧3
[3] − 2𝛾2

∗𝑧2
[3]𝑧3

[3])

𝑇

. 

Hence, condition (14) guarantees that the second condition of saddle-node bifurcation is satisfied. 

Therefore, the DOPZ model has saddle-node bifurcation at CEP with the parameter 𝛾2
∗.  

 

From Theorem 6, the Bendixson–Dulac criterion [13] is used to find the conditions that guarantee 

the DOPZ model has no periodic behaviour (Hopf bifurcation) in the positive quadrant of the 𝑢𝑤-

plane. 
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Theorem 6: The DOPZ System has no periodic solution in 𝑅+(𝑢,𝑤)
2 , if one of the following 

conditions is true for all (𝑢, 𝑤) in 𝑅+(𝑢,𝑤)
2 : 

 𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑤)𝑘𝑘0𝑤
<

2𝑢𝑟

(𝑎1+𝑤0−𝑤)𝑘𝑘0𝑤
+

𝑠𝑤0

𝑢𝑤2
+

𝑑

𝑤2
, 

𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑤)𝑘𝑘0𝑤
>

2𝑢𝑟

(𝑎1+𝑤0−𝑤)𝑘𝑘0𝑤
+

𝑠𝑤0

𝑢𝑤2
+

𝑑

𝑤2
. 

 

 

(15) 

  

Proof: For any initial value (𝑢,𝑤) in 𝑅+(𝑢,𝑤)
2 , let 𝐸(𝑢,𝑤) =

1

𝑢𝑤
, 𝑒1(𝑢, 𝑤) = 𝑢 [

𝑟

(𝑎1+𝑤0−𝑤)
(1 −

𝑢

𝑘
) (

𝑢

𝑘0
− 1) − 𝛿1] and 𝑒2(𝑢, 𝑤) = 𝑠(𝑤0 − 𝑤) + 𝑑𝑢 − 𝛾𝑤 − 𝛾1𝑢𝑤. 

Clearly, 𝐸(𝑢, 𝑤) > 0 for all (𝑢, 𝑤) ∈ 𝑅+
2  and it is a 𝐶1 function in 𝑅+(𝑢,𝑤)

2 = {(𝑢,𝑤), 𝑢 > 0,𝑤 >

0, }. 

Thus 𝛥(𝑢, 𝑤) =
𝜕

𝜕𝑢
(𝐸𝑒1) +

𝜕

𝜕𝑤
(𝐸𝑒2) =

−2𝑟𝑢+𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑤)𝑘𝑘0𝑤
−

𝑠𝑤0

𝑢𝑤2
−

𝑑

𝑤2
< 0. Δ(𝑢, 𝑣) does not change 

sign if one of the inequalities given on (15) satisfies and it is not identically zero in 𝑅+(𝑢,𝑤)
2 . 

Therefore, the DOPZ model has no periodic dynamics in 𝑅+(𝑢,𝑤)
2 . 

 

From Theorem 7, the steady state of ZFEP changes as the parameter 𝛾 crosses the threshold value 

𝛾∗, which implies that ZFEP may become unstable due to Hopf bifurcation when forced to operate 

within particular restrictions on its parameters. In the case where we use 𝛾 as the bifurcation 

parameter, the Hopf bifurcation threshold is the positive root of 𝑇𝑟 𝐽(𝐹2)|𝛾=𝛾∗ = 0, under the 

condition 𝐷𝑒𝑡 𝐽(𝐹2)|𝛾=𝛾∗ > 0. 

This leads us to the following theorem as a result. 

Theorem 7. Assume that the third inequality of condition (7) holds along with the following 

condition:           

 𝛾∗ > 0, (16) 
 

where 𝛾∗ is defined in the proof of the theorem. Then, the DOPZ model presents a Hopf bifurcation 

at 𝛾 = 𝛾∗ around the ZFEP. 

Proof: - The characteristic equation of matrix 𝐽(𝐹2) is  

𝜆2 − 𝑇𝑟(𝐽(𝐹2))𝜆 + 𝐷𝑒𝑡 𝐽(𝐹2) = 0, (17) 

and the prerequisites for the occurrence of the Hopf bifurcation are outlined below. 
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a) [𝑇𝑟 𝐽(𝐹2)]|𝛾=𝛾∗ = 0, 

b) [𝐷𝑒𝑡 𝐽(𝐹2)]|𝛾=𝛾∗ > 0, 

c) 
𝑑

𝑑𝛾
[𝑅𝑒(𝜆1,2)] 𝛾=𝛾∗ ≠ 0 (Transversality condition). 

Conditions (a) and (b) have been satisfied at 𝛾∗ =
2𝑟𝑢̅(𝑘+𝑘0)−3𝑟𝑢̅

2+𝑟𝑘𝑘0

(𝑎1+𝑤0−𝑤̅)𝑘𝑘0
− (𝑠 + 𝛾1𝑢̅). Clearly 

𝛾∗ > 0 if Condition 16 holds. At 𝛾 = 𝛾∗, the characteristic equation given by (17) is rewritten as 

𝜆2 + 𝐷𝑒𝑡 𝐽(𝐹2) = 0, which has two roots 

𝜆1,2 = ±𝑖√𝑑𝑒𝑡𝐽(𝐹2). 

Clearly, at 𝛾 = 𝛾∗ there are two purely imaginary eigenvalues 𝜆1and 𝜆2 which are complex 

conjugates under conditions (7). 

Further, we write the general roots of equation (3) in the neighbourhood of 𝛾∗as  

𝜆1,2 =
𝑡𝑟(𝐽(𝐹2))±𝑖√𝑑𝑒𝑡𝐽(𝐹2)

2
, then 

𝑑

𝑑𝛾
[𝑅𝑒(𝜆1,2)] 𝛾=𝛾∗ =

𝑑

𝑑𝛾
[
𝑡𝑟(𝐽(𝐹2))

2
]
 𝛾=𝛾∗

=
−1

2
≠ 0. 

That means the third condition (c) has been verified, ensuring that when 𝛾 = 𝛾∗, a Hopf bifurcation 

takes place at ZFEP. 

In theorem 8, the existence of a Hopf bifurcation around CEP is discussed. 

 

Theorem 8. Under the following assumptions 

 𝐴𝑖 > 0, 𝑖 = 1,2

𝑎12
[3]𝑎23

[3] − 𝑎13
[3]𝐴1

′ (𝛾1
∗) ≠ 0

𝛾1
∗ > 0.

 

(18) 

(19) 

(20) 

 

Here, Ai's represent the coefficients of the characteristic equation that was mentioned in equation 

(9) with 𝛾1 = 𝛾1
∗ and the formula for 𝛾1

∗ is given in the below proof. Then, there exists a Hopf 

bifurcation for CEP at 𝛾1 = 𝛾1
∗. 

Proof: - The value of the bifurcation parameter can be found if we set 𝐴1(𝛾1
∗)𝐴2(𝛾1

∗) − 𝐴3(𝛾1
∗) =

0 in equation (9). This gives: 

𝛾1
∗ =

(𝑑11𝑑13+𝑑13𝑑33+𝑑12𝑑23)𝑑+𝑑11(𝑑12𝑑21−𝑑11𝑑33−𝑑33
2 )+𝑑32(𝑑23𝑑33+𝑑13𝑑21)

(𝑑11𝑑13+𝑑13𝑑33+𝑑12𝑑23)𝑤
∗ . 

Clearly, 𝛾1
∗ > 0 if condition (20) holds. Now, at 𝛾1 = 𝛾1

∗ Equation (9) can be written as 

 (𝜆 + 𝐴1)(𝜆
2 + 𝐴2) = 0.  
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According to condition (18), the above equation has three roots, a negative root 𝜆1 = −𝐴1 and two 

purely imaginary roots  𝜆2,3 = ±𝑖√𝐴2. In a neighbourhood of 𝛾1
∗, the roots have the following 

forms: 𝜆1 = −𝐴1, 𝜆2,3 = 𝜌1(𝛾1) ± 𝑖𝜌2(𝛾1). 

Clearly, 𝑅𝑒( 𝜆2,3)|𝛾1=𝛾1∗ = 𝜌1(𝛾1
∗) = 0 indicates that the first condition for Hopf bifurcation has 

been met at 𝛾1 = 𝛾1
∗. Now to confirm the transversality condition, we substitute 𝜌1(𝛾1) ± 𝑖𝜌2(𝛾1) 

into equation (9) and then compute its derivative with respect to 𝛾1
∗, 𝛩(𝛾1

∗)𝜓(𝛾1
∗) + 𝛤(𝛾1

∗)𝜙(𝛾1
∗) ≠

0, where the form of 𝛩(𝛾1
∗), 𝜓(𝛾1

∗), 𝛤(𝛾1
∗) and 𝜙(𝛾1

∗) are 

𝜓(𝛾1) = 3𝜌1
2(𝛾1) + 2𝐴1(𝛾1)𝜌1(𝛾1) + 𝐴2(𝛾1) − 3𝜌2

2(𝛾1), 

𝜙(𝛾1) = 6𝜌1(𝛾1)𝜌2(𝛾1) + 2𝐴1(𝛾1)𝜌2(𝛾1), 

𝛩(𝛾1) = 𝜌1
2(𝛾1)𝐴1 

′(𝛾1) + 𝐴2 
′(𝛾1)𝜌1(𝛾1) + 𝐴3 

′(𝛾1) − 𝐴1 
′(𝛾1)𝜌2

2(𝛾1), 

𝛤(𝛾1) = 2𝜌1(𝛾1)𝜌2(𝛾1)𝐴1
′ (𝛾1) + 𝐴2

′ (𝛾1)𝜌2(𝛾1). 

Now at 𝛾1 = 𝛾1
∗, substitution 𝜌1 = 0 and 𝜌2 = √𝐴2, into equation (9), the following is obtained: 

𝜓(𝛾1
∗) = −2𝐴2(𝛾1

∗),

𝜙(𝛾1
∗) = 2𝐴1(𝛾1

∗)√𝐴2(𝛾1
∗),

𝛩(𝛾1
∗) = 𝐴3

′ (𝛾1
∗) − 𝐴1

′ (𝛾1
∗)𝐴2(𝛾1

∗),

𝛤(𝛾1
∗) = 𝐴2

′ (𝛾1
∗)√𝐴2(𝛾1

∗),

 

where 

 𝐴1
′ (𝛾1

∗) = 0, 

𝐴2
′ (𝛾1

∗) = 𝑎13
[3]𝑤∗, 

𝐴3
′ (𝛾1

∗) = 𝑎12
[3]𝑎23

[3]𝑤∗. 

 

 

Hence, condition (19) gives   

𝛩(𝛾1
∗)𝜓(𝛾1

∗) + 𝛤(𝛾1
∗)𝜙(𝛾1

∗) = −2𝐴2(𝛾1
∗)𝑤∗ [𝑎12

[3]𝑎23
[3] − 𝑎13

[3]𝐴1
′ (𝛾1

∗)] ≠ 0. 

That means the Hopf bifurcation has occurred at 𝛾1
∗. 

From Theorem 9, the stability condition of the stable limit cycle in 𝑅(𝑢,𝑣,𝑤)
3  is presented using the 

coefficient of curvature of the limit cycle [36]. For a detailed discussion, we refer to [27].  

 

Theorem 9 The DOPZ System has a stable limit cycle in 𝑅(𝑢,𝑣,𝑤)
3 , if the following conditions are 

true: 
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[
3𝑟(𝑢1 + 𝑢

∗) − 𝑟(𝑘 + 𝑘0)

8(𝑎1 + 𝑤0 − 𝑢3 − 𝑤
∗)𝑘𝑘0

] 𝛼1(1 −𝑚) <
3𝑟

4(𝑎1 + 𝑤0 − 𝑢3 − 𝑤
∗)𝑘𝑘0

 
(21) 

 

Proof: - We first shift the CEP, 𝐹3 = (𝑢
∗, 𝑣∗, 𝑤∗) to (0, 0, 0) by using the following 

transformations 𝑢 = 𝑢1 + 𝑢
∗, 𝑣 = 𝑢2 + 𝑣

∗, 𝑤 = 𝑢3 + 𝑤
∗. Then the DOPZ system becomes: 

 

𝑑𝑢1
𝑑𝑡

=
𝑟(𝑢1 + 𝑢

∗)

(𝑎1 + 𝑤0 − 𝑢3 − 𝑤
∗)𝑘𝑘0

[−(𝑢1 + 𝑢
∗)2 + (𝑢1 + 𝑢

∗)(𝑘 + 𝑘0) − 𝑘𝑘0]

− 𝛼1(𝑢1 + 𝑢
∗)(𝑢2 + 𝑣

∗)(1 − 𝑚) − (𝑢1 + 𝑢
∗)𝛿1 

𝑑𝑢2
𝑑𝑡

=
𝛼2(𝑢1 + 𝑢

∗)(𝑢2 + 𝑣
∗)(1 − 𝑚)

(𝑎2 + 𝑤0 − 𝑢3 − 𝑤
∗)

− 𝛿2(𝑢2 + 𝑣
∗) − 𝑎(𝑢1 + 𝑢

∗)(𝑢2 + 𝑣
∗)(1 −𝑚) 

𝑑𝑢3
𝑑𝑡

= 𝑠[𝑤0 − (𝑢3 + 𝑤
∗)] + 𝑑(𝑢1 + 𝑢

∗) − 𝛾(𝑢3 + 𝑤
∗) − 𝛾1(𝑢1 + 𝑢

∗)(𝑢3 + 𝑤
∗)

− 𝛾2(𝑢2 + 𝑣
∗)(𝑢3 +𝑤

∗), 

where the nonlinear part of the above system is presented in the following matrix is 

℧ = (
℧1
℧2
℧3

)

=

(

  
 

𝑟(𝑢1 + 𝑢
∗)

(𝑎1 + 𝑤0 − 𝑢3 − 𝑤
∗)𝑘𝑘0

[−(𝑢1 + 𝑢
∗)2 + (𝑢1 + 𝑢

∗)(𝑘 + 𝑘0) − 𝑘𝑘0] − 𝛼1(1 − 𝑚)𝑢1𝑢2

𝛼2(𝑢1 + 𝑢
∗)(𝑢2 + 𝑣

∗)(1 − 𝑚)

(𝑎2 +𝑤0 − 𝑢3 −𝑤
∗)

− 𝑎(1 − 𝑚)𝑢1𝑢2

−𝛾1𝑢1𝑢3 − 𝛾2𝑢2𝑢3 )

  
 

 

We derive the following characteristic quantities from the nonlinear part: 

𝑔20
0 =

1

4
{
𝜕2℧1

𝜕𝑢1
2 −

𝜕2℧1

𝜕𝑢2
2 + 2

𝜕2℧2

𝜕𝑢1𝜕𝑢2
+ 𝑖 (

𝜕2℧2

𝜕𝑢1
2 −

𝜕2℧2

𝜕𝑢2
2 − 2

𝜕2℧1

𝜕𝑢1𝜕𝑢2
)} =

1

2
{
−3𝑟(𝑢1+𝑢

∗)+𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

+

𝛼2(1−𝑚)

(𝑎2+𝑤0−𝑢3−𝑤
∗)
− 𝑎(1 − 𝑚) + 𝛼1(1 − 𝑚)𝑖}, 

𝑔11
0 =

1

4
{
𝜕2℧1

𝜕𝑢1
2 +

𝜕2℧1

𝜕𝑢2
2 + 𝑖 (

𝜕2℧2

𝜕𝑢1
2 +

𝜕2℧2

𝜕𝑢2
2 )} =

1

2
{
−3𝑟(𝑢1+𝑢

∗)+𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

}, 

𝐺110
0 =

1

2
{
𝜕2℧1

𝜕𝑢1𝜕𝑢3
+

𝜕2℧2

𝜕𝑢2𝜕𝑢3
+ 𝑖 (

𝜕2℧2

𝜕𝑢1𝜕𝑢3
−

𝜕2℧1

𝜕𝑢2𝜕𝑢3
)} =

1

2
{
−3𝑟(𝑢1+𝑢

∗)2+2𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑢3−𝑤
∗)2𝑘𝑘0

−
𝑟

(𝑎1+𝑤0−𝑢3−𝑤
∗)2
+

𝛼2(𝑢1+𝑢
∗)(1−𝑚)

(𝑎2+𝑤0−𝑢3−𝑤
∗)2
+ 𝑖 (

𝛼2(𝑢2+𝑣
∗)(1−𝑚)

(𝑎2+𝑤0−𝑢3−𝑤
∗)2
)}, 
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𝐺101
0 =

1

2
{
𝜕2℧1

𝜕𝑢1𝜕𝑢3
−

𝜕2℧2

𝜕𝑢2𝜕𝑢3
+ 𝑖 (

𝜕2℧2

𝜕𝑢1𝜕𝑢3
+

𝜕2℧1

𝜕𝑢2𝜕𝑢3
)} =

1

2
{
−3𝑟(𝑢1+𝑢

∗)2+2𝑟(𝑘+𝑘0)

(𝑎1+𝑤0−𝑢3−𝑤
∗)2𝑘𝑘0

−
𝑟

(𝑎1+𝑤0−𝑢3−𝑤
∗)2
−

𝛼2(𝑢1+𝑢
∗)(1−𝑚)

(𝑎2+𝑤0−𝑢3−𝑤
∗)2
+ 𝑖 (

𝛼2(𝑢2+𝑣
∗)(1−𝑚)

(𝑎2+𝑤0−𝑢3−𝑤
∗)2
)}, 

𝑊11
0 = −

1

4𝜆3(𝑎1(𝑘
∗)
(
𝜕2℧3

𝜕𝑢1
2 +

𝜕2℧3

𝜕𝑢2
2 ) = 0, 

𝑊20
0 = −

1

4𝜆3(𝑎1(𝑘
∗)
(
𝜕2℧3

𝜕𝑢1
2 +

𝜕2℧3

𝜕𝑢2
2 − 2𝑖

𝜕2℧3

𝜕𝑢1𝜕𝑢2
) = 0, 

𝐺21
0 =

1

8
{
𝜕3℧1

𝜕𝑢1
3 +

𝜕3℧1

𝜕𝑢1𝜕𝑢2
2 +

𝜕3℧2

𝜕𝑢2
3 +

𝜕3℧2

𝜕𝑢1
2𝜕𝑢2

+ 𝑖 (
𝜕3℧2

𝜕𝑢1
3 +

𝜕3℧2

𝜕𝑢1𝜕𝑢2
2 −

𝜕3℧1

𝜕𝑢2
3 −

𝜕3℧1

𝜕𝑢1
2𝜕𝑢2

)} =

−3𝑟

4(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

, 

Thus, the coefficient of the curvature of the limit cycle of the DOPZ system (1) is given by 

𝜎1
0 = 𝑅𝑒 {

𝑔20
0 𝑔11

0

4
𝑖 + 𝐺110

0 𝑊11
0 +

𝐺21
0 +𝐺101

0 𝑊20
0

2
}, 

𝜎1
0 = 𝑅𝑒 {(

6𝑟2(𝑢1+𝑢
∗)2+𝑟2(𝑘+𝑘0)

2

8(𝑎1+𝑤0−𝑢3−𝑤
∗)2𝑘2𝑘0

2) 𝑖 + [
3𝑟(𝑢1+𝑢

∗)−𝑟(𝑘+𝑘0)

8(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

] 𝛼1(1 − 𝑚) −
3𝑟

4(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

} =

[
3𝑟(𝑢1+𝑢

∗)−𝑟(𝑘+𝑘0)

8(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

] 𝛼1(1 −𝑚) −
3𝑟

4(𝑎1+𝑤0−𝑢3−𝑤
∗)𝑘𝑘0

. 

Thus, Condition (21) guarantees that the DOPZ system has a stable limit cycle. 

 

3.5 Numerical Simulations 

 

To validate our theoretical conclusions and get insight into the many possible dynamics of the 

DOPZ model, we conduct a numerical simulation here. In this research, all figures were created in 

MATLAB 2019b and were constructed and designed similarly to those in references [37]–[41], 

and the numerical solution to our system was found using the ode45 solver. Our primary objective 

is to examine the dynamics of the DOPZ system when the Allee effect is amplified in 

phytoplankton. For the specified variables: 

 r = 0.445533, 𝑘 = 4, 𝑘0 = 1, 𝛼1 = 0.4, 𝛼2 = 0.28, 𝛿1 = 0.1, 𝛿2 = 0.3,𝑚 =

0.36, 𝑎1 = 0.2, 𝑎2 = 0.2, 𝑤0 = 3, 𝑎 = 0.1, 𝑠 = 2.85, 𝛾1 = 0.18, 𝛾2 = 0.2, 𝛾 =

0.2, 𝑑 = 1, 

 

(22) 

and with different initial values, it is observed from Figure 2 that 𝐹3 = (1.23, 2.32, 2.61) is a 

globally asymptotically stable point.  
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Figure 2: Phase diagram of the DOPZ model with the data set supplied by (22) and varying initial values. 

 

To examine the effect of varying one parameter at a time on the behaviour of the DOPZ system, 

the DOPZ model has been numerically resolved for the data in (22). In light of this, Figures 3-4 

investigate the effect of change in the critical phytoplankton level 𝑘0 (Allee threshold) on the 

stability behaviour of the DOPZ model. The simulation shows rich dynamics when it is changed. 

For example, when 𝑘0 ≤ 0.001, the DOPZ model has no CEP, and the solution settles down to 

DOEP in the 𝑤- axis. While for the range 0.001 < 𝑘0 ≤ 0.01, the solution converges 

asymptotically to ZFEP on 𝑢𝑤- plane. For 0.01 < 𝑘0 ≤ 2, the solution converges asymptotically 

to CEP. On the other hand, for 𝑘0 ≥ 2.1, the solution shows a periodic attractor behaviour. 
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Figure 3: (a) Time series of the DOPZ system with 𝑘0 = 0.001; (b) phase diagram corresponding to (a); (c) time 

series with 𝑘0 = 0.01; (d) phase diagram of (c); (e) time series with 𝑘0 = 0.1; (f) phase diagram of (e). 
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Figure 4: (a) Time series of the DOPZ system with 𝑘0 = 2; (b) phase diagram corresponding to (a); (c) time series 

with 𝑘0 = 2.1; (d) phase diagram of (c). 

 

Further, Figure 5 investigates the effect of change in the consumption rate of oxygen by the 

phytoplankton during the night (𝛾1) on the stability properties of the DOPZ model. It shows for 

𝛾1 ≥ 0.78, the DOPZ model has no CEP, and the solution settles down to ZFEP in the 𝑢𝑤- plane. 

While for the range 0.001 < 𝛾1 < 0.78, the solution converges asymptotically to CEP in an 

oscillatory way. On the other hand, for a small   𝛾1 ≤ 0.001 the solution shows a periodic attractor 

behaviour. The latter result confirms the one that has been obtained in Theorems 8-9, which 

establishes the existence of Hopf bifurcation at 𝛾1
∗ = 0.001 and the stability of the obtained limit 

cycle. 
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Figure 5: (a) Time series of the DOPZ system with  𝛾1 = 0.78; (b) phase diagram corresponding to (a); (c) time 

series with 𝛾1 = 0.01; (d) phase diagram of (c); (e) time series with 𝛾1 = 0.001; (f) phase diagram of (e). 

 

Now the effect of changing the concentration of dissolved oxygen that comes from several sources 

(𝑤0) is explored in Figure 6. The figure shows that the solution settles asymptotically to the CEP, 

𝐹3 = (0.96, 3.26, 1.77), for 𝑤0 > 1.9. Further, the solution approaches a periodic attractor for   

𝑤0 ≤ 1.9. Accordingly, a decrease in 𝑤0 results in a drop in the DOPZ model's stability, which 

implies that condition 10 of Theorem 3 is broken and the system's (1) behavior changes from global 

stability to periodic behavior. The system in this instance is getting closer to a stable periodic 

attractor as a result of this outcome, which satisfies requirement 21 that is stated in Theorem 9. 
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Figure 6: (a) Time series of the DOPZ system with  𝑤0 = 2; (b) phase diagram corresponding to (a); (c) time series 

with 𝑤0 = 1.9; (d) phase diagram of (c). 

 

Further, Figure 7 illustrates the impact of varying the phytoplankton's growth rate 𝑟, on the 

behaviour of the DOPZ system. The solution stabilises at its positive equilibrium point CEP for 

𝑟 ≥ 0.1. The solution settles down to the dissolved oxygen equilibrium point (𝐹1) when 𝑟 < 0.1. 

Consequently, a decrease in 𝑟 leads to extinction in the plankton populations hence the stability 

behavior shifts from the positive equilibrium point (𝐹3) to the dissolved oxygen equilibrium point 

(𝐹1). This result suggests that condition 21 of Theorem 9 is violated, in this case, faces a 

transcritical bifurcation between 𝐹1 and 𝐹3. 
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Figure 7: (a) Time series of the DOPZ system with  𝑟 = 0.9; (b) phase diagram corresponding to (a); (c) time 

series with 𝑟 = 0. 1; (d) phase diagram of (c); (e) time series with 𝑟 = 0.01; (f) phase diagram of (e). 

 

Next, Figure 8 depicts the impact of varying the conservation rate from phytoplankton to 

zooplankton 𝛼2 on the behaviour of the DOPZ system. The solution asymptotically approaches 

the CEP for 𝛼2 ≥ 0.1, while the solution converges to the ZFEP in the 𝑢𝑤- plane 𝐹2 in Int.𝑅+(𝑢𝑤)
2  

when 𝛼2 < 0.1. This means that 𝐹2 loses stability at 𝛼2 = 0.1. As a consequence, the outcome that 

was given by Theorem 4 has been demonstrated to be accurate by the numerical simulations. 
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Figure 8: (a) Time series of the DOPZ system with  𝛼2 = 0.9; (b) phase diagram corresponding to (a); (c) time 

series with  𝛼2 = 0. 1; (d) phase diagram of (c); (e) time series with 𝛼2 = 0.01; (f) phase diagram of (e). 

 

In addition, Figure 9 displays the influence of varying the consumption of oxygen by zooplankton 

(𝛾2). Clearly, the solution approaches the CEP level when 𝛾2 ≥ 0.1. Further, for 𝛾2 < 0.1, the 

solution becomes a periodic attractor. Jo
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Figure 9: (a) Time series of the DOPZ system with  𝛾2 = 0.9; (b) phase diagram corresponding to (a); (c) time 

series with  𝛾2 = 0.1; (d) phase diagram of (c); (e) time series with 𝛾2 = 0.01; (f) phase diagram of (e). 

 

Now, Figure 10 discusses the effect of changing 𝛿1 on the behaviour of the DOPZ. The simulation 

shows for 𝛿1 ≤ 0.67, the solution accesses its CEP level. Further, for 𝛿1 > 0.67, the solution 

encounters a periodic attractor.  Jo
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Figure 10: (a) Time series of the DOPZ system with  𝛿1 = 0.67; (b) phase diagram corresponding to (a); (c) time 

series with  𝛿1 = 0.68; (d) phase diagram of (c); (e) time series with 𝛿1 = 0.0001; (f) phase diagram of (e). 

 

Next, the influence of changing 𝛿2 is investigated in Figure 11. The simulation illustrates that for 

𝛿2 ≥ 0.13, the solution stabilizes at its CEP level, while for 𝛿2 < 0.13 the solution follows a 

periodic attractor.  
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Figure 11: (a) Time series of the DOPZ system with  𝛿2 = 0.9; (b) phase diagram corresponding to (a); (c) time 

series with  𝛿2 = 0.13; (d) phase diagram of (c); (e) time series with 𝛿2 = 0.129; (f) phase diagram of (e). 

 

Finally, for varying the following parameters each time 𝛼1, 𝑠, 𝑑,𝑚, 𝑎, 𝛾, 𝑎1 and 𝑎2, the solution 

approaches its CEP in the interior of 𝑅(𝑢,𝑣,𝑤)
3 . For instance, see Figures 12-19. 
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Figure 12: (a) Time series of the DOPZ system with 𝑎2 = 0.9; (b) phase diagram corresponding to (a); (c) time 

series with 𝑎2 = 0.001; (d) phase diagram of (c). 

 

4. Discussion  
 

This paper modified the dissolved oxygen-plankton model to include a strong Allee effect in the 

phytoplankton population taking into account that the zooplankton feeds on both toxic and non-

toxic phytoplankton. The idea is to figure out how this kind of growth affects the dynamics of an 

aquatic environment. The system underwent theoretical and numerical analysis. The theoretical 

results detect that there are three steady states; the first one is the dissolved oxygen equilibrium 

point DOEP which always has stable behaviour. The second one is the zooplankton-free 

equilibrium point ZFEP which shows stable behaviour under certain conditions; otherwise, it could 

have become unstable, leading to bifurcations of saddle-node or periodic nature. The third one is 

CEP which also could be stable or unstable depending on specific conditions. The essential 

conditions have been found to ensure the happening of different types of bifurcation around the 

ZFEP and CEP. Nonetheless, the numerical simulation deduced when the stability criteria are met, 

the DOPZ system always sways about the CEP. Further, changing the critical phytoplankton level 

𝑘0 (Allee threshold), the solution presents diverse dynamics, such as extinction only for the 

phytoplankton population, extinction for both plankton species, persistence of all components, or 

periodic attractor dynamics. Thus, it can be considered a critical parameter affecting the whole 

system's dynamics. Moreover, for large 𝛾1, the consumption rate of oxygen by the phytoplankton 
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during the night, and for small 𝛼2, the zooplankton population undergoes extinction, and so the 

solution of the DOPZ system is moved from the CEP to a ZFEP. In addition, for small 𝑟, the 

phytoplankton's growth rate, both phytoplankton and zooplankton populations face extinction. 

However, for small 𝛾1, 𝛾2, 𝛿2 𝑤0, the DOPZ system shows limit cycle behaviour. The same 

behaviour could be detected for large 𝛿1. Finally, the solution is stabilized at the CEP when the 

remaining parameters are changed. 

5. Conclusion 

The strong Allee effect type of growth term for the phytoplankton population was incorporated in 

this work. This seems necessary since phytoplankton, which is responsible for an estimated 50-

80% of the world's oxygen generation, is becoming more and more endangered because of the 

increase in waste thrown into the water, in particular industrial waste. This, in turn, leads to damage 

of the other marine species. Therefore, it is reasonable to ask: How could we avoid the extinction 

of phytoplankton? Theorem 3 shows the conditions which guarantee that phytoplankton and 

zooplankton populations can coexist in a stable state. However, the simulation shows the system 

demonstrates many phenomena such as coexistence, extinction, and the limit cycle by altering the 

parametric values. These phenomena are fundamental characteristics of non-linear models. 

Further, the simulation illustrations that if 𝑘0 (Allee threshold of the phytoplankton population) 

and 𝛾 (The natural depletion rate of oxygen) cannot be controlled, the two species are threatened 

with extinction. For instance, the plankton population faces extinction at 𝑘0 ≤ 0.001, while 

zooplankton faces extinction for 0.001 < 𝑘0 ≤ 0.01. For 0.01 < 𝑘0 ≤ 2, the solution stabilized 

at the coexistence state. However, when 𝑘0 ≥ 2.1, the solution exhibits periodic attractor behavior. 

Finally, we suggest considering a stage structure for the zooplankton population in future work by 

expanding the model to include a system with four components. Further, the zooplankton 

population are assumed to grow logistically in the absence of the phytoplankton species, in this 

case, the latter is considered additional food for zooplankton. 
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APPENDIX 

The coefficient of equation (2) is defined below as: 

𝐵0 = 𝑎
2(𝑎𝑚1 − 𝛾1𝑚2), 

𝐵1 = 3𝑎
2𝑚1𝑚3 + 𝑎

2𝛾1𝑚2𝑚4 + 𝑎
2𝑚2𝑚7(𝑑 + 𝛾1) − 𝑎

3𝑚5 − 𝑎
3𝑚1𝑚4 − 2𝑎𝑚2𝑚6 

𝐵2 = 𝑚1[2𝛼2
2𝑎 − 4𝛼2𝑎

2𝑎2 − 4𝛼2𝑎
2𝑤0 + 3𝑎

2𝑎2
2 + 6𝑎3𝑎2𝑤0 + 2𝑎

3𝑤0
2 + 𝛼2𝑎 − 2𝛼2𝑎

2𝑎2
− 2𝛼2𝑎

2𝑤0 + 𝑎
3𝑤0

2] − 3𝑎2𝑚5𝑚3 + 𝑎
3𝑚4𝑚5 − 3𝑎

2𝑚1𝑚3𝑚4

+𝑚2[2𝛾1𝑚6𝑚4 − (𝛼2 − 2𝛼2𝑎𝑚7 + 𝑎
2𝑎2

2 + 2𝑎2𝑎2𝑤0 + 𝑎
2𝑤0) − 𝑎

2𝑚4

+ 2𝑚6𝑚7(𝑑 + 𝛾) − 𝑎
2𝑑𝑚7] + 𝛾1𝑟𝛿

2 + 𝑎(𝑚8 −𝑚9) 

𝐵3 = 𝑚1[𝛼2
3 − 3𝛼2

2𝑎𝑎2 − 3𝛼2
2𝑎𝑤0 + 3𝛼2𝑎

2𝑎2
2 + 6𝛼2𝑎

2𝑎2𝑤0 + 4𝛼2𝑎
2𝑤0

2 − 𝑎3𝑎2
3 − 3𝑎3𝑎2

3𝑤0
− 𝑎2𝑎2𝑤0

2 − 2𝑎3𝑎2𝑤0
2 + 𝑎3𝑤0

3]

− 𝑚5[2𝛼2
2𝑎 − 4𝛼2𝑎

2𝑎2 − 4𝛼2𝑎
2𝑤0 + 3𝑎

2𝑎2
2 + 6𝑎3𝑎2𝑤0 + 2𝑎

3𝑤0
2 + 𝛼2𝑎

− 2𝛼2𝑎
2𝑎2 − 2𝛼2𝑎

2𝑤0 + 𝑎
3𝑤0

2] + 3𝑎2𝑚5𝑚4

−𝑚1𝑚4[2𝛼2
2𝑎 − 4𝛼2𝑎

2𝑎2 − 4𝛼2𝑎
2𝑤0 + 3𝑎

3𝑎2
2 + 4𝑎3𝑎2𝑤0 + 2𝑎

3𝑤0
2 + 𝛼2𝑎

− 2𝛼2𝑎
2𝑎2 − 𝛼2𝑎

2𝑤0 + 2𝑎
3𝑎2𝑤0 + 𝑎

3𝑤0] + 𝑚2[𝛾1𝑚4(𝛼2 − 2𝛼2𝑎𝑎2
− 2𝛼2𝑎𝑤0 + 𝑎

2𝑎2
2 + 2𝑎2𝑎2𝑤0 + 𝑎

2𝑤0) − 2𝑎𝑚3𝑚4 − (𝛼2 − 2𝛼2𝑎𝑎2 − 2𝛼2𝑎𝑤0
+ 𝑎2𝑎2

2 + 2𝑎2𝑎2𝑤0 + 𝑎
2𝑤0)(𝑑 + 𝛾1)𝑚7 + (𝑎

2𝑚4 − 2𝑎𝑚3)(𝑑𝑚7)]

− 2𝛾1𝑟𝛿
2𝑚7 −𝑚8(2𝑎𝑚7 − 𝛼2) + 𝑚9(𝑟𝑎 + 𝛿1𝑎𝑚4 − 𝛼2 + 𝑎𝑚7)𝐵4

= 𝑚4𝑚5[2𝛼2
2𝑎 − 4𝛼2𝑎

2𝑎2 − 4𝛼2𝑎
2𝑤0 + 3𝑎

2𝑎2
2 + 6𝑎3𝑎2𝑤0 + 2𝑎

3𝑤0
2 + 𝛼2𝑎

− 2𝛼2𝑎
2𝑎2 − 2𝛼2𝑎

2𝑤0 + 3𝑎
3𝑤0

2]

− 𝑚5[𝛼2
3 − 3𝛼2

2𝑎𝑎2 − 3𝛼2
2𝑎𝑤0 + 3𝛼2𝑎

2𝑎2
2 + 6𝛼2𝑎

2𝑎2𝑤0 + 4𝛼2𝑎
2𝑤0

2 − 𝑎3𝑎2
3

− 3𝑎3𝑎2
3𝑤0 − 𝑎

2𝑎2𝑤0
2 − 2𝑎3𝑎2𝑤0

2 + 𝑎3𝑤0
3]

− 𝑚1𝑚4[𝛼2
3 − 3𝛼2

2𝑎𝑎2 − 3𝛼2
2𝑎𝑤0 + 3𝛼2𝑎

2𝑎2
2 + 6𝛼2𝑎

2𝑎2𝑤0 + 4𝛼2𝑎
2𝑤0

2

− 𝑎3𝑎2
3 − 3𝑎3𝑎2

3𝑤0 − 𝑎
2𝑎2𝑤0

2 − 2𝑎3𝑎2𝑤0
2 + 𝑎3𝑤0

3]

+ 𝑚2[2𝑎𝑚3𝑚4 − 𝑑𝑚7(𝛼2 − 2𝛼2𝑎𝑎2 − 2𝛼2𝑎𝑤0 + 𝑎
2𝑎2

2 + 2𝑎2𝑎2𝑤0 + 𝑎
2𝑤0)

− (𝛼2 − 2𝛼2𝑎𝑎2 − 2𝛼2𝑎𝑤0 + 𝑎
2𝑎2

2 + 2𝑎2𝑎2𝑤0 + 𝑎
2𝑤0

2)(𝑑𝑚4 + 𝛾1𝑚4𝑚7)]

+ 𝛾1𝑟𝛿1
2𝑚7

2 −𝑚7(𝛼2𝑚8 + 𝑎𝑚7) + 𝑚9(𝑟𝛼2 − 𝑟𝑎𝑚7 + 𝛿1𝛼2𝑚4 − 𝑎𝛿1𝑚4𝑚7) 

𝐵5 = 𝑚4𝑚5[𝛼2
3 − 3𝛼2

2𝑎𝑎2 − 3𝛼2
2𝑎𝑤0 + 3𝛼2𝑎

2𝑎2
2 + 6𝛼2𝑎

2𝑎2𝑤0 + 4𝛼2𝑎
2𝑤0 − 𝑎

3𝑎2
3

− 3𝑎3𝑎2
3𝑤0 − 𝑎

2𝑎2𝑤0
2 − 2𝑎3𝑎2𝑤0

2 + 𝑎3𝑤0
3]

+ 𝑚2𝑚4𝑚7𝑑(𝛼2 − 2𝛼2𝑎𝑎2 − 2𝛼2𝑎𝑤0 + 𝑎
2𝑎2

2 + 2𝑎2𝑎2𝑤0 + 𝑎
2𝑤0

2). 

Here 𝑚1 = (𝑠 + 𝛾)(1 − 𝑚)
4𝛼1𝑘𝑘0, 𝑚2 = 𝛿1𝛼1𝑘𝑘0(1 − 𝑚)

3, 𝑚3 = 𝛼2 − 𝑎𝑎2 − 𝑎𝑤0, 𝑚4 =

𝑎1 + 𝑤0, 𝑚5 = 𝑠𝑤0𝛼1𝑘𝑘0(1 − 𝑚)
4, 𝑚6 = 𝛼2𝑎 − 𝑎𝑎2

2 − 𝑎2𝑤0, 𝑚7 = 𝑎2 + 𝑤0, 𝑚8 =

𝑟𝛾1𝛿1(𝑘 + 𝑘0)(1 −𝑚), 𝑚9 = 𝛾1𝑘𝑘0(1 − 𝑚). 
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The highlights of our paper are: 

1- A depletion dissolved oxygen-plankton model is considered for an aquatic 

environment. 

2- Phytoplankton population is subjected to a strong Allee effect. 

3- Derived the condition of stability in the aquatic system. 

4- Transcritical and Hopf bifurcation behavior of the proposed system is observed. 
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