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Computational and Analytic Time–Dependent
Ginzburg–Landau Theory for High–Resistivity High–Field

Superconducting Josephson Junctions
Bradley Peter Din

Abstract

In this thesis, we study the building block for the description of the granular

structure of polycrystalline superconductors – the Josephson junction. We

investigate the critical current density as a function of applied magnetic field

both analytically and computationally, through the lens of time–dependent

Ginzburg–Landau theory (TDGL) in 2D. We derive new analytic expressions for

the order parameter distribution near interfaces of arbitrary material properties

in 2D, validate them using TDGL simulations and use them to extract the

effective upper critical field. These results represent a generalization of the

famous work from Saint James and de Gennes to arbitrary grain boundary

properties. We then extend this framework to include the transport current

flowing across the grain boundary, and obtain analytic expressions for the

maximum current density that can flow across the grain boundary, providing

a generalization of the in–field work in the literature, to high resistivity grain

boundaries. We provide a framework to predict the critical current density

across the 2D grain boundary over the entire applied magnetic field range, again

validated using TDGL simulations. Crucially, our derived expressions consider

arbitrary width in detail, but require no additional free parameters, since

the derivation formally includes the complexity near interfaces with arbitrary

material parameters. We demonstrate how our analytic extension and treatment

is necessary for systems with geometries and material parameters which are

representative of commercial high–field superconducting materials. Finally, we

address how to apply our understanding of a single Josephson junction to 3D

polycrystalline materials.
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Chapter 1

Introduction

1.1 Background

Superconductivity is perhaps the most tangible exhibition of quantum mechanics on
a macroscopic scale. The roots of superconductivity had been brewing for over 100
years prior to its discovery in 1911. Advancements arose from gradual progression in
the liquefaction of gases, starting from the work of Faraday in 1823 [1]. A turning
point occurred in 1896 when James Dewar became the first person to successfully
produce liquid hydrogen in his namesake cryogenic storage vacuum vessel. In 1908,
Heike Kamerlingh Onnes was able to achieve the liquefaction of helium, granting
access to the low temperatures needed to finally unveil superconductivity in 1911
[2]. He observed that the resistance of mercury dropped to zero at a particular
transition temperature of approximately 4.2 K. This earned him the Nobel prize in
1913 and his colloquial title as the ‘Father of Low-temperature Physics’ [3]. Similar
occurrences were found in other metals such as lead and tin, permitting persistent
current flow without dissipation. Although unknown at the time, this was the
first observation of the superconducting state. The developments in a theoretical
framework of superconductivity were sporadic over the 20th century, taking nearly
half a century for any substantial understanding to emerge. The next important
discovery by Walther Meissner in 1933 was the observation that superconductors
exhibit perfect diamagnetism in the so-called ‘Meissner state’ [4]. This phenomena is
distinct from a conductor with zero resistance. A perfect conductor will only resist a
change to an external field in accordance with Lenz’s law. If a conductor first contains
a steady external magnetic field and is then cooled below the transition temperature
to a zero resistance state, the magnetic field would be expected to stay the same. The
Meissner effect in a superconductor is the active expulsion of magnetic flux from the
bulk of the operating superconductor below a critical temperature. This is achieved
through the spontaneous formation of currents near the surface of the superconductor
that completely cancels the magnetic field in its interior. These two key properties
are the defining signatures of superconductivity: zero electrical resistance and the
expulsion of magnetic field.

Shortly after, the first theoretical description emerged from the work of the London
brothers (Fritz and Heinz London) in 1935, providing an explanation of the Meissner
effect [5]. However, the first major theoretical understanding of superconductivity
emerged in the 1950s. The phenomenological theory from Vitaly Ginzburg and Lev
Landau came in 1950 [6], combining the London equations with a field theory of
second order phase transitions from Landau’s earlier work. The microscopic theory
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1.1. Background

of John Bardeen, Leon Cooper and John Robert Schrieffer in 1957 provided the first
comprehensive microscopic understanding of superconductivity [7], and eventually
earned them a Nobel prize in 1972.

Unfortunately, theoretical formulations of superconductivity are far from complete.
Bardeen–Cooper–Schrieffer (BCS) theory predicts that superconductivity should
not exist above 30 K. This theory proved sufficient for many low–temperature
superconductors (LTS), such as Nb3Sn and NbTi. However, many materials have
been found to become superconducting at significantly higher transition temperatures,
with no widely accepted theory for their microscopic origin. Prior to 1986, the highest
transition temperature observed was 23.3 K in Nb3 Ge [8]. However, a new class of
metallic, oxygen deficient compounds, of the form La2–x Bax Cu O4, were discovered
to have transition temperatures at approximately 35 K. This sparked investigation
into the previously overlooked usage of other rare-earth barium copper-oxide
(REBCO) materials and more general layered cuprate superconductors. In 1987,
the first high–temperature superconductor (HTS) of Y Ba2 Cu3 O7–δ was discovered
to have a transition temperature of 93 K [9]. This was the first superconductor with
a transition temperature above that of liquid nitrogen, inviting an abundance of
speculation for the possibility of ‘room–temperature superconductivity’. Research to
satisfy this expectation is still ongoing. Previous records stood at 203 K in 2015 [10]
and 250 K in 2019 [11], using extremely pressurized (∼170 GPa) hydrogen sulfides and
lanthanum hydrides respectively. More recent research using yttrium superhydrides
obtained transition temperatures of 262 K at approximately 180 GPa [12]. However,
these extreme pressures are clearly not practical for real applications. Most recently,
a study has controversially claimed observations of a transition temperature at
294 K using nitrogen-doped lutetium hydride at approximately 10 kPa, near ambient
temperatures and pressures [13]. Other researchers across the globe have tried and
failed to recreate these results [14], casting doubt on the claims. However, independent
measurements on the same original samples provided evidence for the predictions
[15]. Most recently in July 2023, a study claimed success in synthesizing the first
room–temperature superconductor at ambient pressure using a modified lead-apatite
(LK-99) structure, with a transition temperature above 400 K [16, 17]. However,
extraordinary claims require extraordinary proof; it is yet to be seen if these results
are able to withstand scrutiny. Regardless of the validity of these claims, it is clear
that the race to achieving room–temperature superconductivity, and harnessing the
resulting transformative potential, is still ongoing.

The discovery of superconductivity unfortunately came with the caveat that it is
not a state that is easily achieved. Perhaps the most well-known challenge is that
of achieving low temperature since the superconducting state only persists below
a specific critical temperature, Tc. However, for many applications, the cryogenic
demands of superconductors are not their limiting factor. We face two other
fundamental limits for the superconducting state. Shortly after his original discovery
in 1914, Kamerlingh Onnes discovered that a sufficiently large magnetic field could
destroy the phenomenon of zero resistance. Furthermore, the amount of current
that may be carried by a superconductor is known to be finite, and a sufficiently
large current density can also destroy superconductivity. In other words, beyond the
upper critical magnetic field Bc2 or above the critical current density Jc, the zero
resistance state is destroyed. These two conditions more often than not form the
primary bottleneck in commercial implementation for superconductors. Fortunately,

2



1.2. Applications of Superconductivity

regardless of these limitations, the critical current density of a superconductor is
several orders of magnitude larger than a typical conventional conductor such as
copper.

1.2 Applications of Superconductivity

One could argue that the greatest modern challenge we currently face is the task of
finding an efficient, sustainable and renewable energy source [18]. The technological
evolution of mankind has been a remarkable phenomenon, but comes with a severe
price in the form of an energy demand. The global energy usage is forecast to increase
by 48% by 2040 [19]; as more technologies evolve, this will only increase further [20].
Furthermore, the supply of fossil fuels as the world’s primary source is dwindling – a
promising and sustainable candidate for a replacement is nuclear fusion energy; the
same mechanism providing the energy powering our Sun. This was first eloquently
proposed by Eddington in 1920 [21]. For a commercially viable application, the use of
superconductors is essential – if one does not use superconductors in fusion reactors,
then approximately a third of the produced energy will be wasted in supplying the
cooling systems for the normal magnets - this is unfeasible for successful commercial
fusion [22].

An overwhelming majority of modern fusion designs are based around magnetic
confinement fusion (MCF) technology, such as in the Joint European Torus (JET)
tokamak in Culham, UK or the International Thermonuclear Experimental Reactor
(ITER) tokamak being built in Provence, France. The physical process involves
magnetically confining a deuterium–tritium (D–T) plasma within a tokamak through
the use of superconducting magnets, which achieves a sufficiently hot and dense
plasma such that fusion occurs [23]. The power generated by a particular fusion
reaction is proportional to B4 [24]; increasing the magnetic field leads to improved
plasma confinement and hence a higher power output. Thus, superconducting
magnets are crucial for extended periods of tokamak operation, and the development
of stronger superconducting magnets and cables with higher critical currents is
a necessary step for the future of fusion energy [25]. This involves cable and
magnet design, the continued improvement of superconducting materials, as well as
solutions to large scale engineering problems, such as remountable joints [26, 27, 28].
Current tokamak designs are using cheaper LTS materials, which are readily
commercially available and able to create a sufficiently high magnetic field for current
state-of-the-art applications, such as the requirements for ITER [29, 22]. Conversely,
there are an abundance of future designs looking to use HTS materials, which
can provide access to significantly higher fields and current densities [30, 31, 32],
including SPARC and ARC (Commonwealth Fusion Systems) [33], STEP (UK Atomic
Energy Authority) [34], ST80–HTS (Tokamak Energy) [35], the stellarator FFHR–d1
(National Institute for Fusion Science, Japan) [36], and potentially EU DEMO [37, 38].
We provide the key parameters of some common superconducting materials in Table
1.1.

Applications that rely on high magnetic fields are not limited to fusion alone. A
plethora of technologies can be achieved with sufficiently high magnetic fields and
superconductors are by far the most efficient method of generating them. These
include the fields required for tools in various disciplines, such as magnetic resonance

3



1.3. Thesis Outline

Material Tc (K) Bc2 (T) ξ(0) (nm) λ(0) (nm)
Niobium Tin (Nb3Sn) 17.8 29.5 2.73 93.5
Niobium Titanium (NbTi) 8.99 15.7 3.40 163
Magnesium Diboride (MgB2) 38.6 9.20 7.01 97.1
Bi–2212 (Bi2Sr2CaCu2O8+δ) 84.8 231 3.24 300
YBCO (YB2C3O7–δ) 90.0 120 1.29 135
Bi–2223 (Bi2Sr2Ca2Cu3O10+δ) 108 297 2.86 165

Table 1.1: A table of common superconducting materials and their characteristic
properties [39]. For the anisotropic HTS materials, the upper critical field is provided
with the field parallel to the c–axis together with the equivalent length scales. Yttrium
Barium Copper Oxide (YBCO) has been shown in the table since it is the most
common choice for rare–earth (ReBCO) superconductors. The subscript δ is a variable
denoting the level of oxygen doping.

imaging (MRI) machines and nuclear magnetic resonance (NMR) spectroscopy
[40], particle accelerators at CERN [41], and the magnetically levitated ‘Maglev’
train. This is by no means an exhaustive list, and optimizations may unlock more
applications than one could imagine possible.

However, superconductors are not only used for the generation of high magnetic
fields. The unique property of dissipationless current flow at low temperatures
allows engineers to create more efficient technologies with massive energy benefits
– for example, using superconductors in electrical motors can lead to a reduction
of more than 50% of the typical Joule losses [42]. This increased efficiency also
allows the potential for more compact devices to be made – this is crucial for
future generations of ‘greener’ hydrogen–powered air travel [43], amongst many other
engineering applications such as superconducting magnetic energy storage systems
[44]. Superconductors have also found use in extreme metrology – the development
of the superconducting quantum interference device (SQUID) led to the precise
measurements of extremely weak magnetic fields [45, 46]. These devices provide a
direct relationship between the frequency and the voltage involving only fundamental
constants (the Planck constant and the elementary charge); subsequently, SQUIDs
have been utilised to define the voltage standard since 1990 [47].

1.3 Thesis Outline

State of the art superconductors have a critical current density 2–3 orders of
magnitude below the theoretical maximum. We are motivated to model macroscopic
behaviour using traditional Ginzburg–Landau theory and its extensions. To optimize
Jc, we must understand the mechanisms that operate and dependencies of Jc in
polycrystalline high field superconductors. If successful, we can expect to predict
how Jc depends on the applied magnetic field and the material properties such as
grain size and grain boundary resistivity.

In this thesis, we will study the primary building block used to understand
the current flow across grain boundaries in a real polycrystalline material –
the Josephson Junction. We shall consider the importance of both the grain
geometry and the specific material properties of the grain boundary in limiting
the maximum current density that can flow through this building block. We
will develop our understanding of these materials both analytically, through the
formalism of Ginzburg–Landau (GL) theory, and computationally, by making use
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1.3. Thesis Outline

of time–dependent Ginzburg–Landau (TDGL) simulations. In Chapter 2, we
will review the fundamentals of superconductivity, with a particular focus on GL
theory. We shall outline the key equations and mathematical frameworks used to
describe superconductivity, and the existing analytic theory used to obtain the key
technological parameters such as the effective upper critical field and the critical
current density. In Chapter 3, we will review the numerical methods used throughout
the TDGL simulations in this thesis. We shall outline the key outputs of our
computation, and how these can be used to extract key information about vortex
structure and dynamics, alongside the critical currents. In Chapter 4, we shall
present novel analytic extensions to the theory presented in Chapter 2, accurately
capturing the behaviour near grain boundaries of arbitrary properties. We will use
these improved analytic calculations to provide a framework for obtaining predictions
of the critical current density in 2D, for systems with arbitrary width and material
properties. To our knowledge, this is the first complete framework that allows a
description of how both the grain geometry and the grain boundary properties interact
to limit the current flow in the system. Moreover, the analytic results do not require
additional free parameters in order to describe the behaviour of the full 2D system; this
is in contrast to existing theory which is primarily derived in the 1D limit. In Chapter
5, we shall validate our proposed analytic framework with TDGL simulations, for an
assortment of different geometries ranging from narrow to wide Josephson junctions,
with various different geometries and material properties. We also compare our new
results to existing theory. In particular, we demonstrate how our analytic extensions
are required for the description of geometries which are the most representative of
real polycrystalline materials. Finally, in Chapter 6, we shall outline some possible
future work and provide some concluding comments relevant to the optimization of
both LTS and HTS materials.
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Chapter 2

Review of Superconductivity Theory

2.1 Introduction

In this chapter, we first describe the fundamentals of BCS theory. We derive some
basic results from the simplest form of the theory, and describe its applications and
limitations in describing real superconductors. We then provide a justification for
the GL free energy functional and describe the 2 equations that follow from it and
characterise a superconducting material. We outline the basics of GL theory and
the key characteristic length scales of superconductivity. Finally, we introduce the
building block of polycrystalline superconductors – the Josephson junction. We
describe the key theoretical frameworks that have been used to understand this
building block, across a wide range of material parameters and geometries. In Sections
2.4 and 2.5.1, we explicitly include some details from the derivations in the literature
so we can include the general solution for both strongly and weakly coupled junctions
for later use in Chapters 4 and 5.

2.2 BCS Theory

The beauty of the BCS theory comes not from its completeness but its elegance. It
holds the reassurance that many other key results, such as the London equations and
penetration depth, coherence lengths, and GL theory, may be derived from it. BCS
theory has quantitatively predicted fundamental behaviour of many ‘conventional’
low-temperature superconductors, such as a second-order phase transition at critical
temperatures, the electronic specific heat dependence on temperature (and therefore
the energy gap for individual particle–like excitations), the Meissner effect, infinite
conductivity and the isotope effect [7, 48].

In 1950, Fröhlich proposed a fundamental mechanism for the theoretical
understanding of superconductivity – the concept of electron–phonon interactions
[49]. This mechanism forms an essential component of BCS theory, which suggests
that superconductivity in a material is due to an attractive interaction between pairs
of electrons, where the attraction is mediated by vibrations in the lattice, known as
phonons. This interaction consequently creates a small net attraction between pairs
of electrons, and provides an explanation for the isotope effect (Tc ∝ M−0.5). These
bound electrons are commonly referred to as ‘Cooper pairs’. Cooper’s preliminary
work in 1956 proved that the ground state of an electron gas is unstable if there is a
net attraction between the electrons, such as in an effective phonon interaction [50].
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2.2. BCS Theory

(a) The attractive interaction between two
distant electrons due to the crystal lattice
distortion [51].

4

2

3

1

k − q

k

k′ + q

k′

q

(b) An electron-phonon exchange,
with the corresponding V (k, k′, q).

Figure 2.1: Two diagrammatic representations of Cooper pair formation. Here, q is
the phonon wavevector, while k and k′ represent those for the two initial electrons.

This allows the electrons to form a bound state, despite having a total energy that is
larger than zero.

This attractive interaction can be more intuitively understood by considering Figure
2.1. As the superconductor is cooled below the critical temperature, the thermal
vibrations of the lattice (phonon energies) are decreased. The electrons are also less
thermally agitated, and consequently, the electron-ion interaction is less disturbed.
As electrons move through the lattice, surrounding ions are subject to Coulomb
attraction, forming a positive charge cluster around the electron. This local
deformation effectively screens distant electrons from the mutually repulsive charge of
the electron, and hence a secondary electron may be attracted towards this positive
charge. In essence, this is equivalent to the two electrons being attracted to one
another. Below the critical temperature, this virtual attraction is not disturbed, and
the electrons remain coupled together in what is known as a Cooper pair.

As an electron passes through a crystal ion lattice, the electron causes ion lattice
vibrations, which can be represented as a quantised phonon. This may then
be absorbed by another electron. The average maximum distance at which this
phonon-coupled interaction takes place is called the coherence length. Overall, this
interaction can be considered as an exchange of a phonon between two electrons, with
the interaction taking the form

V (k,k′, q) = g2ℏωq
(εk+q − εk)2 − (ℏωq)2 . (2.2.1)

Here, g is the phonon interaction coupling constant. k and k′ represent the
wavevectors of the two initial electrons and q is the phonon wavevector. Similarly,
ℏωq represents the energy of the phonon, while εi is the energy of the electron with
wavevector i. For a negative, attractive potential, it is required that |εk+q − εk| <
ℏωq. The key results of the BCS theory only demand that the electron interaction
potential is attractive; the exact form of the potential is not necessary. To simplify
matters, BCS formulated their theory with an isotropic, square well potential,

Vk,k′ =
{

−V0 if |εk − εF| < ℏωD and |εk′ − εF| < ℏωD,

0 otherwise.
. (2.2.2)

The Debye energy of the lattice phonons is given by ℏωD and V0 is a constant
parameterizing the strength of the interaction. Hence, the attractive potential only
occurs for electrons within a small range of the Fermi surface energy. Whilst the
electron–electron interaction is a smooth function of k and k′, the response of electrons
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2.2. BCS Theory

at the Fermi level peaks when k = −k′ [52] – the interaction is most significant for
electrons with opposite momenta.

The electron pairs in BCS theory are not strictly bosonic; since they are quite large,
different pairs strongly overlap with one another – in this limit, it is not possible to
describe an individual pair as a boson [19]. Nevertheless, the key insight from BCS
theory is that Cooper pairs facilitate the formation of a coherent state, in which a
macroscopic number of pairs are all in the same state [19]. Each pair condenses to the
same quantum ground state below the Fermi surface∗. Since each Cooper pair has an
energy that is below the Fermi surface, their production is energetically favourable.
This is the essence of the famous ‘BCS energy gap’, and results in the remarkable
properties of superconductivity. In particular, any two electrons with energies close to
the Fermi surface will experience an attractive potential and form a bound state. This
may be written as a two-body wavefunction, where the interaction is negligible unless
the electrons have opposite momentum [19]. One can imagine this as a situation where
the centre-of-mass momentum is zero, and hence the overlap of the two electrons is
maximized.

As an extension to Cooper’s two electron description, BCS postulated that the entire
Fermi surface would be unstable with respect to the creation of Cooper pairs. All
electrons close to the Fermi surface will be bound into pairs, reducing the overall
free energy. One can write a many-body wavefunction, which may be written as the
normalised product [53]

|ΨBCS⟩ =
∏
k

(
u∗
k + vkc

†
k,↑c

†
−k,↓

)
|0⟩k . (2.2.3)

Here, uk and vk represent complex amplitudes, while |0⟩k and |1⟩k denote unoccupied
and occupied states respectively. The two are related through a creation operator
which creates a pair of electrons of zero net momentum and opposite spins. The BCS
theory then postulates an effective Hamiltonian and minimizes the corresponding
energy; the details are described in resources such as [7], [53] or [19]. The result is an
expression for the ‘BCS gap equation’,

N(0)V0

∫ ℏωD

0

1√
ε2 + |∆|2

tanh
(

1
2kbT

√
ε2 + |∆|2

)
dε = 1. (2.2.4)

The energy gap at the Fermi surface is denoted ∆ and the density of energy states at
the surface as N(0). In practice, this integral is not analytically solvable. Taking the
weak coupling approximation N(0)V0 ≪ 1 and T → 0, the expression for ∆ is given
as

|∆|T=0 = ℏωD exp
(

1
N(0)V0

)
. (2.2.5)

Similarly, by taking the limit T → Tc, where ∆ → 0, one obtains [19]

2|∆|T=0 = 3.52kBTc. (2.2.6)

Eq. (2.2.5) provides insight into the isotope effect since the Debye energy is
proportional to the inverse square of the isotopic mass as desired. Whilst this
expression for the isotope effect is consistent with the observed behaviour for
many superconductors, others deviate strongly [53]. It is unknown whether these

∗The Fermi surface is the surface in momentum space separating occupied states from unoccupied
states at 0 K, where single electrons outside of the Fermi sphere are ‘excited’.
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2.3.1. The Ginzburg–Landau Free Energy

variations are a consequence of the assumptions made or suggest a radically difference
mechanism altogether. One notable limitation is that the BCS theory cannot explain
the existence of some specific classes of high–temperature superconductors, such
as REBCO materials. Some extensions have attributed this to the assumption
of a weak phonon-mediated interaction between electrons. Extensions to BCS
exist which are more generic, such as Eliashberg’s theory in 1960 [54], proving
useful in high–temperature superconductivity discussions [55]. Some papers suggest
that BCS theory provides no real understanding of superconductivity because of
its inconsistencies and fundamental flaws [56, 57]. However, the BCS theory of
superconductivity has strong experimental verification, and is generally accepted to
include some of the important elements required in a correct theory of conventional
superconductivity.

2.3 Ginzburg–Landau Theory

BCS theory is a detailed microscopic theory, but becomes unnecessarily cumbersome
for describing the properties of real superconductors in magnetic fields. The
phenomenological Ginzburg–Landau (GL) theory is generally preferred in this case.
It is an extension of the previous work by the London brothers [5], and was shown
to be derivable from microscopic BCS theory close to the transition temperature by
Gor’kov in 1959 [58].

2.3.1 The Ginzburg–Landau Free Energy

Ginzburg and Landau proposed their theory in 1950 when the BCS microscopic theory
had not yet been developed [6]. The GL theory is formulated in terms of a macroscopic
complex order parameter and the vector potential. The magnitude of the order
parameter is related to the density of the superconducting electrons; this is consistent
with the view that the superelectrons are condensed to a single quantum state, where
their collective behaviour is described by a single wavefunction [19]. Naturally, the
vector potential describes the net magnetic field within the system and supercurrent
density flowing through the superconductor [6]. The axiom of GL theory is captured
in the free energy functional, motivated by considering superconductivity near the
phase transition (critical) temperature, Tc [59]. By considering Landau’s general
theory of second order phase transitions and the required symmetry breaking across
the normal/superconducting phase transition, the Helmholtz free energy functional
can be written as a Taylor series expansion [60],

F − F0 =
∫ [

α |ψ|2 + 1
2β |ψ|4 + 1

2m |(−iℏ∇ − qA)ψ|2 + B2

2µ0

]
d3r. (2.3.1)

Here, α and β are temperature dependent parameters, whilst q = −2e and m = 2me,
quantifying the charge and mass of the Cooper pair [60]. We have taken the symbol
e here to be the (positive) fundamental constant, converse to some authors [53, 61].
In the normal phase, where T > Tc, the superconducting state is broken, ψ = 0, and
the free energy is simply the normal state energy in the absence of a magnetic field,
denoted as F0. The wavefunction is then normalised to the density of Cooper pairs
(or equivalently, half the number of superelectrons). It is convenient to express this
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0.0 0.5 1.0 1.5
|ψ|
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0.0
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1.0

F
−
F

0

T � Tc

T > Tc

T = Tc

T < Tc

T � Tc

Figure 2.2: Free energy as a function of |ψ| for a range of illustrative temperatures
relative to Tc.

free energy in equivalent form

F − F0 =
∫ [

α |ψ|2 + 1
2β |ψ|4 + ℏ2

2m |Dψ|2 + B2

2µ0

]
d3r, (2.3.2)

where the gauge covariant derivative operator is defined as

Dψ =
(

∇ − iq

ℏ
A

)
ψ. (2.3.3)

This free energy integral is taken over all space, and therefore represents the combined
energy of the superconducting state and any external applied magnetic field. To
obtain the equilibrium state of the order parameter in the absence of magnetic field
or current; the order parameter is constant and therefore Dψ = 0 [62]. Maximizing
the resulting free energy yields

∂Fs

∂ |ψ|2
= 0 =⇒ |ψ0|2 = −α

β
. (2.3.4)

This equilibrium order parameter must be positive in the superconducting state and
zero in the normal state. Therefore, it is required that below Tc, the minimum of the
order parameter must be positive, and above Tc, the minimum of the order parameter
must be zero. Consequently, Ginzburg and Landau proposed that α ∝ (T − Tc), and
that β to be positive on each side of the transition temperature, in order to ensure that
the order parameter corresponding to the minimum energy is finite. Therefore, below
Tc, there is a minimum in the free energy for a non-zero |ψ|, and the superconducting
state is energetically preferable. Conversely, above Tc, the minimum of the free energy
is exactly when |ψ| = 0, and so the normal state is energetically stable. This free
energy variation is depicted in Fig. 2.2.
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2.3.3. Type I Superconductivity

2.3.2 The Ginzburg–Landau Equations

The Ginzburg–Landau equations emerge from the minimisation of this free energy
with respect to the order parameter and the magnetic field. By first varying Eq.
(2.3.2) with respect to ψ∗ to obtain the first GL equation (GL1), one obtains the
result

1
2m (−iℏ∇ − qA)2

ψ +
(
α+ β |ψ|2

)
ψ = 0, (2.3.5)

with a corresponding boundary condition

n · (−iℏ∇ − qA)ψ(r) = 0, (2.3.6)

where n is a unit normal to the surface. This is a non–linear Schrödinger equation,
describing the spatial variation of the order parameter. The boundary condition is
equivalent to the statement that no supercurrent flows through the boundary of the
system, and was proposed by Ginzburg and Landau [63]. Similarly, one can vary Eq.
(2.3.2) with respect to A to obtain the second GL equation (GL2),

Js = − iqℏ
2m (ψ∗∇ψ − ψ∇ψ∗) − q2

m
|ψ|2A = qℏ

m
Im
[
ψ∗
(

∇ − iq

ℏ
A

)
ψ

]
. (2.3.7)

This equation describes the spatial variation of the supercurrent density. The
challenge in describing the macroscopic state of the system is that these two equations
are coupled; the order parameter and the vector potential must be solved for
self–consistently.

2.3.3 Type I Superconductivity

GL theory predicts the existence of two fundamental length scales of a superconductor,
which are consistent with the results from London theory [5]. The length scale
describing the spatial variation of the magnitude of the order parameter – the
superconducting coherence length – is defined as ξs [64]. Considering GL1 (Eq.
(2.3.5)) in the absence of applied magnetic fields or transport currents in 1D leads to
the equation

−ℏ2

2m
∂2ψ

∂x2 +
(
α+ β |ψ|2

)
ψ = 0. (2.3.8)

Using the Meissner value (Eq. (2.3.4)) as a natural normalisation for the order
parameter, the coherence length can be written as [60]

ξ2
s = ℏ2

2m |α|
. (2.3.9)

This quantity is temperature dependent (through α) and monotonically increases as
T → Tc; the order parameter magnitude varies more slowly.

Next, the length scale over which the electromagnetic effects (e.g. local magnetic
field & current densities) vary throughout a superconductor – the superconducting
penetration depth – is defined as λs. Consider GL2 (Eq. (2.3.7)) in a bulk
superconductor. The gradient terms do not contribute and the order parameter
solution takes the bulk equilibrium value (Eq. (2.3.4)), leading to the result [53]

Js = −q2

m
|ψ0|2A = −4e2

m
|ψ0|2A. (2.3.10)
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Taking the curl of each side leads to the intermediate result

∇ × Js = −4e2

m
|ψ0|2B, (2.3.11)

and making use of the (quasistatic) Ampère–Maxwell equation and vector identities
leads to the differential equation

∇2B = 4µ0e
2

m
|ψ0|2B. (2.3.12)

This is a well–known double–differential equation. If one considers a geometry where a
superconductor occupies the half–plane x > 0, and is subjected to a constant external
field Bapp in the z–direction, then the only bounded solution that exists is a simple
exponential [60],

Bz (x) = Bappe
−x/λs , (2.3.13)

where the superconducting penetration depth is defined to be [53]:

λ2
s = m

4µ0e2|ψ0|2
. (2.3.14)

Clearly, the field is screening exponentially over the length scale of λs. This state is
known as the ‘Meissner state’ – the applied field is completely excluded from the bulk
of the superconductor, and the order parameter is completely homogeneous through
the bulk. Here, it is convenient to also introduce the ‘Ginzburg–Landau parameter’,
κs, as the ratio of these two length scales,

κs = λs
ξs
. (2.3.15)

We will discuss the importance of this length scale shortly.

The Meissner state exhibits perfect diamagnetism, and is one of the two key properties
of superconductors; it arises naturally through the treatment of the GL free energy
and resulting GL equations in the presence of sufficiently weak fields. However, as
the field is increased, the Meissner state may not remain energetically favourable (i.e.
may not be thermodynamically stable), relative to the normal state. In other words,
the energy penalty required for screening becomes greater than the energy benefit
from the condensation of electrons into Cooper pairs. The field at which this occurs
is known as the thermodynamic critical field. At this field, the Gibbs free energies for
the normal and superconducting states are equal. The Gibbs free energy is related to
the Helmholtz energy discussed above by including the magnetization [53],

g = f − µ0H · M =⇒ G = F − µ0H · m. (2.3.16)

Here, M is the magnetization and m is the corresponding magnetic moment:

m =
∫
dVM = 1

µ0

∫
dV (B − µ0H) . (2.3.17)

It is worth noting the same equations of motion for the order parameter and the
supercurrent (GL1 and GL2) are obtained regardless of if one minimizes the Gibbs
or the Helmholtz free energy [53] – nevertheless, it is important to use the correct
Gibbs free energy. The Gibbs free energy corresponds to the equilibrium state at
constant applied field, rather than the equilibrium state at constant magnetic moment
obtained from the Helmholtz free energy. In the normal state, ψ = 0, and in the
superconducting state, B = 0 due to screening, and the volume of the system is
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denoted as V [53]. The Gibbs free energy in both the normal state and in the
superconducting state at this critical field is then written as

Gs = V

(
f0 − |α|2

2β + 1
2µ0

B2
app

)
, (2.3.18)

Gn = V f0. (2.3.19)

Equating these two results leads to the identification of the thermodynamic critical
field [53],

B2
c = µ0α

2

β
. (2.3.20)

This critical field represents the field at which the Meissner state is unstable relative
to the normal state – for any field above Bc, the superconducting state symmetry is
broken, and for any field below Bc, the Meissner state is the most thermodynamically
stable.

2.3.4 Type II Superconductivity

In contrast to Type I superconductors, which remain in the Meissner state until Bc,
Type II superconductors remain in the Meissner state until a lower critical field,
Bc1. After this field, the superconductor transitions into a ‘mixed’ state, where the
superconducting bulk is penetrated by flux in quantized fluxons (or vortices). A
fluxon consists of a core of normal material, which has a radius of approximately a
coherence length. This normal region naturally has an applied field with a flux quanta
of ϕ0 = h/2e penetrating through it, and a local supercurrent that circulates around
the core. These fluxon supercurrents may be extremely large relative to the other
currents flowing within the superconductor.

The crossover between Type I and Type II superconductivity is encapulsated in the
Ginzburg–Landau parameter κs (Eq. (2.3.15)). In their seminal paper, Ginzburg
and Landau also present a calculation of the surface energy at the boundary of
superconducting and normal phases, σNS [63, 65]. They found that a critical value of
κs = 1√

2
is the demarcation between Type I and Type II behaviour. In summary:

κ ≤ 1√
2

=⇒ σNS > 0 =⇒ Type I behaviour, (2.3.21)

κ >
1√
2

=⇒ σNS < 0 =⇒ Type II behaviour. (2.3.22)

The implications of having either positive or negative surface barriers are hugely
impactful, and were not materially realized until Abrikosov’s work in 1957 [66].
The energy benefit of allowing fluxons penetrate to the system (i.e. an increased
number of surfaces) outweights the energy cost of screening, and so the mixed state is
energetically favourable relative to the Meissner state. Therefore, the mixed state is
a signature of a Type II superconductor. The difference in behaviour between Type
I and Type II superconductors are summarized in Fig. 2.3.

An expression for the lower critical field can be derived by first demonstrating
flux quantization. From the perspective of GL theory, this may be understood
as the requirement that the wavefunction is single–valued [53]. We consider a
multiply connected superconductor in an applied field [60]. By writing the complex
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Figure 2.3: The magnetic response of Type I and Type II superconductors. Taken
from [67].

wavefunction as a product of magnitude as phase in a standard way Ψ = |ψ|eiθ and
inserting this into GL2 (Eq. (2.3.7)), one obtains the result

Js = |ψ|2 q
m

( ℏ∇θ − qA) . (2.3.23)

To obtain the quantization of flux, one considers the contour integral of each side of
this expression. Taking the contours in a bulk superconductor, sufficiently far away
from fluxons such that there is no screening, leads to the contour integral of the left
hand side being zero [53]. Inserting the explicit charge q = −2e then leads to the
intermediate result

|ψ|2 q
m

( ℏ∇θ + 2eqA) = 0. (2.3.24)

Furthermore, since the order parameter must be single valued, the phase change must
be an integer multiple of 2π, ∮

C

∇θ · dl = 2πn. (2.3.25)

Applying Stokes’ theorem on the vector potential allows the remaining term to be
identified as the total flux in the system. The flux quantum is then idenified as

ϕ0 = h

q
= − h

2e . (2.3.26)

This follows from taking e > 0 to be the fundamental constant and q = −2e. Other
authors consider e < 0 to be the electron charge [53]. This flux quantization condition
can be written as an integral of a closed contour in the superconductor,

m

4e2

∮
Js

|ψ|2
· dl + Φ = nϕ0, (2.3.27)

where Φ is the ordinary magnetic flux through the integral loop, and n is the number
of vortices enclosed within the contour. In the Meissner state, where |ψ|2 ̸= 0
everywhere, there are no fluxons in the contour (n = 0).
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2.3.4. Type II Superconductivity

To determine the lower critical field, one can perform a similar Gibbs energy analysis
to the previous section. By equating the Gibbs free energy with a single fluxon in
to the Gibbs free energy of the Meissner state, the lower critical field is given by the
expression [68, 69]

Bc1 = µ0ϕ0
4πλ2 ln κ = Bc√

2κ
ln κ. (2.3.28)

For the high field superconductors considered in this thesis, κ is large and so Bc1 is
much smaller than Bc (n.b. Eq. (2.3.28)). The mixed state is therefore almost
immediately energetically preferable other than in very low fields; understanding
vortex dynamics is critical for understanding Type II superconductors.

Finally, the mixed state is preserved until the upper critical field, Bc2. As the field
is increased, more fluxons are pushed into the bulk of the superconducting material,
until the normal cores overlap and the superconducting state is destroyed completely.
Abrikosov [66] investigated this phenomena close to the upper critical field, where the
order parameter is close to zero. He began by looking for solutions of the linearised
GL equation,

1
2m∗ (−iℏ∇ − qA)2

ψ + αψ = 0. (2.3.29)

This is a Schrödinger equation for a particle of mass m∗ and charge q in a uniform
magnetic field, and can be identified as a quantum harmonic oscillator equation.
Bounded solutions to this can exist only for a discrete set of fields. Abrikosov solved
for the eigenvalues and obtain the upper critical field by finding the largest value
permissible [53]. The resulting expression for the upper critical field is then given as
[66]

Bc2 = ϕ0
2πξ2 =

√
2κBc. (2.3.30)

Abrikosov’s approach allows us to further probe the structure of the vortex lattice.
The solution to the full GL equation (Eq. (2.3.5)) will be close to the solution to
the linearised GL equation (Eq. (2.3.29)) when the applied field is close to the upper
critical field. Hence, the full solution can be written as a perturbative expansion with
the orthogonal linear combination, ψ = ψL + ψ1. Working in the Landau gauge,
Abrikosov then wrote the general periodic solution [53, 66, 70]

ψ(x, y) =
∞∑

n=−∞
Cn exp(inky) exp

(
−1

2κ
2
(
x− nk

κ2

)2
)
, (2.3.31)

where periodicity is accounted for in Cn = Cn+N . By defining a parameter βA as

βA = ⟨|ψL|4⟩
⟨|ψL|2⟩2

=
∫

|ψL|4 d3r(∫
|ψL|2 d3r

)2 , (2.3.32)

he optimized Cn and k to minimise the free energy. Abrikosov showed that βA

captures the complexity of the vortex lattice structure, and the minimisation of this
parameter βA is equivalent to minimising the free energy. He obtained a square
vortex lattice solution by taking the N = 1 case, finding βA = 1.18 [66]. This was
later corrected by Kleiner: by taking N = 2, one obtains a lower energy solution with
a triangular lattice and βA = 1.16 [70]. This matches the experimental observations
in homogeneous materials, where one can notice that vortices penetrate the mixed
state, repel each other and form a hexagonal lattice with equal spacing a0 ∝ B− 1

2

[71]. However, in small or inhomogeneous systems, the arrangement of vortices can
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2.3.5. The Nondimensional GL Equations

be incredibly disordered due to defects and surface barriers. Abrikosov’s work also
provides field-dependent solutions for the average order parameter and field inside the
superconductor [53]: 〈

|ψL|2
〉

= ms
µ0eℏ

Bc2 −Bapp
(2κ2 − 1)βA

, (2.3.33)

⟨B⟩ = Bapp − Bc2 −Bapp
(2κ2 − 1)βA

, (2.3.34)

where Bapp is the externally applied magnetic field. These averages reflect the effect
the fluxons have on reducing the order parameter and the field locally, and provide
a more accurate approximation of the bulk superconducting electrode behaviour. As
the field is decreased, the vortex lattice only nucleates in the bulk when this field
is below Bc2; very close to Bc2, the lattice is closely packed and the average order
parameter is very small. It is important to note here that the approach of Abrikosov
considers an infinitely periodic system with no surface barriers. We will later explicitly
consider how the role of surface barriers affects the superconducting state in Section
2.4.

2.3.5 The Nondimensional GL Equations

For the remainder of this thesis, we will consider the GL equations in normalised units,
and adopt a tilde notation for dimensionless variables. We consider real systems with
both superconducting electrodes and normal barriers. For efficient computational
simulations, working in a non–dimensional form is almost a necessity. All material
parameters (α, β and m) are normalized to that of the bulk superconductor. The
order parameter will be considered in units of the equilibrium Meissner value, ψ0, and
the units of length are taken to be the coherence length, ξs. Inserting these into GL1
(Eq. (2.3.5)) provides a natural unit for the vector potential, A0 = ϕ0/2πξs. The
normalised version of GL1 now reads[

1
m̃n

(∇̃ − iÃ)2 + α̃n − β̃n
∣∣ψ̃∣∣2] ψ̃ = 0. (2.3.35)

We introduced the notation m̃n ≡ mn/ms, to denote the ratio of the masses in the
region of interest (n) and the superconducting region (s). Similar definitions have
been made for α̃n and β̃n. Note that the region of interest may be superconducting
(s) or normal (n), but the normalisation is with respect to the superconductor in
the Meissner state. In the superconducting bulk electrode, the normalised material
parameters (α̃s, β̃s and m̃s) are all by definition normalised to 1. Inserting these
normalisations into GL2 ((2.3.7)) leads to a natural length scale for the current,

J0 = ϕ0/2πµ0κ
2ξ3

s . (2.3.36)

The normalised version of GL2 now reads

J̃s = m̃−1
n

[
−i
2
(
ψ̃∗∇̃ψ̃ − ψ̃∇̃ψ̃∗

)
−
∣∣ψ̃∣∣2Ã

]
= m̃−1

n Im
[
ψ̃∗(∇̃ − iÃ)ψ̃

]
. (2.3.37)

Magnetic fields are normalised in units of the upper critical field, Bc2. For
completeness, the normalised GL free energy is written down as

F̃ − F̃0 =
∫ [

−α̃n
∣∣ψ̃∣∣2 + 1

2 β̃n
∣∣ψ̃∣∣4 +

∑
µ

1
m̃n

∣∣(∂̃µ − iÃµ
)
ψ̃
∣∣2 + κ2B̃2

]
d3r̃, (2.3.38)
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and the normalised Ampère–Maxwell equation is given as

κ2
s ∇̃ × ∇̃ × Ã = J̃s. (2.3.39)

The normalisations used throughout this thesis are summarized in Table 2.1.

Symbol Units Interpretation
r ξs = ℏ/

√
−2msαs Position vector

t τ = µ0σN;sλ
2
s Time

ψ |ψ0| =
√

−αs/βs Order parameter
A A0 = ϕ0/2πξs Magnetic vector potential
φ φ0 = ϕ0/2πτ Electrostatic potential
B Bc2 = ϕ0/2πξ2

s Magnetic induction
E E0 = ϕ0/2πτξs Electric field
J J0 = ϕ0/2πµ0κ

2ξ3
s Current density

F F0 = ϕ2
0/8π2µ0κ

2ξs Free energy

Table 2.1: The normalisation parameters.

2.3.6 Gauge Invariant GL Equations

A common approach in literature is to include the phase explicitly within the GL
equations (Eqs. (2.3.35) and (2.3.37)) [72, 73, 74, 75]. This holds the advantage that
all of the variables involved are real quantities, and therefore invariant under gauge
transformations. The wavefunction can be written in a standard way a product of
magnitude and phase,

ψ̃ =
∣∣ψ̃∣∣eiθ, (2.3.40)

where θ is a general phase that is not gauge–invariant. By defining a gauge invariant
phase γ [73], where

∇̃γ = ∇̃θ − Ã, (2.3.41)

and imposing the condition that ∇̃ · J̃s = 0, one obtains the general ‘gauge invariant
GL equations’ [73]:

[
1
m̃n

∇̃2 − 1
m̃n

(∇̃γ)2 + α̃n − β̃n
∣∣ψ̃∣∣2] ∣∣ψ̃∣∣ = 0, (2.3.42)

J̃s = 1
m̃n

∣∣ψ̃∣∣2 ∇̃γ = 1
m̃n

∣∣ψ̃∣∣2 (∇̃θ − Ã
)
. (2.3.43)

2.3.7 Critical Currents

We have discussed how the critical temperature leads to the development of GL theory,
and the resulting critical fields that emerged. The remaining parameter of interest;
the current density; is perhaps the most technologically relevant. The critical current
density (Jc) is typically the parameter that limits most technological applications. A
higher critical current density allows for a larger magnetic field to be produced, or
allows for a reduction of the amount of superconducting material necessary to achieve
a given field, which is fundamental for the commercial viability of many applications
[22].

The theoretical limit for the critical current density of a system is known as the
depairing current density, JD [60, 76]. This is the current density at which the kinetic
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energy of the superelectrons is greater than their condensation energy, causing the
Cooper pairs to break apart and the superconducting state to be destroyed. This
current can be obtained by studying the gauge invariant GL equations presented in
Eqs. (2.3.42) and (2.3.43). One can combine these by eliminating ∇̃γ from each
equation, to obtain a single equation,

1
m̃n

∇̃2 ˜|ψ| + α̃n ˜|ψ| − β̃n ˜|ψ|
3

− m̃nJ̃2
s

˜|ψ|
3 = 0. (2.3.44)

The upper bound on the current density can be found by considering Eq. (2.3.44) in
a bulk superconductor in zero field. Consider a thin, narrow wire surrounded by an
insulator – the order parameter is therefore constant in the wire and the current can
only flow uniformly along the long axis of the wire. Therefore, Eq. (2.3.44) simplifies
to read [60]

J̃2
s = ˜|ψ|

4 (1 − ˜|ψ|
2)
. (2.3.45)

One can maximize this current with respect to |ψ| and obtain the maximum lossless
current that can flow within a superconductor. This current occurs when |ψ|2 =
2/3 [60]. Inserting this value back into the above equation yields the result for the
depairing current density,

JD = 2
3
√

3
J0. (2.3.46)

In zero field, below JD, the current can flow with zero resistance. If the transport
current is raised above JD, the superconducting state is broken and the current flows
with a typical Ohmic resistance. In contrast, if one considers a superconductor in the
mixed state, then the critical current is the applied current which causes a continuous
movement of vortices – this movement causes an electric field according to Maxwell’s
equations which leads to energy dissipation in the system.

In practice, superconductors are not homogeneous narrow single–crystalline wires –
they are typically inhomogeneous, polycrystalline materials, containing an abundance
of defects and grain boundaries. Fluxons are ‘pinned’ by defects and grain boundaries
within the system – the critical current is therefore viewed as the applied current
needed to free these fluxons from their pinned states. The critical current of real
commercial superconductors are typically orders of magnitude below the theoretical
limit [39]. The critical current densities of some commercial superconductors are
shown in Fig. 2.4. Developing our analytic understanding and modelling real
polycrystalline superconductor requires careful consideration of the system geometry,
microstructure and material parameters of the system.

2.4 Interfaces and Surface Barriers

Many of the results discussed thus far are relevant for bulk superconducting materials.
Although these are easy to describe analytically and capture important results for
understanding real superconductors, they miss out the complexity that occurs near
superconductor–normal (SN) interfaces. In this section, we present some results from
Saint James and de Gennes describing the effect of an interface on the superconductor.
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2.4.2. Superconductor–Insulator Interfaces

Figure 2.4: Critical current as a function of applied field for a variety of commercially
used superconductors [39].

2.4.1 The Generalized GL Boundary Condition

By considering a single SN bilayer using microscopic theory, de Gennes proposed a
generalization of the GL boundary condition (Eq. (2.3.6)) [77]:(

∇̃ − iÃ
)
ψ̃ · n̂ = 1

b̃
ψ̃. (2.4.1)

Eq. (2.3.6) is correct for an interface between a superconductor and an insulator
(an SI interface). With a SN interface, the order parameter (superelectrons) can
penetrate some distance into the metal, inducing a weak superconducting effect in
the normal barrier within a small region near the interface. Correspondingly, this
leads to a decrease in the order parameter in the superconductor. This is known
as the proximity effect. Here, b is known as the extrapolation length, characterizing
the distance over which the order parameter drops to zero after passing through the
boundary. In the extreme insulating limit, the order parameter drops to zero in
the normal material almost instantly, and so b → ∞ – this recovers the original GL
boundary condition in Eq. (2.3.6), and the boundary condition is equivalent to having
zero gradient at the interface. Conversely, for a perfect conductor, the superelectrons
near the boundary can leak infinitely far into the normal region, and so b → 0 and the
order parameter is zero at the interface. One can consider a semi–infinite half plane in
zero–field, where the SN interface is located at x = 0 and the superconductor is in the
region x > 0. In this case, the boundary conditions are that the order parameter is
zero at the interface and takes the Meissner value as x → ∞. As a textbook example,
the particular analytic solution to GL1 in this geometry is given by [69]

ψ̃(x̃) = tanh
(
x̃√
2

)
. (2.4.2)

As expected, the order parameter in the electrode recovers over the length scale of
the coherence length to the bulk Meissner value.

2.4.2 Superconductor–Insulator Interfaces

The previous results in Section 2.3.4 suggested that for fields above Bc2, the
superconducting state is completely destroyed. This was derived in the case where
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2.4.2.1. Surface Nucleation Field for a Superconducting–Insulating Interface (SI)

surface effects can be neglected – for infinite systems, as the field is reduced, the
superconducting vortex lattice spontaneously arises when Bapp = Bc2. Although this
is true in the bulk of the superconducting electrode, interesting phenomena can arise
when considering the presence of surface boundaries [78, 79].

2.4.2.1 Surface Nucleation Field for a Superconducting–Insulating
Interface (SI)

We follow the approach outlined by Saint James and de Gennes, describing the
nucleation of superconductivity near a surface, and the corresponding effect this
interface has on the nucleation field. We will see how one can interpret this ‘surface
nucleation field’ as an effective upper critical field, denoted as Bc3. Saint James and
de Gennes consider a semi–infinite half–plane, with a superconducting electrode in
the region where x > 0, and a vacuum (or extremely insulating normal metal) in the
region where x < 0. They consider a uniform field applied in z–direction and make
the choice of gauge [79]

Ã = Ãy ȷ̂, (2.4.3)

where
Ãy(x̃) = B̃appx̃. (2.4.4)

We note here than the net local field is not the same as the applied field – in the
presence of a screening current, the field is spatially varying across the system.
However, in the limit near the surface upper critical field, the order parameter is
small everywhere, the screening currents are negligible and so the field is close to the
applied field in the entire system. Saint James and de Gennes first consider the spatial
variation of the order parameter in the x–direction, and write the order parameter in
the standard way as a product of magnitude and phase where,

ψ̃(x̃, ỹ) = |ψ̃(x̃)|eiϕ(x̃,ỹ). (2.4.5)

The presence of the insulating boundaries set some constraints on the current flow
allowed throughout the system. No current is able to flow through the insulating
surface, written as the first boundary condition

J̃s:x = 0. (2.4.6)

Applying the condition of zero charge density (∇̃ · J̃ = 0), leads to the second
boundary condition,

∂J̃s:y
∂ỹ

= 0. (2.4.7)

By applying these two boundary conditions (Eqs. (2.4.6) and (2.4.7)), the phase must
be of the form [79]

ϕ(x̃, ỹ) = ky ỹ. (2.4.8)

Substituting the wavefunction into GL1 (Eq. (2.3.35)) in the superconducting
electrode leads to the result

∂2 ˜|ψ|
∂x̃2 −

(
ky − B̃appx̃

)2 ˜|ψ| + ˜|ψ| − ˜|ψ|
3 = 0. (2.4.9)

In general, this is of the form of a non-linear Weber equation [80, Eq. 12.2.1], which
has no known analytic solution. Saint James and de Gennes consider the system
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with an applied field which is close to the surface nucleation field. In this limit, the
order parameter magnitude will be small, and the non–linear term can be neglected.
Rewriting the wavefunction in the form

ψ̃(x̃, ỹ) = Cf̃(x̃)eiky ỹ, (2.4.10)

where the prefactor C is a constant and the resulting linearized equation can be
written in the form

∂2f̃

∂x̃2 −
(
ky − B̃appx̃

)2
f̃ = 0, (2.4.11)

which has solutions in terms of special functions known as parabolic cylinder functions
(PCFs) [80, Section 12]∗. By making the transformation of variables

t = x̃

√
2B̃app − ky

√
2

B̃app
, (2.4.12)

the linearized equation is reduced to the form:

∂2f̃

∂t2
−
(

− 1
2Bapp

+ 1
4 t

2
)
f̃ = 0. (2.4.13)

This is one of the standard forms for a differential equation admitting PCF solutions
(c.f. [80, Eq. 12.2.2]):

∂2f̃

∂t2
−
(
a+ 1

4 t
2
)
f̃ = 0, where a = − 1

2B̃app
. (2.4.14)

The PCF solutions, in general, may take real or complex arguments. For real x, the
general solution is a pair of PCFs: {U(a, x), V (a, x)} if x > 0, or {U(a,−x), V (a,−x)}
if x < 0 [80, Section 12.2(i)]). Since the electrode region is defined when x > 0, the
general solution is therefore written as the superposition

f̃(x̃) = c1U (a, t) + c2V (a, t) . (2.4.15)

These cylinder functions can be expressed in terms of a number of other special
functions, such as confluent hypergeometric functions (typically used for numerical
evaluation) [80, Section 12.4].

To constrain this general solution, Saint James and de Gennes applied the two
boundary conditions [79]

f̃(x̃ → ∞) = 0 and ∂f̃

∂x̃

∣∣∣∣
x̃=0

= 0. (2.4.16)

The first condition ensures that the order parameter is zero deep inside the bulk of the
superconductor, whilst the second is the typical Neumann condition of zero gradient,
appropriate at an insulating boundary as seen from Eq. (2.4.1). Since U(a, z) → 0 as
z → ∞ and V (a, z) → ∞ as z → ∞ (as seen from [80, Figs. 12.3.3 and 12.3.4], or the
asymptotic expansions in [80, Eqs. 12.9.1 and 12.9.2]), the first boundary condition
requires that c2 = 0. The particular solution is then written as

f̃ (x̃) = c1U (a, t) . (2.4.17)
∗Saint James and De Gennes refer to these special functions as ‘Weber functions’; all modern

texts instead call these ‘parabolic cylinder functions’.
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Figure 2.5: Examples of the parabolic cylinder functions (used in Eq. (2.4.17)) with
the particular value of ky that satisfies the boundary condition (Eq. (2.4.16)), for
a range of applied magnetic fields. These cylinder functions describe the spatial
variation of the order parameter solution – the magnitude is determined by the
remaining constant prefactor in Eq. (2.4.17).

The remaining boundary condition in Eq. (2.4.16) provides an implicit equation for
ky. The derivative of these functions are defined through the recurrence relation [80,
Eq. 12.8.3]∗

U ′(a, t) = 1
2 tU(a, t) − U(a− 1, t). (2.4.18)

Therefore, we find an implicit equation to determine the value of ky for the particular
solution,

1
2 t0U (a, t0) − U (a− 1, t0) = 0, (2.4.19)

where t0 is the spatial argument (Eq. (2.4.12)) evaluated at the interface; t0 =
−ky

√
2/B̃app. This equation is field dependent. As the applied field is increased,

the value of ky that satisfies the boundary condition changes. Moreover, the physical
solution is unique so that there is a single value of ky corresponding to a physical
order parameter that meets the boundary condition.

Some examples of the parabolic cylinder functions at various field values are shown in
Fig. 2.5. It is important to note here that the cylinder functions are responsible for
describing the spatial variation of the order parameter magnitude. Since the equation
is linear, the solution is only defined up to a constant prefactor [69] – the remaining
prefactor c1 in Eq. (2.4.17) determines the magnitude of these solutions. In practice,
this prefactor must be determined by solving the full non–linear GL equations with
the boundary conditions in Eq. (2.4.16) [78, 79]. In Chapter 4, we shall provide an
analytic approach detailing how to constrain this remaining prefactor.

∗There are three choices for the recurrence relations [80, Eqs. 12.8.1 to 12.8.4]; we chose to use
this since it is the same form as used in Mathematica and other common resources in literature. The
results are independent of the choice of recurrence relation.
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As mentioned, Eq. (2.4.19) provides an implicit relationship between a and t0, which
provides the relationship between the applied field, B̃app, and the phase, ky. As the
applied field is increased, there is some maximum critical field, above which no implicit
solution to Eq. (2.4.19) for ky that satisfies the boundary condition is possible. In
other words, beyond this critical field, there is no solution for the order parameter that
satisfies the boundary conditions. Below this critical field, the superconducting state
has nucleated within a small region on the order of a few coherence lengths, decaying
to zero as it moves away from the interface. This field is the surface nucleation field,
Bc3. Between Bc2 and Bc3, the superconducting state can only nucleate and exist
in this so–called ‘sheath’ region near the insulating interface. Below Bc2, then the
superconducting state can nucleate in the bulk region, as described by the Abrikosov
results [66]. Strictly, the solutions presented here are valid only near the surface
nucleation field where the order parameter is small.

In order to extract the surface nucleation field, we need to find the maximum field
for which a solution exists. Eq. (2.4.13) can be viewed as an eigenvalue problem, and
therefore this maximum field corresponds to the lowest eigenvalue for this particular
potential. Saint James has shown this leads to [79, p. 86 ]

da
dt

∣∣∣∣
t=t0

= 0. (2.4.20)

This condition holds at the critical values of a and t0 that correspond to the maximum
value of the applied field and the lowest eigenvalue, denoted as ac and t0,c. Taking the
derivative of Eq. (2.4.19) with respect to t0 and using the condition in Eq. (2.4.20)
yields the result

1
2

(
1 + 1

2 t
2
0,c

)
U (ac, t0,c) − t0,cU (ac − 1, t0,c) + U (ac − 2, t0,c) = 0. (2.4.21)

Eqs. (2.4.19) and (2.4.21) together form a set of coupled equations which specify the
critical values ac and t0,c. Using the recurrence relation [80, Eq. 12.8.1]

tU (a, t) − U (a− 1, t) + (a+ 1
2 )U (a+ 1, t) = 0, (2.4.22)

we can transform Eq. (2.4.21) to provide an explicit solution for the critical value of
ac that maximizes the field,

ac = −1
4 t

2
0,c. (2.4.23)

Inserting this back into Eq. (2.4.19) leaves an implicit equation for t0,c:

1
2 t0,cU

(
−1

4 t
2
0,c, t0,c

)
− U

(
−1

4 t
2
0,c − 1, t0,c

)
= 0, (2.4.24)

that leads to a value for t0,c ≈ −1.09. This gives the surface nucleation field for
perfectly insulating boundary conditions given by [78]

B̃c3 = − 1
2ac

= 2
t20,c

= 1.695. (2.4.25)

We note that Saint James provided a framework using the integral representations
of the cylinder functions (c.f. [80, Eq. 12.5.1]) which are equivalent to the complete
cylinder function derivation presented here.

Finally, since the phase has been included explicitly here and the boundary condition
is essentially a constraint on the phase, the supercurrent flowing in this system is also
known. GL2 provides the spatial variation of the screening currents flowing [79],

J̃s:y (x̃) = f̃2 (x̃)
(
ky − B̃appx̃

)
. (2.4.26)
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Since ky is positive, the sign of J̃s:y (x̃) changes and the screening currents are
counter–rotating. This is a physical consequence of the order parameter being
non–zero only in a thin region near the sheath; if x is sufficiently far away from
the interface or x < 0, the order parameter is zero, the system is in the normal state
and so the net field is Bapp. The screening currents on each of these sides flow in
opposite directions and compete, producing counter–flowing currents with a point of
zero net current somewhere within the sheath. This is one of the beautiful results of
Saint James and arises naturally from the direct inclusion of the phase. In Chapter
4, we will see how one can utilise these solutions as a basis to understand the order
parameter variation across the entire field range. Moreover, the Saint James results
presented here are derived for the specific case of insulating boundaries. We will
later generalise these results to interfaces of arbitrary masses, providing the notion of
an effective upper critical field which is dependent on the specific interface material
parameters.

2.4.2.2 Effective Upper Critical Field for a Superconducting Slab with
Insulating Coatings (ISI)

The framework for surface superconductivity above considers a SI interface in
isolation, where the superconductor and the insulator were semi–infinite half–planes.
A natural extension to this is to consider a finite system; Saint James and de Gennes
also offered a framework to describe an insulator–superconductor–insulator (ISI)
system, where the superconducting slab has a finite thickness, ds. Consider the slab
to be centered at x̃ = 0, and each interface to be located at x̃ = ±d̃s/2. In the slab,
the general solution is written as the superposition,

f̃(x̃) = cs1U (a, t) + cs2U (a,−t) . (2.4.27)

Eq. (2.4.27) can be seen as a symmetric combination of two solutions like Eq. (2.4.17),
describing the variation of the order parameter near each respective interface. The
relevant boundary conditions at the insulating interfaces are given as

∂f̃

∂x̃

∣∣∣∣
x̃=−d̃s/2

= 0 and ∂f̃

∂x̃

∣∣∣∣
x̃=d̃s/2

= 0. (2.4.28)

Again, this system has 3 unknowns (cs1, cs2 and ky) and 2 boundary conditions, and
so one of the constant prefactors is left undetermined, consistent with the previous
section. A similar approach is followed; one boundary condition will be used to
constrain one of the prefactors in terms of the other, and the remaining boundary
condition will determine the phase term, ky. We adopt a prime notation, where prime
denotes differentiation with respect to the spatial argument of the function:

U ′ (a, t) = ∂U (a, t)
∂t

,

U ′ (a,−t) = ∂U (a,−t)
∂ (−t) .

(2.4.29)

If desired, the derivatives may be explicitly written out through the recurrence relation
seen earlier ([80, Eq. 12.8.3]). However, this form is common in numerical evaluation,
and in conjunction with the chain rule, allows for a particularly concise notation of
the gradient boundary conditions. Using the first boundary condition in Eq. (2.4.28)
at x = −ds/2 leads to the relation [78, 79]

cs2 = γscs1, (2.4.30)
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where the variable γs is defined using Eq. (2.4.18) as

γs = U ′ (a, t)
U ′ (a,−t)

∣∣∣∣
x̃=−d̃s/2

=
1
2 t−d̃s/2U

(
a, t−d̃s/2

)
− U

(
a− 1, t−d̃s/2

)
− 1

2 t−d̃s/2U
(
a,−t−d̃s/2

)
− U

(
a− 1,−t−d̃s/2

) . (2.4.31)

Using the other boundary condition in Eq. (2.4.28) at x = ds/2 provides an implicit
equation,

U ′
(
a, td̃s/2

)
− γsU

′
(
a,−td̃s/2

)
= 0. (2.4.32)

Crucially, this implicit equation for ky is independent of c1. Eq. (2.4.32) contains
all the necessary information about the thickness of the slab, and so can be used to
identify the effective upper critical field as a function of thickness. Again, we could
ramp up the field until no solution exists, or we can find the lowest eigenvalue as we
did in the previous section by differentiating our implicit equation in Eq. (2.4.32)
with respect to td̃s/2. From the definition of t in Eq. (2.4.12), we can notice that the
two spatial coordinates at each interface (td̃s/2 and t−d̃s/2) are simply related:

t−d̃s/2 = td̃s/2 − d̃s√
−a

. (2.4.33)

Note that a is negative in order to guarantee a positive field and so the root remains
well–defined. Therefore, we can replace any t−d̃s/2 with td̃s/2, and then apply the same
condition as in Eq. (2.4.21). Unfortunately there is not a simple explicit solution for
a, since the parabolic cylinder functions themselves no longer cancel out precisely.
Instead, the solution for the critical values of ac and td̃s/2,c must be found numerically.
The results are shown in Fig. 2.6. When the thickness of the superconducting layer is
large, and the insulating edges are very far apart, the behaviour of the semi–infinite
medium (shown in Section 2.4.2) is recovered, where B∗

c2 = Bc3 = 1.695Bc2. However,
as the thickness decreases, the enhanced superconducting sheath regions overlap and
the effective upper critical field is dramatically increased. This is consistent with
Tinkham’s work on the parallel critical field for sufficiently thin films (ds < 1.8ξs)
[60], given by the equation

B∥ =
√

12ξs
ds

Bc2. (2.4.34)

This expression was first found by Ginzburg and Landau in their seminal paper [63,
81], and then generalised to arbitrary angle by Tinkham [82]. If the thickness is
sufficient large such that the interfaces are sufficiently far away, then the Saint James
results seen in Section 2.4.2 supersedes the Tinkham results [60]. Since the analytic
effective upper critical field obtained from Eq. (2.4.32) contains the correct thickness
dependence, one can explicitly see the crossover between these two limits as shown in
Fig. 2.6.

2.5 Theory of SNS Josephson Junctions

The majority of modern superconductors used in technological applications, such as
Nb3Sn and the HTS materials are polycrystalline materials. Schematically, we can
consider these materials as a series of superconducting grains (electrodes), surrounded
by normal metal grain boundaries (barriers). In real materials, these grain boundaries
are likely to have have a higher resistivity than the bulk electrode with a lower Tc

[39, 83, 84] The network of grain boundaries may be complex, and the planes may
be aligned at arbitrary angles to the applied magnetic field and current density.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
ds/ξs

10.0

20.0
30.0

5.0

1.695

1.0

B
∗ c2
/B

c2

TDGL

Analytic

Tinkham

Saint James

Figure 2.6: Effective upper critical field as a function of the superconducting thickness
from the analytic form in Eq. (2.4.32) (solid green line), compared to the limiting
values from Tinkham’s parallel critical field (dashed blue line, Eq. (2.4.34)) and
the semi–infinite Saint James result, B∗

c2 = Bc3 = 1.695Bc2 (dashed red line,
Section 2.4.2). TDGL slab data (solid circular markers) is shown for a range of
superconducting thicknesses.

The grains themselves may span over a range of sizes and dimensions, and local
defects may alter the material properties. Boundaries may intersect, introducing more
complexity that must be accounted for. Understanding the behaviour of an entire
polycrystalline superconductor is therefore an extremely difficult task – understanding
the macroscopic critical current as a sum of microscopic pinning interactions has
proved to be a challenge that has plagued the field for decades [85, 86, 87].

The central thesis of this work is that a fundamental building block that can be used
to model polycrystalline materials is the Josephson junction [88]. Josephson junctions
consist of two superconducting electrodes, separated by a barrier, which is typically
a normal metal – these are known as superconductor–normal–superconductor (SNS)
junction geometries [89, 90]. These geometries are particularly interesting since they
can exhibit a tunnelling effect [91, 92, 93], even if the barrier itself is significantly
insulating but thin enough for each electrode to be coupled together – de Gennes
has famously shown that the maximum current that can flow across a junction
exponentially decreases with the thickness of the normal barrier [77]. In other words,
Cooper pairs and a dissipationless supercurrent can still flow across the junction.

Unfortunately, even though the concept of Josephson junctions has been considered for
nearly half a century, the analytic framework that describes these systems is limited
to only the simplest of geometries. A schematic of the system that we consider is
shown in Fig. 2.7. We consider a square superconducting electrode of chemical
width and length (ws and ls) and superconducting properties αs, βs and ms. The
superconductor is surrounded by a normal barrier (with a chemical junction thickness,
dn) in the x–direction, and a normal coating (with a chemical coating width of wc)
in the y–direction. In these regions, αn, βn and mn describe the material properties
of the normal barrier, whilst αc, βc and mc describe the properties of the coating.
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2.5.1. Fink, Blair & Hampshire – Very Narrow Systems (ws ≪ ξs)

Figure 2.7: Schematic of the 2D computational domain used to model the Josephson
junction system. The domain is subdivided into three sections - the superconducting
region (S) the normal barrier (N), and a coating region (C). Each region has its
own material parameters, normalised to the properties of the bulk superconducting
electrode in the Meissner state. Periodic boundaries (shown as blue–dashed lines)
are applied in the x–direction, and insulating boundary conditions are applied in the
y–direction. The chemical width and length of the superconducting electrode are
denoted as ws and ls, whilst the chemical thickness of the normal barrier is denoted
as dn. The width of the coating is denoted as wc. Background: Order parameter
magnitude is taken from an example TDGL simulation, highlighting the position of
fluxons in the bulk electrode and their interactions with the surface boundaries.

As we saw in Section 2.3.5, we normalise materials properties parameters to those of
the superconductor. For modelling polycrystalline materials, it is natural to take the
material properties of the coating and barrier regions to be identical to each other. It
stands to reason that if one wants to understand the entire macroscopic polycrystalline
superconductor, one first needs to have a complete and accurate description of the
simplest building block. Different analytic frameworks have been developed in various
regions of phase space. We outline the relevant analytic theory and frameworks for
the Josephson junction below.

2.5.1 Fink, Blair & Hampshire – Very Narrow Systems (ws ≪ ξs)

We first review the analytic results for the case where the superconducting electrodes
are very narrow (ws ≪ ξs). This is equivalent to the assumption that there are
no vortices in the system at all. If we consider systems with insulating boundary
conditions, the general GL boundary condition (Eq. (2.4.1)) demands that the order
parameter is independent of y, and therefore the problem reduces to one dimension
only. We note that if we applied perfectly conducting boundary conditions, the order
parameter would be zero across the width and the critical current would be identically
zero since no supercurrent can flow. Fink first derived a zero–field analytic expression
for the maximum current density that can flow across a junction [74]. His derivation
began with the same gauge invariant framework in Section 2.3.6 to derive the depairing
current in a homogeneous narrow wire, JD – we therefore interpret this result as the
equivalent for an inhomgeneous SNS system. We denote the maximum lossless current
that can flow through the junction as JDJ. Later, Blair & Hampshire extended these
results to include applied magnetic fields, valid across the entire range of magnetic
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2.5.1.1. Fink–Blair–Hampshire (FBH) Framework

field, up to the upper critical field [75]. Since Fink’s results are captured in the
zero–field limit of Blair, here we only describe the in–field derivation.

2.5.1.1 Fink–Blair–Hampshire (FBH) Framework

Blair begins by taking the contour integral of the GI phase defined in Eq. (2.3.41).
By applying Stokes’ theorem, he obtains∮

∇γ · dl =
∮

∇θ · dl −
∮

B̃ · dS. (2.5.1)

To ensure that the order parameter is single-valued, the contour integral of θ (first
term on the RHS) is equal to 2πn, where n is the number of vortices within the
contour. In the very narrow limit, one can assume there are no fluxons in the system
(n = 0), and so this term has no contribution. He assumes that the order parameter
magnitude is symmetric about both the y and x–axes, and that the screening currents,
and hence ∂yγ, are antisymmetric about the y and x–axes. To first order, the
transport current is uniform in the y–direction; there is a laminar flow of transport
current in the x–direction. Since the supercurrent in the y–direction is assumed to
be zero, Eq. (2.3.43) provides the result for the x–component of the supercurrent,

J̃s:x = 1
m̃n

∣∣ψ̃∣∣2∂xγ(ỹ = 0). (2.5.2)

Inserting this back into Eq. (2.5.1), applying Stokes’ theorem for a second time, and
taking the length of the contours parallel to the x–axis to be sufficiently short leads
to the result

∂xγ(ỹ) = J̃s:x

|ψ|2
+ B̃appỹ. (2.5.3)

Since the system is uniform in the y–direction, Blair utilises the mean value theorem
and takes an average over the width of the system, replacing quantities by their
averaged values:

F̃ = 1
w̃s

∫ w̃s/2

−w̃s/2

∣∣ψ̃∣∣ dỹ , (2.5.4)

⟨J̃s:x⟩y = 1
w̃s

∫ w̃s/2

−w̃s/2
J̃s:x dỹ ≡ ⟨J̃app⟩y. (2.5.5)

Similarly, the average of the square of the result found in Eq. (2.5.3) is given as

⟨∂xγ(ỹ))2⟩ =
(
B̃appw̃s√

12

)2

+
m̃2

n⟨J̃app⟩2
y

F̃ 4 . (2.5.6)

Inserting this result back into Eq. (2.3.42) yields a single equation,

1
m̃n

∂2F̃

∂x̃2 +
[(

α̃n − q2

m̃n

)
− β̃nF̃

2 −
m̃n⟨J̃app⟩2

y

F 4

]
F̃ = 0, (2.5.7)

where q2 has been defined as

q2 =
(
B̃appw̃s√

12

)2

. (2.5.8)

Eq. (2.5.7) represents a field dependent generalization of Eq. (2.3.44) – Fink’s result
is recovered in the limit where q2 = 0. The expression for q2 is related to the parallel
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2.5.1.2. Derivation of the General Mathematical Solution

critical field for sufficiently thin films seen in Eq. (2.4.34) [60]. In effect, Blair’s
formalism treats the very narrow system as being within the overlapping sheath
regions, with an enhanced upper critical field given by Eq. (2.4.34).

In order to extract an analytic solution, it is convenient to rescale the variables. Blair
made the following substitutions [75]:

F̃ = F̃

√
1 − q2

m̃nα̃n
, x̃ = X̃√

1 − q2

m̃nα̃n

, J̃ = J̃
(

1 − q2

m̃nα̃n

)3/2

. (2.5.9)

Inserting these into Eq. (2.5.7) leads to the result

1
m̃n

∂2F̃
∂X̃ 2 +

[
α̃n − β̃nF̃2 −

m̃n⟨J̃app⟩2
y

F4

]
F̃ = 0. (2.5.10)

This is the same equation that Fink considered, allowing Blair to use the same
machinery to obtain an exact analytic solution [74]. In effect, the substitutions
rescaled the variables to remove the field dependence, and provide the in–field
observables F̃ , x̃ and J̃ .

2.5.1.2 Derivation of the General Mathematical Solution

Here we outline the literature derivation of the in–field solution for both strongly and
weakly coupled junctions. FBH found a general solution to Eq. (2.5.10) in each region
separately and then constrained them to be consistent at the boundary between them.
Rewriting Eq. (2.5.10) with completely generic coefficients, gives

∂2F̃

∂x̃2 +AF̃ −BF̃ 3 − C
1
F̃ 3 = 0. (2.5.11)

Integrate once to obtain the result(
∂F̃

∂x̃

)2

=
(
F̃ 2 − F̃ 2

B

) [
−A+ 1

2B
(
F̃ 2 + F̃ 2

B

)
+ C

F̃ 2F̃ 2
B

]
, (2.5.12)

where F̃B will be constrained by the boundary conditions on the system. After making
use of the chain rule to replace the derivative,(

∂F̃ 2

∂x̃

)2

= 4F̃ 2
(
∂F̃

∂x̃

)2

, (2.5.13)

Eq. (2.5.12) is then rewritten in the form(
∂F̃ 2

∂x̃

)2

= 2
(
F̃ 2 − F̃ 2

B

) [
F̃ 2 {−2A+B

(
F̃ 2 + F̃ 2

B

)}
+ 2C
F̃ 2
B

]
. (2.5.14)

By making the substitution Ψ̃2 = F̃ 2 − F̃ 2
B , Eq. (2.5.14) is transformed to read [74](

∂Ψ̃2

∂x̃

)2

= 2Ψ2
[(

Ψ̃2 + F̃ 2
B

) {
−2A+B

(
Ψ̃2 + 2F̃ 2

B

)}
+ 2C
F̃ 2
B

]
. (2.5.15)

Making use of the chain rule again, this is the rewritten into the important result

2
(
∂Ψ̃
∂x̃

)2

=
(
Ψ̃2 + F̃ 2

B

) {
−2A+B

(
Ψ̃2 + 2F̃ 2

B

)}
+ 2C
F̃ 2
B

. (2.5.16)
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Crucially, this equation is only quadratic in Ψ̃2. It is possible to factorise this equation
into a standard form which admits solutions in terms of Jacobi elliptic functions (c.f.
[80, Section 22.13(ii)]),

2
(
∂Ψ̃
∂x̃

)2

=
(
a2/B − Ψ̃2) (b2 −BΨ̃2) , (2.5.17)

where expressions for a2 and b2 are identified as∗:

a2 =
(
A− 3

2BF̃
2
B

)
+

√(
−A+ 1

2BF̃
2
B

)2
− 2BC

F̃ 2
B

, (2.5.18)

b2 =
(
A− 3

2BF̃
2
B

)
−

√(
−A+ 1

2BF̃
2
B

)2
− 2BC

F̃ 2
B

.

Eq. (2.5.17) is a first-order, separable ODE. By separating variables and integrating
each side, one can obtain the result

x̃√
2

+ k2 =
∫

dΨ 1√(
a2/B − Ψ̃2

) (
b2 −BΨ̃2

) , (2.5.19)

where k2 is the final integration constant. Without loss of generality, by the
fundamental theorem of calculus, the indefinite integral on the right-hand side is
replaced with the definite integral with limits from 0 to Ψ(x̃), absorbing any additional
constants into the integration constant. After a small rearrangement, Eq. (2.5.19)
now reads

x̃√
2

+ k2 =
∫ Ψ(x̃)

0
dΨ 1

√
b2

√
a2

B

√(
1 − B

a2 Ψ̃2
)(

1 − B

b2 Ψ̃2
) . (2.5.20)

In order to reduce this integral to a standard Legendre form, one makes the change
of variables

sin(θ) =
√
B

a2 Ψ, (2.5.21)

with the corresponding relations:

dΨ = dθ
√

1 − sin2(θ)
√
a2

B
,

θ = arcsin
(√

B

a2 Ψ
)
.

Using these results in Eq. (2.5.20) leads to the an integrand of the form

x̃√
2

+ k2 =
∫ arcsin

(√
B
a2 Ψ(x̃)

)
0

dθ 1
√
b2

√
1 − a2

b2 sin2(θ)
. (2.5.22)

By introducing the definition of the incomplete elliptic integral of the first kind, [80,
Eq. 19.2.4] in both modular form (using modulus, k) and parametric form (using
parameter, m):

F (ϕ, k) =
∫ ϕ

0

dθ√
1 − k2sin2θ

, F (ϕ|m) =
∫ ϕ

0

dθ√
1 −msin2θ

, (2.5.23)

∗The exact forms of a2 and b2 are slightly different to FBH because we have considered a
slightly different factorisation, more convenient for the general equation. We could recover the Fink
results precisely if we had applied the boundary conditions at an earlier stage to consider the same
factorisation.
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one can find the result:
√
b2
(
x̃√
2

+ k2

)
= F

(
arcsin

(√
B

a2 Ψ(x̃)
)∣∣∣∣∣m

)
, where m = a2

b2 . (2.5.24)

The order parameter is inside the argument of this special function. By using the
definition of the amplitude function as the inverse of the elliptic integral [80, Eqs.
22.16.10 and 22.16.11]:

x = F (ϕ, k), (2.5.25)

am(x, k) = ϕ, (2.5.26)

Eq. (2.5.24) can be inverted to obtain

arcsin
(√

B

a2 Ψ(x̃)
)

= am
(

√
b2
(
x̃√
2

+ k2

) ∣∣∣∣∣a2

b2

)
. (2.5.27)

Finally, using the definition of the Jacobi elliptic function, sn(x, k), as the sine of the
amplitude function [80, Eq. 22.16.1],

am(x, k) = arcsin (sn(x, k)) , (2.5.28)

one can obtain the result√
B

a2 Ψ(x̃) = sn
(

√
b2
(
x̃√
2

+ k2

) ∣∣∣∣∣a2

b2

)
. (2.5.29)

Taking the square of this result, replacing the previous substitution of Ψ̃2 = F̃ 2 − F̃ 2
B ,

and rearranging, one finds the final general result

F̃ 2 = F̃ 2
B + a2

B
sn2

(
√
b2
(
x̃√
2

+ k2

) ∣∣∣∣∣a2

b2

)
, (2.5.30)

where the expressions for a and b are defined in Eq. (2.5.18). To reiterate, F̃ 2
B is

an undetermined integration constant, which may be easily constrained by applying
boundary conditions to Eq. (2.5.12), or by taking relevant derivatives of Eq. (2.5.30).
The second integration constant k2 is also be determined by applying the relevant
boundary conditions.

2.5.1.3 Particular Solutions for the Electrodes and the Barrier

For simplicity, FBH consider only the region x > 0, where the interface is located at
x = dn/2, since the solutions where x < 0 may be obtained by the symmetry of the
system. Following Blair, we substitute the rescaled variables defined in Eq. (2.5.9)
into the general results in Eqs. (2.5.18) and (2.5.30), such that the general solution
describes real observable quantities.

We now take the general solution and calculate particular solutions for the order
parameter first in the superconducting electrode and then in the barrier. The
superconducting electrodes to the right in Fig. 2.7 is defined in the region x ∈
[dn/2, ls/2]. In the electrode, the coefficients are trivial, since α̃n, β̃n and m̃n are
equal to 1 in this region. Inserting the coefficients into the general solution in Eq.
(2.5.18) leads to a2

s and b2
s being defined as [75]

a2
s = S1 +

√
S2, b2

s = −S1 +
√

S2, (2.5.31)
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where

S1 =
(

1 − 3
2
F̃ 2
l̃/2

1 − q2

)
, (2.5.32)

S2 =
(

1 − 1
2
F̃ 2
l̃/2

1 − q2

)2

−
2⟨J̃app⟩2

y

(1 − q2)2F̃ 2
l̃/2
. (2.5.33)

The particular solution for Eq. (2.5.30) then takes the form [80, Eq. 22.2.10]

F̃ 2
s (x̃) = F̃ 2

l̃/2 −
(
1 − q2) b2

sa
2
s

b2
s + a2

s
sd2

((
l̃s
2 − x̃

)√
1 − q2

√
a2

s + b2
s

2

∣∣∣∣ b2
s

a2
s + b2

s

)
.

(2.5.34)

We have transformed our original Jacobi elliptic function to ensure that it remains a
well–defined function on the real line [94, Pg. 214, Table XIII]. This solution contains a
remaining free constant, F̃ 2

l̃/2 = F̃ 2
s
(
x̃ = l̃s/2

)
, which represents the order parameter

magnitude deep inside the electrode. To avoid the proliferation of subscripts, we
implicitly understand that the l̃ in F̃ 2

l̃/2 is the chemical length. This constant will be
constrained by continuity of the two solutions across the interface.

Next, we consider the order parameter solution in the normal barrier. Importantly,
the sign of α̃n is different to that in the electrode, and so the Jacobi elliptic function
is transformed to ensure that it remains on the real line [94]. Again, by substituting
the coefficients into Eq. (2.5.18), one can identify the two variables a2

n and b2
n to be

[75]

a2
n = N1 +

√
N2, b2

n = −N1 +
√

N2, (2.5.35)

where

N1 =

m̃nα̃n − 3
2m̃nβ̃n

F̃ 2
0

1 − q2

m̃nα̃n

 , (2.5.36)

N2 =

−m̃nα̃n + 1
2m̃nβ̃n

F̃ 2
0

1 − q2

m̃nα̃n


2

−
2m̃3

nβ̃n⟨J̃app⟩2
y(

1 − q2

m̃nα̃n

)2

F̃ 2
0

. (2.5.37)

The particular solution then takes the form [80, Eq. 22.2.10]

F̃ 2
n = F̃ 2

0 −
(

1 − q2

m̃nα̃n

)
a2

n
m̃nβ̃n

sc2

√b2
n
x̃√
2

√
1 − q2

m̃nα̃n

∣∣∣∣∣b2
n + a2

n
b2

n

 . (2.5.38)

This solution represents the order parameter magnitude in the normal barrier, and
there is a remaining constant F̃ 2

0 = F̃ 2
n (x̃ = 0), which represents the order parameter

at the centre of the barrier. We have again transformed our original Jacobi elliptic
function to ensure that it remains on the real line [94, Pg. 214, Table XIII].

Finally, the remaining constants F̃ 2
0 and F̃ 2

l̃/2 are constrained by imposing continuity of
order parameter magnitude and current density across the interface. This is equivalent
to ensuring that the following two conditions are met:

F̃ 2
n (x̃)

∣∣
x̃=d̃n/2 = F̃ 2

s (x̃)
∣∣
x̃=d̃n/2 , (2.5.39)

1
m̃n

∂F̃ 2
n (x)
∂x̃

∣∣∣∣
x̃=d̃n/2

= ∂F̃ 2
s (x̃)
∂x

∣∣∣∣
x̃=d̃n/2

. (2.5.40)
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Imposing these conditions leads to a general equation for interfacial order parameter,
written as (

1 − β̃n
m̃n

)
(F̃ 2
d̃n/2)3 − 2

(
1 − q2 − α̃n

m̃n
+ q2

m̃2
n

)
(F̃ 2
d̃n/2)2 (2.5.41)

+
[
(2(1 − q2) − F̃ 2

l̃/2)F̃ 2
l̃/2 + F̃ 2

0
m̃n

(
−2
(
α̃n − q2

m̃n

)
+ β̃nF̃

2
0

)
+

2⟨J̃app⟩2
y

F̃ 2
l̃/2

−
2⟨J̃app⟩2

y

F̃ 2
0

]
F̃ 2
d̃n/2 = 0.

Note that there are now have three coupled equations with three unknowns (F̃ 2
l̃/2,

F̃ 2
0 , F̃ 2

d̃n/2) – the order parameter solution in the superconducting electrode (Eq.
(2.5.34)), the order parameter solution in the normal barrier (Eq. (2.5.38)), as well
as the continuity conditions across the interface between them (Eq. (2.5.41).

2.5.1.4 Weakly Coupled Solutions for the Interfacial Order Parameter

FBH provide some simplifications which allow analytic forms to be more easily
extracted by assuming that the junction is weakly coupled, such that only very small
transport currents can pass through the junction and the order parameter magnitude
in the bulk of the normal barrier is very small. In an applied magnetic field, the
order parameter in the bulk of the electrode is proportional to the field. This sets
F̃ 2
l̃/2 → 1 − q2, F̃ 2

0 → 0, and ⟨J̃app⟩ → 0. In this case, Eq. (2.5.41) can be solved for
the solution

F̃ 2
d̃n/2 =

−α̃nm̃n + m̃2
n + q2 − m̃2

nq
2 − m̃2

n

√√√√√√√√
(

1 − q2 − α̃nm̃n − q2

m̃2
n

)2

−
(

1 − β̃n
m̃n

)(
1 − q2)2

m̃n
(
−β̃n + m̃n

) . (2.5.42)

However, this result has a singularity when m̃n = β̃n. In this limit, the interfacial
order parameter takes on the simple form,

F̃ 2
d̃n/2 = (1 − q2)2

2(1 − α̃n) . (2.5.43)

2.5.1.5 Josephson Depairing Current Density, JDJ

Finally, FBH use the order parameter to find JDJ by finding the maximal current
through the system using the condition

∂⟨J̃app⟩
∂F̃ 2

0
= 0. (2.5.44)

This is similar to Eq. (2.4.20) in Section 2.4. Making use of the series expansions
of the Jacobi elliptic functions in Eq. (2.5.38) within the limit of a weakly coupled
junction (where the order parameter is small and the current that can flow through
the junction is small) [80, Eqs. 22.10.7 and 22.10.9],

sn (z, k) ≈ tanh z − k′2

4 (z − sinh z cosh z)sech2z +O
(
k′4
)
, (2.5.45)

dn (z, k) ≈ sech z + k′2

4 (z + sinh z cosh z) tanh z sech z +O
(
k′4
)
, (2.5.46)
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and using the standard exponential expansions of the hyperbolic functions, the
solution for the critical current density is then given by the equations:

JDJ(Bapp) = 4J0(1 − q2) 3
2

1 −
√

1 − s̃F̃ 2
d/2

s̃ṽ
exp

(
− d̃n

ξ̃n

)
, (2.5.47)

where
F̃ 2
d̃n/2 = ṽ2 + 1 −

√
ṽ2(2 − s̃) + 1

ṽ2 + s̃
, (2.5.48)

and
q2 =

B̃2
appw̃

2
s

12 , s̃ = β̃n(1 − q2)
(α̃n − 1

m̃n
q2)

,

ṽ = m̃nξ̃n
√

1 − q2, ξ̃n =
√√√√ 1
m̃n

1(
−α̃n + 1

m̃n
q2
) . (2.5.49)

Since this is the maximum current that can be passed through the junction, we refer
to this as J̃DJ, the Josephson depairing current density. This result replicates the
famous result from de Gennes that the critical current density through a junction
depends exponentially on the barrier thickness [77].

2.5.1.6 General Solution for the Interfacial Order Parameter

If the conditions for weakly coupled junctions are not assumed, all three equations (Eq.
(2.5.34), Eq. (2.5.38) and Eq. (2.5.41)) must be numerically solved self–consistently
to find F̃ 2

l̃/2, F̃ 2
0 and F̃ 2

d̃n/2. Here, we explicitly write down the general cubic solution
to Eq. (2.5.41) that holds for both weakly and strongly coupled junctions,

F̃ 2
d̃n/2 = −α̃nm̃n + m̃2

n + q2 − m̃2
nq

2 − m̃2
n
√

Z
m̃n
(
−β̃n + m̃n

) , (2.5.50)

where we have defined the argument of the square root as

Z =
(

1 − q2 − α̃nm̃n − q2

m̃2
n

)2

−
(

1 − β̃n
m̃n

)[(
2(1 − q2) − F̃ 2

l̃/2

)
F̃ 2
l̃/2 (2.5.51)

+ F̃ 2
0

m̃n

(
2
(

−α̃n + q2

m̃n

)
+ β̃nF̃

2
0

)
+ 2⟨J̃app⟩2

y

(
1
F̃ 2
l̃/2

− 1
F̃ 2

0

)]
.

This equation is the generalisation of Eq. (2.5.48). Again, this has a singularity when
m̃n = β̃n. In this limit, the interfacial order parameter solution now reads

F̃ 2
d̃n/2 = T1 − T2

2F̃ 2
l̃/2F̃

2
0 (1 − α̃n)

, (2.5.52)

where we have defined the terms on the numerator as:

T1 = F̃ 2
l̃/2F̃

2
0

[
(2
(
1 − q2)− F̃ 2

l̃/2)F̃ 2
l̃/2 + F̃ 2

0

(
F̃ 2

0 − 2α̃n

(
1 − q2

α̃n

))]
, (2.5.53)

T2 = 2
(
F̃ 2
l̃/2 − F̃ 2

0

)
⟨J̃app⟩2

y. (2.5.54)

Notably, this represents a generalization of the work of FBH to include the case of
strongly coupled junctions. This formalism provides a complete description of the
interfacial order parameter in the presence of both an applied magnetic field and
an applied transport current, for arbitrary normal barrier junction properties. Some
example variations are shown in Figs. 2.8 and 2.9. Moreover, for any set of material
parameters and applied magnetic field and transport current, there is a unique value
of F̃ 2

l̃/2, F̃ 2
0 and F̃ 2

d̃n/2 that satisfy the boundary conditions.
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Figure 2.8: Spatial variation of the order parameter magnitude solutions presented
in Eq. (2.5.34), Eq. (2.5.38) and Eq. (2.5.52). In all calculations, m̃n = 1.0. The
indigo/blue lines differ only by the presence of an applied current, demonstrating
how the transport current affects the numerical solution. The green and red lines
demonstrate the solutions for other arbitrary material parameter, including different
fields, transport currents, and material parameters.
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Figure 2.9: Spatial variation of the order parameter magnitude solutions presented
in Eq. (2.5.34), Eq. (2.5.38) and Eq. (2.5.50), for a range of normal barrier
masses/resistivities, m̃n. For all calculations, the transport current is zero, q2 = 0.1,
α̃n = −1.0 and dn = 2.0ξs.
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2.5.2 Clem – Narrow Systems (ξs < ws < λs)

The previous section was concerned with very narrow systems, where the width was
sufficiently smaller than the coherence length and no fluxons could enter the system
anywhere. If we consider narrow systems, where ξs < ws < λs, then vortices are
able penetrate the normal barrier even in very low fields. Naturally, the barrier itself
is a normal material, with only a weak superconducting state due to the proximity
effect. It is natural that this barrier is therefore easier for fluxons to penetrate into.
By considering the gauge invariant GL equations in Section 2.3.6 and studying the
voltage across the junction in low fields and currents (such that the phase is affected,
but the magnitude of the order parameter remains unchanged), Josephson famously
proposed his relation [95]

J = JDJ sin (∆γ(ỹ)) . (2.5.55)

This formulation is written in terms of the phase difference across the junction, since
only the difference in the phase of the order parameter is meaningful [93]. This
equation provides a local expression for the supercurrent flowing across the junction
at a given point y – here, ∆γ(ỹ) denotes the difference in the gauge invariant phase
across the junction.

Full 2D solutions for this gauge invariant phase difference (GIPD) are provided by
Clem [72]. Integrating Eq. (2.3.43) across the thickness of the junction provides an
equation for the GIPD,

∆γ(ỹ) = θ(d̃n/2, ỹ) − θ(−d̃n/2, ỹ) −
∫ d̃n/2

−d̃n/2
Ax dx . (2.5.56)

Here, θ is the typical phase of the wavefunction, which is not gauge invariant. Since
the supercurrent is antisymmetric on each side of the junction, this phase is also
antisymmetric, and hence Eq. (2.5.56) is rewritten to read

∆γ(ỹ) = 2θ(d̃n/2, ỹ) −
∫ d̃n/2

−d̃n/2
Ax dx . (2.5.57)

Clem them solves for θ in the superconducting electrode by making the gauge choice
Ã = −B̃appỹx̂ and imposing charge neutrality (∇̃ · J̃s = 0). Making the assumption
of low coherence length results in Laplace’s equation with the boundary conditions of
zero supercurrent across the interfaces:

∇̃2θ = 0, (2.5.58)
∂θ(x̃, ỹ)
∂y

∣∣∣∣
ỹ=w̃s/2

= 0, ∂θ(x̃, ỹ)
∂y

∣∣∣∣
ỹ=−w̃s/2

= 0, (2.5.59)

∂θ(x̃, ỹ)
∂x

∣∣∣∣
x̃=d̃n/2

= −B̃appỹ,
∂θ(x̃, ỹ)
∂x

∣∣∣∣
x̃=l̃s+d̃n/2

= −B̃appỹ. (2.5.60)

The corresponding solution is found using separation of variables. Since it is
a harmonic equation, the general solution of Laplace’s equation is a product of
hyperbolic and trigonometric functions [96]. With the odd inhomogeneous Neumann
boundary conditions (Eq. (2.5.59)), the solution is written as a general series solution:

θ(x̃, ỹ) =
∞∑
n=0

[An cosh(knx) +Bn sinh(knx)] sin (knỹ)) , (2.5.61)
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where
kn = 2π(n+ 1/2)

w̃s
. (2.5.62)

The remaining Fourier coefficients are constrained by using remaining inhomogenous
boundary conditions in Eq. (2.5.60). The particular solution is then given as

θ(x̃, ỹ) = 4B̃app
w̃s

∞∑
n=0

(−1)n+1

k3
n

sinh
(
kn(x̃− l̃s+d̃n

2 )
)

cosh
(
kn

l̃s
2

) sin (knỹ) . (2.5.63)

Inserting this phase result into Eq. (2.5.57) leads to the result

∆γ(ỹ) = ∆γ(0) + B̃appỹd̃n + 8B̃app
w̃s

∞∑
n=0

(−1)n
k3
n

tanh
(
kn
l̃s
2

)
sin (knỹ) . (2.5.64)

Since the current is divergenceless (∇̃ · J̃s = 0), the spatial variation of the 2D
supercurrent can be expressed as the curl of a stream function, J̃s = ∇̃ × S̃. From
the phase solution in Eq. (2.5.63), a suitable stream function is given by Clem [72]:
S̃ = S̃(x̃, ỹ)ẑ where S̃(x̃, ỹ) is defined as [72]

S̃(x̃, ỹ) = B̃app
2
∣∣ψ̃∣∣2

ỹ2 + 8
w̃s

∞∑
n=0

(−1)n+1

k3
n

cosh
(
kn(x̃− l̃s+d̃n

2 )
)

cosh
(
kn

l̃s
2

) cos (knỹ)

 .
(2.5.65)

The most useful contribution arises when one utilises the result of the GIPD in the
Josephson relation. Clem showed that the maximum current occurs when ∆γ(0) =
±π/2, and so the Josephson relation now reads

Jc(B) = 1
w̃s

lim∆γ(0)=±π/2

∣∣∣∣∣
∫ w̃s/2

−w̃s/2
JDJ (ỹ) sin(∆γ(ỹ)) dỹ

∣∣∣∣∣. (2.5.66)

Physically, this is equivalent to shifting the fluxons around inside the junction until the
net current across the junction is maximimzed. The beauty of the Clem formalism is
that the oscillations in the magnetic field dependence of the critical current density are
naturally captured, representing fluxons entering the junction system. The material
parameters (α̃n, β̃n, m̃n) have no effect on the gauge invariant phase difference across
the junction; all the material parameters are contained within JDJ, which is described
in the FBH formulation in Section 2.5.1.

Eqs. (2.5.64) and (2.5.66) demonstrate that the spatial variation of the screening
current and the resulting critical current density is very dependent on the aspect
ratio of the superconducting electrode, ls/ws. Notably, when ls ≪ ws (i.e. the aspect
ratio is small), the gauge invariant phase difference in Eq. (2.5.64) becomes linear in
y. Physically, the vortices in the junction are equally spaced, and the magnetic field
dependence of the critical current follows the familiar Fraunhofer diffraction [72],

Jc(B) = JDJ

∣∣∣∣∣∣∣∣
sin
(
πΦ
ϕ0

)
πΦ
ϕ0

∣∣∣∣∣∣∣∣, where Φ = l̃sw̃sB̃app. (2.5.67)

In this limit, the field spacing between fluxons entering the junction ∆B are the
identical, and given by the zeros of the Fraunhofer pattern: ∆B = ϕ0/l̃sw̃s. Taking
the limit where w̃s → 0 reproduces the very narrow results as seen in Section 2.5.1.
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There is a clear optical analogy, where light is diffracted in a single slit to give a
similar modulation of the light intensity; this pattern has been repeatedly observed
experimentally [97].

Completely different behaviour is observed when the aspect ratio is large, i.e. ls ≫ ws.
In the limit that ls/ws → ∞, the magnetic dependence can be approximated by a
Bessel function solution,

Jc(B) = JDJ

∣∣∣∣J0

(
14ζ(3)B̃appw̃

2
s

π2ϕ0

)∣∣∣∣. (2.5.68)

Here, J0 is the zeroth order Bessel function of the first kind and ζ(3) is Apéry’s
constant, where ζ is the Riemann zeta function. Here, the zeroes of the critical
current are set by the well–known zeros the the Bessel function, but are not equally
spaced, but approach a limiting value as B̃app → ∞.

For arbitrary widths with insulating coatings, Blair–Hampshire carried over the
standard narrow junction result for insulators (Eq. 2.5.47) and used

q2 =
(
B̃app
B∗

c2

)2

. (2.5.69)

In the case of normal coatings where B∗
c2 = Bc2, they assumed

q2 =
(
B̃app
Bc2

)
(2.5.70)

is a more appropriate form. This provides good agreement with results in literature
from Abrikosov and Boyd, suggesting that the critical current in infinitely wide thin
films is approximately Jc ≃ (1 −Bapp/B

∗
c2) JD.

Finally, we summarise the interior boundary conditions on the order parameter in
Table 2.2. If one used the Abrikosov field approximation (rather than assuming
that the field is uniformly the applied field), then the limiting values of the order
parameter in the bulk of the electrode would be the appropriate values taken from
this table. However, in typical systems where κ is large, and so the difference is the
order parameter magnitude is proportional to 1/βA ≃ 0.862. This is important when
considering very narrow or wide junctions – in a wide system, the field in the bulk of
the electrode is not Bapp. The internal field is lower than this due to screening and
the averaging over the fluxons is captured through Abrikosov’s work in Eq. (2.3.34).

2.5.2.1 FBH for Zero–Mass Normal Barriers

Finally, we address the limit of FBH with normal barriers of zero–mass (FBHZM),
which will prove useful in future chapters. Eqs. (2.5.34), (2.5.38), and (2.5.50)
are solved together to find self–consistent solutions for the magnitude of the order
parameter with the specific parameters of α̃n, B̃app and J̃app in the limit where
m̃n → 0. We use the form of q2 in Eq. (2.5.69) with B∗

c2 = Bc2. These zero–mass
solutions are zero at the interface, with zero gradient. The limiting value in the bulk
is then approximately 1 − B̃app. Some examples are shown in Fig. 2.10.

2.6 Conclusions

In this section, we have built up the fundamental Ginzburg–Landau theory that is used
as the backbone of this thesis. We have demonstrated how GL theory can be used to
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Variable Very Narrow Wide

Length scale ws a0

Reduced field, q2
(
B

B∗
c2

)2
B

Bc2

AOPM, Fl̃/2
|αn|
βn

(
1 −

(
B

B∗
c2

)2
)

[60, Eq. 4.52]

m

µ0eℏ
Bc2 −B

(2κ2 − 1)βA
[53, Eq. 8.78]

HF–NAOPM, F̃l̃/2 1 −
(
B

B∗
c2

)2 2κ2

(2κ2 − 1)βA

(
1 − B

Bc2

)
LF–NAOPM, F̃l̃/2 1 1

HF–RFNAOPM, F̃l̃/2 1
∣∣∣∣ 2κ2

(2κ2 − 1)βA

∣∣∣∣
LF–RFNAOPM, F̃l̃/2 1 1

Table 2.2: Boundary conditions for the interior of the superconductor electrode, for
a very narrow and a wide electrode. We provide expressions for the averaged order
parameter magnitude squared (AOPM), the normalised order parameter magnitude
squared (NAOPM) and the field–reduced NAOPM (FRNAOPM), as defined in Eq.
(2.5.9). Expressions are given in both high–field (HF) and low–field (LF). Here,
βA = 1.16 is the Abrikosov constant, derived by Kleiner [53].
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Figure 2.10: Spatial variation of the order parameter magnitude solutions presented
in Eq. (2.5.34), Eq. (2.5.38) and Eq. (2.5.50), in the limit of zero–mass normal
barriers, for a range of reduced field values, q2. At the normal barrier, the gradient
is zero; the order parameter magnitude is zero at the interface and throughout the
normal region. For all calculations, the transport current is zero, m̃n = 1 × 10−3,
α̃n = −10.0 and dn = 3.0ξs.

build our understand of the behaviour of superconductivity near interfaces, and how
we can extract useful properties such as the critical current density. More relevant for
real systems, we have outlined how GL theory can help us understand the building
block of a polycrystalline superconductor – the Josephson junction. Many of the
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results derived from GL theory have been shown to match experimental observations,
despite materials being extremely far away from the limit close to the transition
temperature [71, 74, 98, 99, 100, 101, 102]. In preparation for future chapters, we
have presented our original derivations of previously obtained analytic results – we
have derived the work of Saint James [78], Fink–Blair–Hampshire [74, 75] and Clem
[72]. We note that many assumptions were made in the derivations for each analytic
framework, and it is clear that some of these assumptions are unphysical for a real
polycrystalline material; correcting and extending these analytic theories will be the
focus of Chapter 4. First, we will see how we utilise the theory developed in this section
to computationally model the time evolution of these Josephson junction systems.
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Chapter 3

Numerical Methods For Modelling
Superconductors

3.1 Introduction

Although GL theory (discussed in Chapter 2) can provide insights into simple
geometries, it is difficult to derive useful results for real systems. Practical materials
contain pinning landscapes that are much more complex than what can be described
analytically, including point impurities and vacancies, networks of grain boundaries,
and non–superconducting inclusions. Therefore, to understand real commercial
materials, such as Nb3Sn or REBCO, computational techniques must be utilised to
solve these systems numerically.

The original Ginzburg–Landau equations consider only the case of thermodynamic
equilibrium. Time–dependent Ginzburg–Landau (TDGL) theory is a natural
generalization, and has been used for over 60 years to study the dynamic evolution
of vortex structure in real systems [103, 104, 105]. It provides the temporal and
spatial variation of the observable parameters, such as the superelectron density, the
supercurrent flow and the magnetic field distributions. More relevant for commercial
applications, it allows for the visualisation of the interaction of fluxons with pinning
sites, and the effect this has on limiting parameters such as the critical current
density [106]. Finite difference, finite element and finite volume approximations of
TDGL theory have been used in many different studies [107, 108, 109, 110]. The
finite element method (FEM) has an advantage in handling complex geometries,
making use of smaller and unstructured mesh elements for higher accuracy and
greater flexibility in irregularly shaped regions with steep gradients [111]. Moreover,
it also allows adaptive mesh refinement and element–wise calculations, providing
more efficient use of computational resources [111]. However, commercial FEM
solvers (e.g. COMSOL) are typically closed-source, and identifying algorithmic error
can be difficult. More importantly, FEM simulations for large 3D domains are
extremely computationally expensive, even with the availability of HPC and massively
parallel computing architecture. Therefore, finite difference approximations have been
widely used for developing solvers of the TDGL equations within the wider research
community [106], and has formed the backbone for computational research in this
group [75, 84, 112, 113, 114, 115, 116, 117, 118].

In this chapter, we first outline the generalisation of GL theory to describe the
time evolution of the superconducting state. We then briefly outline the main
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computational solver used in this thesis – a general 2D semi–implicit CPU–based
solver, where the material parameters (α̃n, β̃n, m̃n) can vary spatially throughout the
system. We note here that the computational foundations used in this thesis were
previously developed by Blair – the details are more thoroughly described in his work
[114, 115, 75]. We will describe the typical outputs of this solver, and how one can use
it to usefully understand real polycrystalline materials, such as measuring the critical
current density of real systems. Finally, we will briefly describe the limitations of this
solver, and how one might overcome these limitations in order to understand larger
and more realistic systems.

3.2 Time–Dependent Ginzburg–Landau Theory

GL theory was first extended to include time dependence by Schmidt in 1966 [103].
The validity of TDGL theory is far narrower than its original static counterpart;
not only must we remain close to the critical temperature, but also require that
deviations from equilibrium are suitably small – this is typically only achieved in
gapless superconductors, where the relaxation process of the order parameter is
slow compared to the characteristic electronic energy scales of the system [61]. The
phenomenological form of TDGL theory is not unique in the literature [119]. Some
other formulations have attempted to extend the validity of TDGL and generalize
these results to include the energy gap and formally extend the range of validity of
the TDGL equations [120, 121, 122, 123]. Nevertheless, the original formulation from
Schmidt [103] has enjoyed much usage and success in investigating vortex dynamics
of in both gapless and gapped superconductors in the mixed state [124].

To motivate the TDGL equations, an additional phenomenological parameter Γ is
introduced, which parameterises how rapidly the order parameter relaxes into the
equilibrium state from small perturbations from its equilibrium. The rate of relaxation
depends on the deviation magnitude, and one can write [125]

−Γ
(
∂

∂t
− iq

ℏ
φ

)
ψ = δFs

δψ∗ . (3.2.1)

The term involving the scalar potential φ is required to maintain gauge invariance,
and we recognise the right-hand side as the static first GL equation, given in Eq.
(2.3.5) [126]. The generalisation for the supercurrent term accounts for the fact that
a fraction of the current may be produced by normal electrons in the presence of an
electric field. Hence, we can simply write a complete expression for the current as
Jtot = Js + Jn + Japp, where Js is the supercurrent defined in Eq. (2.3.7) and the
normal current density Jn is given by Ohm’s Law [61],

Jn = σnE = −σn

(
∂A

∂t
+ ∇φ

)
. (3.2.2)

Here, σn is the normal-state conductivity [127]. Therefore, we can write down the
normalized TDGL equations [103, 106, 114, 128]:

η

(
∂

∂t̃
+ iφ̃

)
ψ̃ =

[
1
m̃n

(∇̃ − iÃ)2 + α̃n − β̃n
∣∣ψ̃∣∣2] ψ̃, (3.2.3)

∂Ã

∂t̃
+ ∇̃φ̃ = − κ2m̃n∇̃ × ∇̃ × Ã + Im

[
ψ̃∗(∇̃ − iÃ)ψ̃

]
, (3.2.4)

where the parameter η is the ratio of characteristic time scales for the evolution of
the electromagnetic field and the order parameter, η = Γ/τ , which follows from the
normalisations defined in Table 2.1.
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3.3 2D Semi–Implicit TDGL Solver

The discretization has been thoroughly described in previous work [75, 116]. We shall
outline the essential components here. In the limit of zero electric potential the TDGL
equations are written in the form:

η
∂ψ̃

∂t̃
=
[

1
m̃n

(∇̃ − iÃ)2 + α̃n − β̃n
∣∣ψ̃∣∣2] ψ̃, (3.3.1)

∂Ã

∂t̃
= − κ2m̃n∇̃ × ∇̃ × Ã + Im

[
ψ̃∗(∇̃ − iÃ)ψ̃

]
. (3.3.2)

The discretization of the TDGL equations still requires the preservation of gauge
invariance – since without this, numerical instabilities and artefacts can arise
that do not satisfy basic conservation laws, creating unphysical mechanisms
in the discretized approximation [129]. Blair uses a modified version of the
semi–implicit finite–difference spatial discretization scheme from Winiecki [130], which
is based upon the explicit method from Gropp [131]. For explicit methods, the
Courant–Friedrichs–Lewy (CFL) criterion must be satisfied, where the timesteps
in the time evolution are inversely proportional to κs [130, 114]. In real
materials, where κs may be large, the numerical calculations become prohibitively
expensive – therefore, semi–implicit methods are much preferred for modelling useful
polycrystalline superconductors. In order to retain gauge invariance, both the Gropp
and Winiecki algorithms introduce an auxiliary vector field, U . These are known as
‘link variables’, and provide a discretization of the vector potential A.

We now briefly outline the spatial discretization used by Blair which includes spatial
variation of the effective mass [115]. We shall consider only a 2D system, but this
TDGL solver could simply be extended to 3D. The original ‘U–ψ’ method from Gropp
defines the set of link variables Ux and Uy, and then evolves the set of {U,ψ} [131].
Gropp introduces the unimodular link variables which can be written as [131]

Ux = exp
(

−i
∫ x̃

x̃0

Ãx(x̃′, ỹ, z̃) dx̃′
)
,

Uy = exp
(

−i
∫ ỹ

ỹ0

Ãy(x̃, ỹ′, z̃) dỹ′
)
,

(3.3.3)

where {x̃0, ỹ0} are arbitrary reference points. The unimodularity of the link variables
(U = U−1) provides an expression for the vector potential in the x-direction, Ãx, as

Ãx = 1
2i

(
Ux

∂U
x

∂x̃
− U

x ∂Ux

∂x̃

)
, (3.3.4)

with a similar expression for Ãy. The vector potential is therefore expressed in terms
of these link variables U , and the TDGL equations are rewritten in terms of these
variables. Using the definition of the link variables, one obtains the relation

Ux
∂Ux

∂x
= −Ux ∂U

x

∂x
, (3.3.5)

and making use of Eq. (3.3.4) allows the gauge derivative to be written in these link
variables as [130] (

∇̃ − iÃ
)
ψ̃ =

∑
µ

U
µ ∂

∂µ

(
Uµψ̃

)
êµ. (3.3.6)
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Figure 3.1: A unit cell used for TDGL computations. The order parameter is
calculated on the discretized nodes (solid circles), whilst the link variables are defined
on points halfway between nodes (open circles). The magnetic field in this cell is
given by Eq. (3.3.12).

Here, µ is the set of spatial directions; µ = {x, y}. The discretization of the kinetic
term (the gauge invariant Laplacian) is then written as [130]

(
∇̃ − iÃ

)2
ψ̃ =

∑
µ

U
µ ∂2

∂µ2
(
Uµψ̃

)
. (3.3.7)

A schematic of a single cell of a discretized grid is shown in Fig. 3.1. The simulation
space is first discretized in the x and y directions into a grid of nodes points, ri,j ,
where i ∈ [1, nx] and j ∈ [1, ny]. These points are separated by spacing hx and hy

respectively. The order parameter is calculated on each of these nodes, while these
link variables are defined on points in–between these nodes. Each node has a specified
set of material properties (α̃n, β̃n and η); the effective mass, m̃n, is defined on links
between nodes along with the link variables. The discretized variables are written as
[130]:

ψ̃i,j = ψ̃ (ri,j) , α̃i,j = α̃n (ri,j) , β̃i,j = β̃n (ri,j) , (3.3.8)

Uxi,j = U
µ (ri,j)Uµ (ri,j + hx ı̂) , Uyi,j = U

µ (ri,j)Uµ (ri,j + hy ȷ̂) . (3.3.9)

The discretized effective mass in each direction is taken to be the average over the
link [115]: (

m̃−1
i,j

)x = 1
hx

∫ ri,j+îhx

ri,j

m̃−1
xx dx,

(
m̃−1
i,j

)y = 1
hy

∫ ri,j+ĵhy

ri,j

m̃−1
yy dy.

(3.3.10)

Winiecki uses a set of modified, but closely related, link variables. Instead of evolving
the set of link variables U directly, he instead uses the modified link variables a [130],

axi,j =
∫ ri,j+îhx

ri,j

Ax(x′, y, z) dx′,

ayi,j =
∫ ri,j+ĵhy

ri,j

Ay(x, y′, z) dy′.

(3.3.11)

The original link variables in Eq. (3.3.3) can be written as the exponential of a
real phase; {U} = {exp{−ia}}. Using these real-valued modified link variables is
less memory intensive than the original Gropp method since a complex-valued link
variable must be represented by two real numbers. The electric field and magnetic
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fields may be calculated from these link variables [114], given by

Exi,j = − 1
hx
∂ta

x
i,j , Eyi,j = − 1

hy
∂ta

y
i,j ,

Bzi,j = 1
hxhy

(
axi,j − axi,j+1 − ayi,j + ayi+1,j

)
.

(3.3.12)

The TDGL equations are now spatially discretized using second–order central
differences in space. Using Eq. (3.3.7) and the modified link variables in Eq. (3.3.3),
the first TDGL equation (Eq. (3.3.1)) is then spatially discretized as

η
∂ψ̃i,j
∂t̃

=
(
α̃i,j − β̃i,j

∣∣ψ̃i,j∣∣2) ψ̃i,j
+ 1
h2
x

[(
m̃−1
i−1,j

)x
eia

x
i−1,j ψ̃i−1,j +

((
m̃−1
i−1,j

)x +
(
m̃−1
i,j

)x)
ψ̃i,j +

(
m̃−1
i,j

)x
e−iax

i,j ψ̃i+1,j

]
+ 1
h2
y

[(
m̃−1
i,j−1

)y
eia

y
i,j−1 ψ̃i,j−1 +

((
m̃−1
i,j−1

)y +
(
m̃−1
i,j

)y)
ψ̃i,j +

(
m̃−1
i,j

)y
e−iay

i,j ψ̃i,j+1

]
.

(3.3.13)
Making use of the field definition in Eq. (3.3.12) and vector identities, the two
components of the second TDGL equation (Eq. (3.3.2)) are discretized as
∂axi,j
∂t̃

= Im
[
ψ̃∗
i,je

−iax
i,j ψ̃i+1,j

]
+ κ2 (m̃−1

i,j

)x [
axi,j+1 − 2axi,j + axi,j−1 − ayi+1,j + ayi,j + ayi+1,j−1 − ayi,j−1

]
,

(3.3.14)
∂ayi,j
∂t̃

= Im
[
ψ̃∗
i,je

−iay
i,j ψ̃i,j+1

]
+ κ2 (m̃−1

i,j

)y [
ayi+1,j − 2ayi,j + ayi−1,j − axi,j+1 + axi,j + axi−1,j+1 − axi−1,j

]
.

(3.3.15)
In all computational simulations considered in this thesis, ghost points are used to
implement boundary conditions. These ghost points are not in the real computational
domain; they are simply artificial points introduced to enforce the boundary condition
in the finite difference approximation [132]. Periodic boundary conditions are
implemented in the x–direction by introducing ghost points at 0 and nx + 1 – this is
equivalent to imposing the following conditions on the order parameter and the link
variables [114, 130]:

ψ̃0,j = ψ̃nx,j , ψ̃nx+1,j = ψ̃1,j ,

ax0,j = axnx,j , axnx+1,j = ax1,j ,

ay0,j = aynx,j
, aynx+1,j = ay1,j .

(3.3.16)

Similarly, for the boundary conditions in the y–direction, insulating boundary
conditions at the computational edge, which allow the applied field and the transport
current to be easily imposed [75, 132]. The system is first initialized in the Meissner
state (ψ̃ = 1, B̃ = 0) for reproducibility of simulations.

For evolving this set of variables forward in time, a modified Crank–Nicolson scheme
is used [133], using a fixed time step, δt in units of τ [75]. However, since these
equations are non–linear, an iterative method must be employed at each timestep.
In real systems of interest, κ2 ≫ η−1, and so the timescale for the evolution of the
link variables is much shorter than the evolution of the order parameter. Therefore,
a block Gauss–Seidel approach is applied to iteratively solve the fully coupled system
[132].

The original application in Winiecki [130] solved for {ψ̃, ax, ay} in three iterations
at each timestep. The evolution of ψ̃ can be solved quickly using cyclic tridiagonal
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Figure 3.2: A snapshot of normalized order parameter magnitude (left) and
supercurrent density (right) in a SNS junction with insulating boundary conditions
at Bapp = 0.05Bc2, Japp = Jc = 0.415JD. The TDGL parameters are l = w = 12.0ξs,
dchem = 0.5ξs, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0, κ = 40.0, δt = 0.5τ and
hx = hy = 0.1ξs.

matrix and banded tridiagonal matrix solvers, for which efficient solution methods
are available (e.g. the Sherman—Morrison algorithm provided in LAPACK)
[132]. Since the evolution of {ax, ay} are of similar magnitudes, this can lead to
oscillatory behaviour of the iteration scheme with a block Gauss–Seidel approach
and unreliability of convergence [114]. The modified Crank–Nicolson scheme instead
solves for {ax, ay} in a single step [114, 115, 75], making use of direct sparse matrix
solvers such as the Intel MKL PARDISO solver [134]. For a given timestep, the order
parameter is updated first, assuming all other variables unchanged from previous
timestep. Then the link variables, {ax, ay}, are updated using the new ψ̃. The set of
variables {ψ̃, ax, ay} are continually iterated at each timestep until each variable has
converged to within a specified absolute tolerance (set to 10−7 within this work).

In previous work [130], only a single iteration for each of {ψ̃, ax, ay} was calculated at
each timestep. For each of these iterations, fast tridiagonal matrix solvers can be used,
that take O(n) steps to solve for the unknown link variables, where n is the number
of links. In this case, the oscillatory behaviour and poor convergence of the block
Gauss–Seidel approach can lead to the accumulation of numerical error, and therefore
produces a decreased accuracy of the simulations [75]. In the limit of large κ, this error
is negligible, since the link variables are determined by the applied magnetic field to
first order, In this limit, the applied field is uniform, and so the oscillatory behaviour
becomes negligible compared to the absolute tolerance. In general, we cannot assume
that real materials are in this limit, and therefore we must solve for {ax, ay} in one
step directly. These direct solvers require, at worst, O(n2) steps to solve [132] – this
significantly limits the scalability of this method to 3–dimensions where there are
many links to solve for. However, for our applications, this method is sufficient for
studying the fundamental building block of a polycrystalline superconductor.

3.4 Computational Outputs

By allowing the spatial variation of all material parameters, one can arbitrarily
create a mesh of superconducting/non–superconducting regions, and thus build a
representation of real polycrystalline superconductors. In Fig. 2.7, we show an SNS
Josephson junction system, used to model grain boundaries – one could also study
other systems of interest, such as the inclusion of artificial pinning centres (i.e. a
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bulk superconducting region with non–superconducting inclusions). For our SNS
systems of interest, the computational system is defined in the region x ∈ [−l/2, l/2],
y ∈ [−w/2, w/2], where l = ls + dn and w = ws + 2wcoat. Equiaxed grains have
ws = ls.

The outputs from the methodology include the spatial dependence of the order
parameter and the magnetic vector potential. These provide visualizations of useful
physical phenomena, such as fluxon motion within the junction and the associated
changes in the supercurrents. A snapshot of these outputs for a typical SNS system is
shown in Fig. 3.2. Despite the transport critical current density being only 0.4JD, the
magnitude of the local supercurrent densities can be as large as 0.8JD. The presence
of the Josephson vortex itself within the junction causes large additional local current
flows. The vortex itself is distorted within the junction, extending into a region much
wider than the chemical thickness. Here, the junction is relatively thin and strongly
coupled – we will see later in Chapter 5 how the properties of the junction affects the
distribution of fluxons inside it.

As seen in Fig. 2.7, both the applied magnetic field (Bapp) and applied transport
current (Japp) are set by setting the local magnetic field at the edges of computational
domain in the y–direction. The transport current in the x–direction is then set
through Maxwell’s equations from the magnetic field gradient in the y–direction across
the system[106]. Both physically and computationally, the superconductor makes
no distinction between a current–induced field or an externally applied magnetic
field. Most significantly, representative values of the critical current density of the
computational system can be extracted.

As discussed earlier, the system is initialized in the Meissner state. We slowly increase
the applied field at a specified ramp rate, until it reaches the specified field of interest.
To obtain a value for Jc, we then slowly increase the transport current and monitor
the average electric field in the x direction within the system, ⟨Ẽx⟩ [106]. We apply
Ekin’s offset criterion method [135]; if ⟨Ẽx⟩ exceeds a critical electric field Ẽc, then
the system is held at this applied current value for a predetermined duration, thold, to
allow transient effects to equilibriate. If the electric field persists beyond the duration
of the hold time, then we interpret this as persistent fluxon motion — the critical
current density, J̃c, is taken as the applied current density at this point. A typical
simulation of both E and J as a function of time is shown in Fig. 3.3. Here, we
can see the characteristic behaviour of a simulation. The field ramp at the start of
the simulation leads to large electric fields generated in the system, which quickly
dissipate as the specified field is reached, and an equilibrium state is achieved. As
the transport current is applied, causing a change in the local magnetic field. This
causes a transient spike in the electric field as the system is perturbed out of its
equilibrium state, but again, these fields dissipate as the system reaches equilibrium.
This creates an oscillatory behaviour in the average E–field as a function of time.
Occasionally, the next step in the current is enough to cause a flux avalanche in the
system – this was seen to occur twice in Fig. 3.3, at approximately 12,000 and 32,000
timesteps. However, this movement was not persistent; the system has found a new
equilibrium state and the transient electric field dies down to below the criterion. As
the applied current is increased even further, eventually, a current is found that causes
a persistent electric field above the criterion – at this point, flux flow occurs where
vortices are no longer pinned and free to move in the system, leading to a resistive
and dissipative current flow and the breakdown of the superconducting state. These
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Figure 3.3: Normalised average electric field, ⟨Ẽx⟩, and normalised external applied
current, J̃app, as a function of normalised time for a typical TDGL simulation. The
critical current density is determined when the electric field exceeds an electric field
criterion (Ec = 1 × 10−5ED) for a duration exceeding a specified hold time (thold =
1 × 104τ). The applied current is constant during this hold time to allow the system
to equilibriate. The TDGL parameters here are for a slab system with Bapp = 0.3Bc2,
l = w = 12.0ξs, κ = 5.0, δt = 0.1τ and hx = hy = 0.5ξs.

observations are the motivation for using a hold time – we need to ensure that the
applied current is truly the critical current, rather than just a transient spike as the
system reequilibriates.

We can repeat this approach for any applied field, and therefore produce a trace of the
critical current density as a function of applied magnetic field – an example simulation
for an SNS junction system in the low–field regime is shown in Fig. 3.4. Here, we
can observe the diffraction pattern of the magnetic field dependence of the critical
current density, as described in Section 2.5.2. As α̃n → −∞, the junction becomes
more weakly coupled and flux is able to enter the junction more easily. Because the
in–field critical current density is the most important technological property, these
Jc(B) plots will become the focus of our analysis in Chapter 5.

3.5 Conclusions and Potential Improvements

In this chapter, we have described the computational methods used within this thesis
to solve the TDGL equations in a 2D system, based on the algorithms described in [75].
Notably, we have identified limitations in previous fast and scalable solvers ([130]) that
motivated the algorithm described in [75]. This algorithm improved convergence by
solving for all components of the magnetic vector potential simultaneously using direct
matrix solvers at each iteration, at the expense of scalability of the solver with system
size. We briefly note that it is important to note the importance of choosing the grid
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Figure 3.4: Critical current density as a function of applied magnetic field for a range
of α̃n values in a SNS junction system with insulating boundary conditions. The
TDGL parameters are l = w = 12.0ξs, dchem = 0.5ξs, m̃n = 1.0, β̃n = 1.0, κ = 40.0,
δt = 0.5τ and hx = hy = 0.1ξs. Red crosses denote the minima of Jc.

spacing carefully – if the resolution is too coarse (e.g. hx and hy are much larger than
the normal coherence length), then the simulation is not able to accurately capture
physics changing on these length scales [136]; these errors can be extremely large, and
without careful consideration, could significantly alter the output of the simulations.

We note that Sadovskyy has developed a fast and scalable GPU–accelerated algorithm
in the high κ limit, where the field distribution inside a superconductor is uniform
and the two TDGL equations are simplified by neglecting the dynamics of the
vector potential [128]. The concept of working in this limit has been known for
decades [137], and has been used with great success to computationally model
polycrystalline superconductors in both 2D and 3D [128, 75, 117]. Although the
simplifications provided in the high κ limit lead to solvers which are efficient to
model larger 3D systems, they are inherently restricted in the systems they can
accurately model. Other methods of obtaining a similar computational performance
for large 3D systems with general material parameters, such as multigrid methods
[118], have been considered, but achieving a suitable performance in these solvers
is complex. Nevertheless, Haddon has successfully implemented a multigrid TDGL
solver for general material parameters (including finite κs) in the Coulomb gauge.
Specifically, the multigrid method solves for the order parameter, the scalar potential
and the vector potential, and can allow for much finer grids and stricter tolerances to
be studied. For high resolution simulations, where the tolerance was set to be 10−10,
previous single grid methods such as the algorithm in [128] can take many thousands of
iterations to reach convergence – the multigrid method converges in approximately 10
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iterations. Not only is the accuracy of the simulations substantially increased, but the
clocktime of the simulations is also significantly reduced [118], allowing simulations of
realistic NbTi microstructure with realistic material parameters in large 3D systems.

We have described how the vortex state in the superconductor can be evolved in time
with variable applied magnetic field and transport current. We have demonstrated the
outputs of the solver, and in particular, have outlined how the critical current density
may be extracted from these simulations using well–known experimental criteria. In
the next chapters, we shall utilise the TDGL solver described here to investigate
different Josephson junction systems of different material parameters and geometries.
We will validate our computational results against textbook analytic results, such
as the spatial distribution of the order parameter and the effective upper critical
field. Most importantly, we will first computationally investigate the critical current
densities that can flow through our junction systems, and use these results as a basis
to extend existing analytic results to describe the critical current density as a function
of applied magnetic field for both narrow and wide Josephson junctions.
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Chapter 4

Normal Surface Barriers and Coatings
with Arbitrary Material Properties

4.1 Introduction

Much of the theory presented in Sections 2.4 and 2.5.1 addressed the specific
cases of superconducting–insulating interfaces. Although it is widely accepted
that the resistivity of the grain boundaries is significantly higher than that of the
superconducting grain [39, 83, 138], the framework presented in those sections does
not account for the complexity that can occur near surfaces with finite mass.

In this chapter, we generalize the results of 1D Saint James and de Gennes to include
interfaces of arbitrary mass. These results allow for a characterization of the order
parameter near an interface of arbitrary materials. We provide an analytic framework
to calculate the surface nucleation field or effective upper critical field (B̃∗

c2) for
multicomponent geometries with normal materials with arbitrary mass. Although
this has been numerically calculated in the literature [98, 139, 140], this is, to the
best of our knowledge, the first analytic framework to capture the complexity near
the interface. We also provide our analytic approach for determining the magnitude
of the order parameter above B∗

c2 (consistent with our TDGL computational results),
and discuss an approximation to determine this constant over the entire field range.
We use these results to determine the screening and Josephson depairing current
density for arbitrary κ, and finally, outline the procedure we use to calculate the
critical current density hereafter.

4.2 Effective Upper Critical Field for a
Superconducting–Normal Interface (SN)

The systems discussed in Section 2.4.2 only considered geometries with insulating
coatings. These are clearly not representative of real systems, where the resistivity
of the grain boundaries is higher than the resistivity of the bulk electrode but
finite [39, 83, 84]. Therefore, the proximity coupling of the normal metal to the
superconductor plays a key role in the spatial variation of the order parameter
and the critical current density in real materials [69, 141, 142]. This has been
intensively studied both experimentally [143, 144, 145, 146, 147] and numerically
(through the framework of a microscopic theory of superconductivity [148, 149]).
We will use the same approach in Section 2.4.2, and solve the linearized form of
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GL1 to describe the order parameter near the the normal barrier interface. We find
parabolic cylinder functions in each region separately and then constrain them to
ensure the order parameter magnitude and current is continuous across the interface.
Crucially, we shall demonstrate that we not only capture the complex order parameter
enhancement in the superconductor near the interface, but also describe the decay of
the order parameter into the normal metal. This captures the proximity effect and
accurately describes the order parameter variation near any arbitrary SN interface.
The advantage of this framework, as shown in Section 2.4.2, is that we are then able
to analytically obtain the surface nucleation field for an SN interface for arbitrary
material properties.

We first consider a geometry that is similar to that described in Section 2.4.2, with
an interface located at x = 0 and a superconducting half–plane in the region where
x > 0. However, we shall now allow the region where x < 0 to be a normal metal,
where the material parameters (α̃n, m̃n and β̃n) are completely arbitrary. We again
consider a uniform field in the z–direction, using the same vector potential in Eq.
(2.4.3), and (from symmetry) allow no current to flow across the surface, imposing
the same conditions in Eqs. (2.4.6) and (2.4.7). Therefore, the wavefunction as a
product of magnitude and phase is again written as in Eq. (2.4.10). Inserting this
wavefunction into GL1 (Eq. (2.3.35) with arbitrary material parameters) and taking
the linearized limit leads to the result

∂2f̃

∂x̃2 −
(
ky − B̃appx̃

)2
f̃ + m̃nα̃nf̃ = 0. (4.2.1)

As before, we perform the change of variables in Eq. (2.4.12), and reduce this Weber
equation to a standard form:

∂2f̃

∂t2
−
(

− m̃nα̃n
2Bapp

+ 1
4 t

2
)
f̃ = 0. (4.2.2)

As in Chapter 2, Eq. (4.2.2) admits parabolic cylinder function solutions (U (a, t), [80,
Eq. 12.2.2]); the significant difference is that the parameter of the cylinder function, a,
is now additionally dependent on the material parameters m̃n and α̃n. In particular,
since α̃n = 1 in the electrode and α̃n < 0 in the normal region, this parameter will
differ in sign between the two regions. We will find the general solutions in each
region, and then constrain them to be continuous across the interface.

The solution in the superconducting electrode (where x > 0) is given as:

f̃s(x̃) = csU (as, t) , where as = − 1
2B̃app

, (4.2.3)

where cs is a constant prefactor. In the normal region, the solution is

f̃n(x̃) = cnU (an,−t) ,where an = − m̃nα̃n

2B̃app
. (4.2.4)

Note that an has a different sign to as since α̃n < 0. Again, cn is (at this stage) a
constant prefactor, and ky is the arbitrary phase factor.

We constrain these solutions so both the order parameter magnitudes and the
supercurrent is continuous by imposing the two conditions:

f̃n(x̃)
∣∣
x=0 = f̃s(x̃)

∣∣
x=0 , (4.2.5)

1
m̃n

∂f̃2
n(x̃)
∂x̃

∣∣∣∣
x=0

= ∂f̃2
s (x̃)
∂x̃

∣∣∣∣
x=0

. (4.2.6)

54
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Figure 4.1: Examples of the parabolic cylinder functions (used in Eqs. (4.2.3) and
(4.2.4)) with the specific value of ky that satisfies the boundary condition (Eq.
(4.2.9)), for a range of normal barrier masses. The figure inset demonstrates the
behaviour close to the interface. All calculations are performed with B̃app = 0.1 and
α̃n = −1.0. The remaining constant prefactor has been determined by the procedure
described in Section 4.3.

In the same way as in Section 2.4, one of the prefactors (cs) is left undetermined. The
first constraint of magnitude continuity (Eq. (4.2.5)) implies that

cnU (an,−t0) = csU (as, t0) , (4.2.7)

where t0 is again the spatial argument t evaluated at the interface. Therefore, by
defining a variable γ, we can express cn in terms of cs:

cn = γcs, where γ ≡ U (as, t0)
U (an,−t0) . (4.2.8)

We use the second condition to constrain the phase by relating the gradients at
the interface (Eq. (4.2.6)). Crucially, as in Section 2.4, this implicit equation is
independent of the remaining prefactor, cs. Making use of the chain rule and the
recurrence derivative relation [80, Eq. 12.8.3], we find an implicit equation:

U (as, t0)
m̃nU (an,−t0)

[
1
2 t0U (an,−t0) + U (an − 1,−t0)

]
= 1

2 t0U (as, t0) − U (as − 1, t0) .

(4.2.9)

The right hand side of this result is the same as in Section 2.4, and the previous
results are clearly recovered in the limit that m̃n → ∞.

As before, this framework provides a description of the spatial variation of the order
parameter. For any given value of the field and set of material parameters, there
is a particular solution for ky that satisfies the boundary condition in Eq. (4.2.9).
Therefore, the order parameter is defined up to a constant prefactor by using Eqs.
(4.2.3) and (4.2.4). We provide some examples of the resulting spatial variations for
arbitrary mass in Fig. 4.1. Importantly, the implicit equation defined in Eq. (4.2.9)
does not depend on the particular value of the remaining prefactor. This equation
constrains the value of t0 (and therefore, ky) such that the solutions are continuous
at the interface.
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4.2. Effective Upper Critical Field for a Superconducting–Normal Interface (SN)

In principle, Eq. (4.2.9) can be used to determine the effective upper critical field for
arbitrary mass. One could simply ramp up the field until no solution exists. However,
we can again follow the procedure in Section 2.4 and extract a more explicit result.
Again, by setting the derivative of Eq. (4.2.9) with respect to t0 to zero and using
the recurrence relation in Eq. (2.4.22), we maximize the field that allows a solution.
This leads to another condition for the critical values of t0, as and an:

as,c + 1
4 t

2
0,c = 1

m̃n

[
an,c + 1

4 t
2
0,c − 1

2 t0
(
U (an − 1,−t0)
U (an,−t0) + U (as − 1, t0)

U (as, t0)

)
(4.2.10)

−U (as − 1, t0)U (an − 1,−t0)
U (as, t0)U (an,−t0) − U2 (an − 1,−t0)

U2 (an,−t0)

]
.

However, since this equation contains the presence of both U (as, t0) and U (an,−t0)
cylinder functions, this result unfortunately does not enjoy the same simplicity as in
Section 2.4.2, where the cylinder functions precisely cancel out and an explicit solution
for as in terms of t0 can be identified. However, we can solve Eq. (4.2.9) and Eq.
(4.2.10) numerically and identify the solutions for as and t0. A comparison between
TDGL and this analytic solution is shown in Fig. 4.2, and demonstrates excellent
agreement. Moreover, we can see that in the limit where m̃n ≤ 1, there is no surface
sheath above Bc2. In the limit where m̃n → ∞, we recover the previous insulating
result of Bc3 = 1.695Bc2 from Saint James and de Gennes shown in Section 2.4.2.1.

The analytic results from Eq. (4.2.9) are not limited to dealing only with arbitrary
mass – Fig. 4.2 demonstrates the application to a range of junction condensation
parameter values. When the condensation parameter is large and negative, the elbow
in the curve is much steeper; the normal material is more weakly coupled and the
coherence length in this region is smaller (c.f. ξn, as defined in Eq. (2.5.49)); hence
the system approaches the insulating limit quicker. Conversely, if the condensation
parameter is smaller, the curve is broadened. Moreover, we can see that the transition
begins at a higher mass for more negative condensation parameter magnitudes – Fig.
4.2 shows that the transition begins at m̃n ≃ 11.0 for α̃n = −10.0. We have also
checked that α̃n = −50.0 exhibits a similar behaviour – the transition begins at m̃n ≃
5.0, and is sharper than the α̃n = −10.0 curve. We can understand this by considering
the interfacial order parameter; as can be seen from Eq. (2.5.48), as α̃n is increased,
the order parameter magnitude at the interface decreases, and therefore approaches
the boundary condition for a lower mass material. As the mass is increased, then the
interfacial order parameter is increased, and the sheath near interface approaches the
insulating behaviour. Note that the specific value of α̃n = −1.0 is not particularly
special in any way, unlike the specific value of m̃n = 1.0, which serves as a demarcation
between the presence/absence of surface effects. We note here that the calculation of
B∗

c2 does not depend on β̃n.

Instead of numerically solving Eq. (4.2.10) for the solution to as, we can instead find
a good first approximation by taking the result of Eq. (2.4.23) (in the insulating
limit). We can then insert this into the mass–dependent Eq. (4.2.9), and obtain
a straightforward implicit equation in one unknown. It is then easy to numerically
solve this, and therefore obtain a high mass limiting value of B̃∗

c2. The results of
this approximation are shown by the dashed lines in Fig. 4.2. The solid lines
are the complete numerical solution, found from solving Eqs. (4.2.9) and (4.2.10)
simultaneously which gives excellent agreement with TDGL data. The TDGL slab
data had a thickness of d̃s = 8.0 – this is effectively in the semi–infinite limit,
since each interface is sufficiently far away from one another such that there is no
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Figure 4.2: Effective upper critical field of an SN interface as a function of normal
barrier mass, for a range of junction condensation parameter values, α̃n. The solid
lines are the complete analytic results calculated from numerically solving Eqs. (4.2.9)
and (4.2.10) simultaneously. The solid circles are TDGL slab data with ds = 8.0ξs.
The dashed lines are the analytic approximation obtained from inserting Eq. (2.4.23)
into Eq. (4.2.9). For all TDGL simulations, β̃n = 1.

interaction between the sheaths. We can see that, as expected, the approximation
is very good when the masses are sufficiently large; here, the threshold is seen to be
m̃n > 3.0, and the approximation only becomes poor when m̃n < 2.0. Real materials,
such as Nb3Sn, typically have grain boundaries with a resistivity of approximately
1 × 10−7 W m (although this is dependent on atomic Sn content and temperature)
[150]; the ratio of the grain boundaries to grain resistivity has been found to range
between 2 and 9 [151]. In microcrystalline and nanocrystalline YBCO, the ratio
of grain boundary/grain resistivity is huge – it has been found to be 2 × 103 and
1.6 × 105 respectively [39]. This approximation provides a efficient way of obtaining
B̃∗

c2 as a function of arbitrary material properties.

4.3 Order Parameter Magnitude – Determining the Prefactor

The framework in Section 4.2 described our approach for determining the spatial
variation of the order parameter for arbitrary material parameters. The final issue
preventing a complete description of the order parameter magnitude is the remaining
constant prefactor. As mentioned in Section 2.4 by Saint James and de Gennes, this
prefactor can only be found by solving the full non–linear equations numerically (i.e.
including the cubic order parameter term). We present an analytic approach that
formally captures this prefactor in the region between Bc2 and B∗

c2. We will see how
we can determine the remaining prefactor, cs – this will be sufficient for any of the
geometries considered in this section.

We closely follow the textbook Abrikosov approach [53, Section 8.5]. First we define
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4.3. Order Parameter Magnitude – Determining the Prefactor

ψ̃L, the order parameter solution to the linearized GL1 equation in a generic material
close to B̃∗

c2:
1
m̃n

(
∇̃ − iÃc2∗

)2
ψ̃L + α̃nψ̃L = 0. (4.3.1)

Here, we have denoted Ãc2∗ as the vector potential for a magnetic field near B̃∗
c2;

Ãc2∗ =
(
B̃∗

c2x̃
)
ȷ̂. (4.3.2)

It is useful to define the operator H0, where

H0ψ̃L = 0 where H0 = 1
m̃n

(
∇̃ − iÃc2∗

)2 + α̃n. (4.3.3)

These are the solutions in the linearized limit, where the applied field is B̃∗
c2. We

write a general order parameter and the vector potential at some general field away
from B̃app as a small perturbation to the linearized solution:

ψ̃ = ψ̃L + ψ̃1, (4.3.4)

Ã = Ãc2∗ + Ã1. (4.3.5)

Strictly, the field B̃app should be close to B̃∗
c2. To obtain a net applied field of B̃app,

the small vector potential must be written as

Ã1 =
((
B̃app − B̃∗

c2
)
x̃
)
ȷ̂. (4.3.6)

We note that these additional terms, ψ̃1 and Ã1, are also small, and so we only
include first order terms. We substitute these perturbative expansions into the full
(non-linear) GL1 equation:

1
m̃n

(
∇̃ − iÃ

)2
ψ̃ + α̃nψ̃ − β̃n

∣∣ψ̃∣∣2 ψ̃ = 0 (4.3.7)

=⇒ 1
m̃n

(
∇̃ − i

(
Ãc2∗ + Ã1

))2
ψ̃L + α̃nψ̃L − β̃n

∣∣ψ̃L
∣∣2 ψ̃L

+ 1
m̃n

(
∇̃ − iÃc2∗

)2
ψ̃1 + α̃nψ̃1︸ ︷︷ ︸

H0ψ̃1

= 0 (4.3.8)

=⇒ −H0ψ̃1 = 1
m̃n

(
∇̃ − i

(
Ãc2∗ + Ã1

))2
ψ̃L + α̃nψ̃L − β̃n

∣∣ψ̃L
∣∣2 ψ̃L. (4.3.9)

It is not immediately clear why this is useful, until we consider the orthonormality
condition, denoted it as O [152]:

O ≡
∫
ψ̃∗

LH0ψ̃1d3r = 0. (4.3.10)

This condition follows from the self–adjoint nature of the Hamiltonian operator H0;
the solution to the homogenous equation must be orthogonal to the inhomogenous
component of the differential equation. By identifying ψ̃L as the solution to the
linearized equation and H0ψ̃1 as the inhomogeneous component, the two must be
orthogonal in order for such a solution to exist. Therefore, using the expression for
H0ψ̃1, we find the orthonormality condition integral may be rewritten as:

O =
∫
ψ̃∗

L

[
1
m̃n

(
∇̃ − i

(
Ãc2∗ + Ã1

))2
ψ̃L + α̃nψ̃L − β̃n

∣∣ψ̃L
∣∣2 ψ̃L

]
d3r. (4.3.11)

Formally, this result contains all the information required [53]. However, in order to
make the solution more explicit, some further manipulation is required. We rewrite
the square in Eq. (4.3.11) to obtain

O =
∫
ψ̃∗

L

[
1
m̃n

((
∇̃ − iÃc2∗

)
− iÃ1

)2
ψ̃L + α̃nψ̃L − β̃n

∣∣ψ̃L
∣∣2 ψ̃L

]
d3r = 0. (4.3.12)
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Figure 4.3: Interfacial order parameter magnitude as as function of field from TDGL
data with arbitrary mass, compared to the analytic solution. We have taken a
double–linear approach here; we used the rigorous approach in Eq. (4.3.22) from
B∗

c2 to Bc2, and then taken a linear fit down to the zero-field Fink value. When
m̃n ≤ 1, there is no surface barrier, and so we have taken the FBH field dependent
order parameter (Eq. (2.5.43)). In all simulations, we have set α̃n = −1.0 and
β̃n = 1.0.

Expanding the brackets and neglecting the contribution from the higher order small
perturbation terms of order Ã1

2 yields the result

O =
∫
ψ̃∗

L

[
1
m̃n

(
∇̃ − iÃc2∗

)2
ψ̃L + α̃nψ̃L − β̃n

∣∣ψ̃L
∣∣2 ψ̃L

+ −i
m̃n

{(
∇̃ − iÃc2∗

)
· Ã1ψ̃L + Ã1 ·

(
∇̃ − iÃc2∗

)
ψ̃L
}]

d3r = 0.
(4.3.13)

We identify the first two terms as the zeroth order term in Eq. (4.3.3), H0ψ̃L = 0.
Therefore, the remaining expression reads∫

ψ̃∗
L

[
−i
m̃n

{(
∇̃ − iÃc2∗

)
· Ã1ψ̃L + Ã1 ·

(
∇̃ − iÃc2∗

)
ψ̃L
}]

d3r =
∫
β̃n
∣∣ψ̃L
∣∣4 d3r.

(4.3.14)

On the left hand side, we can use the chain rule on the first term and integrate by
parts to identify the current density using GL2. Therefore, we obtain∫

2J̃L · Ã1d3r =
∫
β̃n
∣∣ψ̃L
∣∣4 d3r, (4.3.15)

where J̃L is the supercurrent associated with the linearized order parameter.

4.3.1 Solution between Bc2 and B∗
c2 for Arbitrary Mass

For the semi–infinite geometry considered, the only non-zero components in the LHS
of Eq. (4.3.15) are in the y-direction. Explicitly using GL2 to write down the
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c2 for Arbitrary Mass
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Figure 4.4: Interfacial order parameter magnitude as as function of field from TDGL
data with arbitrary mass, compared to the analytic solution. We have taken a
double–linear approach here; we used the rigorous approach in Eq. (4.3.22) from
B∗

c2 to Bc2, and then taken a linear fit down to the zero-field Fink value. When
m̃n ≤ 1, there is no surface barrier, and so we have taken the FBH field dependent
order parameter (Eq. (2.5.42)). In all simulations, we have set α̃n = −1.0 and
β̃n = 1.0.

supercurrents in terms of the order parameter leads to the result:

2 (B∗
c2 −Bapp)
m̃n

∫
(ky,L −B∗

c2x̃) x̃
∣∣ψ̃L
∣∣2 d3r =

∫
β̃n
∣∣ψ̃L
∣∣4 d3r. (4.3.16)

Up until this point, the analysis has been independent of the specific form of the order
parameter. We now define the order parameter in the linearized limit in each region
as in Eq. (2.4.10):

ψ̃L =
∣∣ψ̃L
∣∣ eiky,Lỹ, (4.3.17)

where we have used the cylinder function from the Saint–James derivation (Eqs.
(4.2.3) and (4.2.4)) evaluated in the linear limit, near B̃∗

c2:

∣∣ψ̃s,L
∣∣ = Cs lim

B̃→B̃∗
c2

U (as, t) ≡ CsUs,L, (4.3.18)∣∣ψ̃n,L
∣∣ = Cn lim

B̃→B̃∗
c2

U (an,−t) ≡ CnUn,L. (4.3.19)

Note that these Cs and Cn values are not the same as the cs and cn presented in Eqs.
(4.2.3) and (4.2.4), since they include the prefactor presented in Eq. (2.4.10). The
value of ky,L is constrained by the boundary conditions in Eqs. (4.2.5) and (4.2.6),
where ky,L is treated as a constant (ky evaluated near B̃∗

c2). Since these solutions
decay to zero in the bulk, this approach is only valid above Bc2. Inserting this into
Eq. (4.3.16) provides an explicit solution for the prefactor. Splitting the integral into
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two for the electrode/normal regions respectively leads to the intermediate result:

2 (Bapp −B∗
c2)
[∫ ∞

0
(ky,L −B∗

c2x̃) x̃ C2
sU

2
s,Ldx̃+ 1

m̃n

∫ 0

−∞
(ky,L −B∗

c2x̃) x̃ C2
nU

2
n,Ldx̃

]
(4.3.20)

=
∫ ∞

0
C4

sU
4
s,Ldx̃+ β̃n

∫ 0

−∞
C4

nU
4
n,Ldx̃. (4.3.21)

Again, using continuity to relate Cs to Cn as defined in Eq. (4.2.8) leads to an explicit
result for Cs:

C2
s =

2 (Bapp −B∗
c2)
[
S1 + γ2

m̃n
N1

]
S2 + β̃nγ4N2

, (4.3.22)

where we have defined the integrals

S1 =
∫ ∞

0
(ky,L −B∗

c2x̃) x̃ U2
s,Ldx̃,

S2 =
∫ ∞

0
U4

s,Ldx̃,

N1 =
∫ 0

−∞
(ky,L −B∗

c2x̃) x̃ U2
n,Ldx̃,

N2 =
∫ 0

−∞
U4

n,Ldx̃.

(4.3.23)

The interfacial order parameter is then found by taking this prefactor, and evaluating
the cylinder function solutions at the interface (x = 0). We have found this gives
good results compared to TDGL data in the very high field regime, between Bc2 and
B∗

c2 for arbitrary mass, as shown in Figs. 4.3 and 4.4.

4.3.2 Extending below Bc2

We also present an approximation to extend this approach to the full field range.
Above Bc2, we have the solution from the rigorous Abrikosov approach described
earlier in Section 4.3.1, providing a linear solution from Bc2 to B∗

c2. However, below
Bc2, we looked for solutions by first defining a generalized composite wavefunction as
a sum of two contributions from the new Saint James solutions and from FBH with
zero mass (ZM) (Section 2.5.2.1):

ψ̃ = ψ̃SJ + ψ̃ZM. (4.3.24)

Above Bc2, F̃ 2
l̃/2 (ỹ) is solely determined by the Saint James results (Section 4.2). The

FBH solution with ZM has zero magnitude and gradient at the interface, and so does
not contribute to the boundary condition of the Saint James solution. Furthermore,
the limiting value in the bulk is proportional to 1− B̃app, since the upper critical field
for zero mass is precisely Bc2. Therefore this solution has no contribution above Bc2,
and we recover the exact solution as required.

However, since the zero–mass terms do not tend to zero far away from the interface,
this leads to unbounded cross terms in the additional integrals. Even if we ignore
these unbounded terms (which are small close to Bc2), this approach still provides
very poor agreement for the interfacial order parameter from TDGL, as seen in Fig.
4.6. We attribute this to the use of PCFs – clearly, the non–linear terms are now
significantly important, and the solutions to the linearized equations (i.e. the PCFs)
are no longer appropriate. Regardless, as we will see in Ch. 5, the use of this
composite wavefunction provides excellent agreement with the spatial variation of
the order parameter and the screening current.
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Figure 4.5: Interfacial order parameter magnitude as as function of field from TDGL
data with an intermediate mass, compared to the two analytic solutions. The
double–linear approach is shown in green; taking the rigorous approach in Eq. (4.3.22)
from B∗

c2 to Bc2, and then taken a linear fit down to the zero-field Fink value.
The FBH field dependent order parameter (Eq. (2.5.42)) is shown in blue. In all
simulations, we have set α̃n = −1.0 and β̃n = 1.0.

Fortunately, from the TDGL data, we observe that the interfacial order parameter is
broadly linear below Bc2 as well. Since we know the precise zero–field interfacial order
parameter from Fink, we propose using a simple empirical linear relationship between
the value accurately calculated at Bc2, and the zero–field value from Fink. Therefore,
we suggest a physically motivated ‘double–linear’ approximation, that provides two
distinct regions with different gradients when the mass of the barrier is bigger than
the mass of the electrode.

We note that if the mass of the barrier is less than the electrode (m̃n < 1.0),
then no surface barrier exists and the Saint James formalism is not appropriate for
the order parameter description. In this case, we use the FBH in–field interfacial
order parameter, which is shown to provide the correct non–linear field dependence.
Comparisons between this approximation and TDGL is shown in Figs. 4.3 and 4.4,
showing good agreement across the entire mass range. We note that the crossover is
particularly sharp; when m̃n = 1.0, the FBH non–linear field dependence provides a
good fit, but when m̃n = 2.0, the double–linear approximation is more appropriate.
However, as shown in Fig. 4.5, there is a narrow range of masses (1.0 < m̃n < 2.0)
where neither are appropriate.
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Figure 4.6: Interfacial order parameter magnitude as as function of field from TDGL
data in the insulating limit, compared to the attempted extension to the analytic
solution and the double–linear approach. The rigorous analytic attempt is shown as
a red dashed line, using the composite wavefunction in Eq. (4.3.24) The double–linear
approach is shown as the blue solid line; taking the rigorous approach in Eq. (4.3.22)
from B∗

c2 to Bc2, and then taken a linear fit down to the zero-field Fink value. In all
simulations, we have set α̃n = −1.0 and β̃n = 1.0.

4.4 Effective Upper Critical Field for a Superconducting
Slab with Normal Coatings (NSN)

We now outline the derivation to describe the order parameter in a
normal–superconductor–normal (NSN) system. This is an extension of the work in
Section 2.4.2.2, where we considered an ISI slab geometry. Again, the superconducting
slab has a finite thickness, ds, is centered at x̃ = 0, and the interfaces are located at
x̃ = ±d̃s/2. However, the surrounding material in the regions x̃ > d̃s/2 and x̃ < −d̃s/2
is no longer a perfect insulator, but instead is a normal metal with a specified set of
material parameters (α̃n, m̃n and β̃n). We proceed to define the solutions in each
of the regions in the same way as Section 4.2. The solution in the superconducting
region is [79]

f̃s(x̃) = cs1U (as, t) + cs2U (as,−t) , if x ∈ [−ds/2, ds/2] , (4.4.1)

where as = − 1
2B̃app

.

Here, cs1 and cs2 are arbitrary constant prefactors. The solution in the normal
material is

f̃nR(x̃) = cnRU (an, t) , if x ∈ [ds/2,∞) , (4.4.2)

f̃nL(x̃) = cnLU (an,−t) , if x ∈ (−∞,−ds/2] , (4.4.3)

where an = − m̃nα̃n

2B̃app
.
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Here, cnL and cnR are again arbitrary prefactors (where L and R denote the left and
right–hand side interfaces). The boundary conditions to constrain the behaviour at
the interface are more general than the conditions for the ISI system presented in
Section 2.4.2.2; we must consider not only the gradients at the interface, but also the
magnitudes. Therefore, to ensure the necessary continuity of our solutions in each
region, we impose the four conditions:

f̃nL
∣∣
x̃=−d̃s/2 = f̃s

∣∣
x̃=−d̃s/2 , (4.4.4)

f̃nR
∣∣
x̃=d̃s/2 = f̃s

∣∣
x̃=d̃s/2 , (4.4.5)

1
m̃n

∂f̃2
nL
∂x̃

∣∣∣∣
x̃=−d̃s/2

= ∂f̃2
s

∂x̃

∣∣∣∣
x̃=−d̃s/2

, (4.4.6)

1
m̃n

∂f̃2
nR
∂x̃

∣∣∣∣
x̃=d̃s/2

= ∂f̃2
s

∂x̃

∣∣∣∣
x̃=d̃s/2

. (4.4.7)

We have 4 boundary conditions and 5 unknowns (cs1, cs2, cnL, cnR, and ky); as before,
we will constrain ky by finding the lowest eigenfunction (or by deriving a new equation
that gives the condition for that eigenfunction, as in Eq. (4.2.10)). In addition, we
have the constant prefactor that can be constrained by external means, e.g. by solving
the non–linear equations or using the approach in Section 4.3.2. To explicitly follow
the approach taken in the ISI system, we will:

(i) Use Eq. (4.4.4) to constrain cnL in terms of cs1 and cs2,

(ii) Use Eq. (4.4.5) to constrain cnR in terms of cs1 and cs2,

(iii) Use Eq. (4.4.6) to constrain cs2 in terms of cs1,

(iv) Use Eq. (4.4.7) to obtain an implicit equation for ky (independent of cs1).

We now proceed to implement these conditions in the same way as in Section 2.4.2.2.
The first two conditions imposing continuity of magnitude are straightforward; we
obtain:

cnL = cs1
U
(
as, t−d̃s/2

)
U
(
an,−t−d̃s/2

) + cs2
U
(
as,−t−d̃s/2

)
U
(
an,−t−d̃s/2

) , (4.4.8)

cnR = cs1
U
(
as, td̃s/2

)
U
(
an, td̃s/2

) + cs2
U
(
as,−td̃s/2

)
U
(
an, td̃s/2

) . (4.4.9)

The next conditions involving the derivative are more involved; similarly to Section
2.4.2.2, we shall make use of the prime notation in Eq. (2.4.29). The first gradient
condition considers the system at x = −ds/2, and will constrain cs2. The gradient of
the normal region is straightforward:

∂f̃2
nL
∂x̃

∣∣∣∣
x̃=−d̃s/2

= 2f̃nL
∂f̃nL
∂x̃

∣∣∣∣
x̃=−d̃s/2

= −2
√

2B̃appc
2
nLU(an,−t)U ′(an,−t)

∣∣∣∣
x̃=−d̃s/2

(4.4.10)

= −2
√

2B̃appc
2
nLU

(
an,−t−d̃s/2

)
U ′
(
an,−t−d̃s/2

)
.
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The gradient in the superconductor is similarly given as
∂f̃2

s
∂x̃

= 2f̃s
∂f̃s
∂x̃

= 2
√

2B̃appf̃s [cs1U
′ (as, t) − cs2U

′ (as,−t)] (4.4.11)

= 2
√

2B̃app [cs1U (as, t) + cs2U (as,−t)] [cs1U
′ (as, t) − cs2U

′ (as,−t)]

= 2
√

2B̃app

[
c2

s1U (as, t)U ′ (as, t) − c2
s2U (as,−t)U ′ (as,−t)

+ cs1cs2 [U (as,−t)U ′ (as, t) − U (as, t)U ′ (as,−t)]
]
.

Evaluating this result (Eq. (4.4.11)) at the interface at x = −ds/2, replacing the
definition of cnL (Eq. (4.4.8)) into Eq. (4.4.10), and inserting these two results back
into the gradient continuity (Eq. (4.4.6)) leads to a quadratic in cs2. This has the
simple solution

cs2 = −b+
√
b2 − 4ac

2a , (4.4.12)

where

a = 1
m̃n

U ′
(
an,−t−d̃s/2

) U2
(
as,−t−d̃s/2

)
U
(
an,−t−d̃s/2

) − U
(
as,−t−d̃s/2

)
U ′
(
as,−t−d̃s/2

)
,

(4.4.13)

b = cs1

[ 2
m̃n

U ′
(
an,−t−d̃s/2

) U (as, t−d̃s/2

)
U
(
as,−t−d̃s/2

)
U
(
an,−t−d̃s/2

) (4.4.14)

− U
(
as, t−d̃s/2

)
U ′
(
as,−t−d̃s/2

)
+ U

(
as,−t−d̃s/2

)
U ′
(
as, t−d̃s/2

) ]
,

c = c2
s1

 1
m̃n

U ′
(
an,−t−d̃s/2

) U2
(
as, t−d̃s/2

)
U
(
an,−t−d̃s/2

) + U
(
as, t−d̃s/2

)
U ′
(
as, t−d̃s/2

) .
(4.4.15)

The solution can be written more transparently; by defining b′ = b/cs1 and c′ = c/c2
s1,

we can extract an overall factor of cs1 explicitly and obtain

cs2 = γscs1, (4.4.16)

where we have defined
γs = −b′ +

√
b′2 − 4ac′

2a . (4.4.17)

We note here that the positive root is required to be taken in order to ensure that the
γs is positive. Note that with this result for cs2 in Eq. (4.4.16), the previous results
for cnL and cnR (in Eqs. (4.4.8) and (4.4.9)) are now solely determined in terms of
cs1. Finally, we obtain an implicit equation for ky using the final boundary condition
in Eq. (4.4.7). The gradient in the normal region is written as

∂f̃2
nR
∂x̃

∣∣∣∣
x̃=d̃s/2

= 2f̃nR
∂f̃nR
∂x̃

∣∣∣∣
x̃=d̃s/2

= 2
√

2B̃appc
2
nRU(an, t)U ′(an, t)

∣∣∣∣
x̃=d̃s/2

(4.4.18)

= 2
√

2B̃appc
2
nRU

(
an, td̃s/2

)
U ′
(
an, td̃s/2

)
.

Squaring the result for cnR in Eq. (4.4.9) and inserting the result for cs2 in Eq.
(4.4.16) yields:

∂f̃2
nR
∂x̃

∣∣∣∣
x̃=d̃s/2

= 2
√

2B̃appc
2
s1

U ′
(
an, td̃s/2

)
U
(
an, td̃s/2

) [U2
(
as, td̃s/2

)
+ γ2

sU
2
(
as,−td̃s/2

)
(4.4.19)

+2γsU
(
as, td̃s/2

)
U
(
as,−td̃s/2

)]
.
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Figure 4.7: Effective upper critical field of an NSN superconducting slab as a function
of the slab’s thickness, for a range of normal barrier masses. The numerical lines are
calculated from Eq. (4.4.7) (using Eqs. (4.4.20) and (4.4.19)). The TDGL slab data
are shown as closed circles markers with wcoat = 3.0ξ. In all simulations, we have set
α̃n = −1.0 and β̃n = 1.0.

We have already found the gradient in the superconductor (in Eq. (4.4.11)) –
evaluating this at x = ds/2 and again inserting the result for cs2 in Eq. (4.4.16)
yields:

∂f̃2
s

∂x̃

∣∣∣∣
x̃=d̃s/2

= 2
√

2B̃appc
2
s1

[
U
(
as, td̃s/2

)
U ′
(
as, td̃s/2

)
(4.4.20)

−γ2
sU
(
as,−td̃s/2

)
U ′
(
as,−td̃s/2

)
−γsU

(
as, td̃s/2

)
U ′
(
as,−td̃s/2

)
+γsU

(
as,−td̃s/2

)
U ′
(
as, td̃s/2

)]
.

Inserting these results (Eqs. (4.4.19) and (4.4.20)) into the boundary condition in Eq.
(4.4.7) leads to an implicit equation that is independent of the remaining prefactor
as required. We can proceed to identify the effective upper critical field, B∗

c2, as a
function of the thickness of the superconducting slab for arbitrary mass in a similar
way to Section 4.2, by identifying the lowest eigenvalue. We first note that just as in
Section 2.4.2.2, Eqs. (4.4.19) and (4.4.20) contain both td̃s/2 and t−d̃s/2; as before,
these can be easily related using the definition of t, shown in Eq. (2.4.33). Therefore,
by following the same process in Section 2.4.2.2, we can find the lowest eigenvalue
corresponding to the effective upper critical field.

The B∗
c2 results are shown in Fig. 4.7, demonstrating excellent agreement between

TDGL data and the analytic result described above. As the thickness becomes large,
we approach the same semi–infinite behaviour seen in the previous section (Section
4.2). The extreme insulating limit has been described already in Section 2.4.2.2 and
seen in Fig. 2.6 – the formalism here reduces correctly in the limit that m̃n → ∞, and

66



4.5. Effective Upper Critical Field for a Josephson Junction (SNS)

our analytic form follows the inverse thickness dependence as seen from Tinkham’s
parallel critical field result (Eq. (2.4.34)). For m̃n > 1, where the normal barrier has
a higher mass than the bulk and therefore a region of enhanced superconductivity is
observed, the same intuition for Tinkham’s result holds; reducing the thickness causes
these enhancement regions to overlap, leading to an inverse thickness dependence for
increase in B∗

c2. As the superconducting region becomes infinitely thin (ds → 0), it is
clear that B∗

c2 → 0, since there is no superconducting region at all. However, as can
be seen from the spatial variations of the order parameter magnitude in Fig. 4.1, the
breadth of the sheath increases as m̃n decreases (i.e. the enhancement region becomes
more spread out). This has a corresponding effect on the thickness dependence on
B∗

c2; as the thickness is decreased, B∗
c2 initially increases as the sheaths overlap, but

then begin to decrease as the thickness becomes very small. Both the position of this
turnover (i.e. the critical thickness for the maximum B∗

c2), and the sharpness of the
transition are dependent on the mass, as can be seen from the m̃n = 5.0, m̃n = 10.0
and m̃n = 50.0 data in Fig. 4.7. For larger masses, since the breadth of the sheath
is narrower, it remains close to the semi–infinite limit until much smaller thicknesses.
Similarly, the transition as B∗

c2 → 0 is sharper, since the coupling to the normal region
becomes weaker and the behaviour approaches that of Tinkham’s parallel critical field
result (Eq. (2.4.34)).

For m̃n < 1, no such enhancement occurs. Therefore, when m̃n < 1, B∗
c2

monotonically drops as the thickness is decreased. As m̃n → 0, the order parameter at
the interface approaches zero (c.f. Eq. (2.3.6)); therefore, the rate of this decrease is
faster with lower masses, as can be seen from comparison of the m̃n = 1 and m̃n = 0.5
data in Fig. 4.7.

The slab results in this section naturally find use in the description of thin films with
normal metal layers of arbitrary parameters. In the next section, we will apply the
mathematical machinery developed here to describe the geometry more relevant to
polycrystalline materials.

4.5 Effective Upper Critical Field for a Josephson Junction
(SNS)

In this section, with a view to the development of our understanding of polycrystalline
materials, we return to our typical Josephson junction geometry. The mathematical
framework is almost identical to that considered in Section 4.4. We consider an SNS
system, where the normal barrier now has a finite thickness, dn. We have three regions
of interest: the left superconducting electrode, x =∈ (−∞,−dn/2]; the normal barrier,
defined in x =∈ [−dn/2, dn/2]; and the right superconducting electrode, defined in
x =∈ [dn/2,∞). The origin of the system (the centre of the normal barrier) is located
as x = 0, and the interfaces are located at x̃ = ±d̃n/2. As usual, the normal junction
has arbitrary material parameters, α̃n, m̃n and β̃n.

The mathematical approach is almost identical to Sections 4.2 and 4.4; in fact, one
can identify a clear symmetry in the system, by exchanging as ↔ an, cnL ↔ csL,
cnR ↔ cnR, cs1 ↔ cn1 and cs2 ↔ cn2

∗. Nevertheless, we shall again obtain the

∗The intermediate results for the differential equations in the applications of the boundary
conditions is identical with this set of exchanges. However, the quadratic solution for the definition
of γs in Eq. (4.4.17) is not identical.
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solution in each region and constrain them to be continuous. First, the solution in
each of the superconducting regions are given by:

f̃sR(x̃) = csRU (as, t) , if x ∈ [dn/2,∞) , (4.5.1)

f̃sL(x̃) = csLU (as,−t) , if x ∈ (−∞,−dn/2] , (4.5.2)

where as = − 1
2B̃app

.

Here, t is the familiar variable defined in Eq. (2.4.12), and both csL and csR are
arbitrary constant prefactors. In the normal region, we will have a solution which
effectively describes the spatial variation away from each of the two interfaces. We
write the particular solution as a superposition:

f̃n(x̃) = cn1U (an, t) + cn2U (an,−t) , if x ∈ [−dn/2, dn/2] , (4.5.3)

where an = − m̃nα̃n

2B̃app
.

Here, cn1 and cn2 are again arbitrary prefactors. The boundary conditions are similar
to those seen in Section 4.4; they are given as:

f̃sL
∣∣
x̃=−d̃n/2 = f̃n

∣∣
x̃=−d̃n/2 , (4.5.4)

f̃sR
∣∣
x̃=d̃n/2 = f̃n

∣∣
x̃=d̃n/2 , (4.5.5)

1
m̃n

∂f̃2
n

∂x̃

∣∣∣∣
x̃=−d̃n/2

= ∂f̃2
sL

∂x̃

∣∣∣∣
x̃=−d̃n/2

, (4.5.6)

1
m̃n

∂f̃2
n

∂x̃

∣∣∣∣
x̃=d̃n/2

= ∂f̃2
sR
∂x̃

∣∣∣∣
x̃=d̃n/2

. (4.5.7)

As before, we have 4 boundary conditions and 5 unknowns (csL, csR, cn1, cn2, and
ky). Explicitly, we will ensure continuity of our solutions in the follow way:

(i) Use Eq. (4.5.4) to constrain csL in terms of cn1 and cn2,

(ii) Use Eq. (4.5.5) to constrain csR in terms of cn1 and cn2

(iii) Use Eq. (4.5.6) to constrain cn2 in terms of cn1,

(iv) Use Eq. (4.5.7) to obtain an implicit equation for ky (independent of cn1).

We now proceed as before: by implementing the first two boundary conditions which
impose continuity of magnitude (Eqs. (4.5.4) and (4.5.5)), we constrain csL and csR

to be:

csL = cn1
U
(
an, t−d̃n/2

)
U
(
as,−t−d̃n/2

) + cn2
U
(
an,−t−d̃n/2

)
U
(
as,−t−d̃n/2

) , (4.5.8)

csR = cn1
U
(
an, td̃n/2

)
U
(
as, td̃n/2

) + cn2
U
(
an,−td̃n/2

)
U
(
as, td̃n/2

) . (4.5.9)

Next, we apply Eq. (4.5.6) to constrain cn2 in terms of cn1. Taking the relevant
derivatives and using the defintion of csL in Eq. (4.5.8) leads to the quadratic solution
for cn2:

cn2 = −b+
√
b2 − 4ac

2a , (4.5.10)
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where∗

a = U ′
(
as,−t−d̃n/2

) U2
(
an,−t−d̃n/2

)
U
(
as,−t−d̃n/2

) − 1
m̃n

U
(
an,−t−d̃n/2

)
U ′
(
an,−t−d̃n/2

)
,

(4.5.11)

b = cn1

[
2U ′

(
as,−t−d̃n/2

) U (an, t−d̃n/2

)
U
(
an,−t−d̃n/2

)
U
(
as,−t−d̃n/2

) (4.5.12)

− 1
m̃n

U
(
an, t−d̃n/2

)
U ′
(
an,−t−d̃n/2

)
+ 1
m̃n

U
(
an,−t−d̃n/2

)
U ′
(
an, t−d̃n/2

) ]
,

c = c2
n1

U ′
(
as,−t−d̃n/2

) U2
(
an, t−d̃n/2

)
U
(
as,−t−d̃n/2

) + 1
m̃n

U
(
an, t−d̃n/2

)
U ′
(
an, t−d̃n/2

) .
(4.5.13)

Again, we can extract an overall factor of cn1 explicitly; by defining b′ = b/cn1 and
c′ = c/c2

n1, we obtain
cn2 = γncn1, (4.5.14)

where we have defined

γn = −b′ +
√
b′2 − 4ac′

2a . (4.5.15)

Again, we note that the positive root is required to ensure the solution is positive.
Finally, we obtain an implicit equation for ky by using the final boundary condition
in Eq. (4.5.7). The gradient in the normal region is written as

∂f̃2
n

∂x̃

∣∣∣∣
x̃=d̃n/2

= 2
√

2B̃appc
2
n1

[
U
(
an, td̃n/2

)
U ′
(
an, td̃n/2

)
(4.5.16)

−γ2
nU
(
an,−td̃n/2

)
U ′
(
an,−td̃n/2

)
−γnU

(
an, td̃n/2

)
U ′
(
an,−td̃n/2

)
+γnU

(
an,−td̃n/2

)
U ′
(
an, td̃n/2

)]
.

By squaring the result for csR in Eq. (4.5.9), the relevant gradient in the electrode is
given by:

∂f̃2
sR
∂x̃

∣∣∣∣
x̃=d̃n/2

= 2
√

2B̃appc
2
n1

U ′
(
as, td̃n/2

)
U
(
as, td̃n/2

) [U2
(
an, td̃n/2

)
(4.5.17)

+γ2
nU

2
(
an,−td̃n/2

)
+2γnU

(
an, td̃n/2

)
U
(
an,−td̃n/2

)]
.

Again, inserting these two results into the boundary condition in Eq. (4.5.7) leads
to an implicit equation that is independent of the remaining constant prefactor as
required. We can again proceed to identify the effective upper critical field, B∗

c2, as a
function of the thickness of the normal barrier for arbitrary mass in a similar way to
Section 4.4. Making use of the relationship between td/2 and t−d/2 from Eq. (2.4.33),
one can easily solve for the lowest eigenvalue numerically as we did in Section 2.4.2.2.
therefore obtaning the effective upper critical field for the SNS system.

∗These coefficients share symmetry with the previous coefficients found in Eqs. (4.4.13), (4.4.14)
and (4.4.15). Each cylinder function is as expected by the set of exchanges described earlier, but the
factor of the inverse mass now affects the ‘complementary’ set of terms in each coefficient.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

dn/ξs

1.0

1.1

1.2

1.3

1.4

1.5

B
∗ c2
/B

c2

m̃n = 50.0

m̃n = 10.0

m̃n = 5.0

m̃n = 1.0

m̃n = 0.5

Figure 4.8: Effective upper critical field of an SNS Josephson junction as a function
of normal barrier thickness, for a range of normal barrier masses. The analytic lines
are calculated from Eq. (4.4.7) (using Eqs. (4.5.16) and (4.5.17)). Associated TDGL
data is shown as closed markers. The TDGL simulations had a chemical length of
8.0ξs, with a coating of thickness wc = 3.0ξs and mass m̃c = 1.0. In all simulations,
we have set α̃n = −1.0 and β̃n = 1.0.

The B∗
c2 results are shown in Fig. 4.8 for a range of normal barrier thicknesses and

masses, and compared to corresponding TDGL data. The TDGL simulations all
used coatings with a mass m̃c = 1.0 to prevent any corner effects. Small barrier
thicknesses (dn ≤ 0.3) had a grid step of 0.05ξs to ensure sufficient resolution of the
order parameter – all other simulations used a typical resolution of 0.1ξs.

Again, we can see excellent agreement between the analytic results and the TDGL
simulations. In the limit that dn → 0, as required, the system approaches a bulk
superconductor, and the effective upper critical field tends towards the standard
Abrikosov result, Bc2. We note that the barrier approaches the thick limit very
rapidly, where there is no interference between the two sides of the barrier – we recover
the single interface limits seen in Section 4.2. This is useful (in the remaining chapters)
because it shows that we can consider the two interfaces in a high mass barrier of
a Josephson junction to be non–interacting. The transition between the thin and
thick barrier limits is smooth, but the sharpness of the transition is mass–dependent.
This can be understood by considering the length scale for the order parameter in
the normal region, ξn – as m̃n increases, ξn decreases due to the shorter scattering
length. Therefore, barriers with a larger value of m̃n must be much thinner before
the two sides of the barriers interact and decrease the net effective upper critical field.
For the m̃n = 50.0 data, this sharp transition is visible, whilst the transition is much
broader for the lower mass data. Notably, for m̃n ≤ 1.0, there is no sheath and so the
effective upper critical field is Bc2 for any normal barrier thickness. We briefly note
that the TDGL data for large separation (i.e. d̃ large) for large mass (specifically,
m̃n = 50.0) differs by approximately 5% between the NSN simulations (Fig. 4.7) and
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4.6. Josephson Depairing Current Density

the SNS simulations here (Fig. 4.8) – specifically, we found values of 1.418 and 1.497
for NSN and SNS systems respectively. We can attribute this difference to numerical
error due the fact that the normal coherence length is inversely proportional to the
mass (c.f. Eq. (2.5.49)), and it becomes harder to capture changes on the relevant
length scale.

4.6 Josephson Depairing Current Density

None of the work in the previous sections has considered the application of
transport current through the system; ultimately, we will utilise these results in the
determination of the critical current through a resistive grain boundary. Within wide
systems in 2D, the current flow in the bulk of the electrode is localized to near the
edges of the system. However, if the normal barrier is sufficiently resistive, then the
current density can flow across the entire width of the system even if the system is
above Bc2, due to the emergence of the sheath. If we assume the grain boundaries
are sufficiently weakly coupled, then we can consider the current injection into the
junction to be uniform across the width of the system – irrespective of what happens
deep in the electrode bulk (far away from the junction), we can intuitively picture the
current flow re–equilibriating along the entire width.

The treatment of the boundaries of arbitrary mass presented in the previous section
captured the behaviour of this sheath – the next step in obtaining critical currents
is to include the transport current that can flow across the barrier as a function of
the applied magnetic field and material parameters. Above B∗

c2, the entire system
is normal. At B∗

c2, there is a solution for the wavefunction in the system, with
some equilibrium critical superelectron kinetic energy. Below B∗

c2, the equilibrium
superelectron kinetic energy is lower than the previously determined maximum; we
can then apply a transport current – the critical current will then be determined as
the maximum current we can put through the junction at a given field.

4.6.1 Complete Analytic Solutions for the Josephson Depairing
Current Density

The broad approach of the analytic framework remains similar to Section 2.4. We
consider a similar vector potential to Eq. (2.4.3) but include a transport current to
flow across the barrier in the x–direction following Blair. We take the wavefunction
again to be

ψ̃(x̃, ỹ) = |ψ̃(x̃)|eiky ỹ. (4.6.1)

and the vector potential as
Ã = B̃appx̃ȷ̂−A0 ı̂, (4.6.2)

where as we shall see, A0 is associated with the applied transport current. Using the
general expression for the gauge-invariant current density gives,

J̃s = 1
m̃n

∣∣ψ̃∣∣2 ((ky − B̃appx̃)ȷ̂+ Ã0 ı̂
)
. (4.6.3)

where we can use the notation |ψ̃ (x̃) | = Cf̃ (x̃). We describe the x-component of
the current density as the applied current Japp and the y-component as the screening
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current. This leads to

J̃app = 1
m̃n

∣∣ψ̃∣∣2 (x̃) Ã0. (4.6.4)

Inserting GL–II (Eq. 4.6.3) into GL–I yields the equation

∂2 ∣∣ψ̃∣∣
∂x̃2 −

(
ky − B̃appx̃

)2 ∣∣ψ̃∣∣−

(
m̃nJ̃app∣∣ψ̃∣∣2

)2 ∣∣ψ̃∣∣+ m̃nα̃n
∣∣ψ̃∣∣+ m̃nβ̃n

∣∣ψ̃∣∣3 = 0. (4.6.5)

Unfortunately there is simply no general solution to Eq. (4.6.5). Necessarily, we
look for solutions in the weak coupling limit: we assume that the main effect on the
order parameter from the flowing current is determined primarily where the order
parameter is lowest. For the electrode, this is the order parameter at the interface
between the electrode and the barrier,

∣∣ψ̃s∣∣d/2 (which we can also write as
∣∣ψ̃n∣∣d/2).

For the barrier, this is at its centre, given by
∣∣ψ̃n∣∣0. Therefore in the superconducting

region, we approximate GL–I as

∂2f̃s
∂x̃2 −

(
ky − B̃appx̃

)2
f̃s −

 J̃app∣∣ψ̃n∣∣2d/2

2

f̃s + f̃s = 0, (4.6.6)

and in normal barrier region as

∂2f̃n
∂x̃2 −

(
ky − B̃appx̃

)2
f̃n −

(
m̃nJ̃app∣∣ψ̃n∣∣20

)2

f̃n + m̃nα̃nf̃n = 0. (4.6.7)

Both of these last two equations are again of the form of a Weber equation, which
provides a generalisation of the results in Sec. 4.2 that includes the applied transport
current. For the SNS system of interest, we find the similar solutions for the order
parameter magnitude in the left and right electrode (as given in Eqs. (4.5.1) and
(4.5.2)), and in the normal barrier (as given in Eq. (4.5.3)). First, the solution in
each of the superconducting regions are given by:

f̃sR(x̃) = csRU (as, t) , if x ∈ [dn/2,∞) , (4.6.8)

f̃sL(x̃) = csLU (as,−t) , if x ∈ (−∞,−dn/2] , (4.6.9)

where as = − 1
2B̃app

1 −

 J̃app∣∣ψ̃n∣∣2d/2

2
 .

Again, t is the familiar variable defined in Eq. (2.4.12), and both csL and csR are
arbitrary constant prefactors. In the normal region, we write the particular solution
as the superposition:

f̃n(x̃) = cn1U (an, t) + cn2U (an,−t) , if x ∈ [−dn/2, dn/2] , (4.6.10)

where an = − 1
2B̃app

m̃nα̃n −

(
m̃nJ̃app∣∣ψ̃n∣∣20

)2
 .

Again, cn1 and cn2 are again arbitrary constants. However, we note that (by
construction) these solutions are written in terms of the order parameter magnitudes
at the centre of the normal barrier and at the interface (

∣∣ψ̃n∣∣d/2 and
∣∣ψ̃n∣∣0) – strictly,

these should be calculated from the non–linear equations. In the weakly coupled
limit, we can approximate these with their values as calculated from the linearized
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4.6.1. Complete Analytic Solutions for the Josephson Depairing Current Density

equations. However, these will depend on as and an themselves, and therefore will no
longer allow one to obtain an explicit solution for the prefactors written in terms of one
another as we did in Section 4.5. To overcome this and render the problem analytically
tractable, we again make the assumption of being in the weakly coupled limit, so the
current is small enough that the order parameter at the centre of the junction does not
change significantly in the presence of transport current, and therefore, both

∣∣ψ̃n∣∣d/2
and

∣∣ψ̃n∣∣0 are calculated in the zero–current limit. This assumption is comparable to
the weak–coupling approximation in Fink [74], and is necessary to retain the explicit
nature of the problem. Therefore, we can rewrite the two variables (as and an):

as = − 1
2B̃app

1 −

(
J̃app

f̃2
n,d̃n/2

)2
 ,

an = − 1
2B̃app

m̃nα̃n −

(
m̃nJ̃app

f̃2
n,0

)2
 ,

(4.6.11)

where the specific values of f̃n,d̃n/2 and f̃n,0 are calculated in zero transport current.

In order to make use of these general equations, we need to know the order parameter
at the centre of the junction. From the framework in Section 4.3 (the ‘double–linear’
approach), we know the order parameter at the interface. We can then use the derived
Saint James order parameter distribution to calculate the order parameter throughout
the normal barrier, and subsequently can identify the order parameter in the centre
of the junction. A comparison between the calculated

∣∣ψ̃n∣∣0 and TDGL simulation is
shown in Fig. 4.9 for a wide range of masses. We can see good agreement between the
TDGL simulations and the calculated Saint James order parameter - by construction,
the solutions agree well near B∗

c2 for all masses. For very low masses (e.g. m̃n = 0.5),
the order parameter in the normal barrier is very small (as a consequence of the
boundary conditions, c.f. Eq. (2.4.1)), and so we see particularly poor agreement in
low and intermediate fields. Another possible cause may be in the choice of method
for the calculation of the order parameter for cases in the low mass limit: as presented
in Section 4.3, the interfacial order parameter is simply the Fink–Blair result – and
in this case, the Saint James order parameter distribution may not be an appropriate
framework for calculating the order parameter at the centre of the barrier. However,
for the cases of interest, we see good agreement across the entire field range, apart
from in extremely low fields (as expected) – our approach of using the Saint James
order parameter to describe the centre of the junction is therefore validated for any
set of barrier geometries and material properties.

To find criticality where J̃app = J̃c, we use the same approach that was used in Section
4.5 for an SNS junction to find B∗

c2 (i.e. where effectively Japp = 0). We find the
maximum current density that can flow, by setting Bapp (to be less than B∗

c2) in the
general form of as and an, and solve to find Jc. The ‘complete analytic solutions’ for
Jc for the SNS junction were found by solving Eqs. (4.5.4) to (4.5.7). This results
in exactly the same equations as in Section 4.5 – after manipulating the boundary
conditions, we are left with a single implicit equation in one unknown, as defined in
Eq. (4.5.7), making use of Eqs. (4.5.16) and (4.5.17). The crucial difference is that
now we are using the general forms (that include transport current) of as and an (Eq.
(4.6.11)). In a similar way to the B∗

c2 calculation (where we maximized the field), we
can similarly find the maximal Japp that admits a solution to find Jc.
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Figure 4.9: Order parameter magnitude at the centre of the normal barrier as as
function of field from TDGL data with arbitrary mass, compared to the analytic
solution from Saint James. We have used the double–linear approach (c.f. Section
4.3) to calculate the order parameter at the interface for arbitrary mass, and then used
the SNS Saint James order parameter to calculate the order parameter distribution
in the normal barrier (c.f. Section 4.5). In all simulations, we have set d̃n = 2.0,
α̃n = −1.0 and β̃n = 1.0.

4.6.1.1 Reduction to Previous Results in Literature

A rather simplistic approximation for Jc can be found by assuming that the screening
current in the superconducting electrode is broadly unaffected by the applied current
which in constant magnetic field, is equivalent to assuming the gradient in the phase
in the y–direction is the same in both the electrode and the barrier is unaffected by
the applied current. Taking leading terms from Eq. (4.6.6) and using Eq. (2.4.12)
gives

k2
y =

t0,c
√
B̃∗
c2
2

2

=

t0,c
√
B̃

2

2

+
(
m̃nJ̃app∣∣ψ̃n

∣∣2
0

)2

. (4.6.12)

Since we are in the weak-coupling limit, we take the insulating result t20,c ≈ 2/B∗
c2

from Section 2.4 and rearrange to give

J̃DJ
(
B̃app

)
= 1
m̃n

∣∣ψ̃n
∣∣2
0

√
1 − b̃, (4.6.13)

where we have defined the reduced field variable, b̃ = B̃app/B̃
∗
c2. Although this result

is approximate at best, comparing it with that of Abrikosov and Boyd (c.f. Section
2.5.2) shows it is consistent with the surface barrier producing marked increases in Jc

close to B∗
c2.
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Figure 4.10: Josephson depairing current density as a function of applied magnetic
field, for a range of normal barrier thicknesses with α̃n = −1.0, m̃n = 1.0, and β̃n =
1.0. The complete analytic solutions (solid symbols) are calculated by numerically
solving Eq. (4.5.7) (using Eqs. (4.5.16) and (4.5.17)) using the general forms of an
and as (Eq. (4.6.11)) for the maximal current density. The FBH solution (dashed
line) is calculated from Eqs. (2.5.47) and (2.5.69); the faint horizontal dotted line
shows the zero–field Fink value. The approximate functional forms of the analytic
solution (Eq. (4.6.14), with n taken from Table 4.1) are shown as solid lines.

4.6.2 Approximations of the Josephson Depairing Current
Density

Although this prescription is relatively easy to solve numerically, we can improve the
clarity of these results by providing a simple analytic approximation of our solution. In
zero–field, we expect to recover the Fink result (c.f. Section 2.5.1). Since our solution
is formally derived in the linearized limit, it is strictly valid near B∗

c2. As seen from Eq.
(4.6.13) and Fig. 4.9, the field dependence of the analytic solution changes with the
material parameters. Although our analytic solution has a clear 1− b̃ dependence, the
additional field dependence within

∣∣ψ̃n
∣∣
0 is not obvious. Therefore, we suggest that

the functional form can be approximated over the entire field range by the empirical
equation

J̃DJ
(
B̃app

)
= J̃Fink

(
1 − B̃app

B̃∗
c2

)n
= J̃Fink

(
1 − b̃

)n
, (4.6.14)

where J̃Fink is calculated from Eq. (2.5.47) in the zero–field limit (q2 = 0). We fit this
functional form to the results of the complete analytic calculations in Section 4.6.1.
We present the results of these fits in Tabs. 4.1a and 4.1b for m̃n = 1.0 and m̃n = 10.0
respectively. It can be seen that n is a function of the material parameters.
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Figure 4.11: Josephson depairing current density as a function of applied magnetic
field, for a range of normal barrier thicknesses with α̃n = −1.0, m̃n = 1.0 and β̃n = 1.0.
The complete analytic solutions (solid symbols) are calculated by numerically solving
Eq. (4.5.7) (using Eqs. (4.5.16) and (4.5.17)) using the general forms of an and as
(Eq. (4.6.11)) for the maximal current density. The FBH solution (dashed line) is
calculated from Eqs. (2.5.47) and (2.5.69); the faint horizontal dotted line shows the
zero–field Fink value. The approximate functional forms of the analytic solution (Eq.
(4.6.14), with n taken from Table 4.1) are shown as solid lines.

α̃n

d̃n 0.5 2.0

-1.0 2.17 2.01
-5.0 2.19 2.02
-10.0 2.13 2.18

(a) The values of n for m̃n = 1.0

α̃n

d̃n 0.5 2.0

-1.0 0.60 0.50
-5.0 0.46 0.50
-10.0 0.39 0.50

(b) The values of n for m̃n = 10.0

Table 4.1: Fitted values for the power n in the functional form presented in Eq.
(4.6.14) for an assortment of material parameters. The functional form has been
fitted to the complete analytic solutions (solid symbols) are calculated by numerically
solving Eq. (4.5.7) (using Eqs. (4.5.16) and (4.5.17)) using the general forms of an
and as (Eq. (4.6.11)) for the maximal current density.

4.6.3 Comparing the Complete Solution with FBH and the
Functional Form

Comparisons of the complete analytic solutions (solid markers) to both the FBH result
(dashed lines) and the fitted functional form (solid lines) are shown in Figs. 4.10 to
4.13. The new analytic solutions follows the calculations presented in Section 4.6.1 –
JDJ at each field point was obtained by finding the maximum current that still permits
a solution, by inserting the general forms of as and an (as defined in Eq. (4.6.11)) and
then solving Eqs. (4.5.4) to (4.5.7). We also note that the dependence of the form(
1 − b̃

)
(that is more appropriate for 2D systems [153, 154]) has been derived, rather
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Figure 4.12: Josephson depairing current density as a function of applied magnetic
field, for a range of junction condensation parameters with d̃n = 0.5, m̃n = 10.0
and β̃n = 1.0. The complete analytic solutions (solid symbols) are calculated by
numerically solving Eq. (4.5.7) (using Eqs. (4.5.16) and (4.5.17)) using the general
forms of an and as (Eq. (4.6.11)) for the maximal current density. The FBH solution
(dashed line) is calculated from Eqs. (2.5.47) and (2.5.69); the faint horizontal dotted
line shows the zero–field Fink value. The approximate functional forms of the analytic
solution (Eq. (4.6.14), with n taken from Table 4.1) are shown as solid lines.

than simply proposed and inserted as in the 1D FBH calculations of Eqs. (2.5.47) and
(2.5.69). The FBH solution uses the key results presented in Section 2.5.1.1, making
use of Eqs. (2.5.47) and (2.5.69). However, since FBH only considers insulating
boundaries in 1D, it contains no information about the effective upper critical field
for arbitrary mass; the field dependence of the FBH results is therefore calculated
using Eq. (2.5.69), where the effective upper critical field has been determined exactly
from our results in Section 4.5. Finally, the functional approximation shown in Eq.
(4.6.14) was found by fitting to the results of the complete analytic calculations, and
ensures that the solution is physically reasonable over the entire field range.

Figs. 4.10 and 4.11 consider the case where m̃n = 1.0, and we see reasonable
agreement with the results of FBH. However, Figs. 4.12, and 4.13 show some of
the central results of this thesis – namely that for high mass barriers, the surface
barrier plays a central role and the current density close to B∗

c2 is very significantly
enhanced. In this case, our complete analytic solution is markedly different from the
FBH solution – as we will see in Chapter 5, is required for the accurate description
of the critical current in the high–field regime.

We briefly note that the m̃n = 1.0, d̃n = 2.0 case shown in Fig. 4.11 does not
provide as good agreement as seen for m̃n = 10.0, d̃n = 2.0 as seen in Fig. 4.13. We
have attributed this to the corresponding same low–mass discrepancy as seen in Fig.
4.9, where the calculation of the order parameter magnitude in the barrier (using Eq.
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Figure 4.13: Josephson depairing current density as a function of applied magnetic
field, for a range of normal barrier thicknesses with α̃n = −1.0, m̃n = 10.0 and β̃n =
1.0. The complete analytic solutions (solid symbols) are calculated by numerically
solving Eq. (4.5.7) (using Eqs. (4.5.16) and (4.5.17)) using the general forms of an
and as (Eq. (4.6.11)) for the maximal current density. The FBH solution (dashed
line) is calculated from Eqs. (2.5.47) and (2.5.69); the faint horizontal dotted line
shows the zero–field Fink value. The approximate functional forms of the analytic
solution (Eq. (4.6.14), with n taken from Table 4.1) are shown as solid lines.

(4.5.3), with the corresponding boundary conditions found from Eq. (4.4.7) using Eqs.
(4.5.16) and (4.5.17)) systematically overestimates the TDGL data. We suggest that
for low mass barriers, where the junctions are strongly coupled, the order parameter
magnitude is significantly large enough such that the linear nature of the Saint James
approach loses some accuracy. No such problem occurs when the mass is large, so we
do not see this discrepancy in Fig. 4.13.

We note here that the zero–field value from Fink is known to be correct; this is
shown as faint horizontal lines in all of Figs. 4.10 to 4.13. The FBH result is only
formally correct in very narrow systems – our new treatment is required to extend
our description accurately to wide junctions. However, by omitting the non–linear
term, the accuracy of the cylinder functions decreases rapidly in low fields, and can
exceed the Fink zero–field value (particularly for high mass barriers). Therefore, to
find an approximation across the entire field range, in Chapter 5 we will choose to
use the functional form approximation, which allows a smooth interpolation between
the high–field end and the zero–field Fink value.

4.6.3.1 Dependencies of the Complete Analytic Solution

Figs. 4.10 to 4.13 demonstrates the m̃n, α̃n, and d̃n dependencies of the analytic
solution. We can understand this physical behaviour by considering the spatial
variation of the order parameter in the normal region (c.f. Fig. 4.1). If we consider a
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single SN interface, then we can gain some intuition into the dependencies of f̃0 (and
therefore, J̃DJ) on the material parameters. If the barrier is thicker, then the centre
of the barrier is further into the normal region – the order parameter in the centre
of the barrier is therefore smaller. Similarly, if m̃n is larger, or α̃n is larger and more
negative, then the coupling is much weaker and the length scale ξn is shorter (c.f. Eq.
(2.5.49)), and so the order parameter decays faster in the normal region – again, the
order parameter at the centre of the junction is reduced. From Eq. (4.6.11), as fn,0

is reduced, then the maximum critical current that can pass through the barrier is
then smaller, as expected.

Although the dependencies of the solutions on the field and assorted material
parameters are not physically surprising (and clearly observed in Figs. 4.10 to 4.13),
they are not obviously transparent from the complete mathematical solution in Section
4.6.1. We shall explicitly consider the structure of Eq. (4.6.13) (i.e. parabolic cylinder
function used to calculate fn,0) in order to gain a clearer insight into the behaviour
of the analytic solutions.

First, it is clear that as B → B∗
c2, f̃2

0 → 0 in this limit by construction. Therefore,
from Eq. (4.6.11), it is clear that J̃DJ also tends to zero as expected – a smaller order
parameter in the barrier directly correlates to a degraded ability to carry a transport
current. Next, to see the explicit dependence of J̃DJ on the material parameters (m̃n,
α̃n and dn), we must consider a representation of the parabolic cylinder functions in
terms of the Kummer confluent hypergeometric functions of the first kind [155]; these
are another set of special functions, which are defined through a well–defined infinite
series [80, Eq. 13.2.2]. The leading terms of the parabolic cylinder functions are given
as [80, Eq. 12.4.1]

U (a, x) = e−x2

4 2− 1
2 (a+ 1

2 )

 √
π

Γ
(
a

2 + 3
4

) −
√

2π

Γ
(
a

2 + 1
4

)x
+ O

(
x2) . (4.6.15)

The first result for us is that Eq. (4.6.15) is proportional to 2− 1
2 (a+ 1

2 ); as m̃n is
increased or α̃n become larger and more negative, then an increases (c.f. Eq. (4.6.11)).
Therefore, f̃n,0 decreases, and consequently J̃DJ is reduced as required. Finally, we
address the thickness dependence. Physically, we can note that the order parameters
decay exponentially away from each side of the barrier; therefore, as the thickness of
the barrier is increased, f̃n,0 correspondingly decreases – Eq. (4.6.15) provides the
exponential dependence on the normal barrier thickness required, reproducing the
results from de Gennes [77], Fink [74] and Blair [75].

4.7 Generalized Clem: Arbitrary κs and Width

The framework of Clem presented in Section 2.5.2 is useful since it is the only analytic
approach we have that captures the behaviour of fluxons entering the junction.
However, it is flawed in that it makes the assumption of zero coherence length -
the order parameter instantaneously recovers to the bulk Meissner value, and the
field and current flow is assumed to be uniform across the width. This is not accurate
for real polycrystalline materials, where the grain size is typically much larger than
the penetration depth, and therefore the current flows locally near the edges of the
junction. In this section, we generalize Clem’s results to include the finite spatial
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variation of the magnetic vector potential which leads to the correct spatial variation
of screening currents. We also explicitly include the order parameter magnitude and
obtain an explicit solution of the spatial variation of the phase. Furthermore, we
additionally describe identify the variation of the transport current in geometries
with arbitrary κs and w̃s.

4.7.1 General Screening Current Solutions

Following Clem’s work, we shall retain the London approximation, assuming that the
spatial variation of the order parameter is small. We rewrite GL2 (Eq. (2.3.43)) in
the London gauge, by making a gauge transformation such that there is no explicit
phase dependence:

J̃s = − 1
m̃n

∣∣ψ̃∣∣2 Ã. (4.7.1)

We then use Maxwell’s equation (Eq. (2.3.39)) to write the current density in terms
of the vector potential,

J̃s = κ2
s ∇ × ∇ × A = − 1

m̃n

∣∣ψ̃∣∣2 Ã, (4.7.2)

and apply a vector identity to yield a Helmholtz equation,

∇2A =
∣∣ψ̃∣∣2
m̃nκ2

s
Ã. (4.7.3)

Now, the boundary conditions imposed on the current may be equivalently written in
terms of the vector potential. We define a superconducting electrode with a square
geometry of arbitrary width and length, where x ∈ [−L/2, L/2], y ∈ [−W/2,W/2].
We require that no screening current crosses the boundary interfaces and the applied
field at each edge is the specified applied magnetic field. For the x–component, we
have

Ax (x̃, ỹ)|x̃=±L/2 = 0, (4.7.4)
∂Ax (x̃, ỹ)

∂ỹ

∣∣∣∣
ỹ=±W/2

= −B̃app. (4.7.5)

The solution for the vector potential (i.e. the current flow) has to be antisymmetric
in y, and symmetric in x. Therefore, we write a general solution to the Helmholtz
equation as the Fourier series,

Ãx (x̃, ỹ) =
∑
n,m

Cn,m cos (kxx̃) sin
(
k∗
y ỹ
)
. (4.7.6)

At this stage, Cn,m, kx and k∗
y are undefined constants which may be real or complex.

We will see later that they are all required to be real. Applying the first boundary
condition in Eq. (4.7.4) constrains kx:

kx = (2n+ 1)π
L

. (4.7.7)

This ensures the correct perioidicity in the x–direction. Inserting this result back into
the original Helmholtz equations constrains k∗

y in terms of this kx:

(kx)2 +
(
k∗
y

)2 = −
∣∣ψ̃∣∣2
m̃nκ2

s
=⇒ k∗

y =

√
−
∣∣ψ̃∣∣2
m̃nκ2

s
−
(

(2n+ 1)π
L

)2
. (4.7.8)
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It is clear that this is a purely imaginary term. Inserting this back into our general
solution, and using that sin(ix) = i sinh(x) provides:

Ãx (x̃, ỹ) =
∑
n

Cn cos (kxx̃) sinh (ky ỹ) (4.7.9)

where we have defined the variable ky = ik∗
y as:

ky =

√ ∣∣ψ̃∣∣2
m̃nκ2

s
+
(

(2n+ 1)π
L

)2
. (4.7.10)

Finally, we use the last boundary condition in Eq. (4.7.5) to constrain the Fourier
coefficients. This equation provides the condition:

−B̃app =
∑
n

Cn cos (kxx̃) ky cosh
(
ky
W

2

)
. (4.7.11)

We then use typical Fourier methods to extract the coefficients, and shall make use
of the identity∫ L/2

−L/2
cos
(

(2n+ 1)π
L

x̃

)
cos
(

(2m+ 1)π
L

x̃

)
dx = δnm

L

2 . (4.7.12)

Multiplying each side of Eq. (4.7.11) by cos
(

(2m+ 1)π
L

x̃

)
and integrating in the

x–direction yields

−
∫ L/2

−L/2
B̃app cos

(
(2n+ 1)π

L
x̃

)
dx = Cn

L

2 ky cosh
(
ky
W

2

)
. (4.7.13)

The remaining integral can be easily evaluated:

−
∫ L/2

−L/2
B̃app cos

(
(2n+ 1)π

L
x̃

)
dx = B̃app

(−1)n+12L
(2n+ 1)π . (4.7.14)

Finally, Eq. (4.7.13) can be rearranged for the explicit Fourier coefficients. We find
the final result

Cn = 4B̃app(−1)n+1

(2n+ 1)πky cosh
(
ky
W

2

) . (4.7.15)

We now have a general solution for the vector potential which includes κ dependence:

Ãx (x̃, ỹ) =
∑
n

4B̃app(−1)n+1

(2n+ 1)πky cosh
(
ky
W

2

) cos (kxx̃) sinh (ky ỹ) , (4.7.16)

kx = (2n+ 1)π
L

, ky =

√ ∣∣ψ̃∣∣2
m̃nκ2

s
+
(

(2n+ 1)π
L

)2
.

This solution converges rapidly. In the limit of large κ, we recover a linear vector
potential as presented by Clem. The solution for the y–component can be obtained
similarly – the boundary conditions are

Ay (x̃, ỹ)|ỹ=±W/2 = 0, (4.7.17)
∂Ay (x̃, ỹ)

∂x̃

∣∣∣∣
x̃=±L/2

= B̃app, (4.7.18)

Ãy (x̃, ỹ) =
∑
n

4B̃app(−1)n

(2n+ 1)πkx cosh
(
kx
L

2

) cos (ky ỹ) sinh (kxx̃) , (4.7.19)

ky = (2n+ 1)π
W

, kx =

√ ∣∣ψ̃∣∣2
m̃nκ2

s
+
(

(2n+ 1)π
W

)2
.
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Figure 4.14: Screening current spatial variation from Eqs. (4.7.9) and (4.7.15), at
B̃app = 0.5Bc2, with an equiaxed electrode of dimensions 128×128ξs. Arrows indicate
the direction and magnitude of the screening currents at each point. The magnitude
of the order parameter is taken to be spatially constant, with a value of 1 − B̃app.

This solution can also be obtained by symmetry (exchanging x̃ ↔ ỹ, with an
additional minus sign originating from the different boundary condition in Eq. (4.7.18)
and L ↔ W ). An example of the vector potential magnitude and the variation of the
screening currents is shown in Fig. 4.14, demonstrating the exponential dependence
of the screening currents on the penetration depth.

By construction, the field will be set at the applied field at the edge, and decay
exponentially in the bulk. In practice, as seen from Eq. (2.3.34), the field in the bulk
should be the average Abrikosov field. For materials where κs is large, the difference
between B̃app and B̃Abr is relatively small; the small change in the field only requires
a small screening current magnitude. If we set the field at the edge to be B̃app −B̃Abr,
and add a uniform field of B̃Abr everywhere, then we get the boundary conditions that
we are searching for – the field is the applied field at the edge; the field in the bulk is
the Abrikosov field; and both the spatial variation and the magnitude of the screening
currents and the field are now correctly determined according to GL2 and Maxwell’s
equations. Moreover, in the limit where ws ≃ λs (i.e. in the narrow limit where the
junction is not sufficiently wide), the decay length may be long enough to prevent
decay to zero - therefore, our bulk value is higher than the Abrikosov prediction, as
expected.

4.7.2 General Transport Current Solutions

The transport current flows only in the x–direction, rather than the 2D screening
currents – our Helmholtz equation is then significantly easier to solve since it is now
only 1–dimensional. We are only concerned with the calculation of J̃s:x (ỹ). The
degree to which this flow is laminar in the y–direction is dictated by the width of
the system and the penetration depth. In the presence of an applied current, our
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boundary conditions are written as an asymmetric field gradient across the junction:

B̃(ỹ = ±w̃/2) = ± w̃

2
⟨J̃app⟩y
κ2

s
. (4.7.20)

Making use of Maxwell’s equation and vector identities, Eq. (4.7.3) can be rewritten
to read

∇̃2B̃ =
∣∣ψ̃∣∣2
m̃nκ2

s
B̃ (4.7.21)

This has a solution as a sum of exponentials, with the particular solution reading

B̃(ỹ) = w̃⟨J̃app⟩y
2κ2

s

sinh
(

ỹ
∣∣ψ̃∣∣

√
m̃nκs

)

sinh
( ∣∣ψ̃∣∣ w̃

2
√
m̃nκs

) . (4.7.22)

We can use Maxwell’s equation (Eq. (2.3.39)) to get the current, yielding the spatial
variation of the transport current:

J̃sx(ỹ) =
w̃⟨J̃app⟩y

∣∣ψ̃∣∣
2
√
m̃nκs

cosh
(

ỹ
∣∣ψ̃∣∣

√
m̃nκs

)

sinh
( ∣∣ψ̃∣∣ w̃

2
√
m̃nκs

) . (4.7.23)

4.8 Extending Critical Current Density Calculations from
1D to 2D

It is well–known that decreasing the grain size in a superconducting system increases
Jc [156, 157, 158]. The traditional picture is due to pinning; the smaller grains
allow more grain boundaries to be present, and therefore the fluxons are pinned more
strongly. However, in our context of junctions in wide systems, most of the current
flows along the edges of the grains. Therefore, decreasing the grain size only brings
the edges together, which doesn’t significantly change the amount of current that can
flow, but does increases the critical current density. Therefore, understanding how
the current flows (and therefore, the order parameter) near the grain boundaries is
pivotal in the description of Jc; an understanding of the spatial variation of the order
parameter near an interface becomes invaluable.

The framework so far has focused primarily on the calculation of the upper critical
field for arbitrary material properties. Although useful, the primary technological
limitation is the critical current density. In Section 4.6, we developed a framework for
the calculation of the Josephson depairing current, which is inherently a 1D concept.
Here, we shall extend these new results to provide an analytic description of the
critical current density, Jc, within a wide junction; the treatment varies according
to the properties of the normal barrier or the coating. We shall treat three cases of
interest: i) m̃n ≤ 1.0, m̃c ≥ 1.0, ii) m̃n ≤ 1.0, m̃c ≤ 1.0, and iii) m̃n > 1.0, m̃c ≥ 1.0.
The remaining case which we have not considered is when m̃n > 1.0, m̃c ≤ 1.0 – in
this case, the current flow will shunt around the resistive normal barrier, which is not
an interesting case for real systems.

Fig. 4.15 shows a flowchart of the procedure we will follow to determine the critical
current in 2D, for a SNS junction with arbitrary material properties. Our calculation
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Figure 4.15: Flowchart for calculating the analytic prediction of the critical current
density in 2D. The treatment is different depending on the mass of the normal
barrier, m̃n, and the mass of the coating, m̃c. Here, Cs is the constant prefactor
(Section 4.3), and

∣∣ψ̃∣∣ is the normalised order parameter magnitude.
∣∣ψ̃∣∣

d̃/2 denotes
the order parameter magnitude at the normal barrier interface.

∣∣ψ̃∣∣
l̃/2 denotes the

order parameter magnitude in the bulk of the electrode;
∣∣ψ̃∣∣

l̃/2 (w̃s/2) denotes this
magnitude at normal coating interface (located at ỹ = w̃s/2). Calculations make use
of the FBH, Saint James (SJ) and FBHZM formalisms. The Josephson depairing
current is then used in the Josephson relation (Section 2.5.2), as presented by Clem
[72].

of the critical current density, J̃c, requires the use of the Josephson relation (c.f.
Eq. (2.5.66)) – the physical geometry of the system (ws, ls, dn) in accounted for
in the explicit result for the gauge invariant phase difference (Eq. (2.5.64)), whilst
the material properties are contained in J̃DJ. Specifically, the Josephson relation
requires the variation of J̃DJ along the width of the normal barrier, J̃DJ (ỹ). Our new
calculation of J̃DJ presented in Section 4.6 is for a single 1D narrow strip – we shall
use this as our foundation to understand how we can obtain J̃DJ (ỹ). As shown in
Section 4.6, our calculations of J̃DJ rely on an understanding of the order parameter
at the centre of the normal barrier,

∣∣ψ̃∣∣0, which we can obtain trivially by knowing
the variation of the order parameter along the interface,

∣∣ψ̃∣∣
d̃n/2 (ỹ). However, the

procedure of calculating the spatial variation of the interfacial order parameter is
dependent on the material properties – we shall outline the stages below.

We shall first consider the case where m̃n ≤ 1. In this instance, the normal barrier
itself does not have a sheath – even though there are large counter-flowing currents
flowing across the entire width of the junction, the majority of the width of the
barrier does not carry a transport current. The distribution of current flow is set by
the magnitude of the order parameter across the width according to GL2 – regions of
low order parameter can only carry very little current. Therefore, the critical current
is dominated by the current flowing near the edges of the system, which is dictated by
the spatial variation of the order parameter across the width. We first calculate the
order parameter magnitude at the interface in the bulk electrode,

∣∣ψ̃∣∣2
l̃/2 (w̃s/2) – as in

Section 4.3, the procedure for determining this is dependent on the presence/absence
of an enhanced sheath, and therefore depends on the value of m̃c – in the case m̃c ≤ 1,
the FBH framework is sufficient (Eq. (2.5.48)).

However, if m̃c > 1, then a sheath emerges near the coating, and therefore the
framework presented in Section 4.3 is adopted; the value of the order parameter
magnitude at the coating interface is calculated using the double–linear approach. As
discussed in Section 4.3, the sheath is correctly described by the Saint James formalism
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alone. The knowledge of this interfacial order parameter allows us to calculate the full
spatial variation of the order parameter in the bulk electrode using the Saint James
formalism using the composite wavefunction in Eq. (4.3.24) – this yields an analytic
calculation of

∣∣ψ̃∣∣2
l̃/2 (ỹ) for a coating with arbitrary mass. We shall make then use of

the FBH machinery – for a given field value, at each point in the bulk,
∣∣ψ̃∣∣2

l̃/2, there is

a unique corresponding magnitude at the interface,
∣∣ψ̃∣∣2

d̃n/2. Therefore, we can obtain∣∣ψ̃∣∣2
d̃n/2 (ỹ) as required – knowledge of the interfacial order parameter allows us to use

the results in Section 4.6 at each point along the width of the junction, and therefore
obtain J̃DJ (ỹ) as required.

Conversely, if the normal barrier is resistive (m̃n > 1), then the physics is very
different. Since m̃n > 1, a sheath emerges along the junction above Bc2; the
entire width of the barrier is able to carry current, and the entire core of the
bulk superconductor is normal apart from the sheath near the edges of the system.
Therefore, we cannot adopt the same philosophy that the behaviour in the bulk
dictates the behaviour across the barrier. Instead, we can calculate the value of
the order parameter magnitude at the barrier interface (

∣∣ψ̃∣∣
d̃n/2) using the standard

procedure as described in Section 4.3. However, since the sheath is uniform, this
interfacial order parameter,

∣∣ψ̃∣∣2
d̃n/2 (ỹ), is also uniform along the width. We can then

use this within the procedure in Section 4.6 to obtain J̃DJ (ỹ) as required, which is
therefore also uniform along the entire barrier width – each point carries the same
amount of current. We have neglected the small corner effects here, where the order
parameter near the corner is enhanced due to the proximity to the coating, which may
have its own sheath, depending on the particular value of m̃c. However, above B̃∗

c2,
the entire system is normal other than these corners – there is no additional ability
to carry current past B̃∗

c2.

Finally, as presented in Fig. 4.16, we can then perform additional iterations. We
will first calculate a initial prediction of the critical transport current, using an order
parameter spatial variation calculated in zero transport current. We then obtain the
spatial variation of both the transport current and the screening current following
our results in Section 4.7, and understand the local current flowing at each point.
Therefore, we can correspondingly suppress the order parameter as required using
the FBH framework, since it provides a clear 1–to–1 correspondence between the
order parameter spatial variation and a particular value of applied field and current.
We can then use this suppressed order parameter to calculate a new value of the
transport current, and iterate through this loop until convergence. In practice, the
changes in the order parameter are small enough, so that the zero–transport current
calculation is typically sufficient.

4.9 Conclusions

In this section, we have demonstrated how we can extend the formalism of Saint James
to describe the behaviour near surfaces of arbitrary mass and α̃n. We have shown how
one can extract the effective upper critical field for S/N systems and identified the
relevant dependencies on material parameters and electrode thickness. We have also
related these results to existing known limits in the literature. This work serves as
a generalisation of the previous results, which only considered insulating boundaries.
We have also presented our new analytic solutions for the spatial variation of the order

85



4.9. Conclusions

Figure 4.16: Flowchart for the iteration of the critical current density in the presence
of a transport current. The zero transport current calculation is the output of Fig.
4.8. Here, F̃l̃/2 (ỹ) denotes the spatial variation of the order parameter magnitude in
the bulk of the electrode. Similarly, J̃scr (ỹ) and J̃tr (ỹ) denote the spatial variation
of the screening and transport current densities respectively, calculated from the
generalization of Clem to arbitrary width and κs (c.f Section 4.7).

parameter near boundaries of arbitrary mass, and the approaches we have adopted
to determine the prefactor. We have demonstrated how the Abrikosov formalism can
be used to derive the prefactor exactly in the high field regime, and have proposed an
empirical double–linear approximation to extend this prefactor below Bc2 for cases
where a surface barrier is present (m̃c > 1.0). We have presented TDGL evidence for
how the FBH interfacial order parameter may be used to describe the field dependence
in systems where m̃c < 1.0 and no surface barrier exists.

We have also applied this framework in finite systems. In particular, we considered
an SNS geometry, which is particularly relevant for the description of polycrystalline
materials. We have identified the upper critical field in this geometry as a function of
material parameters and normal barrier thickness, and demonstrated how they again
reduce to known limiting values. Most interestingly for our application, we have also
described a framework to extract the maximum current density that can pass through
the barrier. We have demonstrated the dependence of this solution on the material
parameters and system geometry, and explicitly identified how each parameter affects
the maximum transport current through the order parameter at the centre of the
junction.

We have presented an extension of the screening currents of Clem to arbitrary κ and
width, and demonstrated the resulting spatial variations. We also present a use for
this in ensuring that the Abrikosov field can be obtained in the bulk, in that we
guarantee that the current flow partially screens out the applied field at the edge.
We also provided an analytic form for the spatial variation of the transport currents
present in the system.

Finally, we have presented our procedure for the determination of the critical current.
The generalised theory presented in this chapter is formally in 1D – it is essential for
obtaining more useful technological parameters, such as the critical current density in
2D for arbitrary systems. The flowchart presented here will form the backbone of our
approach for obtaining analytic approximations of the critical current density over
the entire field range for arbitrary Josephson junction systems that can be compared
with our TDGL calculations.
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Chapter 5

Critical Current Densities for Wide
Junctions with Arbitrary Material

Properties

5.1 Introduction

Although the effective upper critical field is an interesting and useful parameter, the
main quantity of interest for future applications is the critical current density, J̃c. In
particular, the most useful technological regime is certainly in the high–field regime;
we are interested in capturing the behaviour of J̃c

(
B̃app

)
accurately across this entire

width. In the last chapter, we developed a framework that converts our understanding
of the spatial variation of the order parameter near interfaces of arbitrary mass, the
corresponding impact on B∗

c2, and the Josephson depairing current density that can
flow through a barrier with a given set of material properties.

In this chapter, we shall apply the prescription from the flowchart presented in
Section 4.8 to provide analytical predictions of the critical current density in a
variety of geometries. We will compare TDGL simulations for each different geometry
described, and therefore validate the analytic prescription for J̃c

(
B̃app

)
. To the best

of our knowledge, this is the first framework for providing an analytic prediction
for the critical current density for systems with arbitrary width and geometry.
Most importantly relevant for technological material, this is the first framework
that provides an accurate description for systems where the grain boundary is more
resistive than the grain. In fact, we will see that our framework is essential in this
region of material parameter phase space – no other approach successfully captures
the complexity of the physics near the surface barrier.

We shall first present some predictions of J̃c
(
B̃app

)
generated from the three different

analytic approaches of calculating JDJ – the original FBH, our new Saint–James
formalism, and the functional form approximation. Next, we shall apply the flowchart
to the geometries with a normal barrier mass m̃n = 1.0 and with insulating coatings
(m̃c → ∞). In this particular geometry, a sheath exists only along the the horizontal
edges of the coating, but not near the barrier. We shall observe the effect of the sheath
emerging in these geometries, and compare our predictions to the equivalent FBH
calculation. Crucially, we perform these comparisons for a range of superconducting
widths, validating our approach to describe both narrow and wide Josephson junctions
with arbitrary materials. Our next geometry then describes polycrystalline materials
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more closely. We consider a junction geometry with both normal coatings and barriers
(m̃n = m̃c = 1.0) – in this case, no surface sheath exists. Again, we perform
simulations with a range of widths, and compare our calculation to FBH. Most
importantly, we shall then consider our closest analogue for a real polycrystalline
material, and study geometries where both the coating mass and the normal barrier
mass are resistive (m̃n = m̃c = 10.0), and a sheath is present along all edges of
the electrodes. We shall see how our new formalism is essential for capturing the
behaviour of this system accurately. Finally, we provide some preliminary studies of
junction array systems, which provides insight into how one can extend our study of a
single junction system to describe a full polycrystalline material for arbitrary widths
and material parameters.

5.2 Preliminary Data

Fig. 5.1 demonstrates the output of the flowchart shown in Fig. 4.15 – we have shown
the specific case of a coated high–mass Josephson junction where m̃n = m̃c = 10.0. We
have presented the calculations with the three different calculations of J̃DJ presented
in this thesis. The green dashed–dotted analytic line in Fig. 5.1 (the new Saint–James
framework), finds an exact numerical solution of Eq. (4.5.7) (using Eqs. (4.5.16) and
(4.5.17)) using the general forms of an and as (Eq. (4.6.11)), which has been cut off
at the point which it becomes larger than the Fink value. The red solid line in Fig.
5.1 is the empirical functional form that provides a good agreement over the full field
range (Eq. (4.6.14)). Finally, the blue dashed line is the equivalent calculation of J̃DJ

from FBH (Eq. (2.5.47)). Of course, all three approaches then follow Clem’s work
[72] to calculate Jc from JDJ.

The Clem framework (as discussed in Section 2.5.2) contains oscillations, capturing
the movement of fluxons through the junction. In a TDGL system, fluxons may
also move into the bulk of the electrode, causing an additional phase shift across the
junction and therefore leading to a sharp jump in the field dependence of the critical
current density. This can be observed in Fig. 5.1 (top), where we see close agreement
between the oscillations and the TDGL data in low field, until approximately Bapp =
0.15Bc2, where the field is now sufficiently high that a fluxon has entered the bulk
of the electrode. However, as seen in Fig. 5.1, even though fluxons can cause a
phase shift, the magnitude of the field dependence remains broadly unchanged. This
is particularly evident in higher fields and in wider systems (c.f. Sections 5.3, 5.4
and 5.5), where fluxons can enter the system much more easily, and these sharp
jumps are much more frequent. Therefore, comparing the envelope of the analytic
prediction to the TDGL data is perhaps much more useful, since the agreement of
the specific positions of the maxima or minima between TDGL and analytic solutions
are no longer important. Moreover, as we will discuss in Section 5.6, in a real 3D
polycrystalline material, it is likely that any oscillations of a single SNS junction
will be ‘washed out’, and so the remaining envelope is the most useful technological
comparison.

Surprisingly, even though our analytic calculation has a discontinuous gradient at
some field value, there is no corresponding sharp discontinuity in the critical current
density trace, J̃c

(
B̃app

)
. However, the accuracy is clearly quite poor near 0.7B∗

c2;
since the exact solution does tend to exceed the FBH solution, the solution is
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Figure 5.1: Critical current density as a function of applied magnetic field for a SNS
junction, where w̃s = 16.0 and m̃n = m̃c = 10.0. In all cases, d̃n = 0.5, α̃n = −1.0,
β̃n = 1.0 and κs = 8.0. The coating thickness was fixed to be w̃c = 3.0. TDGL
simulations are shown as solid markers, whilst various lines demonstrate different
approaches of generating an analytic solution from the flowchart presented in Fig.
4.15. The solid and dashed–dotted lines use the new calculations of J̃DJ shown in
Chapter 4 – the solid lines are using the empirical functional form (Eq. (4.6.14), with
n and B∗

c2 left as free parameters, fitted to be n = 0.90 and B∗
c2 = 1.33), whilst the

dashed–dotted lines are using the exact numerical solution (Eq. (4.5.7), using Eqs.
(4.5.16) and (4.5.17)), cut off to remain physical (below the zero–field Fink value).
The dashed lines are the equivalent envelopes using J̃DJ calculated from FBH shown
in Eq. (2.5.47). The top figure presents the full analytic envelope, with the oscillations
emerging from the Clem solution (c.f. Section (2.5.2)). The bottom figure presents the
envelope to these oscillations, allowing a clearer comparison of the analytic prediction
and the TDGL simulation. Vertical lines showing Bc2 and B∗

c2 are shown.

systematically higher than the TDGL simulation. Conversely, we can see that our
empirical functional form actually provides excellent agreement across the entire field
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Figure 5.2: Critical current density as a function of applied magnetic field for a
SNS junction, where w̃s = 16.0 and m̃n = m̃c = 10.0. In all cases, d̃n = 0.5,
α̃n = −1.0, β̃n = 1.0 and κs = 8.0. The coating thickness was fixed to be w̃c =
3.0. TDGL simulations are shown as solid markers, whilst various lines demonstrate
different approaches of generating an analytic solution from the flowchart presented
in Fig. 4.15. The solid and dashed–dotted lines use the empirical functional form (Eq.
(4.6.14) – the solid line left n and B∗

c2 as free parameters, (fitted to be n = 0.90 and
B∗

c2 = 1.33), whilst the dashed–dotted line took the original calculations from Chapter
4 (with n = 0.60 from Table 4.1 and B∗

c2 = 1.28 (c.f. Fig. 4.8)). The dashed lines are
the equivalent envelopes using J̃DJ calculated from FBH shown in Eq. (2.5.47). The
top figure presents the full analytic envelope, with the oscillations emerging from the
Clem solution (c.f. Section (2.5.2)). The bottom figure presents the envelope to these
oscillations, allowing a clearer comparison of the analytic prediction and the TDGL
simulation. Vertical lines showing Bc2 and B∗

c2 are shown.

range. This functional form has better agreement with the TDGL calculation than
the exact numerical calculation – this essentially has provided a good first order
correction to the omission of the non–linear term. Moreover, it also does not require
any additional cut off to remain physical, and by construction, has the correct limits
in both zero field and in extremely high fields near B∗

c2. Of course, it has the drawback
that we do not have full analytic understanding of the material parameter dependence
of the power law exponent n. However, in the remaining sections, we will use this
empirical functional form to compare with the TDGL data. Moreover, the calculation
of the effective upper critical field remains exact, rather than an external parameter
that is included in the FBH solution. As alluded to in Section 4.6, we can see that
the solution using J̃DJ from FBH significantly underestimate Jc in Fig. 5.1.

We briefly discuss numerical artefacts in the TDGL data shown in Fig. 5.1; in
particular, the oscillations in J̃c persist above B∗

c2. One possible explanation could be
that the grid step used in these simulations (hx = 0.1ξs) is too coarse – however, it is
too computationally expensive to perform these simulations for the widths of interest
unless one uses a more advanced method, such as a multigrid approach [118]. Another
cause may be that the Saint–James formalism we have developed considers systems
which are semi–infinite – however, the TDGL systems considered in the simulations
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are finite. Notably, the construction of the coating geometry leads to additional
enhancement near the corners. Physically, these corners should not provide any
current since the bulk of the system is zero. However, although the order parameter
in the TDGL simulation is small, it is finite, and therefore likely non–zero in the bulk
of the system. Therefore, the system can indeed carry some transport current, which
are so small and close to the noise floor of the TDGL system. Therefore, we regard
these oscillations beyond B∗

c2 as non–physical. As can be seen in Fig. 5.2, there is
only a small difference in the resulting envelopes between the fitted values for B∗

c2

and n compared to the results seen previously in Chapter 4.

5.3 Insulating Coatings: m̃n = 1, m̃c = ∞

We first consider the geometry which has been mostly commonly considered within
existing analytic theory; the case of an SNS junction with insulating coatings. For
this case, we consider the barrier to have the same mass as the superconductor; we
set m̃n = 1.0, but allow the barrier to be non–superconducting and set α̃n = −1.0.
As we saw in Figs. 4.10 and 4.11, there was not a significant difference between
the FBH calculation and our new calculation of J̃DJ, and so we do not expect a
significant difference between the resulting behaviour in the critical current density
trace, J̃c

(
B̃app

)
– we attributed this to the lack of the sheath near the barrier.

However, as discussed in Section 4.6.2, our method is implicitly rigorous since it
does not require any input of the effective upper critical field as a free parameter, and
the field dependence (proportional to 1 − B̃app/B̃

∗
c2) is rigorously derived through the

solution.

In Fig. 5.3, we provide the 2D spatial variation of the order parameter magnitude
and magnetic field distribution with B̃app = 0.8 and zero transport current. With
the insulating boundary conditions, we can clearly see the sheath region near the top
and bottom edge, where the order parameter is significantly higher near the interface
than in the bulk. We can see the obvious hexagonal vortex lattice structure deep in
the bulk, and also observe disruptions to this structure near any surface barrier (such
as the normal barrier or the insulating coating edge). We note that the magnetic
field is actually lower than the applied field in the sheath region, associated with
the counter rotating currents flowing within the sheath region that screen out the
applied field. We also note that the density of the fluxons is significantly higher in
the normal barrier, due to the lower energy barrier for a fluxon to nucleate in the
normal region. We also note that despite the barrier thickness only being d̃n = 0.5,
the fluxons are able to sit within the the barrier and extend far beyond this chemical
thickness, similarly to that seen in Fig. 3.2.

Fig. 5.4 provides the spatial variation in the y–direction of the order parameter
magnitude and the supercurrent density deep in the bulk of the electrode (at x̃ = l̃s/2),
at three different fields. As we saw in Fig. 5.3, if the field is sufficiently high, then
many fluxons can exist in the electrode itself. To avoid taking a slice which is overly
susceptible to the exact positions of the fluxons, we instead consider take an average
over a fluxon spacing, a0 – we consider all slices from x̃ ∈

[
l̃s/2 − ã0/2, l̃s/2 + ã0/2

]
,

and then take an average at each y–coordinate. We consider three characteristic field
regimes; ‘high–field’ (between B̃c2 and B̃∗

c2), ‘intermediate–field’ (between B̃c1 and
B̃c2), and low field (zero applied field). We shall discuss each in turn. The high–field
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Figure 5.3: A snapshot of the normalized order parameter magnitude (top) and
magnetic field distribution (bottom) for an SNS junction with insulating coatings,
where the applied field B̃app = 0.8 and zero applied transport current. The TDGL
simulation system has w̃s = 32.0, l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0
and κs = 8.0.

case is well–described by the Saint James formalism presented in Section 4.2 – the
order parameter exists only in the insulating sheath, dropping to zero in the bulk of
the electrode, and the screening currents are counter rotating in the sheath. We note
that when a transport current flows, the order parameter is slightly asymmetric, due to
the applied current producing an antisymmetric self-field in the system. However, in
practice, these effects are marginal, particularly in high fields. The intermediate–field
case is perhaps the most complex, since we not only have to account for the sheath
near the edge, but also the fact that the bulk is no longer zero below B̃c2. In this case,
following the flowchart in Fig. 4.15, we have used the composite wavefunction in Eq.
(4.3.24), accounting for contribution from the both the Saint James framework which
captures the enhancement near the edge, and the zero–mass FBH contribtion which
captures the behaviour more accurately in the bulk. We can see that the TDGL
data now contains oscillations due to the fluxons in the system. In particular, we
can see that although the local currents near the fluxons are large, they are equal
and opposite on each side of a given fluxon, and so their average contribution is close
to zero; therefore, the counter rotating currents from the Saint James framework
remains sufficient. Finally, we conclude with the spatial variation in zero–field: Since
the Saint James formalism contains terms proportional to 1/B̃app, the solution is
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Figure 5.4: Spatial variation of the supercurrent density (top) and normalized order
parameter magnitude (bottom) at three different applied magnetic fields and Japp =
0.95Jc, for an SNS junction with insulating coatings. The spatial variation is shown in
the bulk of the electrode (x̃ = l̃s/2) – the faint dots are slices within a fluxon spacing
of x̃ = l̃s/2, and the solid dots are the average over all at a given y–coordinate. The
faint blue line is the Abrikosov prediction for the order parameter in the bulk (Eq.
(2.3.33)). The solid lines denote analytic predictions for the screening current and the
order parameter magnitude (Eq. (2.4.26) and Eq. (4.3.24)). The TDGL simulation
system has w̃s = 16.0, l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0 and
κs = 8.0.

formally infinite in exactly zero–field - in this case, we use the FBH formalism alone.
To first order, in zero field and zero transport current, there are no screening currents
and the order parameter is completely uniform across the width of the system (c.f.
Eq. (2.3.6)). However, with no applied field, the maximum current that can be passed
through the system is largest, and so the suppression of the order parameter due to the
transport current is significant. In the wide systems, the transport current follows a
London–like distribution, as presented in Section 4.7, and so the current is larger near
the edge. In this system, where w̃s = 16.0 and κs = 8.0, we can see that the current
density is still at a minima in the centre of the system, but is non–zero. Therefore,
the order parameter is suppressed along the entire width; but the magnitude of the
suppression is proportional to the local current flowing. In extremely wide systems,
such as w̃s = 128.0 and κs = 8.0, the current is very small far away from the surfaces,
and so the order parameter in the bulk is essentially the Meissner value.

Finally, we present the results of the analytic prediction in Section 4.8 in Fig. 5.5.
We provide the envelopes from both our new J̃DJ calculation, and the equivalent
FBH calculation. As we already discussed, J̃DJ is not significantly different between
the two, so the envelopes exhibit broadly similar behaviour. We can see that the
agreement between the TDGL and our new analytic prediction is very good at high
field; the FBH is quite reasonable as well. We have provided a comparison over a wide
range of widths; we can see that our methodology presented in Fig. 4.15 provides a
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Figure 5.5: Critical current density as a function of applied magnetic field for a range
of widths for a SNS junction with insulating coatings. In all cases, m̃n = 1.0, d̃n = 0.5,
α̃n = −1.0, β̃n = 1.0 and κs = 8.0. TDGL simulations are shown as solid markers.
The solid lines are the envelopes generated from the flowchart presented in Fig. 4.15,
using the new calculations of J̃DJ shown in Chapter 4 (Eq. (4.6.14) with Bc2 = 1.695
and n = 1.77). Here, n has been fitted to optimise agreement with the TDGL data.
The dashed lines are the equivalent envelopes using J̃DJ calculated from FBH shown
in Eq. (2.5.47).

good description of the field dependence of the critical current density. Even though
the Clem solution has little notion of the effective upper critical field (because it
primarily addresses the phase of the order parameter rather than its magnitude), the
field dependence of J̃DJ does, and so the solution contains the correct limits in both
the high and low field extreme cases. Since m̃n = 1, the general approach of treating
the full 2D system as a sum of local slices performs well – in this case, the behaviour
in the bulk electrode directly dictates the behaviour at the interface here. In this
way, the total current density for any system where m̃n ≤ 1 (with no sheath along
the normal barrier) can be well understood as a collection of local 1D slices.

5.4 Normal Coatings: m̃n = m̃c = 1

We now consider a geometry which brings us closer to the description of a real
polycrystal – the case of an SNS junction where the coatings and the normal barrier
have the same material properties. We will consider the barrier and the coating to
have the same mass as the superconductor; we set m̃n = m̃c = 1.0 and α̃n = −1.0. As
in Section 5.3, we are considering m̃n = 1.0, and so again we do not have a significant
difference between the FBH calculation and our new calculation of J̃DJ.

In Fig. 5.6, we again provide the 2D spatial variation of the order parameter
magnitude and magnetic field distribution with B̃app = 0.5 and zero transport current.
We can again see similar traits to the case of insulating coatings – the bulk has a clear
vortex lattice structure, and the fluxons can again exceed the chemical thickness of
the normal barrier, since the barrier is sufficiently strongly coupled. However, the
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Figure 5.6: A snapshot of the normalized order parameter magnitude (top) and
magnetic field distribution (bottom) for an SNS junction with normal coatings, where
the applied field B̃app = 0.5 and zero applied transport current. The coating thickness
is set at w̃c = 3.0, and m̃c = 1.0. The TDGL simulation system has w̃s = 16.0,
l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0 and κs = 8.0.

key difference comes from the behaviour near the normal interface in accordance with
the familiar boundary condition – instead of the order parameter being constant (and
indeed, maximal) near the edge, we instead have a recovery of the order parameter
away from the normal interface, over the length scale of the coherence length. This
slight difference plays a crucial role; instead of the maximal current flowing near the
edges, which decays as we move into the bulk, the current flow is minimal near the edge
where the order parameter is small. As the order parameter recovers, the current flow
increases, until a peak occurs, where the order parameter has recovered to the bulk
value. Specifically, if we are sufficiently far away from the interface such that there is
no coupling effects to the normal barrier, the system now behaves just as it did in the
bulk of Fig. 5.3 – the screening currents now decay exponentially as before. Therefore,
where the order parameter is smaller, the current carrying capacity is reduced. This
can be related quite simply to the capacity of the insulating system, by accounting
for the average of the order parameter recovery. However, with this understanding of
the knowledge, we can proceed to understand the effect of this normal interface on
the critical current density now.

Fig. 5.7 provides the spatial variation in the y–direction of the order parameter
magnitude and the supercurrent density deep in the bulk of the electrode (at x̃ = l̃s/2),
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Figure 5.7: Spatial variation of the supercurrent density (top) and normalized order
parameter magnitude (bottom) at two distinct applied magnetic fields and Japp =
0.95Jc, for an SNS junction with normal coatings (m̃c = 1). The spatial variation is
shown in the bulk of the electrode (x̃ = l̃s/2) – the faint dots are slices within a fluxon
spacing of x̃ = l̃s/2, and the solid dots are the average over all at a given y–coordinate.
The faint blue line is the Abrikosov prediction for the order parameter in the bulk
(Eq. (2.3.33)). The solid lines denote analytic predictions for the screening current
and the order parameter magnitude (Eq. (2.4.26) and Eq. (4.3.24)). The TDGL
simulation system has w̃s = 16.0, l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0
and κs = 8.0.

at zero field and at B̃app = 0.5. Again, we see good agreement between the TDGL and
the analytic distributions, where we use the composite wavefunction in Eq. (4.3.24).
It is somewhat surprising that the FBH wavefunction alone does not provide a good
approximation of the distribution in this case, since there is no sheath to accurately
describe. However, this has provided poor agreement in high field, particularly close
to the interface. We attribute this to the 1D nature of the FBH solution, which does
not capture the non–uniformity of the screening current flowing near the interface –
this is naturally incorporated in the Saint James formalism. Again, since the Saint
James formalism is formally undefined in exactly zero–field, we use the FBH solution
alone, which can capture the recovery away from the interface. As discussed above,
we can see the corresponding spatial variation of the supercurrent density – we briefly
note here than in the bulk, far away from the interface, both the order parameter and
the supercurrent density are the same as in Fig. 5.4. This agreement with TDGL data
is a key motivator in the formulation of the composite wavefunction in Eq. (4.3.24).

Finally, we present the critical current density as a function of field in Fig. 5.8. We
can see that particularly for the wider widths, the FBH solution is too low in high
fields, but too high in low fields. Although the differences in J̃DJ are slight, we can
see that there is an improved agreement with the TDGL data from our new analytic
calculation. In contrast to the data with insulating coatings, where the critical current
dropped to zero very sharply near the effective upper critical field, the decrease in the
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Figure 5.8: Critical current density as a function of applied magnetic field for a range
of widths for a SNS junction, where m̃n = m̃c = 1.0. In all cases, d̃n = 0.5 and
α̃n = −1.0, β̃n = 1.0 and κs = 8.0. The coating thickness was fixed to be w̃c = 3.0.
TDGL simulations are shown as solid markers. The solid lines are the envelopes
generated from the flowchart presented in Fig. 4.15, using the new calculations of
J̃DJ shown in Chapter 4 (Eq. (4.6.14), with n = 2.2 (taken from Table 4.1) and
B∗

c2 = 1.0 (taken from Fig. 4.8). The dashed lines are the equivalent envelopes using
J̃DJ calculated from FBH shown in Eq. (2.5.47).

critical current near the upper critical field is much more gradual. As such, the TDGL
data is much closer to the computational floor (set by the electric field criterion) –
particularly for wider systems, where the critical current density is lower, we note that
our simulation data becomes quite noisy, and the quality (and therefore, accuracy) of
the data is reduced. Regardless, we can see good agreement overall; in particular, our
new J̃DJ calculation appears to provide marginally better agreement that the FBH
formalism – we can see that the FBH is too low in high fields, and too high in low
fields. In particular, our solution provides a slightly better agreement with the TDGL
data close to Bc2, particularly for the wider systems. Again, we observe the general
principle that since m̃n ≤ 1, the behaviour in the bulk directly affects the behaviour
at the interface, and the system can be treated as a sum of local 1D slices. However,
the most extreme benefits of our new solution is reaped for systems where both the
barrier and the coatings have high mass – fortunately, this region of phase space is
most relevant for real materials. We discuss these geometries in the next section.

5.5 Polycrystalline Analogues: m̃n = m̃c > 1

Finally, we now consider the geometry which is closest to a real polycrystalline system
and that incorporates the main contributions of this thesis – the case of an SNS
junction where the coatings and the normal barrier have the same material properties,
but the boundaries have a higher mass than the superconductor. We will set m̃n =
m̃c = 10.0 and α̃n = −1.0. As we saw in Section 5.3, we now have a significant
difference between the FBH calculation and our new calculation of J̃DJ, due to the
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Figure 5.9: A snapshot of the normalized order parameter magnitude for an SNS
junction with normal coatings, where the applied field is B̃app = 0.5 (top) and B̃app =
1.1 (bottom). In both cases, there is zero applied transport current. The coating
thickness is set at w̃c = 3.0, and m̃c = 10.0. The TDGL simulation system has
w̃s = 16.0, l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 10.0, β̃n = 1.0 and κs = 8.0.

formal capturing of the increased effective upper critical field.

In Fig. 5.9, we provide the 2D spatial variation of the order parameter magnitude with
B̃app = 0.5 and B̃app = 1.1 – in both cases, there is no transport current applied. This
figure exemplifies the differences between the previous two sections, where m̃n ≤ 1.
Since the normal regions have high masses, the normal coherence length is smaller,
and so the fluxons are significantly smaller (Eq. (2.5.49)). This leads to weaker
coupling between the two superconducting electrodes across the normal region, even
though the barrier is very thin – the fluxons in this case are distorted and ‘squashed’
along the junction, bearing some parallels to Clem’s pancake vortices [159]. However,
the most significant difference is that in this case where m̃n > 1, the philosophy
that the bulk determines properties of the interface no longer holds – as we can see,
if the system is above the upper critical field, then the bulk is clearly completely
normal, but interface is superconducting along the entire width. Therefore, we are
no longer able to treat the system as before, and cannot consider this geometry as
a collection of 1D slices. The procedure presented in Fig. 4.15 is now motivated –
to first order, the interfacial order parameter is uniform along the full width of the
system. As mentioned, this neglects the secondary enhancement near the corners,
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Figure 5.10: Spatial variation of the supercurrent density (top) and normalized order
parameter magnitude (bottom) at three distinct applied magnetic fields and Japp =
0.95Jc, for an SNS junction with normal coatings (m̃c = 10). The spatial variation is
shown in the bulk of the electrode (x̃ = l̃s/2) – the faint dots are slices within a fluxon
spacing of x̃ = l̃s/2, and the solid dots are the average over all at a given y–coordinate.
The faint blue line is the Abrikosov prediction for the order parameter in the bulk
(Eq. (2.3.33)). The solid lines denote analytic predictions for the screening current
and the order parameter magnitude (Eq. (2.4.26) and Eq. (4.3.24)). The TDGL
simulation system has w̃s = 16.0, l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0
and κs = 8.0.
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Figure 5.11: Spatial variation of the normalized order parameter magnitude at three
distinct applied magnetic fields and Japp = 0.95Jc, for an SNS junction with normal
coatings (m̃c = 10). The spatial variation is shown in the centre of the barrier (x̃ =
0). The solid lines denote analytic predictions for the order parameter magnitude,
following the flowchart in Fig. 4.15. The TDGL simulation system has w̃s = 16.0,
l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, m̃n = 1.0, β̃n = 1.0 and κs = 8.0.

but these regions do not increase the field range over which current may be carried.
The spatial distributions of the order parameter across the electrode and the normal
barrier are shown in Figs. 5.10 and 5.11 respectively.

Finally, we present the critical current density as a function of field in Fig. 5.12, which
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Figure 5.12: Critical current density as a function of applied magnetic field for a
range of widths for a SNS junction, where m̃n = m̃c = 10.0. In all cases, d̃n = 0.5,
α̃n = −1.0, β̃n = 1.0 and κs = 8.0. The coating thickness was fixed to be w̃c = 3.0.
TDGL simulations are shown as solid markers. The solid lines are the envelopes
generated from the flowchart presented in Fig. 4.15, using the new calculations of
J̃DJ shown in Chapter 4 (Eq. (4.6.14), with n and B∗

c2 left as free parameters, fitted
to be n = 0.90 and B∗

c2 = 1.33). The dashed lines are the equivalent envelopes using
J̃DJ calculated from FBH shown in Eq. (2.5.47).

is our key evidence and motivator for the use of our new J̃DJ calculation. We already
observed in Figs. 4.12, and 4.13 how the FBH J̃DJ was systematically lower than the
new Saint James calculation – this figure demonstrates how this difference manifests
in the full J̃c

(
B̃app

)
trace. We can see that the FBH prediction drops far below the

TDGL data particularly in high fields and even in low fields. However, our framework
has naturally captured behaviour near the interface, which allows for a much better
approximation over the full field range. We can see that due to the larger widths
leading an increased frequency of oscillations, the field resolution of the TDGL data
may not reach the exact maximum, but the general envelope is still in much better
agreement with our new calculation. In fact, one can see here that B̃c2 is no longer
a significant or special field value in any way, since again, the bulk behaviour does
not affect the interface. For any case where m̃n > 1, the sheath creates a natural
uniformity in the current carrying capacity of the junction.

5.6 Junction Arrays

A natural extension is to question how relevant the study of a single junction is
to developing our understanding of a full polycrystalline material. To this end, we
have added some preliminary simulations of ‘junction array systems’. These consist
of multiple junctions stacked beside each other, separated by a barrier of a given
thickness. We provide an example of the geometry in Fig. 5.13. In Fig. 5.14, we
compare TDGL simulations of the critical current density of a triple junction array
(diamond markers) to a single junction of equivalent width (circle markers). Here,
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Figure 5.13: A snapshot of the normalized order parameter magnitude for a junction
array with normal coatings, where the applied field is B̃app = 0.5 and there is zero
applied transport current. The junction array had 3 junctions, each with ws = 16.0ξs,
separated by an internal coating of 0.5ξs, and an external coating of wc = 3.0ξs, for
a total width of w = 55.0ξs. All normal barriers had a mass of m̃n = 1.0. The
remaining TDGL simulation parameters are l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, β̃n = 1.0
and κs = 8.0.

the single junction has a width of ws = 16.0ξs and a coating of wc = 3.0ξs, for a total
width of w = 22.0ξs. Each junction within the triple junction array also has a width
of ws = 16.0ξs, but are separated by an internal coating of 0.5ξs. Again, this array
has an external coating of wc = 3.0ξs, for a total width of w = 55.0ξs. In both cases,
the properties of the coating were the same as that of the barrier – the mass was set
to be m̃n = 1.0, but the junction condensation parameter α̃n was allowed to vary.

Fig. 5.14 provides some interesting and beautiful information. We first consider the
black and grey data, where the junction condensation parameter was α̃n = −1.0. We
can see that in low field, the magnitude of J̃c is significantly different – the junction
array has a much lower J̃c than the single array. Moreover, the frequency of the
oscillations are also different. As the field is increased, we observe that the magnitudes
become comparable as before, but the oscillation frequency remains different. We can
understand this through the lens of coupling strength – since the magnitude of the
junction condensation parameter is small, the junctions are strongly coupled to each
other. The barrier parallel to current flow between each of the junctions therefore is
subject to a significant proximity effect, and the order parameter magnitude remains
large. Therefore, in low–field, the junction array acts like a single junction with a
larger width – this is demonstrated in Fig. 5.15, where we see that the magnitude of
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Figure 5.14: Critical current density as a function of field, across the entire field range
(top) and in low field (bottom), for a single junction (circles) and a triple junction
array (diamonds), with varying junction condensation parameters. In all simulations,
the coating mass was m̃n = 1.0 and the normal barrier thickness was dn = 0.5ξs.
The single junction had ws = 16.0ξs and a coating of wc = 3.0ξs, for a total width of
w = 22.0ξs. The junction array had 3 junctions, each with ws = 16.0ξs, separated by
an internal coating of 0.5ξs, and an external coating of wc = 3.0ξs, for a total width
of w = 55.0ξs. In all simulations, β̃n = 1.0.

J̃c looks much more like that of a single junction with an effective superconducting
width of 49.0ξs (3 junctions of width 16.0ξs and 2 internal barriers of width 0.5ξs).
The frequency of the oscillations differs from that of a single barrier since fluxons are
still able penetrate these normal regions more easily. However, in high field, where
many fluxons have entered the normal barriers, the value of the junction condensation
parameter becomes less important – the barriers all appear as if they are weakly
coupled.
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Figure 5.15: Critical current density in low field, for a strongly coupled triple junction
array (diamonds), and strongly coupled single junctions of varying widths (circles). In
all simulations, the coating mass was m̃n = 1.0, the junction condensation parameter
was α̃n = −1.0, and the normal barrier thickness was dn = 0.5ξs. The junction array
had 3 junctions, each with ws = 16.0ξs, separated by an internal coating of 0.5ξs, and
an external coating of wc = 3.0ξs, for a total width of w = 55.0ξs. The two single
junctions shown both had a coating of wc = 3.0ξs. The black and grey data are the
same as seen in Fig. 5.14. In all simulations, β̃n = 1.0.

We now consider arrays which are already weakly coupled – for example, the red and
orange data in Fig. 5.14, where α̃n = −50.0. We can see here that the magnitude of
J̃c
(
B̃app

)
is similar across the entire field range, even in low field. The frequency of

oscillations is again different, but there is a clear relationship between the two. The
junction array data has more frequent minima (troughs) than the single array data –
as to be expected since the minima in the critical current are associated with fluxons
entering the barriers. However, the emergent field dependence of J̃c

(
B̃app

)
looks like

that of a triple slit diffraction pattern. The single junction provides the equivalent
of the ‘single slit envelope’, with minima at specific values of field. The junction
array also has these same values of the minima, but has additional minima/maxima
in between. Since the internal barriers are so weakly coupled, there is very little
interference between each of the junctions, and therefore each junction of width 16.0ξs

to be isolated from one another – they can be viewed as similar to three identical
optical slits separated by the internal barriers. Comparing the blue and light blue
data in Fig. 5.14 where α̃n = −10.0 exhibits a similar behaviour.

Finally, we briefly note the effect of the junction array on the effective upper critical
field. A snapshot of the order parameter magnitude for an array with thin normal
barriers of mass m̃n = 10.0 is shown in Fig. 5.16, demonstrating that the order
parameter magnitude is significantly non–zero. From our results in Chapter 4, we
expect the effective upper critical field to be approximately 1.278Bc2. However,
Fig. 5.16 shows a TDGL simulation performed with an applied field of 1.35Bc2.
Increasing the applied magnetic field further (e.g above 1.4Bc2) leads to a negligible
order parameter magnitude as expected. This suggests that the structure of the
junction array produces a slight increase in the effective upper critical field. This is
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Figure 5.16: A snapshot of the normalized order parameter magnitude for a junction
array with normal coatings, where the applied field is B̃app = 1.35 and there is zero
applied transport current. The junction array had 3 junctions, each with ws = 16.0ξs,
separated by an internal coating of 0.5ξs, and an external coating of wc = 3.0ξs, for
a total width of w = 55.0ξs. All normal barriers had a mass of m̃n = 10.0. The
remaining TDGL simulation parameters are l̃s = 16.0, d̃n = 0.5, α̃n = −1.0, β̃n = 1.0
and κs = 8.0.

perhaps not a surprise given that our previous analytic framework considers only a
single barrier, where interference between neighbouring arrays has not been accounted
for, and may prove to be a significant challenge to solve algebraically. Nevertheless,
we suggest that the previous framework still provides a good approximation to the
junction array system.

Crucially, the envelope of these junction arrays in high field follows the envelope of
the equivalent single junction. Therefore, even though the frequency of oscillations
is different, the overall profile of the J̃c

(
B̃app

)
behaviour remains similar –

understanding a single junction is sufficient for understanding an entire array, and
by extension, a full polycrystalline material. This picture provides a clear motivation
for our interest in the envelope of the single junction. We have performed preliminary
simulations with 5 junctions in the array, and observed a similar behaviour. These
insights provide a useful first step towards understanding the envelope of a real
polycrystalline material. However, there is still an extensive amount of research to be
done to understand if this is a computationally or analytic approach - in Chapter 6,
we shall discuss some of the remaining challenges to be addressed.
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5.7 Conclusions

In this section, we have performed and presented 2D simulations of the critical
current density as a function of applied magnetic field, for a variety of SNS Josephson
junctions. The junctions considered had widths varying from narrow to wide junction
systems, and also considered a range of normal barrier and coating masses. We then
compared these TDGL simulations to our new analytic solutions using the procedure
presented in Section 4.8. To our knowledge, this is the first rigorous analytic approach
that is able to capture the behaviour near the interface accurately, and provide
a prediction for the critical current density for both narrow and wide junctions.
We applied this approach with existing analytic theory and our new analytic
calculations for J̃DJ, presented in Section 4.6. In particular, we have demonstrated the
applicability and necessity of our new analytic solutions for the accurate description of
the critical current density for any range of material parameters. Most importantly,
our new solutions perform very well for cases most relevant to real materials – we
have demonstrated the limitations of existing analytic theory, and presented how our
new solutions remedy these shortcomings. Moreover, our solution rigorously captures
the full 2D nature of the solution, and does not require artificial corrections or free
parameters.

Finally, we briefly presented TDGL simulations comparing a single SNS junction to
a set of junctions arrays – this is important in extending analytic understanding of
a single junction to a full 3D material. These simulations allowed a particularly
aesthetic picture of how the material parameters affect the strength of coupling –
depending on the normal region properties, these junction arrays can be viewed either
as a collection of completely distinct junctions with no interaction (if the junctions
are sufficiently weakly coupled), or almost as a single junction of a larger width with
(if the junctions are sufficiently strongly coupled). Moreover, we demonstrated that
if the junctions are indeed weakly coupled (which is most likely the regime of real
materials), then the junction array exhibits a clear slit diffraction pattern, which sits
within the envelope of a single junction. Specifically, even though the frequency of
oscillations of the junction array is higher, the overall envelope is extremely close to
that of a single junction. This is particularly important, because it implies that an
understanding of a single junction does indeed provide the basic building block for
understanding arrays, and in turn, a full 3D polycrystalline system.

We briefly note some numerical limitations of our results and the emergence of
significant noise in the system. Our previous work already noted the importance of
choosing a suitable grid step for simulations [116]; as the system becomes increasingly
weakly coupled (either by increasing the mass of the barrier or choosing a larger
and more negative junction condensation parameter), the normal coherence length
becomes smaller (c.f. Eq. (2.5.49)) and it becomes harder to capture the essential
physics occuring on a decreasing length scale. This problem is only excacerbated in
higher fields, and failure to consider the relevant length scale can lead to massive
overestimates of Jc. However, running simulations with a finer grid size requires
more computational effort – quickly becoming unfeasible with many sets of material
parameters, each requiring thousands of field points. Our choice of 0.1ξs is a trade
off between accuracy and computational efficiency – improved approaches such as a
multigrid framework [118] would provide a clear improvement for this aspect. These
more efficient solvers should also allow for an improved capacity to lower the noise
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floor, allowing more weakly coupled systems to be studied and crucially capturing
their behaviour more accurately in the high–field regime.
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Chapter 6

Conclusions and Future Work

The contributions of our work are primarily in the analytic and computational
descriptions of the order parameter near an interface with arbitrary material
parameters, for three distinct geometries (SN, NSN and SNS). This naturally lead to
a description of the effective upper critical field as a function of geometry and material
parameters, and subsequently, the Josephson depairing current through the junction.
Our results are formally analytic in that they provide an exact solution through
a set of implicit equations. However, the necessity of solving implicit equations is
an inherent limitation to the applicability of our results, despite being a relatively
straightforward numerical task. Although this is equivalent to the conclusions of Saint
James and de Gennes [79], it is somehow unsatisfactory, since any new geometry with
an arbitrary difference in the material parameters requires a new calculation. To
this end, an explicit solution (even as an approximate series solution) to our implicit
equations would be desirable. In the interest of applicability to relevant polycrystalline
materials, we note that our materials are effectively in the semi–infinite limit. We
can see that for SNS geometries, if the thickness of the barrier is greater than 0.5ξs,
then the interaction of the interfaces is minimal (c.f. Fig. 4.7) – this condition is met
for the majority of real polycrystalline materials. Therefore, the relevant problem
is the same as in Section 4.2, which may simplify the necessary approximations.
Standard series approximations of the parabolic cylinder functions include unphysical
oscillations, and therefore care is needed to ensure that our solution remains physical.
Moreover, the neglection of the non–linear terms inherently limits the formal validity
of our solutions (despite the applicability of our results being validated by TDGL far
beyond this limit). To this end, an analytic solution to the full non–linear equation
would be desirable; we acknowledge that this is a difficult task for future work.
Perhaps more realistically, some derivation of a functional form that covers the entire
(reasonable) material parameter space would be sufficient. However, the physical
basis for such a functional form is unclear, and would require further simulations or
analytic investigation.

Next, we note that all of our considerations, both analytic and computational, consider
a single field orientation, where the applied field is perpendicular to the plane of
the junction. Since a real polycrystal contains many grains that are not perfectly
orientated relative to the applied field, this would be an interesting and important
direction for future computational and analytical work. The generalisation of the work
of Saint James to include angular dependence for the ISI system has already been
covered by Tinkham [82]. However, with our new developments, the natural question
that follows is to ask if these results can be generalised for arbitrary field angle in
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a similar way. This understanding would be particularly important for a complete
understanding of a full 3D polycrystalline material. Careful averaging over all possible
angles and field orientations may result in some non–trivial but analytic factor, which
may allow for a simple relationship between the understanding of the critical current
density for 1D systems with perpendicular field as considered here to the critical
current density for full 3D systems. It is certainly not obvious how (or indeed, if)
the geometry and properties of the normal barriers/grain boundaries would affect
such a factor, if such a factor were to even exist. Further developments could be also
considered to include the effect of finite systems – the Saint James derivation considers
systems which are formally infinite in the y–direction; this property allows an infinite
continuum of possible ky values. However, in the case where the system is finite, we
then have a discrete and countably finite set of ky values permitted. Therefore, the
specific value of the phase corresponding to the semi–infinite Bc2 is not guaranteed
to be in this set, and therefore, we no longer expect the semi–infinite behaviour. This
physical behaviour may have a significant effect on TDGL simulations, which are
by construction of finite width. Careful treatment of the boundary conditions may
resolve this issue, but it is not obvious how to ensure consistency across the system.

Alongside the angular field dependence in the TDGL calculations, future work could
also consider some non–trivial changes to increase the efficiency of the computational
solvers. We have already discussed how multigrid implementations in Chapter 3 can
serve to increase the effectiveness of the TDGL systems, which has mainly proved
useful for increasing the capability of TDGL solver to explore larger 3D systems with
arbitrary superconducting properties. However, the calculation of the critical current
density is still slow – most of the simulation is spent in the resistive hold state after
exceeding the E–field criterion. This is by far the slowest part of the simulation – it is
particularly expensive to check that the E–field spike is truly persistent motion, rather
than a transient spike. To overcome this, alternative current ramp schemes could
be considered. One approach that has shown potential in preliminary simulations
is a ‘coarse then fine’ scheme. In order to determine the critical current density
accurately, one typically ramps the current in very fine steps. Instead, we could take
very large current steps, allowing us to quickly obtain a lower and upper bound to
the simulation. Then, one can restart the simulation, and quickly ramp up to the
lower bound in large steps again, and then take the required fine steps after that. At
worst, the true critical current is very close to the upper bound, and so there is little
benefit to the approach other than the small benefit from the initial rapid ramp to the
lower bound. At best, the true critical current is close to the lower bound, and the
simulation is significantly more efficient. In preliminary testing, we found that this
allowed simulations approximately 15x faster, but much more development is required
to ensure the rigour of the implementation, the correctness of the numerical solution,
and the correct range of computational parameters.

Next, we note that our simulations have considered simple representations of an SNS
junction, where the only non–superconducting regions are the grain boundaries (the
normal barriers and coatings). However, our simulations are limited by the noise
floor of the computation. For very weakly coupled systems, such as geometries with
thick grain boundaries or very large condensation parameter magnitudes, the critical
current densities are very small, and so require very small E–field criterion. Although
this is useful for high fields, it renders the low and intermediate field calculations
intractably slow. One cannot simply perform the simulation with different E–field
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criteria in different field regimes, since there is no guarantee that the resulting Jc trace
will be continuous. Therefore, improving the speed of the low and intermediate field
simulations with a lower E–field criterion, or developing a more general method of
lowering the noise floor across the entire field range, would be particularly desirable,
allowing simulations to efficiently cover a wide range of geometries. An additional
interesting set of future simulations may be to consider these SNS systems with
additional normal inclusions, which can model artificial pinning sites, impurities or
defects from irradiation; these features are particularly important for real operation
of superconducting materials [160]. Previous research has considered the effect of
nanorod pinning and splay [117], but have not considered the combined effects from
the surfaces and boundaries as well. These additional computational simulations
should be relatively straightforward, and may provide interesting information in the
optimization of LTS materials – however, providing an analytic understanding that
includes these defects may prove to be much more challenging. HTS materials can
also be modelled as Josephson junctions, and so our presented framework may also
prove useful in the description of these materials.

Finally, in the interest of moving yet further towards real 3D systems, it would be
interesting to extend the work in Section 5.6 further, and repeat the simulations for
arrays with many junctions in the array – we expect that with an increasing number of
junctions, the oscillations would become more frequent until we approach the envelope
of the single junction. If we can conclude that the number of junctions within the
array is not significantly important for determining the field dependence profile of the
J̃c, then the remaining aspect for understanding a real 3D polycrystal is to consider
the relative angle of each of the grains to the field orientation. In our work so far,
we have only considered junctions with the field perpendicular to the junction. If the
full 3D system is large enough, then one can assume that there are sufficiently many
grains such that every possible field orientation is considered – therefore, by taking
the average over the entire polycrystal, one might expect to find a simple geometric
factor that scales the single junction result. However, this is a significant claim which
we do not have the evidence for – extensive further simulations and research would be
necessary to validate this. In particular, the scale of the computational power needed
to model an entire polycrystal of Nb3Sn is unprecedented – even state–of–the–art
simulations (e.g. multigrid methods) are significantly far away from being capable of
performing simulations on this scale. It may be interesting to further develop analytic
work for the junction array systems with different material properties – moreover, it
would be interesting to see if one can find a theoretical basis which encapsulates the
behaviour for any number of arrays and barrier properties. It would be particularly
useful to consider the limit where we have an infinite number in the array, and if
we indeed can find an analytic expression for the envelope of the single junction
array. As discussed in Chapter 5, this envelope is more useful for comparison with
real systems due to the spurious oscillations due to fluxon entry in the bulk – if this
envelope is available analytically, then this could provide a huge improvement for our
understanding of a full 3D polycrystal material.
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Appendix A

Fusion CDT

The author is a member of the EPSRC Centre for Doctoral Training in the Science
and Technology of Fusion Energy (Fusion CDT). The Fusion CDT is a collaboration
between the universities of Durham, Liverpool, Manchester, Oxford and York,
providing doctoral students with a broad basis in fusion disciplines to support their
specialised research. Training courses and assignments are distributed through the
first 9 months of the PhD, with courses on a range of topics delivered by each of the
participating universities. Some courses are modules from the York University MSc
in Fusion Energy, the others are bespoke courses for doctoral students. A summary
of the courses taken is given in Table A.1. In addition to the training courses, the
Fusion CDT organises a yearly student conference in York, Frontiers of Fusion.

Course Name Location Result
Introduction to Fusion Plasma York Distinction
Introduction to Materials York Distinction
Introduction to Computational Techniques York Distinction
Material Applications in Fusion Oxford Distinction
Plasma Surface Interactions Liverpool Distinction
Radiation Damage York Distinction
Materials for Nuclear Power Oxford Distinction
Characterisation and Analytic Tools Manchester Distinction
Finite Element Methods and Design Codes Manchester Distinction

Table A.1: First year courses attended as part of the Fusion CDT.
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Appendix B

Software & GitHub Repositories

The important code used for the work presented in this thesis can be found on a
git repository at https://github.com/BradDin/thesis_code. I have structured the
Readme files and code by Chapters and Figures therein. It will enable future students
to regenerate the data in the figures, from scratch as quickly and efficiently as possible.

The repository contains:

• TDGL2D Fortran solver

• Example slurm scripts and parameter initialisation scripts for local simulations
or HPC usage

• All associated TDGL data

• Python code for generating Clem, FBH, and Saint James results
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