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ABSTRACT
In this paper, the accuracy of inertial sensor orientation relative to the level frame is improved
through optimal tuning of a complementary filter by a genetic algorithm. While constant filter gains
have been used elsewhere, these may introduce errors under dynamic motions when gyroscopes
should be trusted more than accelerometers. Optimal gains are prescribed by a Mamdani fuzzy rule
base whosemembership functions are found using a genetic algorithm and experimental data. Fur-
thermore, model fitness is not based directly on orientation but the error between estimated and
ground truth velocities. This paper has three interrelated novel elements. The main novelty is the
indirect tuning method, which is simple, low-cost and requires a single camera and inertial sen-
sor. The method is shown to increase tracking accuracy compared with popular baseline filters.
Secondary novel elements are the bespoke genetic algorithm and the time agnostic velocity error
metric. The contributions from this work can help improve the localization accuracy of assets and
human personnel. This research has a direct impact in command and control by improving situa-
tional awareness and the ability to direct assets to safe locations using safer routes. This results in
increasing safety in applications such as firefighting and battlespace.
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1. Introduction

The ability to track the position of humans and vehicles
under global navigation satellite system (GNSS) denial is
in high demand. By 2050 for instance, it is estimated that
almost 70% of the world’s population will live in urban
areas where multipath and signal attenuation can dis-
tort or null range measurements crucial for localization
(Ritchie & Roser, 2018). A lack of accurate localization and
position tracking of emergency responders can be partic-
ularly serious and, in some cases, have fatal consequences
(FireBrigadesUnion, 2007; Vatter, 2022). Furthermore, the
vulnerability of GNSS to spoofing and jamming presents
problems in the use of uninhabited aerial systems (UASs)
for maritime patrol and critical infrastructure inspection
(Lee et al., 2016).

While other positioning technologies exist such as
those based on ultrawideband (UWB), wireless fidelity,
radio frequency tags and photodiodes, they all rely on
the pre-deployment of certain components into the envi-
ronment beforehand. Although visual odometry (VO) sys-
tems track natural features, these are not always visible in
the camera frame such aswhenoperating inpoorly lit and
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harsh environments (Cai et al., 2020; Wong et al., 2018;
Zhang et al., 2022).

In contrast, inertial sensors are autonomous sensors
which do not require any supporting infrastructure for
their operation (Noureldin et al., 2013). These typically
include accelerometers and gyroscopes, measuring the
specific force and angular velocity of the sensor body
frame,b, relative to the inertial reference frame, i, denoted
fbib ∈ R

3 and ωb
ib ∈ R

3, respectively. Low-cost inertial
measurement units (IMUs) usually contain triads ofmutu-
ally orthogonal accelerometers and gyroscopes. Unlike
GNSS however, position cannot be estimated in an abso-
lute sense but relative to a known initial position by a
process of dead reckoning such as strapdown inertial
navigation.

1.1. Strapdown inertial navigation

In strapdown inertial navigation, gravity-compensated
acceleration expressed in the navigation frame, annb ∈ R

3,
is double integrated with respect to known initial con-
ditions. The navigation frame, n, is the reference frame
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pointing east, north, up. Under the assumptions of local
geographic navigation and assuming initial conditions
are known, position in the navigation frame, xnnb ∈ R

3,
can be estimated by

xnnb =
t∫∫
t0

annbdtdt =
t∫∫
t0

(Rnbf
b
nb + gn)dtdt. (1)

In (1), Rnb ∈ G is the rotation matrix giving the orientation
of the sensor body frame relative to the navigation frame
and G = SO(3) is the three-dimensional Lie group. fbnb ∈
R
3 is a vector of accelerometer measurements (assum-

ing the navigation frame is inertial), gn ∈ R
3 is the gravity

vector in the navigation frame and t ∈ R
+ is time.

Thismethod benefits frombeing grounded in the laws
of motion and thus generalizes to all types of motion.
Applying strapdown inertial navigation to low-cost sen-
sors, however, results in a positional error that grows pro-
portionally with t3 due to their poor noise characteristics,
bias and scale factor stabilities. In contrast, the method
works well for navigation and strategic grade sensors
although these are orders of magnitude more expensive
(El-Sheimy & Youssef, 2020).

1.2. The importance of orientation

From (1), the implicit reliance onRnb for the accuracy of x
n
nb

is shown. While there are many systematic errors affect-
ing Rnb such as inertial sensor calibration (bias and scale
factor) errors and their variation with temperature (Gang-
Qiang et al., 2023), the sub-optimal tuning of the orien-
tation filter can also lead to errors. Many filters exist in
literature including those based on Kalman Filtering (KF)
(Barrau & Bonnabel, 2017; Bonnabel, 2007), complemen-
tary filtering (Mahony et al., 2005, 2008) and optimization
(Madgwick et al., 2011; Tian et al., 2013). Here, a version of
the complementary filter is used as it has been shown to
be approximately five times less computationally expen-
sive than Kalman-based methods (Michel et al., 2017).
KFs, particularly the extended form (EKF), can also diverge
when the linearization assumption is invalid (Skoglund
et al., 2015).

In 2018, Ludwig demonstrated optimal tuning of a
complementary filter using a genetic algorithm (GA).
The same year, Ludwig and Jiménez (2018) used particle
swarm optimization (PSO) for the same problem. How-
ever, both assumed that the optimal gain was constant
and not adaptive to varying dynamics. In 2017, Poddar
et al. used PSO to find adaptive optimal gains of a com-
plementary filter however the adaptive mechanism used
thresholding to switch between pre-defined gain values
rather than a continuous function. The gains prescribed
were therefore not necessarily optimal over the entirety

of the input domain. Earlier in 2012, Shen et al. proposed
an optimization method of tuning the fuzzy system reg-
ulating the gain of a complementary filter, but tuning
wasbasedonaccurate knowledgeof the trueorientations
from a more expensive tactical grade sensor. In contrast,
the work presented in this paper demonstrates the abil-
ity of tuning indirectly, that is without knowledge of the
true sensor orientations, using a low-cost IMU. This dis-
tinguishes it from the work of Kottath et al. published in
2017. The method is beneficial in a contested environ-
ment where windows of GNSS are available. By tuning
the orientation filter, themethod allows for longer inertial
position tracking without GNSS updates.

The main contribution of this paper is:

(1) The prescription of optimal gains to the comple-
mentary filter by a Mamdani fuzzy inference system (FIS),
whose membership functions (MF) are found by indirect
optimization, that is, without explicit knowledge of the
true sensor orientation.

Through this, two further contributions arising are:

(2) The design of a bespoke GA for finding the optimal
rule base parameters which is shown to be faster than
existing GAs for the task.
(3) Introduction of the weighted relative velocity error

(WRVE), which improves on the mean square velocity
error (MSVE) being a time-agnostic error metric that also
accounts for the rate of turn and vibration in its evalua-
tion.

The remainder of the paper is structured as follows.
Section 2.1 introduces the complementary filter followed
by its novel tuning using a GA-designed fuzzy rule base
in Section 2.2. Section 2.3 introduces the novel WRVE
metric and Section 2.4, the acquisition of simulation and
experimental data. The results in Section 3 show the error
reduction in velocity and position estimates thanks to
optimization. The performance of the method subject to
disturbances in explored as well as the effect of using a
higher quality sensor. A discussion of the results is pre-
sented followed by a conclusion in Sections 4 and 5,
respectively.

2. Method

2.1. Complementary orientation filter

Complementary orientation filters are nonlinear obser
vers that estimate the orientation of the sensor body
frame relative to the local level frame (Nazarahari &
Rouhani, 2021). As model-free filters, they do not require
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a complex mathematical model making them widely
applicable and computationally tractable (El-Kebir &
Ornik, 2020). The complementary filter operating princi-
ple involves high and low pass filtering the gyroscope
and accelerometer measurements respectively to obtain
more accurate estimates.

While other sensors such as magnetometers can be
used for the observationof geomagnetic north (Renaudin
et al., 2012), due to interference from hard and soft iron
biases in indoor environments, the filter used in this
work was limited to gyro and accelerometer measure-
ments. Thus, while previously measurements were rela-
tive to the navigation frame, the equations below refer
to the locally level frame, l, as north was not observ-
able but defined by the gyroscopes at initialization. For
compactness and computational efficiency, quaternion
parametrization was used.

The complementary filter tuned in this work resem-
bled the passive filter described by Mahony et al.
(2008). The initialized or previous orientation estimate,
expressed as a unit normquaternion, q̂lb, evolvedwith the
gyroscope measurements according to:

q̇lb = 1/2q̂lb ⊗
[

0
ωb
lb

]
(2)

where q̂lb ∈ H and ⊗ is the quaternion product. This was
discretized according to the Euler-Rodrigues formula:

qlbk+1
= q̂lbk ⊗

[
cos ||�t/2ωb

lbk+1
||
2

ω̂
b
lbk+1

sin||�t/2ωb
lbk+1

||
2

]
(3)

where ||||2 is the Euclidean norm and k ∈ N are the
epochs. Owing to the limited sensitivity of low-costMEMS
IMUs, the assumptionsωb

ib � ωb
lb and f

b
ib � fblbweremade.

That is, the locally level frame was assumed to be inertial.
While (2) evolved orientation with the gyro measure-

ments, the attitude (pitch and roll) update from the
accelerometers to correct for drift needed to be included.
Mahony et al. proposed the addition of a scaled error
term, kpεk , to the gyroscopemeasurements and the same
approach was used here:

ωcorr = ωb
lbk+1

+ kpε (4)

where ωcorr ∈ R
3 are the corrected angular velocities,

kp ∈ R
+ is the proportional angular error gain and ε ∈ R

3

is the angular velocity error vector. Based on the comple-
mentary filter described by Madgwick et al. (2020), ε was
calculated by the cross product between the true grav-
ity vector in the sensor body frame, fblb measured by the
accelerometers, and its predicted projection in the body

frame based on the current orientation estimate, q̂lbk :

ε = fblb ×
⎛
⎝q̂lbk ⊗

⎡
⎣ 0

0
1

⎤
⎦ ⊗ q̂l∗bk

⎞
⎠ (5)

In (5),∗ is thequaternion conjugate and× the vector cross
product. The cross product gave a vector orthogonal to
those on the right-hand side of (5). ε was thus an approx-
imation of the tangent space of S3 at the subgroup’s
identity. Figure 1 shows a diagram of the complementary
filter.

The error term, ε, was not necessarily accurate, how-
ever:

(1) The accelerometers giving fblb required accurate cal-
ibration to ensure they represented the true gravity
vector in the sensor body frame. While static calibra-
tion methods may have given bias and scale factor
parameters, changes in sensor temperature would
have invalidated these.

(2) Since the accelerometersmeasured thevector sumof
all proper accelerations relative to the inertial frame,
fblb was polluted with additional accelerations when
in motion which were not representative of attitude.
Hence, although constant kp was proposed byMadg-
wick et al. (2020), accurate orientation estimation
required the gain to be tuned.

This work addresses the latter of these while the former
is left as a topic of future work. The following constitutes
the novel contribution to the field.

2.2. Tuning using the GA

The tuningof theproportional filter gain, kp, was encoded
in a single input single output (SISO) Mamdani fuzzy rule
base (type 1). A type 1 model was chosen as it produced
a simpler and more interpretable model which is better
suited in engineering applications (Martínez-Soto et al.,
2015).

The input for the classifier was the L2 norm of the
angular velocity measurements from the gyros, ||ωb

lb||2,
||ω|| hereon. This choice of input feature was justified as
gyromeasurements have been reported better indicators
of motion than accelerometer measurements (Yun et al.,
2007). The single output was the proportional gain, kp.

While the fuzzy rule base could have been designed
manually, it was difficult to guarantee optimal tuning as
the number of MFs, their shapes and positions over the
input-output domains offered an exponential number of
combinations. By assuming a rule basewith fourGaussian
MFs encoding input-output relations for still, low, high
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Figure 1. Complementary filter diagram.

and very highmotion, the parameter set for tuning kpwas
defined as:

θ = {σ||ω||still , σ||ω||low , σ||ω||high , σ||ω||v.high ,

σkp,v.low , σkp,low , σkp,high , σkp,v.high , . . .

μ||ω||still ,μ||ω||low ,μ||ω||high ,μ||ω||v.high ,

μkp,v.low ,μkp,low ,μkp,high ,μkp,v.high} (6)

where σ ∈ R
+ denotes standard deviation of the Gaus-

sian MF and μ ∈ R, its mean. Certain assumptions were
applied to the parameter search, such as intuitively fixing
μ||ω||still at 0 rads−1. The input and output domains were
alsoboundedbetween [0, 4.36] rads−1 and [0, 0.1] respec-
tively. While the upper bound of the latter was arbitrary,
the former was defined by the maximum gyro output
rate set on the low-cost MPU-6050 IMU to 250°s−1 (4.36
rads−1).

Though a grid search could be used for optimizing
the rule base, such enumerative methods are computa-
tionally expensive with the number of iterations scaling
according toO(nm) forn ∈ N values for each of them ∈ N

parameters. A GA was therefore used as its implicit paral-
lelism offered a more efficient search method. Although
computationally cheaper calculus methods exist, for a
solution surface with many local minima, the minimum
returned may not be the global minimum (Goodfellow
et al., 2016). For the 16-dimensional problem in this work,
a solution surface with many local minima was assumed.

Table 1 compares the bespoke GA performance with
two other implementations, MATLAB and SpeedyGA
(Keki Burjorjee, 2010; MATLAB, 2024). The online, εon and
offline, εoff errors were based on metrics defined in De
Jong (1975).

The bespoke GA was found to compute generations,
T̄av , faster than the MATLAB and SpeedyGA implemen-
tations though with slightly higher online error. Code

Table 1. Performance comparison for three GAs.

GA εon(ms−1) εoff(ms−1) T̄av(s)

Bespoke 0.68 0.56 7.60
MATLAB 0.64 0.56 8.10
SpeedyGA 0.64 0.56 8.50

for the bespoke GA can be found in the data availability
statement.

To determine the fitness of a generation, the true ori-
entation of the body frame relative to the locally level
frame was not used. Instead, a function calculated the
MSVEbetweenestimated,vllb,IMU andground truth,v

l
lb,true

in the locally level frame as shown in (7) and (8).

MSVE = 1/n
n∑
i=1

(vllb, true − vllb,IMU)2 (7)

vllb,IMU =
∫ t

t0

(
q̂lbk ⊗

[
0
fblb

]
⊗ q̂lbk

∗
)

+ gldt (8)

where q̂lbk is the output from the orientation filter and
hence, affected by the tuning of the parameters (chro-
mosomes) in (6) by the GA. The relation between the
chromosomes of the genome and fitness was thus indi-
rect but offered a simple, low-cost method of obtaining
experimental ground truth data.

Owing to velocity errors induced due to integral drift, a
zero-velocity update (ZUPT) routine was used to retroac-
tively correct integrated velocities over motion peri-
ods (Wahlstrom & Skog, 2021). The function that imple-
mented this can be found in the data availability state-
ment (Figure 2).

2.3. Weighted relative velocity error (WRVE)metric

While the MSVE can be used to evaluate the accuracy
of velocity estimation, it had several shortcomings when
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Figure 2. Overview of kp tuning process using FIS, complementary filter and GA.

applied to the inertial tracking problem. It did not con-
sider rate of turn and vibrations which low-cost inertial
sensors are known to be sensitive to and had a tem-
poral dependency which penalized rotational errors that
occurred earlier in a sequence compared to those occur-
ring later (Groves, 2015). These were addressed by the
WRVE introduced here.

Time agnosticism of the WRVE was achieved by com-
puting the velocity error,εv ∈ R, over a series ofwindows,
δ ∈ Z

+, whose lengths varied from one up to the entire
sequence length. This was like the relative pose error out-
lined by Zhang and Scaramuzza (2018) whereby for a
given δi ⊆ δ, the estimated trajectory segment was first
aligned to the ground truth. The relative velocity error
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(RVE) was thus defined as the mean of the root mean
square velocity errors for each δi.

The WRVE was made by weighting the RVE with a
velocity error vector,ktot ∈ R

+, as shown in (9),whichwas
calculated as the sum of the rate of turn and vibration
error terms kturn ∈ R

+ and kvib ∈ R
+ shown in (10):

εv = ktot(vtrue − vest) (9)

ktot = kturn + kvib (10)

where kturn is a vector of length equal to δi calculated as
the natural exponent of the normalized angular velocity
as shown in (11):

kturn = ecturn
ˆ||ω|| (11)

Higher turn rates thus exponentially increased kturn. The
constant cturn ∈ R was set to one but is user tunable and
can bemade negative to make themetric more forgiving
of velocity errors at higher turn rates.

kvib was determined from the fast Fourier transform
of normalized angular velocities over the given trajectory
segment δi. V̄ ∈ R

+, termed the vibrational content over
the segment, was defined as the mean of the product
of the single-sided power spectrum and the frequency
domain up to the Nyquist limit. This was scaled by the
user-defined constant cvib ∈ R as shown in (12). A value
of 10 for cvib was used in this work.

kvib = cvibV̄ (12)

V̄ thus increased kvib for signal powers closer to the
Nyquist limit, and therefore penalized trajectory errors
occurring at higher frequencies in the sequence. Themet-
ric was designed in this way as inputs at frequencies
above the Nyquist limit get aliased down to lower fre-
quencies and propagate as errors in the dead reckoning
process.

Although the focusof the results is on theWRVEvalues,
MSVE values are also given for comparison with results in
the literature.

2.4. Acquisition of simulated and experimental data

The tuningmethod required the capture of synchronized
IMU sensor data and ground truth velocity for an object
moving in the locally-level frame.

First, synthetic IMU and velocity data were used to
test the method before using experimental data. These
were generated inMATLAB and, to accuratelymodel low-
cost IMU characteristics, the data sheet of the lost-cost
MPU-6050 IMU was consulted. Furthermore, to best cap-
ture their noise errors, an Allan variance analysis was per-
formed on three MPU-6050 IMUs. The mean of the bias

instability, noise density and rate random walk parame-
ters are shown in Table 2.

Simulated trajectories were generated using MAT-
LAB’s waypoint trajectory generator. To replicate the
experimental data, thesewere confined tomotions in the
x-y plane and sampled at 100Hz. Six simulation trajecto-
ries were generated: square, straight, left turn, right turn,
s-shape and zigzag as shown in Figure 3(a)–(f).

The simulation trajectories had different scales, some
withgentle turns suchas (c) and (d)while others exhibited
sharper turns like (a), (e) and (f). This was to demonstrate
the efficacy of the proposedmethod over a variety of turn
rates and the benefits of the WRVE metric.

To observe the effects of vibration on trajectories, dis-
turbances were added to the simulated IMU data for the
square trajectory in Figure 3(a). To ensure disturbances
were representative of real-world conditions, a distur-
bance instance was obtained by sampling a real MPU-
6050 while striking its mounting. IMU measurements
from adding 12 disturbances to the simulated square
trajectory data are shown in Figure 4.

For obtaining experimental data, the moving object
was a modified model railway wagon, the smart wagon,
shown in Figure 5(a) which wirelessly transmitted IMU
data while powering LEDs for ground truth acquisition.
To investigate the effect of the proposed method on a
higher quality IMU, a second wagon shown in Figure 5(b)
was additionally equipped with an Xsens MTi-610R. This
higher quality IMU provided measurements at 400Hz,
had25 times lowerbias instability than theMPU-6050and
was seven times less noisy.

Ground truth position was obtained from an overhead
RGB camera with low-distortion lens. Remaining lens dis-
tortion was compensated in MATLAB using a camera
model.

To ensure data was captured in the locally-level frame,
both the camera platform and train track were lev-
elled using a digital inclinometer with reported accuracy
of ±0.1°. Ground truth data of the smart wagon was
obtained with a resolution of 0.76mm in position and
0.01° in heading at a sampling rate of 100Hz.

3. Results

Filter gains were optimized using an experimental data
set of two and a half minutes duration in which the
smart wagon travelled at speeds between 0 and 0.7ms−1

around a square-shaped track measuring 1.5m × 1.5m.
The smart wagon first performed an anticlockwise loop
accelerating from 0 to 0.3ms−1 and then decelerating
to 0ms−1 when returning to the starting point. The
same trajectory was then performed in reverse and again
anticlockwise before returning to the origin. In the last
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Table 2. Mean sensor errors for the MPU-6050.

Sensor Noise density Bias instability Rate randomwalk

Gyro 2.71e-04 rads−1
√
Hz

−1
1.58e-05 rads−1 1.80e-07 rads−1

√
Hz

Accelerometer 1.50e-03ms−2
√
Hz

−1
4.40e-04ms−2 2.20e-05ms−2

√
Hz

Figure 3. (a) Square, (b) straight, (c) left turn, (d) right turn, (e) s-shape, (f ) zigzag trajectories.

Figure 4. (a) Accelerometer and (b) gyroscope measurements with disturbances.
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Figure 5. (a) Smart wagon and (b) Xsens wagon.

Figure 6. (a) Fitness over 100 generations and (b) input-output surface from tuned FIS.

30 s, rapid back and forth motion was performed on
the straight section of track reaching a peak velocity of
0.7ms−1. This aggressivemotion was induced to demon-
strate the advantage of an optimally tuned gain.

Figure 6(a) shows an example of the change in fit-
ness over 100 generations of tuning the fuzzy system. The
time taken to find the optimal parameters depended on
the population size, number of generations and length
of data. For a population of 200, the GA completed
100 generations on a 64-core AMD EPYCTM 7543 high-
performance computer in 20min. The resulting input-
output surface from the FIS is shown in Figure 6(b).

Figure 7(a) shows the cumulative distribution of mean
absolute velocity errors (MAVE) for the experimental
square trajectory. In Figure 7(b), the errors are shown in
a box plot. To demonstrate the competitiveness of the

approach, it was compared against three popular model-
free orientation filters: a quaternion Extended Kalman
Filter (Q-EKF), Magwick Filter and Mahony Filter. These
were chosen because they were the filters used as base-
lines in similar works (Kottath et al., 2017; Tian et al., 2013;
Wu et al., 2016). Implementations of these were obtained
from the 2017 study by Michel et al. and can be found in
the data availability statement. The best parameters for
these filters were found by optimization using the MAT-
LAB GA. These were the parameters whichminimized the
mean trajectory error on the test cases and are shown in
Table 3.

The simulation data sets were used as unseen test
cases to demonstrate the competitive performance of the
generated model. Figures 8–13 compare the x-y velocity
estimates with the ground truth of the simulated square,
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Figure 7. (a) Cumulative velocity error plot, (b) box plot for experimental square trajectory.

Table 3. Optimal parameters used for the baseline orientation
filters.

Filter Optimal parameter(s)

Madgwick μ = 0.084
Mahony kp = 0.077

Q-EKF Racc =
⎡
⎣60.32 0 0

0 45.82 0
0 0 25.92

⎤
⎦,

Rgyr =
⎡
⎣45.32 0 0

0 47.52 0
0 0 52.62

⎤
⎦

straight, left turn, right turn, s-shaped and zigzag trajecto-
ries. Table 4 shows the WRVE and MSVE metrics for each
scenario and algorithm. Figure 14 shows the trajectories
obtained from integrating the velocity estimates.

To demonstrate the positive effect of adaptive kp on
trajectories containing vibrations, the trajectory of Figure
3(a) was perturbed with 12 equally spaced disturbances.
The estimated trajectories for each algorithm are shown
in Figure 15.

Lastly, to compare the accuracy of trajectories from a
higher quality sensor, theMPU andMTiweremounted on
the samewagon andperformed three clockwise and anti-
clockwise loops of the experimental square track. Table 5
shows the MSVEs for each of these where the proposed
GA-based tuning was used throughout. Figure 16 com-
pares the trajectories obtained after integrating velocities
for an anticlockwise and clockwise instance respectively.

4. Discussion

The input-output surface shown in Figure 6(b) supports
the hypothesis that, for the data used in the GA’s fitness

function, the optimal tuning of kp is a function that
decreases monotonically with increasing ω. For quasi-
stationary periods, a higher kp puts greater weight on the
correction term, ε, driven by the accelerometer measure-
ments, in updating q̂k . Duringmore dynamic periods, the
lower kp term intuitively places greater weight on ωb

nb
from the gyros for updating q̂k .

The cumulative distribution of MAVEs for the exper-
imental trajectory in Figure 7(a) shows how the pro-
posed method reduces velocity errors compared to the
competitive filters. Although the proposed method has
some errors that are marginally larger than Mahony,
these are visibly outweighed by the improvements in the
30th–90th percentiles. The slight increased error for the
proposed method in the 92nd–99th percentile may be
due to the insufficient fidelity of the Mamdani FIS using
four MFs. This could be validated by increasing the num-
berofMFs in the input-outputdomains andobserving the
effect on the cumulative distribution of MAVEs.

Figure 7(b) shows how the median MAVE and inter
quartile range are reducedby about 40%and20% respec-
tivelywithGA-tuning comparedwith thebest performing
constant gain baseline. These improvements are likely
due to the increased orientation accuracy thanks to
the adaptive kp, which improves differentiation between
gravity and translational acceleration due to the smart
wagon’s motion.

Figures 8–13 compare the x-y velocities obtained on
simulated test trajectories for the GA-tuned filter and
baselines. In Table 4, the GA-tuned filter is seen to reduce
the mean WRVE by about 10% compared with the mean
WRVEs of the three optimized constant-gain methods.
The respective MSVEs show how the tuned filter achieves
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Figure 8. Plot of (a) x and (b) y velocity estimates for simulated square trajectory.

Figure 9. Plot of (a) x and (b) y velocity estimates for simulated straight line trajectory.

Figure 10. Plot of (a) x and (b) y velocity estimates for simulated left turn trajectory.

Table 4. Comparison of velocity errors across filters and trajectories.

GA-tuned kp Q-EKF Madgwick Mahony

Trajectory WRVE (ms−1) MSVE (ms−1) WRVE (ms−1) MSVE (ms−1) WRVE (ms−1) MSVE (ms−1) WRVE (ms−1) MSVE (ms−1)
Square (exp.) 0.260 0.0127 0.331 0.0165 0.412 0.0164 0.283 0.124

Square (sim.) 0.296 1.51e-04 0.309 1.84e-03 0.312 9.98e-04 0.316 9.01e-04
Square (sim.+ vibration) 0.326 2.13e-03 0.386 2.28e-03 0.357 2.22e-03 0.343 5.39e-03
Straight (sim.) 1.05 0.0141 1.39 0.223 1.20 0.415 1.10 0.0871
Left turn (sim.) 2.32 0.0298 2.77 0.234 2.45 0.176 2.36 0.0592
Right turn (sim.) 2.11 7.93e-03 2.29 0.0839 2.31 0.136 2.15 0.0225
S shaped (sim.) 0.975 4.72e-03 1.09 0.0100 1.04 9.10e-03 1.05 0.0104
Zigzag (sim.) 3.09 0.909 3.25 1.14 3.63 1.11 3.42 0.986
Average 1.30 0.123 1.48 0.214 1.46 0.234 1.38 0.162
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Figure 11. Plot of (a) x and (b) y velocity estimates for simulated right turn trajectory.

Figure 12. Plot of (a) x and (b) y velocity estimates for simulated s-shaped trajectory.

Figure 13. Plot of (a) x and (b) y velocity estimates for simulated zigzag trajectory.

Table 5. Comparison of MSVEs for the different quality IMUs.

Clockwise Anticlockwise

1 (ms−1) 2 (ms−1) 3 (ms−1) 1 (ms−1) 2 (ms−1) 3 (ms−1) Av. (ms−1)

MPU 5.02e-3 0.0139 6.67e-3 1.92e-3 2.16e-3 1.82e-3 5.25e-03
MTi 2.10e-3 3.32e-04 1.29e-03 4.25e-4 2.92e-4 3.49e-4 7.98e-04
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Figure 14. Estimated trajectories for the simulated (a) square, (b) left turn, (c) right turn, (d) s-shaped, (e) straight and (f ) zigzag cases.

Figure 15. Estimated trajectories for the simulated square with
vibration disturbances.

the lowest error for each trajectory, giving a mean MSVE
about 25% lower than the best performing optimized
baseline. Althoughonly amarginal improvement inWRVE
of 2%against theMahony filter is seen in the left and right
turns, this is expected as these are the least dynamic of

the trajectories and hence an adaptive gain offers a small
improvement. In contrast, theproposedmethodachieves
a greater reduction in WRVE of 7% on the more dynamic
zigzag trajectory. Although these improvements appear
small, their positive impact after integration is shown in
the trajectories in Figure 14.

Figure 15 compares the estimated trajectories obtai
ned by the algorithms on the simulated square data with
vibration disturbance. The proposed method is seen to
be the most robust, retaining an accurate heading of the
IMU for longer than the other methods. The competitive
methods do not perform as well due to their constant
parameters and are thus unable to reject thedisturbances
resulting in orientation errors.

Lastly, from Table 5 it is seen how theMTi IMU reduces
the average velocity errors approximately sevenfold com-
pared with the MPU. Comparing Figure 16(a) and (b),
the MTi trajectories are seen to conform more accu-
rately to the ground truth compared with the lower qual-
ity IMU which underestimates displacements. The most
likely cause of this is error in the scale factor param-
eters of the MPU’s accelerometers. The MTi conforms
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Figure 16. (a) anticlockwise and (b) clockwise trajectory for MTi and MPU IMUs.

closely to the ground truth because of the careful
factory calibration of the accelerometers described in the
datasheet.

Despite improvements in error metrics, large errors
remain in some of the estimated velocities and resulting
trajectories, particularly those in Figure 14(d,f). These tra-
jectories being the more dynamic of the test set suggest
that the limited sampling rate of 100Hz is the primary
cause of error. While 100Hz matches the sampling rate
used in the experimental data, it can cause accelerations
and angular velocities of frequencies greater than the
Nyquist limit to be aliased down to lower frequencies and
carried along as errors in velocity and position. This is
thought to be a significant contributor as, referring to Fig-
ures 12 and 13, velocity errors are induced at trajectory
waypoints where sharp changes in velocity occur. This
hypothesis could be validated by increasing the sampling
frequency of the simulated data and analyzing the effect
on the velocity error.

5. Conclusion

This work proposes the novel tuning of a complementary
orientation filter by optimizing its gain using a GA. The
bespoke GA is shown to compute generations faster than
two competitive algorithms. After performing the param-
eter search on an experimental data set, the input-output
surface from the resulting FIS is shown to be transparent
and interpretable. The fitness of a genome is not basedon
orientation directly but on the error between estimated
and ground truth velocities in the locally-level reference
frame. The novel approach is thus termed indirect and
benefits from requiring a single calibrated camera and
IMU for data acquisition.

A new temporally agnostic velocity error metric, the
WRVE, is also introduced. As a relative error metric, it is
better suited to the inertial tracking problem because it is
inherently a relative estimation (dead reckoning)method.
The metric is also weighted based on the rate of turn and
vibrational content of the sequence which other metrics
such as theMSVE do not consider. TheWRVE is thusmore
useful in cases where accurate velocities under highly
dynamic conditions or vibrations are of interest.

The results show theGA-based tuningmethod reduces
the average WRVE by 10% compared with the mean
WRVEs of the baselines. The MSVE is reduced by 25%
on average compared with the best performing constant
gain filter (Mahony). The improved accuracy of veloc-
ity estimation is achieved through better differentiation
between the reaction force due to gravity and transla-
tional accelerations due to motion.

Despite improvements, some of the tuned trajectories
still do not come close to conforming with the ground
truth. Possible causes of this include scale factor errors in
the sensormodels and the limited sampling rate of 100Hz
used in the data. Both can be validated by modifying the
model and simulation properties and will be the subject
of future work.

Due to their implicit dependence on accurate orien-
tation, the tuning method may improve the positional
tracking accuracy of other tracking methods in literature,
whether based on strapdown inertial navigation or data
driven. It is also a flexible approach as other parame-
ters can be introduced and tuned by the GA such as
accelerometer bias and scale factors.
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