

Aalborg Universitet

Flexible M-QAM Modulator and ScalableFFT/IFFT: Design and Implementation for a
SDRMulti-carrier Transmitter with Link Adaptation
Lal, Shradha; Kaur Warar, Shabanpreet; Popp, Andreas; Le Moullec, Yannick

Published in:
Proceedings of the 5th Karlsruhe Workshop on Software Radios

Publication date:
2008

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Lal, S., Kaur Warar, S., Popp, A., & Le Moullec, Y. (2008). Flexible M-QAM Modulator and ScalableFFT/IFFT:
Design and Implementation for a SDRMulti-carrier Transmitter with Link Adaptation. In Proceedings of the 5th
Karlsruhe Workshop on Software Radios (pp. 27-34). Institut für Nachrichtentechnik, Universität Karlsruhe (TH).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60402521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/flexible-mqam-modulator-and-scalablefftifft-design-and-implementation-for-a-sdrmulticarrier-transmitter-with-link-adaptation(db4e06e0-ccd0-11dc-8dd8-000ea68e967b).html

This is the author’s version of the paper published on the Proceedings of the 1
5th Karlsruhe Workshop on Software Radios, 2008

Abstract-- In this work a flexible Orthogonal Frequency
Division Multiplexing (OFDM) transmitter chain is
considered with the main focus on three blocks namely: link
adaptation, modulation and Inverse Fast Fourier Transform
(IFFT) complying with the two communication standards
IEEE 802.11a (WiFi) and 802.16d (WiMax). The Xtreme
Development Kit-IV with Xilinx Virtex-4 FPGA is used as
the target hardware platform. Since both IEEE 802.11a and
802.16d build upon OFDM-modulation, Multi-level
Quadrature Amplitude Modulation (M-QAM) modulator
and IFFT operation were chosen as the common blocks for
the implementation. Based on the parameterization of these
standards, flexibility and scalability are introduced in the
modulator and IFFT, respectively, so that the same
structure may be switched by parameters according to the
requirements of both the standards.

Index Terms—Scalable, flexible, parameterizable, M-QAM,
modulation, IFFT.

I. INTRODUCTION
The worldwide growth in wireless communication
technologies and equipments has fueled the
existence of multiple standards which has led to the
growing interest in creating a single architecture for
wireless devices. With the advancement in the
digital signal processing solutions, the software
driven flexibility and ability to change air-interface
baseband subsystems through software began to
appear [1]. Thus, the term Software Defined Radio
(SDR) was coined as one solution to converge the
diverse communication standards into one terminal
to enable the end users to move freely anywhere and
anytime while using seamless services [2].

The existing multi-carrier technologies can bring the
vision of a common hardware platform to reality [3].
This is because the recent trends in wireless
communications are high throughput, seamless
mobility and a wide variety of multimedia
applications. These require significant increase in
spectral efficiency and very high data rates and as an
answer, OFDM as a multi-carrier modulation
technique has been recognized especially
appropriate to achieve high data rates in delay-
dispersive environments. OFDM is being adopted by

most of the existing and next generation wireless
communication standards. M-QAM modulation and
IFFT being the core blocks of an OFDM transmitter
in IEEE 802.16d and IEEE 802.11a, are considered
for implementation in this work. The system
parameters considered are modulation format,
number of subcarriers, system bandwidth and carrier
frequency as shown in Table 1.

Table 1: System specifications of the design to be
implemented.

Parameters Specifications
System bandwidth 20 MHz (common)
Carrier frequency 2.4 GHz (common)
Number of subcarriers
(FFT points)

64 (802.11a)
256
(802.16d)

Modulation schemes BPSK, QPSK, 16-QAM,
64-QAM (802.11a)
BPSK, QPSK, 16-QAM,
64-QAM,256-QAM (802.16d)

System reconfiguration may be implemented
utilizing three different techniques, namely; (i)
Exchange of complete radio module, (ii) Exchange
of (a) single component(s) within a module, (iii)
Using parameterized radio modules [1]. In these
cases (as in this paper), where similarities among
communication standards are predominant (as can
be seen in Table 1), parameterized radio modules
can create a structure that may be switched by
parameters to realize the different standards.
Methods for implementing parameterizable
Baseband modulator and IFFT architecture are
proposed here.

The M-QAM modulator is flexible to accommodate
the modulation schemes specified by both standards.
The inherent similarity between QAM constellations
is exploited to avoid redundant hardware usage. The
implemented architecture utilizes a single LUT for
all the modulation schemes. A simple concept for
minimizing the redundant hardware by exploiting

Shradha Lal, Shabanpreet Kaur Warar, Andreas Popp, Yannick Le Moullec
Center for Software Defined Radio, Fr. Bajers Vej 7, A3, Aalborg University, DK-9220 Aalborg Ø,

Denmark
{shradha|shaban|anp|ylm}@es.aau.dk

Flexible M-QAM Modulator and Scalable
FFT/IFFT: Design and Implementation for a

SDR Multi-carrier Transmitter
with Link Adaptation

This is the author’s version of the paper published on the Proceedings of the 2
5th Karlsruhe Workshop on Software Radios, 2008

the commonality in the M-QAM constellations is
proposed. This implementation is named as flexible
implementation of modulation schemes. A single
LUT serves as a common hardware for all QAMs in
this implementation.

The two standards use the modulation schemes:
BPSK, QPSK, 16-QAM, 64-QAM and 256-QAM.
Gray code is used for the mapping of symbols so
that the bits in error are as small as possible. A new
flexible modulator is implemented and compared
with the modulator where each modulation scheme
has a dedicated LUT. We mention the latter one as
conventional implementation throughout the paper.
In the implementation process, each subcarrier is
assigned a different modulation scheme according to
the link adaptation algorithms. The data bits are
given as input to the modulator block serially.

It is a general practice to implement the modulator
of OFDM transmitter using as many LUTs as there
are modulation schemes. Although the constellation
diagram of different level modulation is represented
in hierarchal fashion, no implementation which
exploits a single LUT for all the constellation points
has been discussed in the literature, despite the fact
that illustration has been given of a smaller-level
QAM forming a subset of a higher-level QAM [4-8].
However, and to the best of our knowledge, no
actual implementation of M-QAM modulator in
terms of hierarchy has been presented. Figure 1
shows conventional implementation of the
modulator using five modulation schemes and five
LUTs.

An OFDM transmitter requires the implementation
of an Inverse Discrete Fourier Transform (IDFT).
IDFT converts the signal from frequency domain to
time domain and is calculated by the following
equation:

where, N is number of samples, the size of IFFT,
x(n) is vector of N-real time samples, X(k) is size N
complex vector and WN is the twiddle factor or the
phase factor. The computation of an IDFT is usually
performed using an IFFT algorithm due to its low
complexity and thereby easier hardware
implementation.

BPSK?

QPSK?

16-QAM?

64-QAM?

256-QAM?

Symbol
Calculation

no

no

no

no

Number of input bits

LUT 1 I

Q
yes

yes

yes

yes

yes

Symbol
Calculation

Symbol
Calculation

Symbol
Calculation

Symbol
Calculation

LUT 2

LUT 3 I

QLUT 4

LUT 5 I

QLUT 6

LUT 7 I

QLUT 8

LUT 9 I

QLUT 10

Figure 1: The conventional method for the

implementation of M-QAM modulator utilizing ten
LUTs for five modulation schemes.

This paper presents the implementation of a IDFT
with radix-4 FFT algorithm in the decimation-in-
frequency (DIF) for 64-point and 256-point IFFT
used for OFDM modulation in WLAN (IEEE
802.11a) and WiMAX (IEEE 802.16d), respectively.
The radix-4 IFFT algorithm is selected based on the
trade-off between complexity, resource requirement
and computational delay. However, the choice of
radix-4 limits the IFFT size to a power of 4 (i.e., N =
4

v
).

The IFFT block is designed in such a way that the
same structure can be used by both standards for the
generation of subcarriers. A modular structure of
IFFT is developed based on radix-4 FFT algorithm.
The implemented IFFT is made scalable to
accommodate any number of IFFT points provided
that the number is a power of 4.

The implementation of blocks is done using the
Handel-C language. However, the design is
simulated using MATLAB. The paper is organized
as follows: Section II presents the design and
implementation details of the modulator and the
IFFT blocks. The results obtained are included in
Section III. The paper concludes in Section IV.

,)(1)(
1

0
∑
−

=

−=
N

k

kn
NWkX

N
nx 10 −≤≤ Nn

This is the author’s version of the paper published on the Proceedings of the 3
5th Karlsruhe Workshop on Software Radios, 2008

II. II. DESIGN AND IMPLEMENTATION OF
THE MODULATOR AND THE IFFT

A. M-QAM Modulator
Modulation scheme plays a very important role in
hardware implementation, so the choice of
modulation scheme should have a balanced trade-off
between its design complexity and signal
performance. This paper claims to devise a new
form of implementation for the M-QAM modulator.
With the help of BER plot, it has been shown that
flexible implementation gives almost the same
performance as the conventional way of
implementing the modulator but at the benefit of less
hardware usage and simple computations.

In conventional implementation, individual LUTs
are used for different modulation schemes. The
binary bit stream of length n passed through a n-bit
serial-to-parallel converter to determine a symbol.
Each symbol point in the constellation has an
individual bit code. By an observation, the symbols
for different modulation schemes are determined as
follows:

• In QPSK, each symbol is determined as b1*2
+ b0 and then mapping is done using a LUT.

• Symbol for 16-QAM is calculated as b3*8 +
b2*4 + b1*2 + b0.

• Symbol for 64-QAM is calculated as b5*32
+ b4*16 + b3*8 + b2*4 +b1*2 + b0.

• Symbol for 256-QAM is calculated as
b7*128 + b6*64 + b5*32 + b4*16 + b3*8 +
b2*4 + b1*2 + b0.

From the above calculations, it can be generalized
that for M-QAM, (log2M - 1) multiplications and
(log2M - 1) additions are required for determining
each symbol.

Normalization factor: For each modulation
scheme, I and Q values are scaled by normalization
factor. It is done so that the average power of all
points in the constellation equals unity. Table 2 lists
the normalization factor for BPSK, QPSK, 16-QAM,
64-QAM and 256-QAM [5, 9].

Table 2: Normalization factor for all modulation
schemes.

Modulation

Scheme
Normalization

factor
BPSK
QPSK

16-QAM
64-QAM
256-QAM

1
1/√2

1/√10
1/√42

1/√170

During the implementation of modulator blocks, it
can be noticed that different modulation schemes
can be represented as sub-set of higher modulation
schemes as shown in Figure 2. Using two points
from QPSK constellations, i.e. {1+j, -1+j}, can
produce BPSK. Thus, the BPSK can also be
theoretically designed in an I-Q modulation format
[4]. QPSK can also be called 4-QAM, because it
uses four constellation points in I-Q modulation. In
Figure 2, BPSK, QPSK, 16-QAM are represented as
a sub-set of 64-QAM. In turn 64-QAM forms a sub-
set of even higher level QAM. It is quite obvious
from the figure that same set of constellation points
can be used for lower-level modulation schemes.

Figure 2: The constellation diagram for the flexible
M-QAM showing that the lower-order modulation

schemes are a subset of 64-QAM.

For example, 16-QAM can use the constellation
points of 64-QAM and of higher level QAMs. Thus,
unlike conventional implementation which uses
different LUTs for every modulation scheme, this
implementation uses one LUT for all the modulation
schemes. A LUT stores all the possible values which
a particular modulation scheme may require to map
the bits into symbols to be transmitted. After the
mapping from LUT, I and Q are scaled by
normalization factor as in conventional modulation.
To further reduce the computation, I and Q
calculations are treated separately. The values of I is
determined by even incoming bits and Q is
determined by odd bits. For example:

• If there are two input bits for QPSK b1 and
b0. The value of I is directly determined by
b0 and Q is determined by b1.

• For 16-QAM, I can be determined by b2*2
+ b0 and Q can be determined by b3*2 + b1.

This is the author’s version of the paper published on the Proceedings of the 4
5th Karlsruhe Workshop on Software Radios, 2008

Generalizing from the determination of I and Q for
4-QAM and 16-QAM, the total number of
multiplications/additions required for mapping of
each symbol is log2M/2 -1.

The number of multiplications/additions required for
flexible implementation when compared with the
conventional implementation is always less. For 16-
QAM, the number of multiplications/additions
required in conventional implementation is log2M -
1= log216 -1 = 3, however, in this implementation
only log2 (M/2) -1 = log2 (16/2) -1 = 2 multiplica-
tions and 2 additions are required. When dealing
with a large number of subcarriers, this reduction in
calculations saves (1 multiply and 1 addition
operation for 16-QAM) significant hardware
resources being utilized at the time of computations.

Figure 3 shows the block diagram for flexible
implementation. Five modulation schemes have
been implemented. The rhombuses show the
modulation schemes. The ‘No. of bits’ define the
modulation scheme being selected. For example, if
modulation scheme for a subcarrier is 16-QAM, the

I and Q signals are calculated by taking two odd and
two even bits. I for 16-QAM is obtained by shifting
the bit b2 by one positions left and then adding it to
b0 and Q for 16-QAM is obtained by shifting the bit
b3 by one positions left and then adding it to b1.
Whichever a scheme is selected, it accesses the same
LUT for the required symbol mapping. A left shift
by 1 multiplies the value by 2. Thus, the multiply
operation is avoided by the use of shift operation in
flexible M-QAM implementation.

Table 3 (a) and (b) show the common LUT used for
all modulation schemes where the even bits
determine the I signal and the odd bits determine the
Q signal, the only difference between the LUT for Q
signal and I signal is the negative sign. So, LUT for I
can be used for Q and can be obtained by negating
the LUT for I. Thus, a single LUT stores the values
for all modulation schemes in flexible
implementation. For flexible modulation, the
normalization factor of BPSK modulation is 1/√2
and there is no change in normalization factor for
other modulation schemes.

No

Yes

Symbol_I=b0
Symbol_Q=0

No

Symbol_I=Symbol_I+(b2<<1)
Symbol_Q=Symbol_Q+(b3<<1)

No

No

 No. of bits >2

 No. of bits >0

Yes

Yes

Yes

 No. of bits >4

 No. of bits >6Symbol_I=Symbol_I+(b4<<2)
Symbol_Q=Symbol_Q+(b5<<2)

Symbol_I=Symbol_I+(b6<<3)
Symbol_Q=Symbol_Q+(b7<<3)

I = 0
Q = 0

 No. of bits >1

Yes

Symbol_I=b0
Symbol_Q=b1

No

No modulation

BPSK

QPSK

16 QAM
Access

LUT for
mapping

the
symbol

256 QAM

I

Q

Switch

64 QAM

LUT: Look-Up Table,

bn : Position of the bit,

 << : Shift operation

Figure 3: The logic for the implementation of flexible M-QAM modulator which utilizes one LUT for five

modulation schemes.

This is the author’s version of the paper published on the Proceedings of the 5
5th Karlsruhe Workshop on Software Radios, 2008

Table 3: LUT for In-phase and Quadrature-phase
signals in flexible M-QAM modulator.

(a) (b)

b6 b4 b2 b0 I b7 b5 b3 b1 Q
 0 0 0 0 -1 0 0 0 0 1
0 0 0 1 1 0 0 0 1 -1
0 0 1 0 -3 0 0 1 0 3
0 0 1 1 3 0 0 1 1 -3
0 1 0 0 -7 0 1 0 0 7
0 1 0 1 7 0 1 0 1 -7
0 1 1 0 -5 0 1 1 0 5
0 1 1 1 5 0 1 1 1 -5
1 0 0 0 -11 1 0 0 0 11
1 0 0 1 11 1 0 0 1 -11
1 0 1 0 -13 1 0 1 0 13
1 0 1 1 13 1 0 1 1 -13
1 1 0 0 -9 1 1 0 0 9
1 1 0 1 9 1 1 0 1 -9
1 1 1 0 -15 1 1 1 0 15
1 1 1 1 15 1 1 1 1 -15

B. IFFT
IFFT consists of butterflies organized in different
stages. In each stage, the butterflies are divided into
groups. Each group is further divided into 4 sub-
groups. The terms stage, group, sub-group and
element are illustrated in Figure 4, where a complete
64-point radix- 4 DIF IFFT is shown. The number of
stages in N-point IFFT is log4N.
 64-point IFFT computation is done in log464 = 3
stages. The twiddle factors, the number of groups in
each stage and the butterflies in each group are
summarized in Table 4.

Table 4: Initializations required for N-point radix-4

IFFT

It can be seen in Figure 4 that IFFT has an iterative
nature. This provides scalability to IFFT which is
exploited in this work. Table 5 shows the twiddle
factors for each stage for IFFT-64 and IFFT-256.
The twiddle factors for IFFT-64 are a sub-set of
twiddle factors for IFFT-256 so, same twiddle factor
table can be used for both the IFFTs.

Figure 4: 64-point decimation-in-frequency radix-4

IFFT showing stages, groups, subgroups and
elements.

Table 5: Twiddle factor table for IFFT-64 and

IFFT-256.

Also, all the stages can be generalized as one block
due to their similarity of operation. This block is
named as “IFFT stage” in the paper. The “IFFT
stage” computes the IFFT calculations for a stage
and the Look Up Tables (LUTs) for twiddle factors
are initialized in IFFT stage. So, instead of
implementing all the stages for both the IFFTs (256
and 64), only one “IFFT stage” is recursively used to
calculate IFFT. Figure 5 illustrates the block
diagram developed to implement “IFFT stage”
which is enclosed in the dashed box in the figure.
Since, the twiddle factors for 64-IFFT are subset of
256-IFFT so, only one LUT for 256 point IFFT is
initialized. The input to the stage is the IFFT size.
Then, the inputs/elements are divided into groups
and sub-groups. The radix-4 computation is done by
taking the ith element of each sub-group.

Stage Twiddle factor for 64-
point IFFT

Twiddle factor for 256-
point IFFT

1 W64
0n, 1n, 2n, 3n ; n=0 to 15 W256

0n, 1n, 2n, 3n; n=0 to 63

2 W64
0n, 4n, 8n, 12n; n=0 to 3 W256

0n, 4n, 8n, 12n; n=0 to 15

3 W64
0n, 16n, 32n, 48n; n=0 W256

0n, 16n, 32n, 48n; n=0 to 3

4 - W256
0n,64n,128n,192n ; n=0

Stage 1 2 3 (log2N)/2
Twiddle
factor

WN
0n, 1n, 2n,

3n
n=0 to
(N/4)-1

WN
0n, 4n,

8n, 12n
n=0 to

(N/16)-1

WN
0n, 16n, 32n,

48n
n=0 to

(N/64)-1

WN
0n,

(N/4)n,

(N/2)n,

(3N/4)n

n=0
Groups 1 4 16 N/4
Butterflies in
each group

N/4 N/16 N/64 1

 Group

 Sub-group

. .

 Elements of
Sub-group Group 1

 Group 2

 Group 3

 Group 4

 Sub-group

 Sub-group

Sub-group

Group

Group 4

Group 3

Group 2

Group 1

Sub-group

Sub-group
elements

This is the author’s version of the paper published on the Proceedings of the 6
5th Karlsruhe Workshop on Software Radios, 2008

“IFFT Stage” “IFFT Stage” “IFFT Stage”
Input to

IFFT
IFFT

Output

Stage 1 Stage 2 Stage 3

Streaming
Input/

 Input from
 previous stage

Mapping
onto groups

and
sub-groups

Radix-4
IFFT

Butterfly

Scrambling
of elements

 for the
last stage

LUT for
Twiddle
 Factors

N

IFFT Stage

Output
of stage

Figure 5: Representation of three stages of a 64-
point IFFT in the terms of IFFT stage and the block

diagram of IFFT stage.

This procedure is repeated for all the elements in
sub-group and all the groups in a stage. The results
from the radix-4 computation are multiplied with the
twiddle factors and the output is given to the next
stage.

An analogy of Figure 4 is shown in the term of
"IFFT stages" in Figure 5. It is shown in Figure 5
that the same "IFFT stage" can be used for all the
three stages in 64 point IFFT. This concept can be
generalized and can be extended to all IFFT sizes.
The algorithm used for IFFT computation is shown
in Figure 6. In the algorithm, the size of the IFFT is
the only input that is required. The twiddle factors
for different stages are stored in LUTs. The
algorithm consists of one radix-4 IFFT block and
one multiplier for twiddle factor multiplication. With
this the same implemented IFFT can be used for
64/256 point IFFT and any higher order IFFT,
provided that the IFFT size is a power of 4.

The calculations as shown in Figure 6 are given as;
Number of stages, N_stage = log4N; Number of
groups in each stage, N_group = 4n_stage-1 and
Number of elements in sub-group, N_element= N/
(4*N_group). The algorithm iterates once for each
stage in IFFT-64. Further, the iterations in each
stage depend on the number of groups and the
number of elements in each sub-group. The
calculation for a group is done by taking an element
from each sub-group, computing the radix-4 IFFT
and multiplying with the twiddle factor. Similar is
repeated for all the groups in a stage. The output
from the first stage goes as input to the second stage
and the algorithm iterates three times for IFFT-64.
For 256 point IFFT, the algorithm will iterate four
times as it has four stages.

Input IFFT size

Is present
stage(n_stage)< N_stage?

Is present group
 (n_group) <= N_group?

Calculate number of stages (N_stage) in IFFT

Calculate N_group and N_element

Select n_element from each sub-group

Compute radix-4 IFFT and multiply with twiddle factors

Update n_element

Yes

IFFT Output

Is present element
(n_element)<=N_element?

Yes

Yes

No

No

No

Update n_group

Update n_stage

N_stage=Number of stages in IFFT, n_stage=Present stage,
N_group=Number of groups in the stage, n_group=Present group,
N_element=Number of elements in sub-group, n_element=Present element

Figure 6: Flow diagram for the algorithm developed
for the IFFT implementation.

During the implementation of the IFFT block
following considerations are done:
• Fixed point implementation in Handel-C

language is used to design the IFFT architecture.
• Shared hardware is used for fixed point

operations such as multiplication, addition and
subtraction. The sharing of hardware is done by
making a function for each operation.

• The real and imaginary parts in FFT calculation
are handled separately because in many cases
they are swapped to obtain a complex number.
Storing them separately saves the extra
computation in generating a complex number.

• All the twiddle factors that are required at
various stages for being multiplied to the data
points are computed once and then stored in a
look up table.

This is the author’s version of the paper published on the Proceedings of the 7
5th Karlsruhe Workshop on Software Radios, 2008

III. III. RESULTS

A. M-QAM Modulator
The results obtained by Handel-C implementation of
conventional and flexible implementation are shown
in Table 6. The table lists the average number of
NAND gates, flip-flops and memory bits required in
the implementations for 16 sub-carriers.

Table 6: Hardware required by LUTs in the
conventional and the flexible implementations of M-

QAM for 16 sub-carriers.

Implementation N
o. of L

U
T

s

N
A

N
D

G

ates

Flip-Flops

M
em

ory
bits

C
lock

C
ycles

Conventional 10 17077 358 1704 353
Flexible 1 2571 149 80 406

Flexible implementation takes 12.5% more clock
cycles than conventional implementation due to the
extra steps used to calculate a symbol for higher
order modulation schemes. Even when a modulation
scheme used is higher than 256-QAM, the size of
the LUT does not increase significantly. This is
because for conventional M-QAM, two LUTs (one
for I and one for Q) are required whose size is M*1
while for flexible M-QAM, one LUT of √M is
required. If the highest modulation scheme is 256-
QAM, the size of LUTs for I and Q is 256*1 for
conventional implementation while for flexible
implementation of 256-QAM one 16*1 LUT is
required. Similarly, the size of LUT is 1024*1 and
32*1 for conventional and flexible 1024-QAM
respectively. The results obtained by conventional
and flexible implementation of modulator using ISE
8.1i are shown in Table 7.

Table 7: ISE results for conventional and flexible M-

QAM modulator

Logic Utilization Conventional Flexible
Number of 4 input
LUTs

37 5

Number of occupied
XtremeDSP slices

38 16

Total equivalent gate
count for the design

694 238

In order to validate the signal quality of the
modulator, a curve is plotted to see the bit error rate
for both the types of implementation in MATLAB.
Figure 7 shows BER versus SNR plot for 16-QAM
modulators. The Additive White Gaussian Noise

(AWGN) noise is added to the modulated signal and
then the signal is demodulated to obtain the BER for
the modulation scheme. A comparison is made
between the flexible, conventional modulators along
with the 16-QAM MATLAB modulator which is
both gray-coded and non gray coded. The theoretical
plot is a curve obtained from the in-built MATLAB
instruction for the BER of QAM in AWGN channel
is used as a reference. The BER plots for
conventional and flexible implementation gives
similar results to MATLAB 16-QAM modulator.

Figure 7: BER vs SNR curves comparing
performance of conventional and flexible

implementations of 16-QAM modulator with the
theoretical 16-QAM.

B. IFFT
The implementation of 256-point IFFT takes 5.51
million NAND gates while the scalable
implementation of 64 point and 256 point IFFT
takes 1.35 million NAND gates. This results in 75%
reduction in hardware usage by the use of scalable
IFFT. The estimation of NAND gates required for
the implementation of IFFT with 16 sub-carriers in
DK4 Design Suite is 61297 and the estimated Flip
Flops are 1490. The ISE implementation of 16-point
IFFT occupies only 16% of the XtremeDSP slices in
Virtex-4 FPGA.

In order to validate the design of IFFT, it is
simulated in MATLAB. The output of the algorithm
simulated in MATLAB is compared to the output of
the in-built ’ifft’ function in MATLAB. The real and
imaginary parts of the output from algorithm for 256
point IFFT and the output of in-built ’ifft’ function
are compared. The difference between the two
outputs is of the order of 10-16. Also, validation of
the implemented design of IFFT in Handel-C is
done. Table 8 shows the result obtained from the
testing of IFFT block for 4 inputs in Handel-C
compared to the algorithm in MATLAB.

This is the author’s version of the paper published on the Proceedings of the 8
5th Karlsruhe Workshop on Software Radios, 2008

 Table 8: Testing results of IFFT block by
comparing outputs from Handel-C and MATLAB.

Input MATLAB Output Handel-C Output
1+j 0.25-0.25j 0.25-0.25j
1-j 0.25+0.75j 0.25+0.75j
0 0.25+0.75j 0.25+0.75j

-1-j 0.25-0.25j 0.25-0.25j

The testing is done by black box testing method.
Same inputs are given to the algorithm in Handel-C
and algorithm in MATLAB and the outputs are
compared. It can be seen from the table, that the
outputs are same which validates the design of
scalable IFFT in Handel-C.

IV. CONCLUSIONS
This paper proves that the exploitation of inherent
aspects of communication standards is a promising
approach towards an efficient SDR implementation.

First of all, two implementation approaches
(conventional and flexible) for a M-QAM modulator
in a transmitter are discussed. It can be noticed that
same performance is achieved at the benefit of less
hardware resources (the flexible implementation
takes 35 % of the conventional implementation).
The proposed flexible implementation is
advantageous in the sense that it requires less
computation and also uses less hardware than the
conventional implementation. Generally, in
conventional implementation for BPSK, QPSK, 16-
QAM, 64-QAM and 256-QAM modulation modes,
ten LUTs (two for each mode, one LUT for I and
one for Q) are used, whereas for the flexible
implementation and for the same set of modulation
modes, only one LUT (for both I and Q) for 256-
QAM serves as the LUT for all lower modulation
schemes.

Moreover, the implementation of a scalable IFFT for
a flexible SDR platform is discussed for building a
parameterizable IFFT/FFT architecture that
implements the IFFT/FFT block in such a way that it
can be used for any OFDM-based standard. A case-

study illustrates our approach and shows that the
hardware usage decreases by almost 25% (from 5.51
million to 1.35 million) NAND gates for the
scalable, FPGA-based, implementation of a 64/256
points IFFT.

IV. REFERENCES:
[1]. Mitola J., "Cognitive Radio: An Integrated Agent
Architecture for Software Defined Radio", Ph.D.
dissertation, Royal Institute of Technology (KTH), 2000.

[2]. Tuttlebee W., Software Defined Radio Baseband
Technology for 3G Handsets and Basestations, John
Wiley and Sons, LTD, 2004, pp.338, ISBN: 0-470-86770-
1.

[3]. Nassar C. R., Natarajan B., Wu Z., Wiegandt D.,
Zekavat S. A. and Shattil S., Multi-carrier Technologies
for Wireless Communication, Kluwer Academic
Publishers, 2002, ISBN: 0-7923-7618-8.

[4]. Muhammed I. R.,"Design and Implementation of an
OFDM modem in FPGA for WLAN/WPAN",MSc Thesis,
Aalborg University, January 2003.

[5]. "Constellation Mapper and Demapper for WiMAX",
Altera Corporation, Application Notes 439, September
2006, version 1.0

[6]. Vitthaladevuni P. K. and Alouini M. S., "BER
Computation of 4/M-QAM Hierarchical Constellations",
IEEE Transactions on Broadcasting, Vol. 47, No. 3,
September 2001.

[7]. Howald R. L., "QAM Bulks Up Once Again-
Modulation to the Power of Ten", In Proceeding Manual
and Collected Technical Papers, SCTE Cable-Tec Expo
2002, San Antonio,
Tex.:http://broadband.motorola.com/ips/pdf/QAM.pdf

[8]. Soltanian A., "Coexistence of Ultra-Wideband System
and IEEE 802.11a WLAN", NIST WCTG Report, April
2003 (Revised October 2003).

[9]. Li X., Liu N., Pei C., Yi K. and KouW., "Design and
Analysis of High Speed WLAN Systems with Adaptive
Margin Technology", International Conference on
Parallel and Distributed Computing, Applications and
Technologies, pp. 284-287, 2005.

	I. Introduction
	II. II. DESIGN AND IMPLEMENTATION OF THE MODULATOR AND THE IFFT
	A. IFFT

	III. III. RESULTS
	IFFT

	IV. Conclusions
	References:

