

Aalborg Universitet

Electrical, rheological and thermal study of dynamic behavior in glass forming liquids

Keding, Ralf; Flügel, S.; Ehrt, D.; Yue, Yuanzheng

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Keding, R., Flügel, S., Ehrt, D., & Yue, Y. (2007). Electrical, rheological and thermal study of dynamic behavior in glass forming liquids. Abstract from International Congress on Glass, Strasbourg, France.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Electrical, rheological and thermal study of dynamic behavior in glass forming liquids

Ralf Keding¹, Sylvia Fügel², Doris Ehrt² and Yuanzheng Yue¹

¹Section of Chemistry Aalborg University Sohngaardsholmsvej 57 DK-9000 Aalborg Denmark

²Otto-Schott-Institut, Friedrich-Schiller-Universität Jena, Fraunhoferst.6, D-07743 Jena Germany

The electrical conductivity, the viscosity and the thermal behavior of melts and glasses in the Na₂O 2 SiO₂ system were measured in broad temperature range. The obtained data where analyzed with special focus to the non-Arrhenius behavior of the conductivity and the viscosity and the conductivity using the equation

$$\sigma = \sigma_0 \exp\left(\frac{-E_a}{k} \left(\frac{1}{t}\right)^f\right)$$

The deviation from the Arrhenius-behaviour i.e. fragility is quantified by the exponent f of the equation. The fragility of the Na₂O 2 SiO₂ system is discussed in therms of kinetics and thermodynamics.

The application of the 3 different methods will allow to experimentally access the universal dynamic behavior of melts and glasses in a broad temperature range. In contrast to viscosity measurements conductivity measurements allows to trace the iso-structure relaxation times at temperature below and above T_g using heating rates between 0.1 and 10 K/min. The interpretation allows a detailed description of the α and β relaxations in melts and glasses.