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Abstract— A new mixed method for relative error model order 
reduction is proposed. In the proposed method the frequency 
domain balanced stochastic truncation method is improved by 
applying the generalized singular perturbation method to the 
frequency domain balanced system in the reduction procedure. 
Frequency domain balanced stochastic truncation method 
which is proposed in [14] and [16] by author is based on two 
recently developed methods, namely frequency domain 
balanced truncation within a desired frequency bound and 
inner-outer factorization techniques. The proposed method in 
this paper is a carry over of the frequency-domain balanced 
stochastic truncation and is of interest for practical model 
order reduction because in this context it shows to keep the 
accuracy of the approximation as high as possible without 
sacrificing the computational efficiency and important system 
properties. It is shown that some important properties of the 
frequency domain stochastic balanced reduction technique are 
extended to the proposed reduction method by using the 
concept and properties of the reciprocal systems.   Numerical 
results show the accuracy, simplicity and flexibility 
enhancement of the method.     

I. INTRODUCTION  
Over the past two decades, model reduction methods have 
become increasingly popular [1]-[3]. Such   methods are 
designed to extract a reduced order state-space model that 
adequately describes the behavior of the system to study.  
     A low-order model for a large scale system brings us an 
easy implementation. As opposed to a high-order model that 
might require expensive or complicated hardware; the low-
order model has less complicated and more easily available 
hardware. Furthermore in the high order systems the 
analysis problems can not be solved within a reasonable 
time and cost. It is advisable then to construct a reduced 
order model that approximates the physical behavior of the 
original system.  

     The reduction techniques are divided into two broad 
categories, namely SVD based methods and moment 
matching based techniques. The first category consists of 
the methods like balanced truncation that is stability 
preserving and has an upper bound for approximation error. 
Moment matching based methods like Krylov subspace 
method can be implemented iteratively, which leads to 
numerical efficient algorithms, but these do not 
automatically preserve stability and have no error bound[1], 
[3]. Some of the proposed reduction methods are trying to 
reduce the absolute error and some others are trying to 
reduce the relative error as a measure for the approximation 
accuracy. The balanced stochastic truncation (BST) 
approach belongs to the family of relative error methods. In 
contrast to absolute error methods like the balanced 
truncation (BT) or the singular perturbation approximation 
(SPA) method, the BST method has the main advantage in  
provision of a uniform approximation of the frequency 
response of the original system over the whole frequency-
domain, and particularly, in preservation of phase 
information [4]. For example, for a minimum-phase original 
system, the BST-approximation is also minimum-phase. 
However this is not generally true for the absolute error 
methods. From a practical point of view a system is 
operating within a frequency bound and outside that the 
system shuts down. Because we do not have to keep the 
approximation good outside the operational bandwidth of 
the system, the accuracy can be increased if we confine the 
approximation within a frequency bound. Based on this 
idea, the frequency-domain balanced truncation within a 
frequency bound (FDBT) is proposed [5]-[15]. 
 Frequency-domain balanced stochastic truncation (FBST) 
is a recently developed method for relative error model 
reduction which is based on BST and FDBT 
approaches[14][16]. In this paper we propose a new method 



in which FBST and generalized singular perturbation is 
mixed. The proposed method is more accurate and more 
flexible than previous methods in the context of relative 
error model reduction like BST or FBST. The paper is 
organized as follows. In Section ІІ, we introduce some 
definitions, notations and concepts for BST. Section ІІІ 
consists of presenting the FDBT algorithm and its 
properties. In Section ІV, the FBST method based on some 
of the numerical recent algorithms like inner-outer 
factorization is presented. Section V is the main part of this 
paper in which, by applying the generalized singular 
perturbation method to the system with frequency-domain 
stochastic balanced structure, a new mixed method is 
proposed. In Section VІ, it is shown that by using the 
concept and properties of the reciprocal and σ -reciprocal 
systems, some important properties of FBST can be 
extended to the proposed reduction method. In Section VІІ, 
the proposed relative error model reduction method is 
applied to a practical CD player benchmark example and the 
results are shown. Finally in Section VІІI the conclusion is 
presented. 

 

II. BALANCED STOCHASTIC TRUNCATION MODEL 
REDUCTION 

Let ( )G s  be a MIMO square transfer matrix with a minimal 
sate space realization : ( , , , )G A B C D= and of order n . If D  
is nonsingular it is possible to compute the left spectral 
factor ( )sψ of ( ) ( )TG s G s−  satisfying: 
 
                      ( ) ( ) ( ) ( )T Ts s G s G sψ ψ− = −                         (1) 

 
The state space realization of G is called a balanced 
stochastic realization if: 
 
                       1( ,..., )G

c o nW W diagψ σ σ= =                      (2) 

Where  G
cW  is the controllability Gramian of ( )G s , the 

matrix oWψ  is the observability Gramian of ( )sψ  and iσ is 

the thi  Hankel singular value of the stable part of the so-
called “phase matrix” 1( ) ( ( )) ( )TF s s G sψ −= − . The singular 
values in (2) are ordered decreasingly [4],[17],[18]. 
We assume now that G is already stochastically balanced by 
an appropriate similarity transformation. The reduced model 
is obtained by eliminating the states related to the lowest set 
of singular values. The reduced model is stable and satisfies 
the relative error bound: 
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where r is the order of reduced model.  
This model reduction approach is called balanced stochastic 
truncation (BST) [18], [2]. 
 

III. FREQUENCY-DOMAIN BALANCED TRUNCATION 
WITHIN A FREQUENCY BOUND 

 
Consider the following thn order state-space model 
representation of an asymptotic stable LTI system: 
 

                             
x A B x
y C D u

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
                              (4) 

The problem is how to approximate the system with thr  
order state-space model: 
 
                                ( , , , )r r r rA B C D                                  (5) 

where r n<  . 
One commonly used and globally accurate approach is the 
so-called Balanced Model Reduction first introduced by 
Moore [19]. In this method, the system is transformed to a 
basis where the states which are difficult to reach are 
simultaneously difficult to observe. Then, the reduced 
model is obtained simply by truncating the states which 
have this property. Because of being operational the system 
within frequency bound, and outside that it is not important 
to have an accurate approximation the accuracy can be 
improved with applying balanced model reduction in the 
specified  frequency band [5]-[15]. 
 Controllability and observability Gramians in terms of w 
over a frequency band 1 2[ , ]w w  are defined by[5]-[15]: 
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Those are the solutions for the following Lyapunov 
equations: 
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Where F is defined by: 
 

                              2

1

1( )
w

w
F Ijw A dw−= −∫                           (8) 

 
With an appropriate similarity transformation T and change 
of the basis, the system realization in (1) can be transformed 
to a new balanced realization, so that the Gramians are equal 
and diagonal (in decreasing diagonal elements): 



 
                       1 2( , ,..., )cf of nW W diag σ σ σ= =                   (9)                      
Here we have two important theorems that give us a 
physical interpretation for the reduction procedure [5]-[15]: 
 
        Theorem 1: The frequency-domain controllability 
Gramian represents the energy flow of the system through 
each state variable within the frequency range 1 2[ , ]w w . 
 It means that if the unit white Gaussian noise test input 
signal u(t) , and state vector x(t) of the system defined as 
follows: 

2 1 2
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The energy of the system through controllability Gramian is 
as follows: 
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     Theorem 2: The frequency-domain observability 
Gramian represents the energy flow of the system through 
each state variable within the frequency range 1 2[ , ]w w . 

Consider a unit injected test signal 0x , where 
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Define output 

1
0 0( ) ( ) ( )

F
Aty t Ce x C jwI A x Y jw−⇔ − =  

The energy yE  of the system through observability 
Gramian is obtained by: 
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Now, 0x  being a white noise test signal, the result follows: 

1 2[ , ]y cfE W w w=  
From the above theorems and (9), it is understood that to 

have a good approximation, we should only truncate the 
states that are related to the lowest singular values in (9). 

This model reduction technique is called frequency-domain 
balanced truncation within a frequency bound (FDBT). This 
method is also stability preserving and provides an error 
bound for absolute error.  

 

IV. FREQUENCY-DOMAIN STOCHASTIC BALANCED 
TRUNCATION 

 
In this section a recently proposed method for large scale 
model reduction is surveyed. FBST keeps all of the 
advantages of BST and increases the accuracy of the 
approximation within a desired bounded frequency [14][16]. 
This model reduction method can easily be applied to 
models without solving Lyapunov equations by using the 
definition (6) and approximating the integral by summation 
for finding Gramians. Furthermore we can also use efficient 
available tools for solving Lyapunov equations and reach 
more efficiency. Numerical results in the next section show 
the accuracy enhancement of the proposed method.   

   In FBST algorithm like BST at first we should find the 
left spectral factor ( )sψ of ( ) ( )TG s G s−  satisfying (1). In 
order to compute the left spectral function we apply inner-
outer factorization of [4],[21] to factorize the state space 
realization 1( , , ( ) , )G T T T G T

c cN A W C BD B W D−= + − in the 
form ( ) ( )iN s sψ where ( )iN s is the inner factor and ( )sψ is 
the outer factor and the left spectral factor[4].  

 After the computation of the left spectral factor we 
change the state space representation by an appropriate 
similarity transform into stochastically balanced structure 
which we call “frequency-domain stochastic balanced 
realization”. In the frequency-domain stochastic realization, 
the frequency-domain controllability Gramian of ( )G s and 
the frequency-domain observablity Gramian of the left 
spectral factor should be equal and diagonal and the 
diagonal elements should be in decreasing order: 

                    1( ,..., )G
fc fo nW W diagψ σ σ= =                   (10) 

                     
The reduced model is obtained by eliminating the states 
related to the lowest set of singular values. The reduced 
model is also stable and satisfies the relative error bound 
similar to (3): 
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Figure (1) shows the overall algorithm of FBST method. 
 
 

V. FREQUENCY-DOMIAN MIXED METHOD FOR RELATIVE 
ERROR MODEL REDUCTION 

 



In FBST we eliminate the states related to the lowest set of 
the singular values. If we apply generalized singular 
perturbation approximation to frequency-domain stochastic 
balanced system, instead of elimination of the states, we 
obtain more accurate and more flexible method than FBST. 
  

 
Figure 1.  FBST model reduction algorithm 

 
Given a state-space realization, a singular perturbation 
approximation is obtained by approximating some subset of 
the states by constants. 
That is, if x  denotes the state vector, we partition x as the 
slow and the fast modes: 

1

2

x
x

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and set 2 0x =  

To obtain a generalized singular perturbation 
approximation, we instead approximate 2x  by a pure 
exponential [22]: 

                                     2 2x xσ=                                  (12)  
In the frequency-domain mixed method for relative error 
model reduction we apply the generalized singular 
perturbation method to the frequency-domain stochastic 
balanced system which is obtained from step 5 in FBST 
algorithm of Figure (1).  By partitioning the state vector in 
the frequency-domain stochastic balanced system into fast 
and slow modes we have: 

                 
1 11 12 1 1

2 21 22 2 2

1 2
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f

x t A A B x t
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          (13) 

and by using (12), the reduced system is obtained as: 
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       (14) 

where σ is a desired frequency in [ ]1 2,w w . 
In the frequency-domain mixed method for relative error 
model reduction like the method which is proposed in [19], 
we obtained:  

                                  ( ) ( )σ σ= rG G                           (15) 
where ( )G s is the original and ( )rG s is the reduced system 
by the frequency-domain stochastic balanced method 
within [ ]1 2,w w and for stable systems the reduced order 
system is also stable if we do not partition the system from 
equal Hankel singular values. These properties are shown 
similar to the proofs in [22] easily. 
 

VI. ERROR BOUND AND SOME OTHER PROPERTIES  
In this section, some properties of FBST reduction method 
are developed and related to the proposed mixed method by 
using the concept and properties of the reciprocal systems.  
  
Definition 1: The reciprocal system ( , , , )S A B C D  of an 
asymptotically stable system ( , , , )S A B C D is defined 
by[23]: 

                        

1

1

1

1

−

−

−

−

=

= −

=

= −

A A

B A B

C CA
D D CA B

                              (16) 

 
The following propositions summarize some properties of a 
reciprocal system[23].  
 
Proposition 1: Reciprocal mapping is a bijective mapping, 
i. e. the reciprocal of  ( , , , )S A B C D  is ( , , , )S A B C D . 
 
Proposition 2: Let 1( ) ( )−= + −G s D C sI A B  and 

1( ) ( )−= + −G s D C sI A B . Then 1( ) ( )−=G s G s . 
 
Proposition 3: The controllability and observability 
Gramians of a system and its reciprocal are the same.  
 
Proposition 4: If ( , , , )S A B C D is a minimal realization 

then ( , , , )S A B C D is also minimal.  
 
Proposition 5: The ∞H -norm is invariant under the 
reciprocal transformation.  



                          ( ) ( )
∞ ∞
=G s G s                       (17) 

 
Proposition 6: If ( , , , )S A B C D is a minimal realization of 
an asymptotically stable minimum phase system then 

( , , , )S A B C D is also minimal, asymptotically stable and 
minimum phase. 
 
Theorem 3: Consider a minimal realization of an thn order 
asymptotically stable system ( , , , )S A B C D and let 

( , , , )S A B C D  be its corresponding reciprocal system. Let 
( , , , )r r r rS A B C D be the thr order reduced model of 
( , , , )S A B C D  by applying the proposed mixed method 

with 0σ = and ( , , , )r r r rS A B C D  be the thr order reduced 

model of ( , , , )S A B C D  by applying FBST. Then 

( , , , )r r r rS A B C D is the reciprocal of ( , , , )r r r rS A B C D .  
 
The proof for Theorem 3 is similar to the same theorem in 
[23] which is proposed for BST. The only difference is we 
apply the frequency domain balancing instead of the 
ordinary balancing in our reduction procedure.  
In view of this important theorem and the above 
propositions many results concerning the properties of 
reduced models obtained by using FBST can be extended to 
the mixed method reduced model for 0σ = . 
In addition to having the best low frequency behavior 

(0) (0)= rG G , the new mixed model reduction method 
0σ = is stability and passivity preserving and has the same 

error bound as what we have for FBST.     
The following is a definition which enables us to study the 
properties of the proposed method for allσ . 
 
Definition 2: The σ -reciprocal system ( , , , )σ σ σ σS A B C D  
of an asymptotically stable system ( , , , )S A B C D is defined 
by [24]-[26]: 
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           (18)                           

 
Similar to Theorem 3, the following is a theorem which 
shows the connection between general proposed mixed 
method.  
and FBST and it is obtained easily from the above definition 
and theσ -reciprocal properties . 
 
Theorem 4: The reduced plant which is obtained by 
applying the general mixed model reduction method is the 

σ -reciprocal of the reduced plant which is obtained by 
applying FBST to σ -reciprocal of the full order system.  
 
The proof of the above theorem is similar to the proof of the 
theorem in [23] which is proposed for the BST. 
Based on Theorem 4 and some other properties of σ -
reciprocal, many results concerning the properties of 
reduced models obtained by using FBST can be extended to 
the general mixed method reduced model. 
For example based on Theorem 4 and the following 
proposition it can be easily shown that the proposed general 
mixed reduction method has the same error bound as the 
FBST[26]. 
 
Proposition 7: consider a realization of a system 

( , , , )S A B C D with transfer matrix ( )G s and let 

( , , , )σ σ σ σS A B C D  be its σ -reciprocal system with transfer 

matrix  ( )σG s . Then 

         1 1( ) ( ) ( ) ( )σ σσ σ
σ σ

= + = +
− −

G s G G s G
s s

   (19) 

   

VII. PRACTICAL CD PLAYER BENCHMARK EXAMPLE 
 

In this section we applied the proposed method to a strictly 
proper SISO practical CD player model of order 120 and 
compare it with BST and FBST methods. This CD player 
model is a finite element model of the dynamics between 
the lenz actuator and radial arm position of a portable 
compact disc [4].The CD player model is reduced to 4th 
order model by the frequency-domain mixed method which 
is more accurate than 4th order reduced models by BST and 
FBST. Figure (2) shows the Hankel singular values for 
FBST method related to the reduction frequency bound in 
Figure (3).  

 
Figure. 2  .FBST Hankel singular values. 

 



The infinity norm errors of BST, FBST and the proposed 
mixed method are shown in Figure (3) and (4) in different 
frequency bounds. As expected, the FBST method is more 
accurate than BST technique and because of the Gramian 
approximations it is more efficient. The mixed method is 
more accurate than BST and FBST. The selection of 
σ value within the frequency bandwidth enables us to have 
the best approximation at a desired frequency  σ  within our 
desired frequency domain and it causes more flexibility. In 
Figure (3) we selected 2 250wσ = =  and in Figure (4) we 
selected 1000σ = . 
In Figure (5) the step responses of original system and the 
reduced model by BST and FBST are shown.  
 
 

 
Figure. 3 .  The proposed mixed method error (dash dotted), FBST model 
reduction error (dotted) and BST model order reduction error (solid lines). 

 
Figure. 4 . The proposed mixed method error (dash dotted), FBST model 
reduction error (dotted) and BST model order reduction error (solid lines). 
 

 
Figure. 5 . The proposed mixed method step response (dash dotted), FBST 
model reduction step response (dotted) and BST model order reduction 
error (solid lines). 
 
 
 

VIII. CONCLUSION 
 

In this paper, we have proposed a new relative error 
model reduction method. The reduction method is based on 
FBST method and the generalized singular perturbation 
method. FBST is a recently developed method which is 
based on stochastic balancing of a system within a 
frequency bound. Inner-Outer factorization is used in the 
numerical algorithm of the method as an accurate and an 
efficient numerical approach. 

High accuracy, more flexibility and some important 
properties preservation make the proposed method suitable 
for the practical relative error model reduction. Furthermore 
computation of the Grammians in this method can be easily 
done without involving the problem of solving Lyapunov 
equation.    
 

REFERENCES 
 

[1] A. Antoulas, D. Sorensen, K. A. Gallivan, and et al. Model reduction 
of large-scale dynamical systems.[C] Proc. Lect. Notes Comp. Sci., , 
2004,vol. 3038:740-747. 

[2] G. Obinata and B. D. O. Anderson, Model Reduction for Control 
System Design. London[M]: Springer-Verlag, 2001. 

[3] S. Gugercin and A. C. Antoulas. A survey of model reduction by 
balanced truncation and some new results[J]. Int. J. Contr., 77:748-
766. 

[4] A. Varga, On stochastic balancing related model reduction[C]. Proc. 
of IEEE Conference on decision and control, Sydney, Australia, 
2000:2385–2390.   

[5] A. Zadegan and A. Zilouchian. Controller order reduction using 
frequency domain balanced structure[C].Proc. World Auto. Congress, 
Orlando, FL. 2002. 163-168. 



[6] A. Zadegan and A. Zilouchian, “Controller order reduction using the 
neighborhood of crossover frequency approach,[C]” Proc. 17th FL. 
Conf. Recent Advances Robotics, CD-ROM, Orlando, FL., 2004. 

[7] A. Zilouchian, P. K. Aghaee, and S. Nike-Ravesh, “Model reduction 
of large-scale systems via frequency domain balanced structure[C],” 
Proc. Amer. Contr. Conf., Vol. 6, pp.  3873-3876 ,Albuquerque, NM, 
1997. 

[8] A. Zadegan and A. Zilouchian, “Model reduction of large-scale 
continuous-time systems using frequency domain balanced 
structure[C],” Proc. 15th FL. Conf. Recent Advances Robotics, CD-
ROM, Miami, FL., 2002. 

[9] A. Zadegan and A. Zilouchian, “Model reduction of large-scale 
systems using perturbed frequency domain balanced structure[C]” 
Proc. 16th FL. Conf. Recent Advances Robotics, CD-ROM, Dania 
Beach, FL., 2003. 

[10] H. R. Shaker and M. Samavat ,”Accuracy enhancement in HiMAT 
aircraft controller reduction using a recently developed balanced 
technique[J]” Int. J. Autm. Ctrl. and Sys. Eng.,2005. 

[11] H. R. Shaker and M. Samavat ,Accuracy and efficiency enhancement 
in model order reduction and some benchmark examples[C], 
modeling and simulation conference (MS2006),Malaysia, 2006.  

[12] H. R. Shaker and M. Samavat ,”Accuracy and efficiency enhanced 
nonlinear model order reduction technique”, Int. J. of modeling, 
identification and control,Vol.2, No. 2, 2007. 

[13] H. R. Shaker and M. Samavat ,”Accuracy enhancement in HiMAT 
aircraft controller reduction”  ,CD –ROM, Proc. 1st Int. symposium 
on systems and control in aerospace and 
astronautics,Harbin,CHINA,2006. 

[14] H. R. Shaker and M. Samavat , Frequency Domain Stochastic 
Balanced Truncation: An Accuracy Enhanced Large Scale Model 
Reduction Technique[C], IEEE Int. Symposium on Computer- Aided 
Control Systems Design, Munich, Germany, 2006.  

[15] P. K. Aghaee, A. Zilouchian, S. Nike-Ravesh, and A. Zadegan, 
“Principle of frequency-domain balanced structure in linear systems 
and model reduction[J] Computer & Electrical Engineering, vol. 29, 
pp. 463-477, 2003. 

[16] H. R. Shaker, Frequency-Domain Balanced Stochastic Truncation 
for Continuous and Discrete Time Systems[J], Int. J. of Control, 
Automation and Systems, , vol.6, no.2, 180-185 2008. 

[17] M. Green, Balanced stochastic realization[J], Lin. ALg. & Appl., vol. 
98, pp. 211-247 ,1988. 

[18] U. B. Desai and D. Pal, A transformation approach to stochastic 
model reduction[J], IEEE Trans. Autom. Control, vol 29, pp. 1097-
1100, 1984. 

[19] M. Green, A relative error bound for balanced stochastic truncation[J] 
IEEE Trans. Autm. Control, vol. 33 , pp. 961-965 , 1988. 

[20] B. C. Moore, Principle component analysis in linear systems: 
controllability, observability and model reduction[J] IEEE Trans. 
Automat. Contr., vol. 26, pp.17-32, 1981. 

[21] C. Oara and A. Varga. Computation of general inner-outer and 
spectral factorization[J] , IEEE trans. Autom. Control, 45,No. 7,pp.  
2307-2325 , 2000. 

[22] M. Green, B.D.O. Anderson,Generalized balanced stochastic 
truncation[C], Proc.29th IEEE conference on control and decion, 
1990, 476-481. 

[23] G. Muscato, G. Nunnari and L. Furtuna ”singular purturbation 
approximation bounded real and stochastically balanced transfer 
matrices”, Int. J. of cotrl., vol. 66, pp.253-269, 1997. 

[24] G. Muscato,Parametric generalized singular purturbation 
approximation for model order reduction[J], IEEE Trans. Automat. 
Contr., vol. 45, 339-343, 2000. 

[25] G. Muscato, G. Nunnari on the sigma reciprocal system for model 
order reduction[C], Proc. 33th conf. on decision and control,Lake 
buena Vista, FL, 1994:3743-3745,. 

[26] G. Muscato, G. Nunnari .on the sigma reciprocal system for model 
order reduction[J], Math. Modeling systm.,vol. 1,no.4, pp. 261-
271,1995.  

 
Hamid Reza Shaker received the B.Sc. and 
M. Sc. degrees in Control Engineering from 
Shiraz University and Shahid Bahonar 
University of Kerman in 2004 and 2006 in Iran. 
Currently he is PhD fellow and scientific staff 
in section for Automation and Control, Aalborg 
University, Denmark. His research interests 
include model order reduction, controller order 
reduction, reduced order modeling, 
identification and modeling of hybrid systems. 
Results of his research works have been 
reported in more than 20 journal and 
conference papers so far. 


