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ABSTRACT: Manganese (Mn) oxides are strong oxidants that are ubiquitous in
soils and can oxidize redox-active metals, including chromium (Cr). In soil
environments, trivalent chromium (Cr(III)) is a benign, immobile micronutrient,
whereas the hexavalent Cr(VI) form is present as a highly mobile, toxic chromate
oxyanion. Although many studies have characterized the capacity of Mn(III/IV)
oxides to oxidize Cr(III) to toxic Cr(VI), the oxidative capacity of Mn oxides in the
presence of potentially passivating soil constituents, specifically reduced soluble iron
(Fe(II)aq), remains unresolved. We hypothesized that chemical processes at redox
interfaces, such as diffusion-limited environments within soil aggregates, can lead to
decreased Cr(VI) production from Mn oxide-driven oxidation due to passivation by
Fe(II)aq. A multichamber diffusion-limited reactor was used to simulate transport at
soil redox interfaces and investigate the capacity of poorly crystalline and crystalline
Mn oxides to oxidize solid Cr(III) minerals to Cr(VI) in the presence of Fe(II)aq. As
predicted, Cr(VI) was produced through the Mn oxide-catalyzed oxidation of Cr(III) at a rate controlled by the solubility of
Cr(OH)3. However, in the presence of Fe(II)aq, the concentration of aqueous Cr(VI) decreased as a function of the Fe(II)aq
concentration, where high concentrations of Fe(II)aq completely inhibited Cr(VI) production, likely through both the passivation of
the Mn oxide and the direct reduction of Cr(VI) by Fe(II). At both low (14 μM) and high (100 μM) Fe(II)aq concentrations, the
iron oxide minerals hematite (Fe2O3) and goethite (α-FeOOH) were associated with the Mn oxides, which can cause surface
passivation, a likely role that decreases Cr(III) oxidation. Additionally, the Cr(III) oxidation rate decreased with increasing
crystallinity of the Mn oxides whether or not Fe(II) was present.
KEYWORDS: hexavalent chromium, Cr(VI), birnessite, pyrolusite, contamination, aggregates, diffusion

1. INTRODUCTION
Chromium is a naturally occurring and anthropogenically
sourced redox-active soil and water contaminant that
predominantly occurs in the Cr(III) and Cr(VI) oxidation
states.1−3 Cr(III) is an essential trace micronutrient, whereas
the ingestion of Cr(VI) can lead to adverse human health
outcomes, including cancer.4 In soils and sediments, trivalent
chromium is commonly found as a sparingly soluble hydroxide
precipitate that can form strong mineral complexes,5 while
hexavalent chromium is present as a highly mobile, toxic
chromate oxyanion in groundwater sources.6,7 Chromite, Cr−
magnetite, and Cr-bearing silicates are common sources of
geogenic Cr(III) in soils and sediments, which can undergo in
situ abiotic oxidation to Cr(VI).8 Because Cr(III)-bearing
minerals cover roughly 1% of the earth’s surface, concentrated
along plate boundaries, understanding the processes that
enhance or inhibit the abiotic oxidation of Cr(III) to Cr(VI)
has implications for global groundwater quality and those who
rely on it.7,8

Prior to oxidation, the dissolution of Cr(III) from Cr-
bearing minerals and the migration of Cr(III) to Mn oxide
solids must occur. In well-mixed environments, Cr(III)

oxidation is limited by the solubility of the Cr(III) mineral
and the distance it must travel to the site of oxidation.9−11

Increasing Fe substitution in CrxFe1−x(OH)3 secondary
minerals decreases the solubility of the mineral, thus
decreasing Cr(VI) generation.9,11

While Mn(II)-oxidizing bacteria has been observed to
oxidize Cr(III),12 the abiotic oxidation of Cr(III) in soils is
dominantly catalyzed by Mn(III/IV) oxides.6,13,14 Mn(III/IV)
oxides in soils are generally biogenic, poorly crystalline,
layered, mixed-valence Mn(III/IV) minerals resembling
birnessite. In contrast, pyrolusite is a crystalline, tunnel-
structured (1 × 1 octahedra), single-valence Mn(IV)
mineral.15−17 While pyrolusite is less commonly found in soil
environments, reactions with pyrolusite can serve as an end-
member case for Mn(IV)-driven oxidation.18 Because of the
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collective differences between the two minerals in their surface
area (98−224 m2/g for birnessite and 6−8 m2/g for
pyrolusite), mineral structure, reactive sites, stability, and
valence characteristics, birnessite is more reactive than
pyrolusite.17,19,20 Under reducing conditions, anaerobic micro-
bial respiration can produce reduced species such as Fe(II),
Mn(II), and carbonate, which can decrease the oxidative
capacity of Mn oxides,21−23 therefore potentially inhibiting Mn
oxide-driven Cr(VI) production. Simultaneously, Fe(II) can
also directly reduce Cr(VI) to form very weakly soluble
Cr(III)−Fe(III) hydroxides as a dominant abiotic mechanism
of Cr immobilization under reducing conditions.24

Pore networks connect complex, heterogeneous soil
aggregate structures within soil environments. Dissolved
oxygen moves through larger pore throats via advective flow,
whereas diffusive transport dominates within finer pore throats,
including intra-aggregate pores.25 Within the soil aggregate, the
rate of oxygen consumption in the interior of the aggregates
can be greater than the rate of oxygen supplied by diffusion,
creating a redox gradient from the exterior to the interior of the
aggregates.26,27 These sustained anaerobic microsites within
soil aggregates support microbial Fe(III) respiration, produc-
ing soluble Fe(II) that diffuses to the oxygenated or more
oxidizing aggregate exterior.28−30 Ying et al.29 and Masue-
Slowey et al.28 demonstrated that the abiotic oxidation of
Fe(II) with molecular oxygen and Mn oxides at the aggregate
exterior leads to Fe(III) hydroxide precipitation, which can act
as a high-affinity and high-capacity adsorbent for reduced
metal contaminants, such as arsenic, co-transported outward
from the aggregate center. Within the oxic exterior of soil
aggregates, it has been demonstrated that Cr(VI) reduction
occurs due to the increased organic carbon and microbial
activity, which drives either direct reduction or the release of
reactive reductants such as Fe(II) that then reduce Cr(VI).30,31

Although the aforementioned abiotic Cr oxidation and
reduction pathways have been investigated individually, a
systems approach better represents the soil environment,
where reactive minerals can be physically separated in space,
the movement of aqueous species may be limited by diffusion,
and co-occurring elements may alter the oxidative potential of
the system. Despite the rate limitations of geogenic Cr(VI)
production in soils, Cr(VI) formation is observed in these
highly structured soil environments, where it can then migrate
into aquifers that are used as drinking water sources.32,33

In this study, we reveal how the co-occurrence of Fe(II) and
Cr(III) within a diffusion-controlled environment may alter
the oxidative potential of Mn oxides and, therefore, the
oxidation of Cr(III) to Cr(VI). To do this, we utilize a
diffusion-limited reactor to model highly structured soil
environments. We also examine the effect of (1) Mn oxide
crystallinity on Cr(III) oxidation, using pyrolusite and
birnessite as representatives of end members, and (2) Fe(II)
concentration on Cr(VI) production, using varying concen-
trations that are representative of those observed at the surface
of constructed soil aggregates. We hypothesized that Cr(III)
oxidation would occur despite diffusion limitations and that
the amount of Cr(VI) that was produced would decrease as
the Fe(II) concentration increased.

2. MATERIALS AND METHODS
A multichamber reactor was used to investigate the impact of
high and low Fe(II) concentrations on the capacity of
birnessite, a poorly crystalline, layer-structured Mn(III/IV)

oxide that is commonly found in the environment, and
pyrolusite, a crystalline, layer-structured Mn(IV) oxide, to
oxidize Cr(III) from chromium hydroxides (Cr(OH)3,
moderate solubility) in a diffusion-controlled environment.
Pyrolusite was chosen as a model Mn(IV) end member. The
multichamber reactor has been described in detail previously.
Aside from simulating transport-limited conditions, the
multichamber reactor is uniquely designed to maintain the
physical separation of solid phases within their respective
chambers, allowing for the detailed solid-phase analysis of
individual mineral phases over time, which is impossible within
a homogeneous batch or synthetic aggregate reactor systems.

2.1. Mineral Synthesis. Cr(III) hydroxides (Cr(OH)3)
were synthesized by titrating a 50 mM solution of CrCl3 to a
pH of 6 with NaOH and stirring it for 24 h at room
temperature, similar to the procedure described by Hansel et
al.34 The solids were centrifuged, triple-rinsed with double
deionized water (DDI water, 18 MΩ cm), dried in a warm
oven (30 °C), and ground before experimental use. Birnessite
was synthesized following the protocol described by
McKenzie.35 First, 63 g of KMnO4 (Fisher Scientific) was
dissolved into 1 L of DDI water and heated to 90 °C. While
vigorously stirring, 66 mL of concentrated HCl was added to
the heated KMnO4 solution in a 4 L flask and maintained at
the same temperature for 10 min. After letting the slurry cool
for 30 min, the oxides were filtered through 50 μm ashless filter
paper (Whatman) and triple-washed with DDI water. The
dried solids were ground with an agate mortar and pestle
before experimental use. Pyrolusite was purchased from Sigma-
Aldrich (ReagentPlus, ≥99%). The pyrolusite and birnessite
mineralogy were confirmed with powder X-ray diffraction
(XRD) (Figure S1) using a Siemens D500 diffractometer with
a Cu Kα X-ray source operating at 40 kV. JADE software
(Materials Data, Inc.) was used to analyze the data, and peak
positions and intensities were matched with data from the
RRUFF database (rruff.info). The surface area of the minerals
was determined with multisurface BET (Brunauer−Emmett−
Teller) and adsorption−desorption BJH (Barrett−Joyner−
Halenda) methods using a Quantachrome NOVA 2000e
instrument.

2.2. Multichamber Reactor. All experiments were
conducted in an anoxic glovebag (95% N2:5% H2 atmosphere;
Coy) at ambient temperature (25 °C). The multichamber
diffusion reactor was constructed using polyvinyl chloride
(PVC) pipes (ID 209-030, internal diameter of 7.6 cm)
separated by a 0.05 μm nitrocellulose isopore filter (Millipore)
to simulate diffusion-controlled transport within soil aggregates
(Figure S2).
The background solution was 10 mM PIPES and 10 mM

NaCl buffered at a pH of 7 to approximate the average pH and
ionic strength of soil pore water, similar to previous
work.21,22,29,36−39 Manganese oxides (3.5 g) were added to
750 mL of the deoxygenated background solution in one
reaction chamber and allowed to equilibrate for 24 h while
being continuously stirred at 400 rpm using overhead
impellers. The experiment was initiated by suspending 2 g of
Cr(III) hydroxides in the adjacent reactor chamber in 750 mL
of the deoxygenated buffer solution. To examine the effect of
Fe(II) on Cr(VI) reduction and the inhibition of Mn
oxidation, a FeCl2 stock solution (3 M Fe(II)) was then
added to the buffer solution in the Cr(III) hydroxide-
containing chamber to obtain a final concentration of 14 μM
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or 100 μM in the Cr(III) hydroxide chamber. The reactions
were run for 96 h and sampled throughout the experiment.
2.3. Aqueous-Phase Analysis. For aqueous analysis, 5

mL of the slurry was withdrawn from each chamber, filtered
through a 0.22 μm cellulose acetate filter (CVS), and acidified
with concentrated trace metal-grade HNO3. The concen-
trations of Cr, Fe, and Mn were measured using inductively
coupled plasma optical emission spectroscopy (ICP-OES;
PerkinElmer, Optima 7300 DV). Cr(VI) was quantified
following the method used by Bartlett and James40 by using
a s-diphenyl carbazide (DPC) colorimetric assay. The DPC
reagent was made by dissolving 0.05 g of DPC in 10 mL of
methanol and adding this mixture to 87.2 mL of DDI water
with 2.8 mL of H2SO4 while minimizing light exposure. To
determine Cr(VI), 0.125 mL of the DPC reagent was added to
1 mL of the filtered sample and developed for 20 min.
Absorbance was measured at 540 nm on a spectrophotometer
(detection limit = 0.1 μM; GENESYS 20 Thermo Spectronic).
2.4. Solid-Phase Analysis. The total concentration of

solid-phase Mn, Fe, and Cr was determined by acid digestion.
During sampling, 5 mL of the slurry was collected from each
chamber. All liquid was evaporated from the centrifuge tubes
in a 90 °C heat block. The dried solids were resuspended in 3
mL of concentrated trace metal-grade HNO3 and agitated until
dissolved. Then, the acid-dissolved samples were diluted with
DDI water and analyzed using ICP-OES for Mn, Fe, and Cr.
After accounting for dilutions, the final solid concentrations
were calculated by subtracting the aqueous concentrations
from the total digestions.
2.5. Bulk X-ray Absorption Spectroscopy. To deter-

mine the oxidation states of Cr and Mn and the mineral
formation and transformation of Fe oxide over time, Mn oxide
solids were collected by depositing solids from 5 mL of the
slurry onto a 0.22 μm cellulose acetate filter (CVS) and drying
them in an anoxic glovebag. All of the samples were stored
anoxically until immediately before the X-ray analysis. The
samples were transported to Stanford Synchrotron Radiation
Lightsource (SSRL) in an anoxic container (Mitsubishi) with
O2 scavenging AnaeroPacks (Mitsubishi). Prior to analysis, the
solids that were deposited onto the filter were sealed in 0.5 mil
Kapton tape and mounted onto an aluminum sample holder.
X-ray absorption spectroscopy (XAS) spectra were collected

at SSRL beamlines 4-1, 4-3, and 11-2. Mn K-edge X-ray
absorption near edge structure (XANES) spectra were
collected at beamline 4-1 under a liquid N2 cryostat (∼77
K) to limit Mn photoreduction. Fluorescence data were
collected using a passivated implanted planar silicon (PIPS)
detector with soller slits and a Cr filter (3 absorption lengths)
placed 7.5 cm perpendicular to the beam path. Spectra were
collected in 5 eV steps below the edge (6310−6520 eV), in
0.25 eV steps at the edge (6520−6570 eV), and in steps
equivalent to 0.05 Å−1 above the edge.
Bulk Fe K-edge extended X-ray absorption fine structure

(EXAFS) spectra were collected at beamline 11-2 at room
temperature using a He purge box (<0.15% O2). Fluorescence
and transmission data were collected using a 7-channel silicon
drift detector or a 100-element Ge detector. Iron spectra were
collected from 6922 to 7712 eV, approximately to a k = 12.
Different points on each Fe sample were selected for the
replicate scans (∼5 scans) to prevent photo-oxidation. A
comparison of the scans showed no indication of beam
damage. Data processing and linear combination analysis
(LCA) were performed using the Athena software.41 The pre-

and post-edge regions were fit with linear and third-order
polynomial functions, respectively, and the spectra were
normalized to an edge step of 1. Goethite, ferrihydrite,
hematite, magnetite, and lepidocrocite standards were used for
the LCA fitting. Cr K-edge XANES spectroscopic analysis was
attempted on beamline 11-2 using a 100-element Ge detector,
but because the bulk concentrations were below the detection
limit, the samples were instead analyzed using micro X-ray
fluorescence (μ-XRF) mapping to perform μ-XANES on Cr
hotspots (details are given in section 2.6).
The average oxidation state (AOS) of manganese and the

proportion of Mn(II), Mn(III), and Mn(IV) were estimated
by fitting the sample spectra with a linear combination of Mn
XANES reference standards (MnSO4, manganite, and
birnessite, respectively) following the standards library
compiled by and analysis procedure outlined by Manceau.42

2.6. μ-XRF Imaging and Sample Preparation. The
spatial distribution (namely, co-location) of Cr and Fe on the
Mn oxide particles and Cr speciation was determined by
performing micro X-ray fluorescence (μ-XRF) imaging analysis
at Stanford Synchrotron Radiation Lightsource beamline 2-3
on pyrolusite and birnessite particles that were collected at the
end of the experiments. The chromium hotspots that were
identified via μ-XRF imaging were then analyzed using μ-
XANES analysis to determine the Cr oxidation state.
To prepare samples for μ-XRF analysis, anoxically dried

solid samples from the Mn oxide-containing chamber were
embedded in the adhesive Loctite 404 in a 1.5 mL centrifuge
tube under anoxic conditions (O2 < 1 ppmv (ppm by volume),
H2 ∼ 3.5%) and allowed to cure for >24 h. Loctite is relatively
free of impurities, and μ-XRF analysis of the Loctite matrix
revealed no noticeable background for Cr, Mn, or Fe. The
bottom of the centrifuge tubes and samples were cut and glued
to a 2 in. × 2 in. × 1 mm thick quartz slide (Ted Pella part no.
26012). The sample was then cut to a thickness of ∼1 mm and
polished to 100−200 μm, depending on the contact with the
slide.

μ-XRF analysis was carried out at 6010 eV for total Cr, 7500
or 7150 eV for total Fe, and 7500 or 7150 eV for total Mn. The
beam was calibrated to the pre-edge peak of Na2CrO4 at 5993
eV for Cr mapping. Multi-energy maps were collected on
birnessite samples for Cr speciation (total Cr at 6010 eV and
Cr(VI) at 5993 eV), Fe speciation (7122 eV intensity
subtracted from intensity at 7130 eV representing Fe(III))
and Mn speciation (6559 eV subtracted from 6553 eV
representing Mn(III) and 6562 eV subtracted from 6559 eV
representing Mn(IV)) and processed using map math in the
SMAK software.43 Chromium μ-XANES spectral points were
chosen based on the high Cr intensities detected in the total Cr
μ-XRF maps. The μ-XANES spectra were then processed and
analyzed using the same methods outlined for the bulk XANES
analysis. Total Mn, Fe, and Cr maps were generated using the
SMAK software.43

2.7. X-ray Photoelectron Spectroscopy Oxidation
States. X-ray photoelectron spectroscopy (XPS) data were
collected with a Kratos Axis Ultra DLD XPS instrument with
an Al Kα monochromated X-ray source and a 165 mm electron
energy hemispherical analyzer. All data were collected under a
vacuum pressure below 3 × 10−9 Torr. The spectra were
calibrated using the C 1s peak at 284.8 eV, and oxidation states
were determined by comparing the observed peaks with peaks
at known energies.
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2.8. Diffusion Modeling. The Thiele modulus (ϕ)29,31,44
was used to determine if reactions were diffusion-limited or
reaction-limited (i.e., chemical kinetics) within the multi-
chamber experiments. To estimate systems with first-order
reaction rates and constant diffusivities, the following equation
was used:

R k D/ e=

where R is the radius of the aggregate (mm), k is the first-order
rate constant (s−1), and De is the effective diffusivity of the of
the aggregate (mm2 s−1). If ϕ < 0.3, the reaction is assumed to
be kinetically limited, and if ϕ > 3, the reaction is diffusion-
limited. The half-length of the reactor used in these
experiments was 70 mm.
To determine the rate of Cr(OH)3 dissolution and

subsequent diffusion of Cr(III) across the membrane, 2 g of
Cr(OH)3 was added to 750 mL of the background solution in
one reactor chamber and allowed to equilibrate between the
two chambers in the absence of Mn oxides and Fe(II).
Aqueous samples from the adjacent chamber were collected
over time and the total Cr was quantified using ICP-OES.
Additional controls were conducted to determine the diffusion
rate of Fe(II) at both high and low concentrations across the
membrane without Mn oxides or Cr. The control experiments
showed that the diffusion of Cr, Mn(II), and Fe(II) were very
similar (Figures S3−S5). By applying the effective diffusivity
that was calculated using the data acquired in the diffusion
control experiments to calculate the Thiele modulus, we
determined that all of the experiments conducted within the

multichamber reactor were diffusion-limited rather than
kinetically limited (Table S2).

3. RESULTS
3.1. Aqueous Fe and Mn Dynamics. We examined the

chemical processes controlling the mobility of Cr and Mn at a
diffusion-controlled redox interface by simulating the transport
of reduced species from the interior of soil aggregates to the
oxidizing exterior. Specifically, we examined the reaction
products after the diffusion of added Fe(II) and Cr(III)
solubilized from Cr(OH)3 into a chamber containing Mn
oxides (crystalline pyrolusite or poorly crystalline birnessite)
using a multichamber reactor (Figure S1).
Relatively low (14 μM) or high (100 μM) concentrations of

Fe(II) were added into the Cr(OH)3 chamber to simulate the
concentrations of Fe(II), a prevalent abiotic reductant, found
in reducing zones of soil aggregates.28,45 These concentrations
were chosen because past studies have reported Fe(II)
concentrations in aggregates ranging from 0 to 50 μM Fe(II)
in the first 2 mm, 100−200 μM Fe(II) at 4 mm from the
surface, and up to 250 μM in the center of the constructed
aggregate.45 In our reactors, the concentration of Fe decreased
over the first 20 h of the reaction in the presence of low Fe(II)
and remained below detection in both chambers for the
remainder of the experiment (Figure 1C,D). In the high Fe(II)
treatment, a steady state was reached after ∼9 h with 30 ± 7
μM dissolved Fe remaining in both chambers for the
remainder of the experiment (Figure 1C,D).

Figure 1. Concentration of dissolved (A, B) Mn and (C, D) Fe in the (A, C) Cr(OH)3 and (B, D) pyrolusite reactor chambers. Fe(II) was added
to the Cr(OH)3 chamber to initiate the reaction. White squares, black triangles, and black circles represent no Fe(II) addition, low Fe(II) addition
(14 μM), and high Fe(II) addition (100 μM), respectively. Note that the y-axis range for the aqueous Fe concentrations in (C) differs for the high
(right axis) and low (left axis) treatments.
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The concentration of dissolved Mn (Mnaq) in the pyrolusite
chamber increased over the duration of the experiment under
low and no Fe(II) treatments (Figure 1B). Mnaq in the
Cr(OH)3 chamber at the end of the experiment was 47%
higher with the addition of low-concentration Fe(II) (21.9 μM
Mnaq) than without the addition of Fe(II) (14.9 μM Mnaq)
(Figure 1A). The concentration of Mnaq increased more
rapidly in the presence of high-concentration Fe(II), being
∼10 times higher (213 μM) than in the presence of low-
concentration Fe(II) at 100 h (Figure 1A,B). The final
concentration of Mnaq between the chambers containing
Cr(OH)3 and pyrolusite was similar for all Fe treatments,
demonstrating that the reaction proceeded until a steady state
had been reached (Figure 1A,B).
3.2. Aqueous Cr Dynamics. Aqueous Cr(VI) generation

was monitored in both chambers following the addition of
Fe(II) to the Cr(OH)3-containing chamber (Figure 2). The
Cr(VI) dynamics with the no Fe(II) and low Fe(II) treatments
were similar in the pyrolusite chamber. During the first 20 h of
the experiment, the concentration of Cr(VI) with the addition
of no Fe(II) and low-concentration Fe(II) increased from
below detection (0.1 μM) to 0.36 and 0.47 μM Cr(VI),
respectively; it then decreased to ∼0.2 μM Cr(VI) between 60
and 100 h. In contrast, the concentration of Cr(VI) remained

below the detection limit in the presence of high-concentration
Fe(II) in the pyrolusite chamber. Cr(VI) was below the
detection limit in the Cr(OH)3 chamber for all experiments.

3.3. Chromium and Fe Sorption onto Mn Oxides.
Pyrolusite solids were collected throughout the experiment and
analyzed for solids associated with Fe and Cr (Figure 3). In the
absence of Fe(II), 78−120 μmol of Cr g−1 of pyrolusite was
detected on the pyrolusite solids after 60 h. In the low Fe(II)
treatment, the amount of pyrolusite-associated Cr (∼7 μmol of
Cr g−1 of pyrolusite) was less than in the treatment without
Fe(II), and it remained around the same level throughout the
duration of the experiment. Pyrolusite-associated Cr was not
detected in the high Fe(II) treatment experiment. The total
amount of Fe was also measured on the solids in the pyrolusite
chamber in both the high and low Fe(II) treatments. In the
low Fe(II) treatment, Fe was not detected on the pyrolusite
solids until 24 h, when it increased to ∼21−31 μmol of Fe g−1

of pyrolusite. In the high Fe(II) treatment, Fe was detected less
than an hour after its addition and increased to over 50 times
(1220 μmol Fe g−1 pyrolusite) the amount of solids associated
with Fe in the low Fe(II) treatment despite there being only a
7-fold difference in the initial Fe(II) concentration.
Next, XPS analysis was used to determine the Fe, Mn, and

Cr speciation at the pyrolusite surfaces, and XAS was used to

Figure 2. The aqueous concentration of Cr(VI) was determined by using a s-diphenyl carbazide (DPC) colorimetric assay in the chromium
hydroxide and Fe(II) injection chamber (right panel) and the pyrolusite chamber (left panel) after the addition of no Fe(II) (white squares), low-
concentration Fe(II) (14 μM, black triangles), and high-concentration Fe(II) (100 μM, black circles). The red dashed line represents the detection
limit of the DPC colorimetric assay (0.1 μM).

Figure 3. Solid concentration of chromium (right) and iron (left) per gram of pyrolusite after the addition of no Fe(II) (white squares), low-
concentration Fe(II) (14 μM, black triangles), and high-concentration Fe(II) (100 μM, black circles), determined using acid digestion. The red
dashed line represents the detection limit of the DPC colorimetric assay (0.1 μM).
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determine the bulk solid-phase speciation (Figures S8−S10).
For both the low and high Fe(II) treatments, Fe 2p3/2 peaks
were observed at around 710.9 eV, indicating the existence of
Fe(III). Mn 2p3/2 peaks were observed at around 642 eV,
which suggest the existence of Mn(IV) of MnO2 in pyrolusite.
The sole Cr 2p3/2 peak at 576.5 eV is assigned to Cr(III) rather
than Cr(VI), which peaks at ∼580 eV. The XPS results
indicate that surface-associated iron was oxidized to Fe(III)
and surface-associated chromium was reduced to Cr(III); there
was no indication of Cr(VI) in the XPS data. The relative
atomic composition of the pyrolusite solids at the termination
of the experiment in the low Fe(II) treatment was 3% Fe(III)
and 3% Cr(III). In comparison, the pyrolusite solids that
received high Fe(II) injection, the percent of Fe increased to
5% and Mn by 1% in relation to the total atomic composition
on the pyrolusite surface.
At the termination of the experiment, X-ray absorption

spectroscopy (XAS) analysis was completed on the pyrolusite
solids to identify the types of Fe(III) (oxyhydr)oxides that
were present in the pyrolusite solids. In the low Fe(II)
treatment, the iron solids were mostly goethite (75%) with a
smaller portion identified as hematite (22%). The high Fe(II)
treatment had less goethite (52%) as well as ferrihydrite (43%)
(Table S1 and Figure S7). No solids associated with Fe(II)
were detected in the XAS measurements, which is consistent
with the XPS data, thus indicating that the Fe on the solid
surface was present only as oxidized Fe(III) solids (within the
detection limit of these X-ray tools; see Figures S7 and S9).
Mn K-edge XANES spectra revealed no average oxidation state
(AOS) or structural changes in the pyrolusite in the absence of
Fe(II) and in the low Fe(II) reactors (AOS ∼ 3.9, see Table
1). However, the AOS of pyrolusite decreased from 3.9 to 3.71
in the presence of high Fe(II) (Table 1).

To assess the spatial distribution and associations between
Fe and Cr on Mn oxides, solids from the reactors were
analyzed using synchrotron μ-XRF mapping and Cr K-edge μ-
XANES at SSRL beamline 2-3 (Figure S11). Fe and Mn were
spatially correlated in each treatment, providing evidence of
near-complete Fe surface coverage of Mn oxide, which was
similar to previous observations18,21 (Figure S11). Chromium
had a lower abundance and was more diffused than Fe and Mn.
However, Cr in the high Fe treatment appeared to be more
localized than in the low Fe treatment for both birnessite and
pyrolusite (Figure 4). The XANES spectra of the sample areas
containing the highest concentrations of Cr indicated that only
Cr(III) was associated with solids based on the absence of a
pre-edge feature diagnostic of Cr(VI) (Figure 4).
3.4. Effect of Mn Oxide Crystallinity on Cr and Fe

Dynamics. The effect of Mn oxide crystallinity on the
oxidation of Cr and Fe in a diffusion-controlled environment
was also observed (Figures 5 and 6). We replaced pyrolusite in
the reactors with birnessite, a poorly crystalline Mn oxide that
is more representative of the biogenic Mn oxides found in soils

and aquifer materials.20 In the absence of Fe(II), the
concentration of Cr(VI) peaked at ∼20 h at approximately
3.2 μM and decreased to 1.7 μM after 60 h (Figure 6). The
measured concentration of Cr(VI) after 20 h was 10 times
higher than that measured in the pyrolusite reactors in the
absence of Fe(II). The initial rate of Cr(III) oxidation differed
in the presence of the two minerals. In the absence of Fe(II),
the oxidation of Cr(III) by birnessite had an initial rate of 0.4
μM h−1, which was ∼10 times higher than the initial rate of the
oxidation of Cr(III) by pyrolusite (Figure 6 and Table S3).
When low concentrations of Fe(II) were injected into the

reactor, the aqueous Cr(VI) dynamics within the birnessite
chamber were different than in the presence of pyrolusite. The
concentration of aqueous Cr(VI) peaked quickly at ∼20 min
(1.4 μM) and then decreased until ∼20 h before plateauing at
∼0.25 μM Cr(VI), a concentration that was similar to the
amount measured in the pyrolusite chamber with the low-
concentration Fe(II) treatment (Figure 6). No Cr(VI) was
detected in the Cr(OH)3 chamber with either low or high
Fe(II) treatments in the presence of either birnessite or
pyrolusite. The aqueous Fe(II) dynamics were similar in the
presence of both Mn oxides over the duration of the low Fe(II)
experiment (Figure 5C,D). The Fe(II) concentration in the
Cr(OH)3 chamber peaked just after the addition of Fe(II); it
then began to decrease until it was no longer detected after 20
h (Figure 5C). In the low Fe(II) treatment, aqueous Fe was
not detected in the Mn oxide chamber for the duration of the
experiment for both Mn oxide types (Figures 1D and 5D).
In the high Fe(II) and birnessite treatments, no Cr(VI) was

detected in the birnessite chamber for the duration of the
experiment (Figure 6). This result is similar to the Cr(VI)
dynamics that were observed in the pyrolusite and high Fe(II)
treatments. After the addition of high-concentration Fe(II), the
aqueous Fe concentration peaked in both chambers immedi-
ately after the Fe addition and remained in solution for the
duration of the experiment (Figure 5C,D). Aqueous iron was
observed in the presence of both Mn oxide minerals when
treated with high Fe(II) (Figures 1D and 5D). The
concentration of aqueous Mn was highly variable in the
birnessite chamber (Figure 5B). However, the aqueous Mn
concentration in the Cr(OH)3 chamber peaked at ∼10 h
before decreasing for the remainder of the experiment (Figure
5A). Compared to the pyrolusite experiments, the concen-
tration of Mn was ∼10 times less in the birnessite experiments
(Figures 1B and 5B).

4. DISCUSSION
4.1. Competing Redox Processes that Limit Cr(VI)

Production. Our results indicate that Cr(III) oxidation by
Mn(III/IV) oxides occurs in a diffusion-controlled system with
inhibited physical interactions between the solid minerals.
They also indicate that Cr(VI) generation is suppressed in the
presence of high Fe(II), even in the presence of Mn oxides.
The reaction sequence begins with the dissolution of Cr(OH)3
and the diffusion of aqueous Cr(III) across the semipermeable
membrane, where Cr(III) is oxidized by Mn oxides (pyrolusite
or birnessite) to Cr(VI). These observations are consistent
with the findings by Pan et al.,10 where the birnessite-mediated
oxidation of Cr(III) dissolved from Cr(OH)3 occurred in a
physically separated, diffusion-limited environment. Their
study demonstrated that Mn oxide-driven Cr(III) oxidation
was inhibited due to either the precipitation of Cr(OH)3 on
the Mn oxide surface or the precipitation of highly reactive Mn

Table 1. Average Oxidation State (AOS) of Pyrolusite prior
to Initiation and at Terminationa

AOS at initiation AOS at termination decrease in AOS

no Fe 3.92 3.92 0
low Fe 3.99 3.96 0.03
high Fe 3.93 3.71 0.22

aStandards and fitting method from Manceau et al.42
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Figure 4. Cr μ-XRF maps and Cr K-edge μ-XANES spectra of pyrolusite and birnessite particles collected from the low Fe (top panels) and high Fe
(bottom panels) treatment experiments. The colors on the μ-XRF maps represent the intensity of the Cr fluorescence signal in the sample sections,
where blue represents relatively low Cr concentrations and red represents relatively high Cr concentrations (shown by the color gradient bar on the
right). The Cr K-edge XANES spectra show that Cr(VI) was not detected on the surface of birnessite particles at multiple locations surveyed.

Figure 5. Concentration of dissolved (A, B) Mn and (C, D) Fe in the (A, C) Cr(OH)3 and (B, D) birnessite reactor chambers. Fe(II) was added
to the Cr(OH)3 chamber to initiate the reaction. White squares, black triangles, and black circles represent no Fe(II) addition, low Fe(II) addition
(14 μM), and high Fe(II) addition (100 μM), respectively. Note that the y-axis range for the concentration of aqueous Fe in (C) differs for the high
(right axis) and low (left axis) treatments.
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oxides in ambient oxygen conditions. Furthermore, Pan et al.
found no adsorbed Cr(VI) on Mn oxides; however, adsorbed
Cr(VI) was found on CrxFe1−x(OH)3 minerals at lower pH.
Because Cr(VI) generation can also occur under reducing

conditions,46−48 we also investigated the fate of Cr in the
presence of both an oxidant (Mn oxide) and a reductant
(Fe(II)). Aqueous Fe(II) was added to the Cr chamber and
diffused into the Mn chamber. In the diffusion-controlled
reactors, the oxidation of Cr(III) in the presence of 14 μM
Fe(II) was similar to the control with no Fe. However, the
oxidation of Cr(III) to Cr(VI) was not observed in the
presence of 100 μM Fe(II). Within our systems, Fe(II)
remained aqueous but was also likely adsorbed to CrOH3, the
Mn oxides, or newly formed Fe oxides, all of which could have
contributed to Cr(VI) reduction pathways. Therefore, a
combination of three possible mechanisms may explain the
decrease of Cr(VI): (i) the passivation of the Mn oxide
surfaces by the oxidation of Fe(II) and the precipitation of
Fe(III) minerals;21 (ii) the adsorption of aqueous species onto
the Mn oxides, which blocks adsorption sites; or (iii) the direct
reduction of Cr(VI) by aqueous or adsorbed Fe(II).39,49,50

Solid-phase analysis at the termination of the reactors
indicated the likely formation of Fe(III) oxyhydroxides on the
Mn oxide surfaces and that more Fe(III) was associated with
the high Fe(II) treatment. In previous studies, it has been
determined that Mn oxide mineralogy likely changes in the
presence of Fe(II). When observing As(III) oxidation by
birnessite, the oxidation capacity of the mineral was found to
diminish at higher As concentrations, likely due to the barrier
formed by As(V) that prevents further oxidation by interior
Mn(IV).36,51,52 Within our systems, Fe(II) is likely forming a
barrier and slowing or preventing further Cr(III) oxidation.
This behavior is similar to that found by Mock et al.,21 who
determined that Fe(II) oxidation by Mn oxides and the
subsequent formation of Fe(III) oxyhydroxides on Mn oxide
surfaces suppresses the oxidative capacity of Mn oxides toward
reduced species, such as arsenic.
The Fe(III) oxyhydroxides that formed on the surface of

pyrolusite were primarily goethite (Table S1). This may be due
to the lower surface area of pyrolusite, as having a more
complete coverage of the available surface area leads to a
Fe(II)-driven transformation of the initially precipitated, more
poorly crystalline Fe(III) hydroxides. In previous works, the
further reaction of Fe(III) oxyhydroxides with any remaining

Fe(II) resulted in the formation of the more crystalline Fe(III)
oxyhydroxide goethite.53,54 Schaefer et al.18 demonstrated that
Fe oxide coatings formed through the abiotic reaction of Fe(II)
with pyrolusite resulted initially in lepidocrocite, but the
continued reaction with Fe(II) resulted in the partial reduction
of lepidocrocite to magnetite and a release of additional
aqueous Mn. Surface passivation by Fe(III) mineral precip-
itation likely contributed to the suppression of Cr(III)
oxidation by blocking reactive sites on the Mn oxide surface.
In the high Fe(II) treatments, high concentrations of

aqueous Mn(II) were detected due to the reductive dissolution
of the Mn oxide solids (Figures 1 and 5). Elzinga55 determined
that aqueous Mn(II) sorption and comproportionation with
structural Mn(IV) forms Mn(III) within a Mn oxide sheet.
Such changes in the crystalline structure of Mn oxides can
decrease their sorption and redox activity. While there was a
slight decrease in the AOS in the birnessite reactors, the AOS
of the pyrolusite solids at the termination of the high Fe(II)
treatment was lower due to the higher concentration of
aqueous Mn(II) that was detected in the rectors and the
occurance of Mn(II) sorption onto the mineral. Because AOS
is a bulk measurement of Mn speciation, the decrease in the
average oxidation state may be due to either dissolved Mn(II)
reacting back with the Mn oxide surface or the reduction of
Mn(IV) without dissolution.56,57

Aside from Mn reduction, Fe(II)aq can directly reduce
Cr(VI)aq through a homogeneous reaction.39,49,50,58 In the low
Fe(II)aq treatments, Feaq was below the detection limit in both
chambers after 20 h because the added Fe(II) was precipitated
as Fe(III) oxides. However, in the high Fe treatments, Fe(II)aq
remained in solution for the duration of the experiment
(Figures 1 and 5). Previous studies have shown that relatively
low concentrations of Fe(II)aq (e.g., 10 μM) can reduce
Cr(VI)aq under environmental conditions,49 which would
inhibit the accumulation of Cr(VI) in high Fe treatments.
The fact that the concentration of Fe(II)aq was sustained also
indicated that Fe(II) had equilibrated with the initial Mn oxide
solids. However, in our system, Fe(II) was also likely adsorbed
to CrOH3, the Mn oxides, or newly formed Fe oxides.
The amount of Cr(VI)aq that was generated in the multiple

experimental iterations was greater than the public health goal
(PHG) of 0.05 μg L−1 for Cr(VI) set by the California Office
of Environmental Health Hazard Assessment.59 The amount of
Cr(VI) that was detected in the pyrolusite and birnessite

Figure 6. Aqueous concentration of Cr(VI) measured by DPC assay in the Mn oxide chamber when using highly crystalline pyrolusite (white
symbols) and poorly crystalline birnessite (black symbols) after the addition of no Fe(II) (left) and low-concentration Fe(II) (14 μM; right). The
red dashed line represents the detection limit of the DPC colorimetric assay (0.1 μM).
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reactors without Fe(II) was ∼900 and ∼8000 times higher
than the public health goal, respectively. Currently, an
enforceable maximum contaminant level (MCL) only exists
for total chromium. The World Health Organization
(WHO)60 sets its recommended guideline value for total
chromium at 50 μg L−1, and the MCL set by the U.S.
Environmental Protection Agency61 is 100 μg L−1.
No primary or enforceable MCL exists for Mn despite

increasing evidence of its toxicity at high concentrations,
although the World Health Organization has a provisional
health-based guideline of 80 μg L−1.62,63 All pyrolusite
treatments exceeded the exposure threshold that links Mn(II)
exposure in drinking water to neurotoxic effects in
children64−66 (120 μg L−1). The highest amount of Mn(II)aq,
which was ∼130 times higher than the WHO provisional
guideline, was detected in the high Fe pyrolusite treatment and
was .
4.2. Impact of Mn Oxide Crystallinity. To evaluate the

effect of Mn oxide crystallinity on the Fe(II) and Cr(III)
oxidation reactions, we compared crystalline, low specific
surface area (SSA) pyrolusite (6.23 m2/g) to poorly crystalline,
high SSA birnessite (37.8 m2/g). Both surface area and
crystallinity influence the reactivity and oxidative capacity of
Mn oxide.67 Pyrolusite is the most thermodynamically stable
Mn oxide and represents an end-member case for Mn(IV)
reduction by Fe(II)aq. If Cr(III) oxidation occurs with
pyrolusite, it is likely to occur with other Mn oxides as well.
However, birnessite was included as a comparison, as it more
closely resembles the biogenic Mn oxides that are abundant in
soils and aquifers.9,47,68 It should also be noted that PIPES
buffer, which was used in these systems, has been identified as
a potential modifier of the Mn(III) content of Mn oxide
minerals and, therefore, their reactivity.69 Therefore, the
reactions that were observed reflect the cumulative effects of
all reactants in the reaction system, including the PIPES buffer.
As expected from prior studies, the Cr(III) reaction with

birnessite generated higher concentrations of Cr(VI) than that
with pyrolusite when under similar initial conditions due to the
higher surface area of birnessite.70 Both pyrolusite and
birnessite oxidized aqueous Fe(II), resulting in Fe(III)
(oxyhydr)oxide surface precipitation; however, the larger
surface area of birnessite resulted in incomplete surface
coverage. Similar results have been observed for complete
surface coverage for pyrolusite at higher Fe(II) concentra-
tions18 and incomplete surface coverage for birnessite.21 In the
low Fe(II) birnessite treatment, the cumulative generation of
Cr(VI) was ∼3 times higher than in the pyrolusite treatment,
which may be attributed to the faster initial rate of Cr(III)
oxidation in the first ∼20 h before more of the surface (but not
the entire surface) was covered by Fe(III) oxyhydroxides on
the birnessite surface.
The solubility of the Cr-bearing mineral also plays an

essential role in the production of Cr(VI) in diffusion-limited
environments. In the environment, Fe(II)-mediated Cr(VI)
reduction results in the formation of the Cr(III)−Fe(III) co-
precipitate CrxFe1−x(OH)3, which is less soluble than pure
Cr(OH)3.

24,71,72 In previous studies that investigated the
impact of lower-solubility Cr-bearing minerals, Cr(VI)
generation was proportional to the mineral solubility.9−11,47,73

Although Fe-substituted Cr minerals were not investigated in
this study, the dissolution of Cr(OH)3 and the migration of
Cr(III)aq to the Mn oxide surface were the initial rate-limiting
step in the production of Cr(VI) within this system (Table

S3). Mineral substitution of Fe that results in decreased
Cr(III) mineral solubility would only further limit the diffusive
flux to the Mn oxides and decrease the production rate of
Cr(VI).

4.3. Diffusion Controls on Redox Reactions. In the
environment, reducing conditions may occur in the interior of
soil aggregates where the oxygen demand exceeds the oxygen
supplied via diffusion from the surface of the aggregates.28,29,38

Reduced Fe(II) from the anoxic, biotic reduction of Fe oxides
in the aggregate interiors then diffuses toward zones of Cr(VI)
generation (aggregate exterior), all while maintaining physical
separation between the mineral solids.31 Similarly, Cr(III)
solids and Mn oxides may be physically separated in the
environment, so the reaction is also dependent on the rate of
Cr(III) dissolution from the solid mineral and diffusion to the
site of oxidation.6 All experiments presented herein were
diffusion-controlled based on Thiele modulus calculations
(Table S2). We were then able to observe the impacts of
Fe(II) diffusion to zones of Cr(VI) generation while
maintaining the physical separation of Cr(OH)3 and Mn
oxides, similar to the physical limitations observed in soil
aggregates. Prior studies have shown that the solubility of the
Cr(III)-bearing minerals combined with the distance that the
dissolved Cr(III) must travel to reach the Mn oxides
determines the production rate of Cr(VI).9−11

Physical separation, yet proximity, of secondary Cr(III)
minerals to Mn oxides has been observed in serpentine
soils.68,74 Within these environments, the dissolution of Cr(III)
from Cr-bearing minerals and the diffusion of Cr(III) to
oxidative minerals like Mn oxides play an essential role in the
net production and transport of Cr(VI) into groundwater.
However, the Cr(VI) that has been measured in infiltrating
water was attenuated while flowing to surface water sources
due to dilution by infiltration water or reduction via microbial
activity or Fe(II).68,74 Our study demonstrates that the
presence of Fe(II) may inhibit Cr(VI) transport through
both the oxidative precipitation of Cr(VI) itself and the
reduction of Mn oxides, which are responsible for much of the
Cr(III) oxidation seen in aquifer systems.

5. CONCLUSIONS
The processes controlling Cr cycling in soil environments are
complex and site-specific. Mn and Fe oxides commonly exist in
many soil environments and, due to their redox activity, it is
important to understand how both play a role in the oxidative
release of toxic groundwater contaminants such as Cr(VI).
This work demonstrated that despite diffusion limitations, the
physical separation of solid minerals and the introduction of
competing reactants in environmentally relevant concentra-
tions, Cr(VI) and Mn(II) can be generated at concentrations
exceeding regulatory levels in model systems. The release and
outward diffusion of Fe(II) from the anaerobic centers of soil
aggregates represent a pathway for the release of a competing
reactant in well-aerated soil environments that may fully
disrupt the oxidation of Cr(III). However, the extent of
Cr(III) oxidation by Mn oxides was observed to be dependent
on the Fe(II) concentration and Mn oxide mineralogy.
Despite evidence of less Cr(III) oxidation occurring in the

presence of co-occurring reactants, such as Fe(II), there is still
evidence of large-scale Cr(VI) transport into groundwater.68,75

Therefore, it is essential to note that the transport of Cr(VI)
into advecting water is highly scale-dependent. The specific
biogeochemical characteristics of local environments such as
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anoxic zones, microbial activity, and mineral solubilities must
be considered when investigating the potential for geogenic
metal release into groundwater in specific environments.
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