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Abstract — This paper presents a novel design methodology, based on shaping the system frequency re-
sponse, for the generation of an appropriate residual signal that is sensitive to sensor faults in the presence of
model uncertainty and exogenous unknown (unmeasured) disturbances. An integrated feedback controller de-
sign and robust frequency-based fault detection approach is proposed for Single-Input/Single-Output systems.
The efficiency of the proposed method is demonstrated on a Single Machine Infinite Bus (SMIB) power system
that achieves a coordinate power system stabilizer with satisfactory sensor fault detection capabilities.

Keywords — Model-based fault detection, Robust residual signal, Power system stabilizer (PSS).

I I

The goal of reliability and fault tolerance in control system
design requires that fault detection modules perform well
under a variety of internal/external conditions. Model-
based Fault Detection and Isolation (FDI) has been the
subject of significant attention in recent years [4, 6] and
references therein. The main objective of a model-based
FDI paradigm is to generate a so-called residual signal
that is sensitive to an exogenous fault vector. In this con-
text, the question of joint disturbance decoupling and ro-
bustness of the attendant residual signal in the presence
of significant plant uncertainty is the specific question that
is considered in this paper. A great deal of the published
research on this issue concentrates on observer-based and
parameter estimation methods [4, 6, 9, 12]. However, the
authors feel that such methods provide solutions that do
not yield an easy interpretation that can manage the trade-
off between disturbance decoupling and fault detection in
a closed-loop configuration. Moreover, the necessary on-
line algorithms that are required for parameter estimation
are time-consuming, and can lead to a significant increase
in the complexity of the design.

The focus of this work therefore, is a “frequency do-
main” approach wherein the system frequency response is
used to provide an insight into the necessary design trade
off between disturbance decoupling and fault detection. To
address this issue, several robust FDI techniques, moti-
vated by the H∞/H2, H∞/µ and H∞/LMI paradigms, have
been presented in [6,10,13,16,17]. However, the inherent
conservatism within such a frequency domain H∞-based
approach can lead to high order designs, quite possibly
without any guarantees about a priori levels of robust per-
formance.

Having determined an appropriate residual signal, the
next step in an FDI technique is the so-called residual

evaluation in order to make detection and isolation deci-
sions, [4, 6]. Due to the inevitable existence of noise and
model errors, these residuals are never zero, even if there is
no fault and the disturbance is decoupled perfectly. There-
fore a detection decision requires that residuals be com-
pared with a so-called threshold signal, obtained empiri-
cally (generally) or theoretically. Again a significant liter-
ature exists relating to the determination of such an appro-
priate threshold [4,6,8,17]. Most of these aforementioned
references are presented for open-loop systems however,
and as industrial systems, usually of necessity, work under
feedback control, the FDI algorithm should offer the ca-
pacity of being applied in such a scenario. In [13, 16], a
H∞-based methodology for such an integrated closed-loop
FDI system has been presented.

In this paper a novel two-degree-of-freedom Sensor
Fault Detection and Isolation (SFDI) technique is pre-
sented for Single-Input/Single-Output (SISO) closed-loop
systems. The disturbance decoupling and the robust resid-
ual generation are sequentially addressed via the follow-
ing two stage procedure: In step (1) the effects of exoge-
nous disturbances and model uncertainty are minimized
by feedback controller G(s). In step (2) a SFDI filter that
tracks the pre-specified residual reference model is synthe-
sised. A well-known residual evaluation function is then
utilized to determine the occurrence of false alarms [8,17].

This paper is organized as follows. In Section II the spe-
cific fault detection scheme to be considered and the objec-
tives of the paper are outlined. The design of the feedback
compensator is discussed in section III. The Detection fil-
ter design stage is presented in section IV. Section V con-
siders the numerical evaluation of the residual and finally
the efficiency of the proposed method is demonstrated on a
Single Machine Infinite Bus (SMIB) power system in sec-
tion VI.



II S 

Fig. 1 illustrates a block diagram of the design method-
ology considered in this paper. P(s) represents a SISO
linear(ised) plant transfer function within the uncertainty
region {P}. d1(t) and d2(t) denote unknown exogenous in-
put and output disturbances, and f (t) represents the sensor
fault affecting the system. ym(t) represents the sensor out-
put to be compared with reference signal, c(t).

The objective is to design an appropriate residual sig-
nal, r(t), which is sensitive to f (t) and is robust against the
aforementioned uncertain factors, [10, 17].

Throughout the paper it is assumed that:
Assumptions:

1. P(s) belongs to RH∞, real rational functions with
‖P‖∞ = supω(P( jω)) < ∞.

2. The exogenous disturbances and model uncertainty
are bounded.

3. The reference input is known completely and the
class of failures is given.

4. The reference signal excites the system at the start of
the detection window and that a failure occurs within
the detection window.

5. The fault is detectable.

,
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Fig. 1: Two-degree-of-freedom SFD structure.

III D    G(s)

Initially, G(s) is primarily designed to achieve a satisfac-
tory level of robust stability and robust performance in the
presence of model uncertainty and disturbance when the
system is fault free. A variety of different robust control
methods, for instance H∞ [7], quantitative feedback theory
(QFT) [11] can be used in this stage. It must be noted that
the design of G(s) in Fig. 1 is not the focus of this paper.
The interested reader might consider [1] where an alterna-
tive method of feedback compensator design is introduced
based on a QFT loop-shaping technique that neatly com-
plements the approach presented here.

IV D   Q(s)

Having designed an appropriate G(s), step 2 of the pro-
cedure is the synthesis of a SFDI filter Q(s) to generate a
robust residual signal r(t). The basis for the work relies
on the assumption that it is feasible to construct a refer-
ence (i.e. desired) model for the residual in the presence
of sensor fault as proposed in [17]. Such residual refer-
ence models are denoted here by Gd

r f (s). The objective is

then to design Q(s) such that the transfer function from
f (t) to the actual residual, r(t), becomes matched to the
predefined residual reference model Gd

r f (s). Formally, the
design objective can therefore be stated as follows:

Design Q(s) such that the following inequality holds:

∣∣∣∣∣G
d
r f ( jω) −

Q( jω)
1 + P( jω)G( jω)

∣∣∣∣∣ ≤ |Ed( jω)| , (1)

f or P ∈ {P} and ω ∈ Ω,

Ed(s) describes the desired dynamic behaviour of the error
between the residual reference model and corresponding
actual models denoted by Gr f (s). Ω represents the fre-
quency region where the energy of the fault is likely to be
concentrated.

a) Residual reference model

The method proposed in [17] is adopted to obtain the
residual reference models Gd

r f (s).

Theorem 1: Consider a nominal system given by
(2):

ẋ = Ax + Bu + Bdd1, (2)
y = Cx + Du + D f f + Ddd2.

where x is the state vector, u is the control signal, f is
the sensor fault signal and d1 and d2 are the unknown (in-
put/output) disturbances. A, B,C,D are the system ma-
trices for the open loop system and the remaining matri-
ces (Bd,D f ,Dd) are fault/disturbance distribution matri-
ces. Suppose Assumptions 1, 3 and 5 hold true. Then the
corresponding reference residual models can be obtained
by using the following state-space model:

ẋ f = (A − H∗C)x f − H∗D f f + Bdd1 − H∗Ddd2, (3)
r f = V∗Cx f + V∗D f f + V∗Ddd2,

where

H∗ = (BdDT
d + YCT )X−1, (4)

V∗ = X−1/2, (5)

and X = DdDT
d and Y ≥ 0 is a solution of the algebraic

Riccati equation:

ĀT Y + YĀ − YB̄X−1B̄T Y + Q̄ = 0, (6)

where,

Ā = (A − BdDT
d X−1C)T ,

B̄ = CT ,

Q̄ = Bd(I − DT
d X−1Dd)2BT

d .

Proof: See [17]. ¥



b) design of the filter Q(s) to detect the sensor fault

To address this issue, a log-polar coordinate system is
used to transform (1) into a set of quadratic inequalities
with known coefficients over the uncertainty region, [2,5].

Theorem 2: Consider the closed-loop system as
shown in Fig. 1. Assume that G(s) has been designed
a priori to reduce the effects of disturbance and plant
uncertainty. Moreover, the sensor residual reference
model Gd

r f (s) is obtained via Theorem 1. Then, in order to
achieve a predefined level of SFDI given by (1) over the
frequency range of Ω, it is sufficient to find a Q(s) which
satisfies the following quadratic inequality for a finite set
of frequencies over Ω:

Aq2 + Bq +C ≥ 0 (7)

where

A = −x2,

B = 2xm cos(φx + φq − φm),

C = −m2 + e2
d.

m, x, ed, q, φm, φx, φed and φq are defined as follows:

Gd
r f ( jωi) = m e jφm ,

1/(1 + P( jωi)G( jωi)) = x e jφx ,

Ed( jωi) = ed e jφed ,

Q(ωi) = q e jφq (8)
ωi ∈ Ω. (9)

Proof: Assume that a finite set of frequencies ω̃ =

{ω1, ω2, · · · , ωn} is selected over the frequency range Ω.
By substituting (8) into (1), it can be shown that (1) is
transformed into the following inequality at each design
frequency ωi ∈ ω̃:
(
m cos(φm) − xq cos(φx + φq)

)2
+

(
m sin(φm) − xq sin(φx + φq)

)2
≤ e2

d, (10)

where Gd
r f (s), 1/(1 + P(s)G(s)) and Ed(s) are known and

Q(s) is the unknown parameter to be tuned. By the exten-
sion, (10) can then be rewritten as (7). ¥

Equation (7) should be computed and solved for a fam-
ily of selected plants over the uncertainty region and for
all ωi ∈ ω̃. The solution of (7) for q for a given plant case
and design frequency, and over φq ∈ [−360, 0] will divide
the complex plane of Q into acceptable and unacceptable
regions that greatly reduces the computational burden of
filter design and conservatism, [2, 5]. The intersection of
these regions provides an exact bound for the design of
filter. Q(s) should then be designed to lie within these
bounds at each frequency ωi.

Remark 1:

a) Such a solution implicitly captures phase information
and can hence be applied to both minimum and non-
minimum phase plants as well as time delay systems,
[2, 5].

b) By defining S (s) = 1/(1 + P(s)G(s)) as a sensitiv-
ity function of the closed-loop system, it is clear that:
“the smaller the sensitivity transfer function, the bet-
ter the robustness that is provided against exogenous
disturbances.” However, (1) indicates that an extreme
reduction of the sensitivity function results in an extra
cost on Q(s) when trying to achieve the desired error
Ed(s). Therefore, there is always a trade off between
the disturbance decoupling and SFDI.

c) One candidate Q(s) for the SFDI can be selected (triv-
ially) as:

Q(s) = Gd
r f (s)(1 + P0(s)G(s)) (11)

for a sensor fault. However, this Q(s) will generally
fail to provide an acceptable performance over the de-
sired uncertainty region.

V R 

Suppose that G(s) and Q(s) have been designed to meet
or exceed a set of design constraints. To generate an ap-
propriate fault alarm, the following evaluation function is
subsequently introduced on the residual signal:

‖r‖2 =

[∫ t2

t1
r2(t)dt

]1/2

(12)

where

r(t) = rc(t) + rd1 (t) + rd2 (t) + r f (t), (13)

and rc(t), rdi (t) for i = 1, 2, and r f (t) are respectively de-
fined as follows:

rc(t) = r(t)|di=0, f=0

rdi (t) = r(t)|c=0, f=0

r f (t) = r(t)|c=0, di=0.

Note that a satisfactory level of tracking performance
has been achieved a priori by the design of G(s). By as-
suming that rc(t)− c(t) ≈ 0, the bias of the reference input,
i.e., rc(t) can be ignored by using a feed forward of c(t) on
the residual signal r(t) as shown in Fig. 2. r̃(t) is then used
for the residual evaluation according to Fig. 2.

r̃(t) = rd1 (t) + rd2 (t) + r f (t). (14)

,
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Fig. 2: Improved SFDI structure to eliminate the bias of reference signal
c(t) in the residual evaluation function.

To determine an appropriate fault alarm, a threshold, Jth,
is selected. ‖r̃‖2 should be less than Jth in the absence of a



fault. Moreover a failure should be declared if ‖r̃‖2 exceeds
Jth. The common standard practice is to select Jth as the
upper bound on the residual signal in the absence of any
fault signal. Based on the above statements the minimum
required Jth is subsequently chosen as follows:

Jth = sup
P∈{P}

‖rd1 (t)‖2 + ‖rd2 (t)‖2 (15)

Remark2:
Since an evaluation of a residual signal over the whole

time range is impractical [8], it is desired that the faults be
detected as early as possible within the detection window
τ = t2 − t1, see Assumption 5 . Note that in the presence of
noise, τ must be large enough to separate that noise signal
from a genuine sensor failure signal. The selection of such
a detection window has been discussed in [8].

VI I 

A Single Machine Infinite Bus (SMIB) power system is
now considered to illustrate the methodology. Fig. 3
shows the functional diagram for the SMIB equipped with
a conventional excitation control system. The excitation
voltage, E f d, is supplied by the exciter and is controlled
by an Automatic Voltage Regulator (AVR) to keep the ter-
minal voltage equal to reference voltage. Although the
AVR is very effective during steady state operation, it can
have a negative influence on the damping of the low fre-
quency electromechanical oscillations that naturally occur
in such a plant. For this reason a supplementary control
loop, known as the Power System Stabilizer (PSS), is of-
ten added as shown in Fig. 3, in order to achieve an over-
all improvement in damping of these electromechanical
modes, [3].

PSfrag replacements
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Fig. 3: Conventional excitation control system.

By linearizing the system around any given steady-state
operating condition, the generator and excitation control
system can be modeled as a fourth-order system in state
space form (2) where,

x =



∆δ

∆$

∆e′q
∆E f d


; u = ∆Vre f ; y = ∆$

A =



0 ωB 0 0
−

K1
2H 0 −

K2
2H 0

−
K4
T ′do

0 − 1
T ′doK3

1
T ′do

−
KAK5

TA
0 −

K6KA
TA

− 1
TA


; B =



0
0
0
KA
TA



C =
(

0 1 0 0
)

; D = 0

(16)

The system matrix A contains uncertain variables Ki, for
i ∈ {1, · · · , 6} whose values are determined by the particu-
lar operating conditions at hand. The related equations to
compute Ki, for i ∈ {1, · · · , 6} are provided in Appendix
A. An operating condition is determined from the value of
active power, Pm, reactive power, Qm, and the impedance
of the transmission line, Xe. In order to represent model
uncertainty, it is assumed that these parameters vary inde-
pendently over the range Pm : 0.4 to 1.0, Qm : −0.2 to 0.5,
and Xe : 0.2 to 0.7. A random model in the specified range
is arbitrarily selected as the nominal plant. The system
data used for this example is given in Appendix B.

The necessary SFDI structure, incorporating sensor
fault and fault detection filter is represented by the unity
feedback system as shown in Fig. 4, in which the effect
of changes in the terminal voltage is treated as an input
disturbance to the system.

PSfrag replacements
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∆Vre f (t) f (t)
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Fig. 4: Block diagram of the coordinate PSS and SFD structures for the
SMIB plant.

a) Feedback controller design

The use of a feedback compensator (17) achieves the fol-
lowing performance characteristics :

• the effects of the changes in the terminal voltage is
reduced to less than −10dB.

• a lower gain margin of KM = 1.833 = 5.26(dB) and
a phase margin angle of φM = 49.25◦ are achieved
thereby guaranteeing a satisfactory level of robust sta-
bility.

G(s) = −18
10s

1 + 10s
(1 + 8.4s)2

(1 + 33s)2 (17)

b) Design of Q(s) to detect sensor faults

The design procedure is now repeated using the procedure
outlined by Theorem 2. The residual reference model for
detection of sensor faults is then computed using the fol-
lowing matrices as the nominal plant:

Bd = B, D f = 1, Dd = 1. (18)

To investigate the effect of a sensor fault, D f and Dd

have been set to unity so as to only quantify the actual ef-
fects of fault and noise on the output measurement. Equa-
tion (19) gives the transfer function of the obtained resid-
ual reference signal.



Gd
r f =

(s2 + 20.41s + 123.7)(s2 + 0.4183s + 52.35)
(s2 + 20.55s + 128.4)(s2 + 0.2802s + 50.43)

(19)

An appropriate engineering interpretation for the result-
ing Gd

r f is that, the magnitude of residual signal, should
track (in DC gain terms) the actual value of a particular
fault.

The desired fault detection error Ed(s) is selected so as
to guarantee a zero steady state error between a residual
and an actual fault as follows:

Ed(s) =
0.25s

(s + 0.5)(s + 5)
(20)

A finite set of ω̃ = {0.2, 0.5, 1, 5}(rad/s), appropriate for
the problem at hand, is selected to generate the filter de-
sign bounds. Fig. 5 illustrates the resulting constraints. A
suitable low order, low bandwidth filter that satisfies these
bounds is found to be (21):

Q(s) =
10

(s + 10)
. (21)
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c) Performance analysis

To evaluate system performance, a 5% step disturbance at
the voltage reference input of the AVR is now considered,
i.e, ∆Vre f (t) = 0.05(pu). f (t) is simulated as a pulse of unit
amplitude that occurs in the time window 10(s) to 20(s)
(and is zero otherwise). In the simulations, the detection
window has been selected as τ = 20(s). It is assumed
that a band-limited white noise with power of 10−3 (zero-
order hold with sampling time 0.1(s)) affects the measured
signal ym(t). The simulation is repeated for a selection of
plants described in Table 1.

Fig. 6 illustrates r(t) for this family of plants. It con-
firms (1) has been satisfied by the design specifications. In
addition, the effect of disturbance signals have been fully

Table 1: Three example plants covering the uncertainty
region, [15].

Pm (pu) Qm (pu) X (pu)

case1 0.8 0.4 0.2

case2 0.8 0.0 0.6

case3 1.0 0.5 0.7

decoupled and damped. To select an appropriate thresh-
old Jth, the residual evaluation function (15) is computed
where a sensor fault is absent. Fig. 7 shows the residual
evaluation signal for the family of plants with and with-
out f (t). The figure illustrates that with a selection of
Jth = 0.1, the fault will be detected as soon as it occurs.
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Fig. 6: Residual signal r(t) in the presence of sensor fault and sensor
noise, for the family of plants in Table 1.

d) Comparison with open-loop SFDI technique

A comparison of the proposed methodology with an open-
loop SFDI technique which is not robust, is presented. It
is shown that although the open-loop SFDI approach can
result in an appropriate residual reference model, the re-
sulting residual reference model can not solely be used as
the fault detection filter in this case. A widely used open-
loop fault detection filter with respect to the system given
by (2), is proposed by the following equation, [17]:

˙̂x = (A − HC)x̂ + (B − HD)u + Hy, (22)
ŷ = Cx̂ + Du

r = V(y − ŷ).

where A, B,C,D are the system matrices for the open loop
system. x̂ and ŷ represent the state and output estimated
vectors, respectively. u denotes the control signal which
is considered as a known input signal in open-loop SFDI.
The observer gain matrix H and residual weighting matrix
V should be designed such that the proposed fault detec-
tion objectives are achieved. It should be noted that Theo-
rem 1 also provides a mechanism whereby open-loop fault
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detection can be achieved. Fig. 8 illustrates a compari-
son of this approach with the proposed closed-loop SFDI
technique. In the figure both residual signals that are gen-
erated by Case 3 of Table 1, under open loop and closed-
loop SFDI are presented. The figure demonstrates that the
residual reference generated by (19) cannot reliably distin-
guish between a fault and, say, disturbance and/or model
uncertainty. It is therefore necessary to simultaneously
consider some measure of disturbance decoupling within
the design procedure to ensure the fidelity of the algorithm
in the presence of the model uncertainty.
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Fig. 8: Comparison of residual signals in the presence of sensor fault
using closed-loop FDI ’solid’ and open-loop FDI ’dashed’.

VII C

A novel design methodology has been presented that gen-
erates robust residual signals in the presence of sensor
faults has been presented for the SISO systems. A two-
degree-of-freedom design methodology based on a shap-
ing of frequency response has been introduced that pro-
vides an integrated control and detection filter that is ro-
bust toward uncertainties as well as disturbances. As the
proposed technique captures the exact phase information,

it is an effective design tool for both minimum and non-
minimum phase plants. A Single Machine Infinite Bus
(SMIB) power system highlights the effectiveness of the
proposed approach.

VIII A

A S  

Suppose the active power, Pm, reactive power, Qm, and
terminal voltage, Vt are given. Then K1 to K6 are computed
by following equations:

Vd = PmVt0/
√

P2
m + (Qm + Vt0/Xq)2

Vq =

√
V2

t0 − V2
d

Vt =

√
V2

d + V2
q

Id = (Pm − IqVq)/Vd

Iq = Vd/Xq

e′ = Vq + X′
dId

Vod = Vd + XeIq

Voq = Vq − XeId

Eb =

√
V2

od + V2
oq

δ0 = tan−1(Vod/Voq)

[
K1
K2

]
=

[
0
Iq

]
+


Eb sin δ0
Xe+X′d

Eb cos δ0
Xe+Xq

1
Xe+X′d

0


[

(Xq − X′
d)Iq

E′
q + (Xq − X′

d)Id

]

[
K3
K4

]
=


Xe+X′d
Xe+Xd

Xe−X′d
Xe+X′d

Eb sin δ0



[
K5
K6

]
=

[
0

Vq/Vt

]
+


Eb sin δ0
Xe+X′d

Eb cos δ0
Xe+Xq

1
Xe+X′d

0


[
−X′

dVq/Vt

XqVd/Vt

]

where

Subscript 0 Steady state value
∆ Small deviation
δ Rotor angle
ω Rotor angular speed
e′q Voltage proportional to field flux linkage

E f d Field voltage
ωB Base speed

Vre f AVR reference input
KA AVR gain
TA AVR time constant
H Rotor inertia constant
Vt Generator terminal voltage

T ′
do d-axis transient open circuit time

X′
d d-axis transient reactance

Xd, Xq d and q axes synchronous reactances
Id, Iq d and q axes generator currents

Vd,Vq d and q axes generator voltages
Eb Infinite bus voltage
Tm Mechanical torque
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The system data are given by Table 2.

Table 2: Physical parameters used for the example.

Parameters Value

Xd 2.0 (pu)

X′
d 0.244 (pu)

Xq 1.91 (pu)

T ′
do 4.18 (sec)

Eb 1.0 (pu)

H 3.25 (sec)

ωB 314.15 (rad/sec)

KA 50.0

TA 0.05 (sec)

A
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