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RESEARCH ARTICLE

Soil microbial communities vary in composition and
functional strategy across soil aggregate size class
regardless of tillage

Lukas T. Bernhardt1,*, Richard G. Smith1, A. Stuart Grandy1, Jessica E. Mackay1,
Nicholas D. Warren1, Kevin M. Geyer2, and Jessica G. Ernakovich1

The physicochemical environment within aggregates controls the distribution of carbon and microbial
communities in soils. Agricultural management, such as tillage, can disrupt aggregates and the microscale
habitat provided to microorganisms, thus altering microbial community dynamics. Categorizing microbial
communities into life history strategies with shared functional traits—as has been done to understand
plant community structure for decades—can illuminate how the soil physicochemical environment
constrains the membership and activity of microbial communities. We conducted an aggregate scale survey
of microbial community composition and function through the lens of the yield–acquisition–stress (Y–A–S)
tolerator life history framework. Soils collected from a 7-year tillage experiment were separated into 4
aggregate size classes and enzyme activity, multiple-substrate-induced respiration, and carbon use
efficiency were measured to reveal trade-offs in microbial resource allocation. Microbial community
structure was interrogated with bacterial and fungal marker gene sequencing, and metagenomic features
such as community weighted genome size and traits conferring stress tolerance were predicted using
PICRUSt2. Consistent with our hypothesis, aggregates of different size classes harbored distinct
microbial communities manifesting distinct life history strategies. Large macroaggregate communities
>2 mm were classified as acquisition strategists based on increased enzyme activity relative to other
aggregate size classes. Small and medium microaggregate (0.25–2 mm) communities did not show
a strong tendency toward any particular life history strategy. Genes conferring stress tolerance were
significantly enriched in microaggregates <0.25 mm (indicative of stress tolerators); however, these
communities also had the highest carbon use efficiency (indicative of yield strategists). We found trade-
offs in resource allocation between communities classified as yield and acquisition strategists consistent
with the Y–A–S framework. Tillage did not alter life history strategies within aggregates, suggesting that
the aggregate physicochemistry plays a larger role than agricultural management in shaping microbial life
history at the scale studied.

Keywords: Life history, Microbial community, Soil aggregates,Y–A–S

1. Introduction
Soils are a complex matrix of microhabitats composed of
aggregates, which form due to the interactions of mineral
particles, organic matter, and soil biota (Tisdall and Oades,
1982; reviewed by Six et al., 2004). Macroaggregates
(>0.25 mm) are held together chiefly by temporary bind-
ing agents, such as plant roots and fungal hyphae (Tisdall
and Oades, 1982; Wilson et al., 2009). As such, macroag-
gregates regularly undergo formation, degradation, and
reformation and are heavily impacted by agricultural

management practices such as tillage (Six et al., 2000;
Al-Kaisi et al., 2014).Within macroaggregates, microaggre-
gates (<0.25 mm) form from strong electrostatic interac-
tions between mineral particles and microbially processed
organic matter (Oades, 1984; Oades and Waters, 1991). The
stability of aggregates and differences in physical and che-
mical structure impose constraints on residing microbial
communities, which may require functional specialization
to maximize fitness.

Soil microbial access to resources is controlled by 3
main factors: spatial separation of microbe and resource,
protection of substrates via strong electrostatic bonds with
the mineral environment, and resource chemistry
(Baldock and Skjemstad, 2000; Schmidt et al., 2011;
Dungait et al., 2012; Lehmann et al., 2020). Pore space
and pore connectivity within aggregates modulate micro-
bial access to resources by controlling water availability
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and microbial access to nutrients, oxygen, and carbon
substrates (Sexstone et al., 1985; Foster, 1988; Rabbi
et al., 2016). Macroaggregates have a greater number of
large pores and higher pore connectivity, which may pro-
vide for a microbial habitat with greater resource availabil-
ity (Negassa et al., 2015; reviewed by Wilpiszeski et al.,
2019). By contrast, microaggregates have smaller, discon-
nected pores, which can occlude resources from microbial
access (McCarthy et al., 2008; Rabbi et al., 2016). In addi-
tion to spatial separation of resources, substrates become
inaccessible to microbes as a result of organomineral com-
plexes; this is one of the driving mechanisms behind car-
bon persistence in microaggregates (Chenu and Plante,
2006; Grandy and Neff, 2008; Schmidt et al., 2011).
Resource availability is further controlled by carbon chem-
istry (Lehmann et al., 2020). The majority of carbon con-
tained in macroaggregates is in labile plant-derived
compounds, while microaggregates contain more micro-
bially processed carbon (Elliott, 1986; Christensen, 2001;
Six et al., 2004; Davinic et al., 2012).

The physical and chemical environment within soil
aggregates affects microbial community composition
(Trivedi et al., 2015; Bach et al., 2018; Upton et al.,
2019) and physiology (Lagomarsino et al., 2012; Bach and
Hofmockel, 2014; Trivedi et al., 2017; Pold et al., 2020; Liu
et al., 2021). To clarify patterns between community com-
position and physiology broadly, microbial ecologists have
begun to use life history frameworks to explain how
microorganisms optimize survival under varying abiotic
conditions (Fierer et al., 2007; Wood et al., 2018; Malik
et al., 2020). These frameworks reduce the vast phylogenic
diversity of microbes into functional groups from which
we can make predictions about ecosystem processes (Wal-
lenstein and Hall, 2012). The yield–acquisition–stress (Y–
A–S) life history framework proposed by Malik et al.
(2020) hypothesizes that trade-offs exist between micro-
bial allocation of carbon resources toward yield, resource
acquisition, and stress tolerance. The Y–A–S framework is
a microbially focused adaptation of Grime (1977) frame-
work and centers on the emergence of microbial strategies
due to resource limitation and stress (Malik et al., 2020).
Yield strategists maximize the proportion of resources
allocated to biomass and prosper in environments free
of resource limitation. Environments where resources are
scarce are hypothesized to favor acquisition strategists
with metabolic machinery optimized for the uptake of
readily available substrates or the breakdown of complex
polymers. Habitats with stressful conditions (i.e., low
water availability, pH extremes) favor stress tolerators that
invest resources into survival mechanisms such as cell
membrane integrity or DNA repair at the expense of
growth or nutrient acquisition (Schimel et al., 2007; Malik
et al., 2020).

Because the Y–A–S life history framework categorizes
microbes by their carbon acquisition and allocation, and
other functional traits, it is a useful framework to under-
stand microbial contributions to carbon cycling in soils.
Thus, applying this theory in the context of agricultural
systems may help to predict how carbon is stored, which
can provide a path toward improving agricultural

sustainability. Further, agricultural soils provide a unique
system to test the applicability of the Y–A–S framework at
the aggregate scale because field-scale management deci-
sions alter soil structure and redistribute resources. For
example, tillage decreases stability in both macro- and
microaggregates and accelerates turnover time, which
may lead to changes in microbial community dynamics
at the aggregate scale (Al-Kaisi et al., 2014). Further, tillage
has been shown to reduce carbon relative to untilled soils
resulting from a loss of carbon-rich macroaggregates and
an increase in the proportion of carbon-depleted micro-
aggregates (Six et al., 2000). Although life history frame-
works have been applied previously to soil microbial
communities in agricultural systems, these studies were
conducted on intact soil (Schmidt et al., 2018; Wood et al.,
2018; Malik et al., 2019). Applying the Y–A–S framework—
and life history strategies broadly—at the scale of soil
aggregates may yield additional insights into microbial
community composition and function and their responses
to agricultural management, because these microhabitats
are unique environments with distinct physical and che-
mical characteristics.

To examine the relationship between microbial func-
tion, community composition, and the soil physical envi-
ronment, we isolated aggregates of 4 different sizes
(<0.25, 0.25–1, 1–2, and >2 mm) via a modified optimal
moisture sieving method (Bach and Hofmockel, 2014),
from soils in a 7-year tillage experiment. We measured
3 metrics of microbial physiology important for soil
health and often used to define life history strategy:
direct uptake of simple carbon resources using
multiple-substrate-induced respiration (MSIR), potential
enzyme activity, and carbon use efficiency (CUE). Further,
we used predictive metagenomics to infer community
stress tolerance within aggregates using traits and geno-
mic markers defined in Malik et al. (2020). We hypothe-
sized that aggregates of different size classes harbor
distinct microbial communities that can be classified
into life history strategies. Further, we hypothesized that
microbial physiology and predicted genes would differ
across aggregate size classes in alignment with the Y–A–
S framework and that this relationship would be affected
by tillage. The hypotheses for each aggregate size class
were as follows: (1) aggregates >2 mm will harbor organ-
isms that employ a yield strategy, classified as having the
highest CUE, due to high resource availability and a less
stressful environment relative to other aggregate size
classes; (2) aggregates 0.25–2 mm will harbor acquisition
strategists due to associated carbon chemistry that neces-
sitates enzymatic breakdown; and (3) aggregates <0.25
mm will harbor stress tolerators due to low pore connec-
tivity in microaggregates, which may provide stressful
conditions (i.e., osmotic/oxidative stress) (Figure 1). Life
history frameworks have the potential to improve the
predictions of microbial community function and, thus,
soil function; this study seeks to examine life history
frameworks at a microbially relevant habitat scale to
understand how management alters microbial traits and
soil function.
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2. Materials and methods
2.1. Site description and sampling

Soils were collected from a long-term tillage experiment in
Madbury, NH (N 43�10.3330,W 70�56.3070). The soils at the
site are Hollis-Charlton and Charlton fine sandy loams and
the average annual precipitation is 1,202 mm. The tillage
experiment was established in June 2013. Prior to that
time, the site had been managed for silage corn and hay
for at least 10 years. Six tillage treatments were randomly
assigned to plots within each of 4 blocks. The tillage treat-
ments were full-tillage, strip-tillage, and no-tillage, each
replicated twice within a block. Full-till (FT) plots were
managed by inversion of the soil to 30 cm depth with
a moldboard plow followed by the preparation of the seed
bed with shallow disking. No-till (NT) plots were not tilled.
The experiment was managed as a corn–soybean rotation,
with all plots planted to corn in 2013, 2015, and 2017 and
soybean in 2014, 2016, and 2018. Herbicides (glyphosate
each year except 2015; dicamba in 2015) were applied for
weed control prior to planting crops in the NT treatment
and several weeks postplanting in both the NT and FT
treatments. Liquid dairy manure was applied to each treat-
ment in 2013, several weeks prior to corn planting to main-
tain soil fertility. In 2016, each of the replicate plots for
a given tillage treatment within a block was assigned to
an additional treatment: crop seed coated with pesticides or
the same crop seeds without the pesticide coating.

Soils were sampled in May 2019, prior to tillage (or
herbicide application) and planting to avoid short-term
effects of management-related disturbances, as this study
was focused on long-term effects of soil management on
soil microbial communities. Within each block, we sam-
pled both the FT and NT plots managed with and without
pesticide-coated seeds. Soils were sampled using a slide
hammer coring device to a depth of 10 cm. Twelve soil
cores were collected across each tillage treatment plot and
composited in one bag. Samples were stored on ice and
transported to 4�C within 6 h. Prior to aggregate isolation,
soils were passed through an 8-mm sieve to facilitate the
removal of roots and large rocks while still maintaining
aggregate structure. The pesticide seed coat treatment did
not affect any of the variables measured in this study and
these plots have been retained in the analyses.

2.2. Aggregation isolation and sample storage

Aggregates of 4 different size classes (<0.25 mm ¼ micro-
aggregates; 0.25–1 mm ¼ small macroaggregates;
1–2 mm ¼ medium macroaggregates; >2 mm ¼ large
macroaggregates) were isolated using an optimal moisture
sieving technique with minor modification. This method
has been shown to consistently separate aggregates while
minimizing disturbance to the soil, making measurements
of microbial physiology more reflective of in situ condi-
tions (Bach and Hofmockel, 2014). Soils were dried for

Figure 1. Conceptual diagram of hypotheses for life history strategies microorganism communities within
each aggregate size class. The bulleted lists indicate the various physiological, functional, and genetic indicators
that are important to classify communities into each life history strategy. The direction of the aggregate responses
indicates predictions in this study.
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1 week to 0.1-g H2O g soil�1. Aggregate size classes were
isolated by placing repeated batches of 375-g dried soil
on stacked sterile sieves with mesh openings of 250 mm,
1 mm, and 2 mm affixed to a vibratory sieve shaker
(40 amps for 2.5 min; Retsch AS200) (Tiemann et al.,
2015). The vibratory sieve shaker was used to minimize
disturbance to the aggregates while still facilitating con-
sistent aggregate separation similar to the procedure of
Bach and Hofmockel (2014). A subset of each aggregate
size class was dried for the analysis of total carbon, total
nitrogen, pH, and electric conductivity (EC). A second sub-
set of 3 g was frozen upon isolation at �80�C for DNA
extraction and community classification. A third subset
was frozen at �20�C for enzyme analysis. The remainder
of each size class was stored at 4�C for physiological anal-
ysis via MicroResp™ and CUE. All analyses for this study
were conducted within 3 months of initial sampling.

2.3. Aggregate abiotic classification

Aggregate pH and EC were determined with a soil to
water ratio of 1:5 using Accumet Basic AB15 and Accu-
met Basic AB30 (Fisher Scientific, Hampton, NH) probes,
respectively. Field moisture content was measured by
drying 10 g of soil at 105�C for 3 days and recording
mass loss. Water holding capacity (WHC) was determined
by wetting approximately 50 g of each aggregate to
capacity and measuring moisture content (as above) after
draining for 48 h. Total carbon and total nitrogen were
measured by elemental combustion analysis (Costech
EC4010, Valencia, CA).

2.4. Bacterial and fungal community analysis

DNA extractions were performed using the Qiagen
DNeasy PowerSoil Kit (Venlo, the Netherlands), following
the manufacturer’s protocol with slight modifications to
maximize DNA recovery from samples (Geyer et al., 2019).
DNA concentrations were quantified using the PicoGreen
fluorescence assay (Quant-iTTM PicoGreen Kit, Thermo
Fisher, Germany) on a Biotek Synergy HT microplate
reader (Winooski, VT).

Bacterial and fungal community composition were ana-
lyzed through amplicon sequencing of ribosomal RNA
(rRNA). The V4 region of the bacterial 16S gene was tar-
geted using primers 515f/926r and primers ITS1F/ITS2
were used to target fungal communities (White et al.,
1990; Parada et al., 2016). The conditions of amplification
were as follows: enzyme activation at 95�C for 3 min, 35
cycles of denaturing at 95�C for 30 s, annealing at 55�C
for 30 s, and extension at 72�C for 60 s; followed by a final
extension at 72�C for 12 min. Amplification of the desired
regions was confirmed via gel electrophoresis. 16S and ITS
amplicons were sequenced at the UNH Hubbard Center
for Genome Studies (University of New Hampshire, Dur-
ham, NH) on the Illumina HiSeq 2500 platform (Illumina,
San Diego, CA). Average read counts per sample for 16S
and ITS amplicons were 44,895 and 89,525, respectively.

Bioinformatic analysis of the bacterial and fungal
sequences was conducted in QIIME2 version 2019.4
(Bolyen et al., 2019). For 16S sequences, primers were
removed using Cutadapt (Martin, 2011) and sequences

were trimmed and denoised using DADA2 (Callahan et
al., 2016). Sequences were rarefied to 4,300 reads (Figure
S1). Following rarefication, 5 samples were dropped from
analysis due to low read counts. Taxonomy was assigned
by comparing reads against the GreenGenes database (ver-
sion 3.8.19). For ITS sequence analysis, primers and con-
served regions were removed using ITSxPress (Rivers et al.,
2018). The remaining steps follow the 16S methods out-
lined above through DADA2. ITS taxonomy was assigned
using the UNITE database (Nilsson et al., 2019) and
sequences were rarefied to 22,000 reads.

Community weighted genome size and rRNA copy
number for the bacterial community were predicted via
ancestral state reconstruction in R (version 3.6.3) (R Core
Team, 2018). Briefly, bacterial amplicon sequences were
placed on a reference phylogenetic tree described in Gra-
vuer and Eskelinen (2017) using pplacer (Matsen et al.,
2010). Function phyEstimate() in the picante package (ver-
sion 1.8.2) (Kembel et al., 2010) was used to estimate
genome size and rRNA copy number for each 16S
sequence based on the phylogenetic distance from a refer-
ence sequence with known genome size and rRNA copy
number. Amplicon sequence variant (ASV) relative abun-
dance was corrected for rRNA copy number using the
script from (Kembel et al., 2012) and community weighted
mean (CWM) trait values were calculated using the FD
package (Laliberté et al., 2014).

Functional gene prediction for bacterial communities
was performed using Phylogenetic Reconstruction of
Unobserved Traits 2 (PICRUSt2; Douglas et al., 2020).
PICRUSt2 works by predicting the metagenomic composi-
tion of 16S amplicons using relative organisms, for which
there are fully annotated genomes as a reference. Func-
tional gene abundance, measured as KEGG orthologs
(KOs), was predicted via hidden-state prediction (Louca
and Doebeli, 2018). The reference database was validated
using weighted nearest sequenced taxon index values,
which indicate the average phylogenetic distance from
query sequences to known reference sequence (Table
S1). The KEGG database contains information on experi-
mentally characterized gene function. KEGG gene func-
tions were mapped onto ASVs observed in this
experiment using orthologous genes present in both the
database and observed ASVs.

2.5. Community physiological profiling by

substrate-induced respiration (MSIR), enzyme

activity, and CUE

MSIR was measured using the MicroRespTM system (Camp-
bell et al., 2003) with 7 substrates representing various
chemical groups: L-arginine and L-sysine (amino acids); D-
(þ) trehalose, D-(þ) glucose, and L-(þ) arabinose (carbo-
hydrates); and citric acid and L-malic acid (carboxylic
acids). Water (Milli-Q H2O) was used as a control. Three
replicates for each aggregate size class were included. Fol-
lowing a 5-day preincubation, substrates were added (30-
mg substrate per g total soil water) to *0.362 g of aggre-
gates in deep-well microplates fitted with the MicroRespTM

rubber gasket. A colorimetric CO2 detection plate was
affixed to the rubber gasket and soils were incubated for

Art. 10(1) page 4 of 19 Bernhardt et al: Life history strategy varies among soil aggregate microbial communities
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/10/1/00023/763783/elem

enta.2022.00023.pdf by guest on 25 January 2024



6 h at 25�C. Following the incubation, the absorbance of
the detection plate was measured, and activity was
inferred. CO2 production was corrected for differences in
biomass by subtracting H2O-induced respiration.
Substrate-induced respiration (mg C-CO2-g dry-soil�1 hr�1)
was analyzed on a per substrate basis and as a sum of all
substrates.

The potential enzyme activity of 5 hydrolytic enzymes
was assessed for each aggregate size class: b-glucosidase
(BG), N-acetyl-B-D-glucosaminidase (NAG), Leucine-7-
aminopeptidase (LAP), cellobiohydrolase (CBH), and acid
phosphate (PHOS), following protocols adapted from
Saiya-Cork et al. (2002) and German et al. (2011). Fluo-
rescent standards (MUB and MUC) and substrates (BG,
CBH, NAG, LAP, and PHOS) were made within 1 week
of conducting analysis and stored frozen at �20�C. Opti-
mal substrate concentration and incubation time were
determined using V-max tests conducted on soils from
these sites in 2018. For each assay, a sample control,
buffer control, and substrate control were measured as
well as 16 replicate wells of each aggregate size class by
enzyme combination. Fluorescence was measured using
a Biotek Synergy HT microplate reader at 360- and 460-
nm excitation and emission wavelengths, respectively.
Total enzyme activity corrected for differences in micro-
bial biomass was analyzed (mmol enzyme activity mg
biomass�1 h�1).

CUE was measured using the 18O water tracing
method from Geyer et al. (2019). Aggregates were pre-
incubated at 40% WHC and 25�C for 5 days. For each
sample, paired incubations were conducted with either
a 20 at% 18O-water enrichment or unlabeled deionized
water. Aggregates were incubated at 25�C for 24 h. Then,
3 mL of vial headspace was sampled via syringe and
injected into a LI-COR 6252 benchtop CO2 analyzer (Lin-
coln, NE). Samples were analyzed for dO18 quantification
via temperature conversion elemental analysis (Pyro-
Cube Elementar Analysis System, Hanau, Germany) at
the UC Davis Stable Isotope Facility. Due to machine
failure during O18 quantification, CUE analysis includes
33 datapoints spanning all 4 aggregate size classes and
both tillage treatments (<0.25, n ¼ 8; 0.25–1, n ¼ 7; 1–
2, n ¼ 8; >2 mm, n ¼ 9). For comparison, all other
physiological analyses include 64 datapoints (n ¼ 16 per
aggregate class).

Microbial biomass was calculated via the substrate-
induced respiration method of Anderson and Domsch
(1978) with modification. Microbial biomass can be calcu-
lated from the following conversion: 1-mL CO2 h�1

glucose-induced respiration corresponds to 40-mg micro-
bial biomass carbon over short incubations (1–3 h) at
22�C (Anderson and Domsch, 1978). Glucose-induced res-
piration from MicroResp™ measurements (mL C-CO2 g�1

dry soil h�1) was converted to microbial biomass C (mg C
g�1 dry soil h�1) using the equation from Anderson and
Domsch (1978):

mg biomass C ¼ mL CO2 g dry soil� 1 h� 1� 40:04þ 0:37:

ð1Þ

Soils were incubated at 25�C for 6 h rather than 22�C
for 1–3 h. As such, incubation conditions were modifica-
tions from the original Anderson and Domsch method
and may represent an overestimation of microbial bio-
mass. However, we expect that these modifications would
affect samples uniformly, and thus, the relationship
between treatments would be maintained. To validate
measurements of microbial biomass, linear regression was
performed to test the relationship between total carbon
and microbial biomass as these two measurements are
known to be highly correlated (Figure S2) (Anderson and
Domsch, 1989). To further validate biomass calculations,
linear regression was performed to test the relationship
between soil DNA (ng g�1 dry soil) and microbial biomass
(Figure S3). Calculations for CUE follow equations from
Geyer et al. (2019) adapted from Spohn et al. (2016).

2.6. Data processing and statistics

Statistical analyses were conducted in R (version 3.6.3; R
Core Team, 2018). Normality and homoscedasticity of all
data were assessed using Shapiro–Wilks and Levene’s test,
respectively. pH did not meet the assumptions of normal-
ity and was log transformed prior to analysis. Differences
in abiotic characteristics among aggregates and between
tillage treatments were determined using two-way analy-
sis of variance (ANOVA). Post hoc Tukey HSD tests were
performed to determine which aggregate size classes were
driving statistically valid differences. Statistical differences
in MSIR and enzyme activity between tillage treatments
and aggregate size classes were determined using permu-
tational multivariate ANOVA (PERMANOVA) in the “vegan”
package (Oksanen et al., 2018). Experimental block signif-
icantly impacted MSIR and enzyme activity, so permuta-
tions were constrained by block to minimize this effect. As
tillage significantly impacted both MSIR and enzyme activ-
ity, individual substrates and enzymes across aggregate
size classes were analyzed separately for NT and FT treat-
ments via ANOVA following log transformation to meet
the assumptions of normality.

Differences in microbial communities and predicted
gene composition across aggregate size classes and tillage
treatments were assessed with PERMANOVA and visual-
ized using nonmetric multidimensional scaling with
Bray–Curtis dissimilarity. Indicator ASVs in bacterial com-
munities were identified using the “indicspecies” package
in R. Bacterial and fungal microbial communities were
distinct between experimental blocks, so PERMANOVA
randomizations were constrained by block to account for
this effect. KOs were analyzed using STAMP v2.1.3 (Parks et
al., 2014) for differential abundance of predicted genes
across aggregate size classes using White’s nonparametric
t test with Benjamini–Hochberg false discovery rate (FDR)
correction. FDR was set at 0.05.

3. Results
3.1. Aggregate abiotic properties

Soil aggregate distribution differed between the FT and
NT treatments. Macroaggregates (<2 mm) were signifi-
cantly reduced within FT plots relative to NT plots. In
both FT and NT plots, the 0.025–1 and <2 mm
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aggregates made up the majority of the aggregate frac-
tions (Figure S4). Total carbon did not vary across aggre-
gate size classes within either tillage treatment (Table S2;
F ¼ 1.917; P > 0.05). However, under NT, total nitrogen
was greater in the <0.25 mm aggregate size class com-
pared to in the 0.25–1 and 1–2 mm size classes (Table
S2; F ¼ 4.74; P < 0.01).

3.2. Microbial community composition

Microbial community composition differed between till-
age treatments and aggregate size classes; however, there
was no interaction effect. Bacterial community composi-
tion was modified by tillage treatment (PERMANOVA; F ¼
6.81; P < 0.001) and differed by aggregate size class (PER-
MANOVA; F ¼ 1.45; P ¼ 0.01) (Figure 2a). Differences in
community composition between aggregate size classes
were driven largely by the >2 mm and <0.25 mm size
classes (P¼ 0.036). Diversity metrics of both evenness and
Shannon’s diversity were unaffected. WHC, pH, and EC
were strongly correlated with bacterial community com-
position (pH, P ¼ 0.005; EC, P ¼ 0.005; and WHC, P ¼
0.001). Indicator species analysis identified two ASVs in
the order Actinomycetales associated with the <0.25 mm
aggregate size classes. Two ASVs in the phylum Verruco-
microbia and Actinobacteria were associated with the
0.25–1 mm aggregate size classes. Additionally, there
were 5 indicator species in the >2 mm aggregate bacterial
communities spread across 5 phyla (Table S3). Like bacte-
rial communities, fungal communities differed at both the
field (PERMANOVA; F ¼ 5.27; P < 0.001) and aggregate
scale (PERMANOVA; F ¼ 1.45; P < 0.01; Figure 2b). How-
ever, fungal communities in the <0.25 mm aggregate size

class differed significantly from those of both the 1–2 and
>2 mm aggregate sizes. All environmental variables tested
(pH, EC, WHC, total N, total C, and C:N) were correlated
with fungal community composition in the NT plots.

3.3. Microbial physiology

The microbial acquisition strategy was gauged by 2
metrics: activity in response to carbon substrates and
investment into enzyme production. Microbial uptake and
acquisition of simple carbon molecules was measured via
MSIR of 7 carbon substrates across 3 compound classes:
amino acids, carboxylic acids, and carbohydrates. We used
the microbial respiration induced by these simple
substrates as a proxy for activity and analyzed the
microbial response to all 7 substrates in total (i.e., as the
sum of respiration across substrates) and individually.
Aggregate size (PERMANOVA; F ¼ 1.77; P < 0.05) and
tillage (PERMANOVA; F ¼ 11.99; P < 0.001) impacted
community response to carbon substrates with
consistently higher activity in NT plots. Although there
were differences in aggregate microbial community
composition, MSIR was largely consistent across aggregate
size classes with few exceptions. Glucose-induced
respiration decreased with increasing aggregate size.
Arabinose, also a carbohydrate, elicited an opposite
response albeit with a much lower magnitude. Microbial
response to citric acid was affected by aggregate size (F ¼
4.301, P < 0.01) with the highest respiration in 1–2 mm
aggregates and lowest in aggregates <0.25 mm (Table S2).

Extracellular enzyme activity was measured to explore
microbial community investment into nutrient and car-
bon acquisition; specifically, we measured 2 carbon-

Figure 2. Nonmetric multidimensional scaling ordination using Bray–Curtis distance for both bacterial (a)
and fungal (b) communities. Both tillage treatment and aggregate size class were significant factors in shaping
community composition for both bacterial (panel a) and fungal (panel b) communities. Colors represent aggregate
size class and point shape represents tillage treatment. Stress for bacterial and fungal community ordinations were
0.094 and 0.15, respectively.
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acquiring (BG and CBH), 2 nitrogen-acquiring (LAP and
NAG), and 1 phosphorus-acquiring (PHOS) enzymes. As
a result of differing microbial biomass between tillage treat-
ments (F ¼ 27.92; P < 0.001) and aggregate size classes (F
¼ 10.96; P < 0.001), enzyme activity was relativized per mg
biomass (Steinweg et al., 2013; Malik et al., 2019; Figure 3).
We analyzed enzyme data jointly (i.e., the treatment effect
on the responses of all 5 enzymes together as multivariate
data via PERMANOVA) and individually (i.e., each of the
enzymes via ANOVA). Aggregate size class and tillage treat-
ment did not impact enzyme activity when analyzed jointly
via PERMANOVA. However, when individual enzymes were
analyzed, patterns began to emerge. Biomass relativized
CBH activity was significantly lower in tilled plots (0.21 ±
0.019-nmol activity mg biomass�1) relative to no-tilled plots
(0.32 ± 0.022-mmol activity mg biomass�1) (F¼ 15.662; P <
0.001). As aggregate size class increased both CBH and BG
activity tended to increase however, not significantly (P ¼
0.08 and P ¼ 0.09 respectively). NAG activity was 1.5 times
higher in aggregates >2 mm relative to aggregates <0.25
mm (F ¼ 5.25, P < 0.01). Nitrogen acquiring enzyme activ-
ity (i.e., sum of LAP and NAG) was significantly higher in
aggregates >2 mm and significantly greater than the 0.25–

1 mm and <0.25 mm size classes however was unaffected
by tillage.

CUE was analyzed to understand microbial investment
into the production of new biomass (i.e., yield in the Malik
et al. [2019] framework). Tillage had no significant effect
on CUE. However, CUE was affected by aggregate size (F ¼
3.49; P ¼ 0.029), which was highest in aggregates <0.25
mm (0.27 ± 0.032) and lowest in aggregates >2 mm (0.17
± 0.016) (Figure 4).

3.4. Predicted metagenomics

CWM genome size and rRNA copy number were analyzed
as a measurement of community stress tolerance and
growth, respectively. Predicted CWM genome size was
nearly impacted by tillage in the two-way ANOVA model
(P ¼ 0.0802). In the FT system, predicted genome size was
significantly larger in the >2 mm size class and ranged
from 4.46 ± 0.039 to 4.72 ± 0.095 Mbp in <0.25 mm and
>2 mm aggregates, respectively (F ¼ 5.029; P ¼ 0.018).
However, under NT, CWM genome size was greatest in the
0.25–1 mm aggregate size class (F ¼ 4.21; P ¼ 0.015;
Figure 5). rRNA gene copy number was unaffected by
either aggregate size or tillage treatment.

Figure 3. Enzyme activity relativized by biomass for each aggregate size class under no-till (NT) and
full-till (FT). Panels a–e show enzyme activity reported as mmol activity mg biomass�1 hr�1 for each aggregate size
class. Panel f shows total enzyme activity (mmol activity mg biomass�1 hr�1) in each tillage treatment and aggregate
size class. Darker gray boxes represent FT sites and lighter gray boxes represent NT sites. Letters denote significance
between aggregate size classes. Significance was determined by two-way analysis of variance for each enzyme. P values
were included for tillage and aggregate size effects at P < 0.1.
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Traits conferring stress tolerance were inferred from
predicted functional pathways obtained from KOs pre-
dicted using PICRUSt2 (Douglas et al., 2020), a tool which
allows for inference into the potential genes, and there-
fore the potential functions, of the bacterial community.
KOs will hereafter be referred to as “predicted genes.”
Statistical analyses were performed on log-transformed
predicted genes. Predicted genes varied by tillage and
aggregate size class (PERMANOVA; till treatment: F ¼
5.41; P < 0.001; aggregate size class: F ¼ 2.18; P <
0.001). There was also a significant interaction of tillage
and aggregate size class (F ¼ 1.68; P ¼ 0.003). In the
<0.25, 1–2, and >2 mm aggregate size classes, KO abun-
dance differed between till treatments; however in the
0.25–1 mm aggregate size class, tillage had no effect (P
¼ 0.116).

Post hoc pairwise comparison revealed that the pre-
dicted gene composition of the <0.25 mm aggregate size
class differed from that of the 0.25–1 mm (P < 0.01), 1–2
mm (P < 0.01), and >2 mm (P < 0.05) aggregate size
classes. The top 1% of predicted genes with the highest
variance between aggregates were subsampled from an
initial pool of 7,258 genes and differential abundance of
the 73 high variance genes retained was calculated
between the <0.25 mm aggregate size class and all other
aggregate sizes (Figure 6). Differences in gene

composition between samples were driven largely by the
abundance of genes encoding fatty acid synthesis/metab-
olism. Further, stress tolerance genes that encode for cold
shock proteins and sigma 70 factors were also enriched in
microaggregates.

3.5. Trade-offs within the Y-A-S life history

framework

Enzyme activity and CUE were negatively correlated. Lin-
ear models determined CUE was negatively correlated
with total carbon acquiring, total nitrogen acquiring, and
total phosphorus acquiring activity, suggesting that there
is a trade-off in microbial investment to growth versus
carbon and nutrient focused resource acquisition
(Figure 7).

To highlight microbial investment into yield versus
stress tolerance strategies, linear regression was used to
compare CUE and CWM genome size. Previous studies
have shown that genome size is reduced in environments
with high acidity, aridity, heat, and salinity, which suggests
that smaller genomes may be a potential stress tolerance
strategy (Cortez et al., 2022; Simonsen, 2022). CUE was
negatively correlated with genome size (Figure 8), sug-
gesting that having a larger genome may come at the
expense of CUE. However, this does not support the
hypothesized trade-off between yield and stress tolerance.

Figure 4. Microbial carbon use efficiency (CUE) across aggregate size classes. CUE decreased with increasing
aggregate size class (F ¼ 3.49; P ¼ 0.029). Data are averaged across tillage treatments as tillage did not impact CUE.
Significance determined by one-way analysis of variance.
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4. Discussion
Most studies observe microbial function and composi-
tion using bulk soils after sieving and homogenizing soil
structure. However, this may obscure the complex inter-
play between microbial communities and the soil phys-
ical environments in which they reside. The structural
complexity of soils includes innumerable microhabitats
including inter- and intra-aggregate spaces (Foster, 1988;
reviewed by Wilpiszeski et al., 2019). The results pre-
sented here suggest that observing microbial communi-
ties at the finer spatial resolution of aggregates can yield
insights into the variability of microbial function, which
can be understood using microbial life history strategies
frameworks. Our findings show that soil aggregates har-
bor unique microbial communities with different prefer-
ences for specific low molecular weight carbon
compounds and that microbial CUE differs with aggre-
gate size. Additionally, genes conferring stress tolerance
vary by aggregate size class. Taken together, these results
suggest that trade-offs within the Y–A–S life history strat-
egy framework apply to soil aggregate microbial commu-
nities and that these relationships persist regardless
of tillage.

4.1. Abiotic environment and microbial community

composition varied by aggregate size class and

management

At the field scale, tillage changed aggregate size class dis-
tribution across this study. Tilled plots had 5.5% more
microaggregates <0.25 mm and the proportion of aggre-
gates >2 mm was significantly reduced. While carbon dis-
tribution in agricultural soil generally varies depending on
both the scale of study (aggregate vs. whole field) and
agricultural management (Grandy and Robertson, 2007;
Trivedi et al., 2015; Bach et al., 2018), bulk soils from this
tillage experiment do not show differences in total carbon
with tillage possibly due to the relatively recent adoption
of the NT treatment. Further, we found there was no
difference in total carbon between aggregate size classes,
which may have been a result of the aggregate isolation
method chosen (Xu et al., 2017).

Both bacterial and fungal community structure were
impacted by tillage and aggregate size class. Previous stud-
ies have found that tillage drives changes in community
structure largely due to changes in the chemical and phys-
ical composition of soils (Carbonetto et al., 2014). Com-
munity structure in aggregates is driven by both the

Figure 5. Box plots depicting predicted genome size measured in mega base pairs. Plots are broken out by tillage
as tillage was nearly significant in the two-way analysis of variance (ANOVA) (P¼ 0.0802). One way ANOVA found that
aggregate size class significantly affected genome size (P ¼ 0.004). Letters denote significance difference between
aggregate sizes within each tillage class.
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quality of resources (Davinic et al., 2012) and physical
structure of the aggregate environment including pore
size and connectivity within aggregates, which can alter
microbial access to carbon (Sexstone et al., 1985; Mum-
mey et al., 2006; Ebrahimi and Or, 2016). Differences in
substrate quality and physical structure have been shown
to alter microbial community composition in aggregates
previously (Trivedi et al., 2017). We found no interaction
between aggregate size and tillage, suggesting that com-
munities within aggregates are affected by tillage in a con-
sistent manner regardless of aggregate size. This
highlights the importance for studying aggregate-scale
interactions in agricultural soils.

4.2. Microbial physiology varied by aggregate

size class

MSIR differed between aggregate size classes; however,
there were no consistent patterns across substrate classes.
Glucose-induced respiration accounted for a quarter of
total MSIR in <0.25 mm aggregates. In agreement with
Lagomarsino et al. (2012), glucose respiration was
inversely related to aggregate size in both FT and NT treat-
ments. However, arabinose (also a carbohydrate) elicited
an opposite response. Higher arabinose utilization in
larger aggregate size classes may be the result of microbial
communities that are accustomed to processing coarse

plant biomass as L-arabinose is an important component
of plant cell walls (Seiboth and Metz, 2011). For example,
fungi are responsible for degrading plant cell wall compo-
nents, such as cellulose, hemicellulose, and pectin (Aro et
al., 2005). Therefore, higher arabinose utilization in larger
aggregates could potentially be attributed to a larger fun-
gal community. Microbial activity in response to citric acid
additions accounted for 25% of total MSIR in aggregates
greater than 1 mm and increased with increasing aggre-
gate size contrasting the findings of Lagomarsino et al.
(2012). Given the role of plant roots as binding agents
in macroaggregate formation (Tisdall and Oades, 1982),
microbial communities in larger aggregates may be more
adept at utilizing organic acids, like citric acid, given that
they constitute a large proportion of plant root exudates
(Tawaraya et al., 2014).

In addition to direct uptake of simple compounds,
microbes also maintain resource demands by producing
enzymes to break down complex polymers. When analyz-
ing the additive effects of nitrogen and carbon acquiring
enzymes, investment into total nitrogen acquiring
enzymes was higher in >2 mm aggregates relative to in
0.25–1 mm aggregates, suggesting that macroaggregate
communities may harbor communities that favor resource
acquisition. One possible explanation for this trend is that
high enzyme production in macroaggregates could be

Figure 6. Bacterial functional gene composition analyzed for differential abundance between <0.25 mm
aggregates and all aggregates averaged. Positive differences in proportions represent greater gene abundance
in <0.25 mm aggregates (red). Negative differences in proportions represent greater gene abundance in >2, 1–2, and
0.25–1 mm (gray). Corrected P values were calculated by White’s nonparametric t test with Benjamini–Hochberg false
discovery rate (FDR) correction. FDR set at 0.05. q values represent significance following correction for multiple
comparisons. Genes with q values <0.05 were considered significant.
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a result of favorable pore structure and diffusion gradients
found in >2 mm aggregates. Enzymes released exoge-
nously diffuse into the environment to reach their target
substrate; thus, resource acquisition via enzyme produc-
tion should be favored in environments with high pore
connectivity, such as macroaggregates (Rabbi et al., 2016).
Despite often having more complex carbon in need of
enzymatic depolymerization, microaggregates may be
unfavorable environments for diffusion due to low
porosity making return on investment into enzymes low
(Rabbi et al., 2016). Individual carbon acquiring enzymes
(BG and CBH) were unaffected by aggregate size. CBH,
however, was significantly lower in FT plots, which could
be a result of changes in fungal community composition
due to soil disturbance (Helgason et al., 2010; Kyaschenko
et al., 2017).

Substrate-independent CUE methods capture the mea-
sures of in situ microbial efficiency that are more repre-
sentative of the constraints imposed by the environment
than can be obtained by the addition of substrates (Geyer
et al., 2019), making them a good method for assessing
microbial strategies (e.g., yield) in response to the aggre-
gate environment. The values reported in this study fall
within the same range of other studies using substrate-

independent CUE (Geyer et al., 2019; Malik et al., 2019).
Contrary to our hypothesis that aggregates >2 mm would
harbor yield strategists, CUE was lowest in macroaggre-
gate communities, and this relationship was not impacted
by agricultural management. It is possible that high yield
is advantageous to microorganisms in microaggregates,
where carbon resources are scarce due to physical separa-
tion (Dungait et al., 2012). Despite emerging patterns, it is
hard to draw broad conclusions as microhabitat variation
in CUE is generally understudied (Anthony et al., 2020).

4.3. Predicted metagenomic features differ

by aggregate size class

Agricultural management and resultant changes in abiotic
soil properties impact the genomic potential of soil micro-
organisms (Trivedi et al., 2015). Predicted metagenomic
features differed across bacterial communities between
aggregate size classes; however, this relationship was unal-
tered by agricultural management. Specifically, CWM
genome size increased significantly with increasing aggre-
gate size. This relationship may be the result of differences
in the stability of aggregates as microbial habitats. Micro-
aggregates are more stable environments with slower
turnover times and longer persistence (Al-Kaisi et al.,

Figure 7. Linear regressions highlighting the trade-off between carbon use efficiency (CUE) and enzyme
activity. CUE was negatively correlated with carbon acquiring (cellobiohydrolase and b-glucosidase; panel a),
nitrogen acquiring (N-acetyl-B-D-glucosaminidase and Leucine-7-aminopeptidase; panel b), and phosphorus
acquiring (acid phosphate; panel c) enzyme activity relativized by biomass. Enzyme values were log transformed to
meet the assumptions of normality.
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2014). Studies have shown that stable environments select
for smaller, streamlined genomes while variable environ-
ments tend to select for organisms with larger genomes
and a greater breadth of metabolic capabilities to adapt to
changing conditions (Bentkowski et al., 2015). Thus, differ-
ences in stability between macroaggregates and microag-
gregates may impose selection pressures that drive
genome size. Further supporting this idea, the relation-
ship between genome size and aggregate size was made
more apparent by agricultural management. In aggregates
>2 mm, genome size was greater for FT than NT (4.72 ±
0.095 and 4.54 ± 0.023 mega base pairs, respectively).
Tillage decreases macroaggregate stability (Al-Kaisi et al.,
2014). As such, larger genome sizes in FT macroaggregate
communities could be a stress tolerance response to
decreased macroaggregate stability relative to aggregates
under NT. Aggregates <0.25 mm had similar genome sizes
in NT and FT soils (4.48 ± 0.012 and 4.46 ± 0.039 mega
base pairs, respectively), which is consistent with the idea
that microaggregates are more stable regardless of tillage
(Al-Kaisi et al., 2014). rRNA gene copy number is a genomic
feature included in most studies of bacterial life history
strategy (Fierer et al., 2007; Krause et al., 2014; Schmidt et
al., 2018) as it is positively correlated with bacterial
growth rate (Klappenbach et al., 2000; Roller et al.,
2016). However, unlike other life history frameworks,

within the Y–A–S framework, growth rate is an emergent
property of the microbial community and not a strategy in
and of its self (Malik et al., 2020). Consistent with this, we
did not see any trends in rRNA copy number between
aggregate size classes or tillage and there were no appar-
ent trade-offs with any of the physiological metrics
studied.

The functional genes of a microbial community deter-
mine functional capabilities and the emergent community
life history strategy (Wood et al., 2018). Gene composition
of aggregates <0.25 mm differed from that of other aggre-
gate size classes, supporting the notion that microaggre-
gates may select for microorganisms employing a stress
tolerance life history strategy. Stress tolerance is largely
conferred by cell membrane chemistry, given that this is
the only barrier of defense between a cell and the sur-
rounding environment (Russell et al., 1995). Of the 8 pre-
dicted genes significantly enriched in the <0.25 mm
aggregate size class, 4 were related to fatty acid synthesis
or metabolism: long-chain acyl-CoA synthetase, acyl-ACP
dehydrogenase, 3-oxoacyl-reductase, and acetyl-coa c-
acetyltransferase. Fatty acid synthesis and metabolism is
important for stress tolerance as bacteria have been shown
to alter the composition and distribution of fatty acids
along cell membranes in response to stressors such as
pH (reviewed by Guan and Liu, 2020). Genes encoding for

Figure 8. Linear regression between community carbon use efficiency (CUE) and community weighted
genome size. Community CUE and weighted genome size were negatively correlated (P < 0.001). The color of the
data points corresponds to aggregate size class.
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cold shock proteins (Csp) were also enriched in aggregates
<0.25 mm. Despite their name, many Csp gene families
are also important in microbial response to osmotic, oxi-
dative, and starvation stress (reviewed by Keto-Timonen et
al., 2016). Thus, their enrichment in aggregates <0.25 mm
further supports the notion that microaggregates harbor
a stress tolerant bacterial community. Sigma factors are
RNA polymerase subunits responsible for transcription
initiation (Paget, 2015). Sigma 70 contains 4 subgroups
of sigma factors, 3 of which are involved in response to
nutrient limitation, oxidative, and osmotic stress (Paget,
2015). Predicted genes coding for RNA polymerase sigma
70 factors were significantly enriched in microaggregates,
which further bolsters the evidence of stress tolerance.
While microorganisms exist in complex communities in
nature, most previous work to link genes and the func-
tions they encode to stress tolerance have been explored
in single organism, culture-based studies. Therefore, our
application of these inferences should be further tested as
accessibility to community-level traits increases due to
advances in metagenomics.

4.4. Trade-offs exist between yield and acquisition

but not yield and stress strategies

The ultimate goal of the Y–A–S framework is to predict
microbially driven ecosystem function and response to
environmental change by grouping organisms based on
shared function in response to environmental conditions.
Microbial function often cannot be predicted by genes
alone (Pold et al., 2020) because of in situ trade-offs that
are better assessed with physiological measurements. CUE
was negatively correlated with enzyme activity for both
carbon and nitrogen acquiring enzymes. This trade-off
between yield and investment into resource acquisition
is consistent with the Y–A–S framework (Malik et al.,
2019; Malik et al., 2020). However, the trade-off between
CUE and phosphorus acquiring enzymes was less appar-
ent. There were no discernable patterns of acquisition
related to simple carbon molecules within aggregate sizes.
This lack of relationship between CUE and MSIR may sug-
gest that the genomic machinery for simple carbon
uptake does not come at an overall cost to yield (Geyer
et al., 2020). Enzyme activity and CUE measurements in
this study represent one time point, and we cannot infer
how these relationships change with fluctuating environ-
mental conditions.

Although there were apparent trade-offs between yield
and acquisition strategies, there was conflicting support
for the trade-offs between stress tolerance and yield strat-
egies. There was a negative relationship between genome
size and CUE (R2 ¼ 0.28; P ¼ 0.003), which suggests that
larger genomes may come at a cost to yield. However,
microaggregate communities had high CUE and an abun-
dance of genes conferring stress tolerance, which may
suggest that stress tolerator communities do not have
inherently lower yield or that the Y–S trade-off may exist
only when presented with unfavorable abiotic conditions.
CUE is a dynamic trait dependent on both genomic con-
straints on physiology and the conditions of the surround-
ing environment (Domeı́gnoz-Horta et al., 2020). Six of

the 8 predicted genes enriched in microaggregate com-
munities were potentially related to stress tolerance. The
remaining 2 genes were related to ABC membrane trans-
porters responsible for uptake of simple molecules, which
could put place microaggregates along the stressed and
resource limited axis of Y–A–S framework (Malik et al.,
2020). Further work needs to be done to verify the S–A
and S–Y trade-offs in microaggregates under varying levels
of abiotic stress.

5. Conclusion
By analyzing both physiological and metagenomic charac-
teristics of aggregate microbial communities, we were
able to assign life history strategies within the Y–A–S
framework. In support of our hypothesis, we were able
to classify microaggregates communities as stress tolerant
based on their predicted metagenomic profile. However,
the microaggregate community also had the highest CUE,
which may be the result of a greater number of oligotro-
phic microorganisms (Trivedi et al., 2017). Large macroag-
gregate communities >2 mm were classified as acquisition
strategists based on increased enzyme activity relative to
the other aggregate size classes. Physiological responses of
small and medium microaggregate (0.25–2 mm) commu-
nities did not show a strong tendency toward any partic-
ular life history strategy, suggesting that either these
microbial communities do not face the same selection
pressures or perhaps that communities in mid-sized aggre-
gates are more generalist in support of a multistrategy
approach. In addition, the work presented here provides
support for trade-offs in resource allocation hypothesized
in Malik et al. (2020). By validating this framework using
soil aggregate communities, we may be able to incorpo-
rate these functional assignments into models that
account for microbial strategies when predicting soil C
dynamics (Wieder et al., 2015). For example, tillage shifts
the distribution of aggregates, thus changing the propor-
tions of microbial communities classified by Y–A–S toler-
ance, which has implications for maintaining healthy,
carbon-rich agricultural systems. Using microbial life his-
tory strategies to understand the functional outcomes
associated with changes in microbial communities pro-
vides insight into the impact of management activities
on soil function.
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Figure S2. Linear regression of microbial biomass ver-
sus total carbon.

Figure S3. Linear regression of microbial biomass
against soil DNA measured.

Figure S4. Aggregate size class distribution in no-till
(left) and full-till (right) treatments.
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ples included in PICRUSt2 analysis.
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