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Survey on Activation Functions for Optical Neural Networks

OCEANE DESTRAS, Ecole polytechnique de Montreal, Canada

SÉBASTIEN LE BEUX, Concordia university, Canada

FELIPE GOHRING DE MAGALHÃES and GABRIELA NICOLESCU, Ecole polytechnique de

Montreal, Canada

Integrated photonics arises as a fast and energy-efficient technology for the implementation of artificial

neural networks (ANNs). Indeed, with the growing interest in ANNs, photonics shows great promise to

overcome current limitations of electronic-based implementation. For example, it has been shown that

neural networks integrating optical matrix multiplications can potentially run two orders of magnitude

faster than their electronic counterparts. However, the transposition in the optical domain of the activation

functions, which is a key feature of ANNs, remains a challenge. There is no direct optical implementation

of state-of-the-art activation functions. Currently, most designs require time-consuming and power-hungry

electro-optical conversions. In this survey, we review both all-optical and opto-electronic activation

functions proposed in the state-of-the-art. We present activation functions with their key characteristics,

and we summarize challenges for their use in the context of all-optical neural networks. We then highlight

research directions for the implementation of fully optical neural networks.
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photonic technologies;
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1 INTRODUCTION

Artificial Intelligence (AI)-powered systems are used for a variety of applications. However,
they are usually resource hungry, requiring significant amounts of processing elements and mem-
ories. With the end of Moore’s law, state-of-the-art architectures for AI algorithms will no longer
enable the processing and the storage of data as predicted in Reference [1]. Furthermore, the need
for power-efficient ANN implementations has been emerging. Indeed, an application of image
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recognition may have to implement billions of operations just for the processing of one image [2].
Solutions currently being explored involve the replacement of fully or partially integrated elec-
tronic circuits with photonic circuits [3].

A key feature of silicon photonics is wavelength division multiplexing (WDM), which
enables the parallel transmission of multiple signals on the same medium without interferences.
In the context of optical neural networks (ONNs), WDM allows parallel processing of multiple
data at the same time. The potential to outperform electronic implementations in terms of speed
and energy efficiency is another promising feature of ONNs [4]. For instance, the execution
of operations on a conventional computer, such as matrix multiplications, is power and area
hungry [5], while it may be computed at ultra-high speed using specific configurations of photonic
networks [6]. Indeed, all-optical ANNs, which require no optoelectronics or electro-optical con-
version other than the interface, allow matrix multiplications to be performed at the speed of light
as optical signals propagate in waveguides. Silicon photonics enables the integration of photonic
and electronic devices on the same platform [7]. The two most used optical modulators are
Mach-Zendher interferometers (MZIs) and microring resonators (MRRs). MZIs are bulkier,
but they are less sensitive to process and temperature variations. This is because signal processing
is accomplished by delaying the signal in one of the two branches. MRRs are more compact, and
dot products are obtained by slightly detuning the resonant wavelength of the MRR from the
input signal. While this enables WDM, the accurate calibration of the rings, for which resonance
drifts with the temperature, leads to significant complexity and power overhead. Overall, we
conclude that MZIs are, so far, a more robust approach to design ONNs compared to MRRs.

One of the main challenges in replicating an ANN with an ONN is to be able to implement
optically every module of a classic ANN. The implementation of an optical matrix multiplication
has been proven already [8] but the activation function (AF), which is an essential function
in an ANN, was not fully addressed. The matrix multiplication corresponds to the linear trans-
formation that data undergoes in an ANN. However, to obtain optimal results, a non-linear
transformation is also needed. In an ANN, this is achieved by the AF. The existing contributions
offer either ONN implementations where the AF is performed on a computer or partly with
electric components or, when implemented fully optically, using optical non-linearities at a
material or device level. In the first case, the conversion of information from the optical circuit
is carried out with the AF on a computer and then the output is converted back to the optical
circuit. However, this means that the speed of the network can be restricted by electronic circuit
limitations [3]. Further, optical-electrical conversions add noise, which degrades the accuracy.
Also, converting data back and forth introduces expressive latency and bigger power consumption,
which ends up jeopardizing the gain obtained by the optical implementation. Consequently, even
though some works implementing the AF electrically (e.g., References [9, 10]) already promise
highly competitive results, we believe that an optical AF is needed to attain the full potential
of ONNs.

This survey presents a discussion on current trends for ONNs. To the best of our knowledge, this
is the first discussion that focuses on this critical aspect of ONNs: an optical AF. Acknowledging
tremendous advances in the computational part (i.e., matrix computation), there is still a gap in
resolving the AF optically, which is explored in this work. The organization of this article is the fol-
lowing. We first introduce basic concepts on ANNs and Integrated photonic. In Section 4, we give
an overview of the different tools that are available for the simulation of ONNs. Then, in Sections 5
and 6, we describe the electro-optical and all-optical solutions proposed to implement AFs in the
current state-of-the-art. We present the technology used and highlight the performance of these
solutions in terms of accuracy, power consumption, and speed. Finally, we compare the different
solutions presented in this article in Section 7 and discuss future research directions in Section 8.
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2 ARTIFICIAL NEURAL NETWORK

Machine learning (ML) is a subgroup of AI [11] that focuses on creating machines to solve
problems humans encounter regularly and solve easily but are much harder for a machine to deal
with (e.g., image recognition and language processing). A popular ML algorithm is Deep Learning

(DL). Its design is inspired by the biological structure of the human brain and is called an Artificial

Neural Network (ANN). The goal of DL algorithms is to build a mathematical model able to
predict accurately outputs for a given task.

We can sort ANN architectures into three categories: Spiking Neural Networks (SNNs),
Reservoir Computing (RC), and Deep Neural Networks (DNNs) [12]. SNNs and RC are called
stateful (i.e., with memory) as opposed to DNNs, which are stateless [4]. The particularity of SNNs
is to use spikes to encode the inputs of the network. Each spike is characterized by the timing of
its occurrence and its amplitude. SNNs have shown great potential in terms of energy consump-
tion [4]. However, some advancements still need to be made to compete with ANNs. Especially
concerning the efficiency of their training algorithm [13]. RC architectures are mainly composed
of an input layer, a reservoir and a readout layer. The reservoir is a cluster of non-linear neurons
randomly connected to each other. It is the readout layer that is trained when the reservoir needs
to be optimized for a given application. RC algorithms do not need a lot of computer resources
as their optimization is linear and their training datasets are small [14]. In this article, we concen-
trate on the study of stateless ANNs, meaning DNNs. However, we do not completely put aside
the progress made toward the integration of photonic RCs. Indeed, the non-linear neurons in both
RC and DNN architectures are similar enough to be considered in this study. In addition, despite
their differences, RC could potentially be used to reproduce the behaviour of DNNs [12].

The algorithm of a DNN is as follows. The network receives as input a dataset containing the
information it must process and learn from, called the training set. This set of data undergoes
a series of transformations and is fed in the forward direction of the DNN. This feed-forward
network consists of matrix multiplications and AFs. Then, the algorithm revises the parameters of
the model (backward propagation) to minimize the difference between the obtained result and the
expected result. Finally, the model is tested on a test set, different from the train set, to simulate
how it would perform on a new and unknown dataset [15].

2.1 Feed-forward Neural Network

A classic DNN is composed of different layers of neurons, each of them possessing its own
function. We present here fully connected DNNs, where each neuron in a layer is connected to
all the neurons of the next layer. Figure 1 illustrates the architecture of a fully connected DNN.
There are three types of layers. The input layer is a vector defining one element of the dataset,
with each neuron (blue in the figure) representing a value of the vector. Each element of the
dataset is processed consecutively. The hidden layers are positioned after the input layer. Each
neuron (grey in the figure) of a hidden layer, i , performs a weighted sum of each output of the
neurons of the preceding layer. The result is subjected to a non-linear transformation σ , or AF as
detailed thereafter. The output of the kth neuron in the ith layer is calculated with Equations (1)
and (2):

zi,k =

n∑
j=0

w i
j,k × ai−1, j , (1)

ai,k = σ i (zi,k ), (2)

where n is the size (i.e., the number of neurons) of the (i − 1)th layer and w i
j,k

is the weight

applied by the kth neuron of the ith layer on the jth neuron of the (i − 1)th layer. The weighted

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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Fig. 1. Diagram of a fully connected neural network presented in Reference [16].

sum happens in each neuron of a layer simultaneously and is equivalent to identifying the layer
as a vector Ai and multiplying this vector by a weight matrixW i : Ai = σ i (W i ×Ai−1).

The output layer (black in the figure) is the final layer and behaves in the same ways as the
hidden layers. Its number of neurons depends on the type of problem it is facing. In the case of
a classification problem with two possible output classes, there will be two output neurons, each
representing the probability of an element of the dataset to belong to each class. To obtain this
probability, a function called the softmax function [17] is more commonly used as the final non-
linear transformation.

2.2 Backward Propagation

The role of the backward propagation, or backpropagation [18], is to update the parameters of the
weight matrix after each data batch is processed to minimize the output error. This is achieved
by progressively adjusting the weights on each step of the execution, following a given algorithm
such as the gradient descent [19]. The gradient descent algorithm uses the partial derivative of the
output error, also called the loss, with respect to each weight. The loss represents the difference
between the expected output and the predicted output. It differentiates from the accuracy, which
directly represents how the model performs on a given dataset. The goal is to find the value of
Wnew , which minimizes the loss. To update the weights, the equation used is Equation (3), where
α is the learning rate that defines the speed at which the DNN model is updated:

Wnew =Wold − α
δloss

δWold
. (3)

2.3 Activation Function

The AF is an essential part of a neural network (NN). Without it there is no interest in building
deep NNs: NNs with multiple layers. Indeed, any NN of N linear layers, or N matrices, without
AF can be simplified by a single linear layer NN. Also, it is important for a DNN to use differential
AFs to enable the update of weights with the gradient descent algorithm. The following AFs are
commonly used in NNs:

• The sigmoid function, which is a non-linear function whose outputs range between 0 and 1.
Its mathematical formula is: f (x ) = 1

1+e−x .

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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Fig. 2. Schematics of the structure of a MRR (a) and a MZI (b).

• The hyperbolic tangent function (tanh) is a variant of the sigmoid function whose output
values range from −1 and 1. Its mathematical formula is f (x ) = 2

1+e−2x − 1.
• The ReLU function returns zero for negative input values and is linear for positive input

values. The advantage of this function is to lessen the overall computation cost of the ANN
and deactivate neurons that have a negative value and that could be considered as non-
essential.

Sigmoid, ReLU and tanh functions are the most commonly used AFs in NN architectures. How-
ever, variants such as Leaky ReLU, Softplus, and hard hyperbolic tangent (hardtanh) are also
popular [20].

3 INTEGRATED PHOTONIC

In this article, we review optical AFs in the context of integrated ONNs, where light travels through
a waveguide, in opposition to free-space ONNs. Photonic Integrated Circuits (PICs) show great
potential toward the low-cost production of high-speed ONNs [21]. This section explains what an
optical component is and introduces some common ones. The basic structure of an ONN is then
presented.

3.1 Optical Components

Optical components can be divided into two main categories: passive and active components. Pas-
sive components can only interact with the light and are incapable of emitting any. Active com-
ponents can generate light and actively transform transmitted light. Photonic circuits are built
using different components, such as directional couplers and modulators. Each component acts on
transmitted light, interacting with it to achieve different operations.

A directional coupler is a common method to split and combine light using two parallel waveg-
uides, in which the ratio of power coupled from one waveguide to another is defined by the cou-
pling coefficient of the waveguides. The coupling coefficient is determined using a supermode
analysis, a calculation including the effective indices of the coupled waveguides [22].

The MRR is an optical filter that selects a desired wavelength from a given input signal [23].
The design of the MRR is displayed in Figure 2(a). It consists of a “looped” waveguide that is
bent over itself to form a circular structure. Tangential to this structure are placed one or two
other waveguides. Depending on the coupling between the waveguide and the loop, as well as the
wavelength, the light injected at the input port can be coupled into the loop and redirected through

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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the drop port or out of the loop, leaving via the through port. This creates a selective structure in
which the light path is controlled by the looped waveguide.

A MZI enables the control of the amplitude of an optical wave. Figure 2(b) illustrates the
schematic of a MZI. The input signal is split into two waves of equal phase and amplitude. One
wave is transmitted unaltered through one of the branches. The second wave is delayed in time
inducing a phase change. The merging of these two waves results in interferences and changes
the amplitude of the output signal [23].

One of the main challenges related to the use of optical components is the power loss introduced
by the interaction of light with the medium. In the context of architectures involving cascading
of multiple components, the losses need to be compensated with higher signal power emitted
at the source. Another solution to overcome this limit is the usage of a semiconductor optical

amplifier (SOA) in the data path. A SOA enables amplifying the optical signal without converting
it back to the electrical domain, introducing gains up to 30 db directly on the transmitted signal.
Still, the usage of SOA implies the addition of noise in the transmitted signal and should be avoided
when possible [22].

3.2 Optical Neural Network

ONNs are built using, among others, the aforementioned physical components. They are organized
in the same manner as ANNs, i.e., with (i) an input layer, (ii) none, one or several hidden layers
and (iii) an output layer.

The inputs of an ONN are optical signals generated by one or more optical sources. The outputs
are more commonly the optical powers of the signals measured by photodetectors. As we saw in
the previous section, a hidden layer can be broken down into two successive operations: a matrix
multiplication and an AF. The same decomposition is followed in ONNs. Concerning the output
layer, the softmax layer cannot be realized optically. It can either be replaced by an AF, which
might impact the accuracy, or performed directly on a computer, following the photodetections of
the output signals. In this article, we define the matrix multiplication and the AF transformation
as, respectively, the linear and non-linear operations of an ONN.

Optical linear operations can be realized with the following methods: (i) Multiple plane light
conversion, (ii) Wavelength Division Multiplexing (WDM), and (iii) Meshes of MZIs.

Implementing an all-optical backpropagation is complex, because it requires regular updating
of the optical components and a structure that can propagate the gradient. As a consequence, most
work opted to perform this step on a computer. Once the training is done, the parameters of the
model can be extracted and used to set an experimental demonstration. A first proposition for an
optical backpropagation was presented in Reference [8].

The non-linear operation is not directly obtained by aforementioned components, as they must
follow Maxwell’s equations [24]. The next sections discuss solutions to implement these functions
electro-optically or fully optically with integrated photonics.

4 TRAINING AND SIMULATION FRAMEWORKS FOR ONN

As we will observe in this survey, the reported ONN results were mostly simulated. In this section,
we highlight the gap between the simulation of DNNs and PICs and the simulation of ONNs by
introducing the different existing ONN simulation tools.

4.1 Overview

We present in Table 1 a non-exhaustive list of tools for DNN, PIC, and ONN simulations. For each
tool, we specify the following: the date of publication and the date of the last update (e.g., for
a github repository), their main programming language and whether they are open source. We

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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Table 1. List of Available Tools for the Simulation of DNNs, PICs, and ONNs

Simulation tools Published/Updated Language Open source

D
N

N

Tensorflow [25] Nov. 2019/May 2022 C++/Python �
Keras [26] Mar. 2015/May 2022 Python �

Pytorch [27] Sept. 2016/June 2022 C++/Python �
Scikit-learn [28] June 2007/May 2022 Python �
DL Toolbox [29] 2019/2022 Matlab ×

P
IC

Rapid simulation of PICs [30] 2020 Verilog-A ×
GDS Photonic Toolbox [31] 2014/2022 Matlab �

Interactive sim. Toolbox [32] 2013/2022 Matlab ×
Simphony [33] May 2020/Feb. 2022 Python �

SAX [34] Aug. 2022/June 2023 Python �
Photontorch [35] 2020 Python �

Lumerical tools [36] 2003/Nov. 2021 — ×
Photon Design tools [37] 2001/2021 — ×

O
N

N

Photonic neuron [38] 2022 Verilog-A ×
Neuroptica [39] 2019/Apr. 2020 Python �
Neurophox [40] 2019/Apr. 2021 Python �

Imprecise ONN [41] Mar. 2019 Python �
Photontorch [35] 2020 Python �

observe that a majority of the DL and ONN frameworks are open source, which is not the case
for photonic simulators. Indeed, DL and ONN tools are mainly implemented in the same language,
Python, which is a widely used and user-friendly language with all of its documentation available
online. It should be noted, though, that ONN implementations are not as up to date as DL and PIC
simulation tools.

There is a real interest in implementing both the PIC and DL aspect of a simulation with the
same language, as it facilitates the user experience. As such, full simulations working on Matlab
have not been proposed yet but could be seen in the future. To the best of our knowledge, SAX and
Simphony have not been exploited either in the context of ONNs. This is probably due to their lack
of ability to simulate active optical devices. Indeed, the training of most ONNs requires to configure
the transmission of components such as MZIs and phase shifters. As such, best candidates for the
simulation and the training of ONNs are frameworks Neuroptica, Neurophox, and Photontorch,
as discussed in the following.

4.2 Presentation of ONN Simulators

The ONN simulation tools listed in Table 1 all present their own particularities. In the following,
we describe them independently and specify the context of their application.

Photonic neuron. In Reference [38], the authors present how Verilog-A can be used to co-simulate
photonic and electronic devices in neuromorphic photonic circuits. They propose a methodology
to combine discrete components such as photodetectors and phase-shifters to model more complex
components such as MRRs and MZIs. The optical signal is defined by the electric field representa-
tion of light. They demonstrate the simulation of one neuromorphic neuron using a MRR to weight
the neurons and the electro-optic AF presented in Reference [42]. The Verilog-A-based approach
seems interesting to implement and simulate ONNs with predefined parameters. However, the lack
of an interface for the DNN simulation aspect is a major drawback.

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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Neuroptica. The framework Neuroptica simulates ONNs using the in situ backpropagation tech-
nique depicted in Reference [8]. Meshes of MZIs modeled by unitary matrices are used to realize
the matrix multiplication. Neuroptica is not based on any other DNN frameworks. It offers different
levels of implementation:

(1) Component level: Beam-splitters, phase-shifters, and MZIs can be simulated individually.
(2) Component layer level: Build a layer of n components or an optical mesh composed of m

layers of n components.
(3) Network layer level: Build layers of a DNN such as the AF or the matrix multiplication with

optical components.

Neurophox. Neurophox is an ONN framework written in Python. The layers of an ONN can be
built through the Tensorflow library. The various functions offered by this framework are thereby
also accessible. Neurophox, like Neuroptica, is based on unitary mesh networks, implementing
matrix multiplication with MZIs, yet, it differentiates itself by its training. Instead of using in situ

backpropagation, it ensures that its optical layers can be accessed and updated by the optimizers of
Tensorflow. Neurophox also provides functions to improve the mesh optimization. Those functions
are detailed in Reference [43].

Imprecise ONN. In Reference [41], the authors propose an ONN architecture based on MZIs,
which is more robust to component imprecision than the classic rectangular mesh [5] used by
Neuroptica and Neurophox. To test it, they coded an ONN simulator based on Pytorch and made
it available online. They do not directly train an ONN but rather a complex ANN. Once trained,
the matrix multiplication layers are converted to the optical domain. This leads to a quicker con-
vergence during training, as training ONNs requires more parameters to be tuned and elaborate
training algorithms. As a result, while the code provided online is very application specific, the
training method is easily adaptable.

Photontorch. Initially, Photontorch main goal is the simulation and optimization of photonic cir-
cuits. It relies on DL algorithms, accessible via the framework Pytorch, to optimize the parameters
of a PIC. Thanks to Pytorch, the simulation of DNNs is also possible. In Reference [35], Photon-
torch is used to simulate a mesh of 384 MZIs to perform the recognition of the MNIST dataset. The
optimization of 768 parameters (2 per MZI) takes them a few hours. An example of RC simulated
by Photontorch is presented in Reference [44].

4.3 Comparison of ONN Simulators

In Table 2, we resume the advantages and drawbacks of each ONN simulator. Both the photonic
neuron and the imprecise ONN are specific simulations developed in the context of a article. The
first one proposes a methodology to implement electro-optic ONNs but lacks a proper DNN inter-
face and only gives a very limited example of simulation: one photonic neuron. The second can
train large models easily, thanks to its Pytorch implementation and the choice of training complex
ANNs. However, its code is still very limited to the aims of the article in which it was published.
Neuroptica, Neurophox and Photontorch seem to be the best alternatives for now to simulate
ONNs. Even if their training is quite slow, the various levels of implementation of Neuroptica
allow the user to build their ONN either using network layers directly or optical component by
optical component. The Tensorflow implementation of Neurophox as well as its potential for mesh
optimization renders it highly adaptable. Finally, the capacity to use DL algorithms to simulate PIC
while accessing the framework Pytorch makes Photontorch very promising.

Following our observations, we conclude that Neuroptica, Neurophox and Photontorch are three
interesting frameworks to build ONNs. However, the lack of update and amelioration brought to

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.
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Table 2. Advantages and Drawbacks of each ONN Simulator

Name Advantages Drawbacks

Photonic neuron [38] Co-simulation electro-optic
Application specific
Not publicly available
No DL interface

Neuroptica [39] Various levels of implementation Slow training

Neurophox
[40] Tensorflow implementation

Slow training
Mesh optimization

Imprecise ONN [41]
Pytorch implementation

Application specific
Training of complex ANNs

Photontorch [35] PyTorch implementation Slow training

their code pulls downward their potential. Indeed, they do not propose any alternative for their
training, which can take a significant amount of time when working with deeper ONNs.

5 ELECTRO-OPTICAL ACTIVATION FUNCTIONS

The AFs, which are intrinsically non-linear, are crucial in any ANN, since they complement data
linear operations. Ideally, both linear and non-linear functions should be implemented optically
in an ONN to minimize loss of resources and latency overhead. However, since the design and
fabrication of such a fully optical ONN is a challenging task, there are several existing approaches
that involve electro-optical AFs. We present these alternative options in this section. Although
these solutions are not all optical, we show that they still offer important results in terms of speed
and power consumption compared to electrical solutions.

5.1 Electro-absorption Modulator

In Reference [45], the authors present an electro-optic neuron that performs both the linear and
non-linear operations required for a forward propagation. First the neuron uses either MRRs or
interferometers to weight and sum the inputs of the neurons. Then, a photodiode coupled to an
electro absorption modulator (EAM) implement the electro-optic non-linearity: The transfer
function of the EAM is directly used as the AF.

Figure 3(a) illustrates the optical neuron organization. Inputs are weighted either through
MMRs with WDM (a) or interferometers using parallel buses (b). The weighted signals are summed
and converted to a voltage with a photodiode (c). The voltage is amplified by a transimpedance

amplifier (TIA) and is used to power the EAM. The latter absorbs the light of a continuous

wave (CW) laser. The absorption rate is non-linearly dependent on the input voltage of the EAM,
which is directly proportional to the optical power. Therefore, the light produced by the CW laser,
and controlled by the modulator, possesses a non-linear relation with the input optical power.
The resulting output optical power Pout is governed by Equation (4), with Pin the optical power
of the CW laser (i.e., before attenuation), Vin , the input voltage of the modulator and, αdB , the
absorption in dB of the modulator:

Pout = 10
(10 log10 Pin−αd B (Vin ))

10 . (4)

The operating speed of the optical device is superior to 10 GHz. The EAMs can be implemented
with different materials such as graphene and quantum well (QW), which leads to significant
difference in the modulator absorption. Figure 3(b) reports the output voltage for a QW and
graphene-based modulator for an input voltage ranging from 0.0 to 1.0 V. The transmission
obtained for QW is very similar to a sigmoid function and returns values between 0 and 0.8 V.
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Fig. 3. (a) Optical neuron proposed in Reference [45] and (b) output voltage of an EAM based on QW
(orange curve) and graphene (blue curve) according to the input voltage. Reprinted with permission from
Reference [45] (2023 IEEE).

The non-linearity of the graphene is much less significant and outputs a voltage ranging from 0.4
to 0.8 V.

To determine the most fitting material authors also investigated the performance of both AFs.
Keras [26] and TensorFlow [25] were used to simulate the DNN and to evaluate its performance on
the MNIST dataset. The DNN model is composed of three layers of 100, 100, and 10 neurons. The
AF in each neuron is defined by Equation (4). The parameter αdB corresponds to the absorption,
which depends on the material. Authors were able to reach up to 95% accuracy by considering laser
powers as low as 5 and 30 mW for QW and graphene, respectively. Results show that the QW is
more stable than the graphene as the accuracy of the QW DNN does not seem to be impacted
much by the input laser power. On the contrary, the accuracy of the graphene DNN drops to 20%
when an input power of 10 mW or less is used.

5.2 MRR Modulator

In Reference [42], the authors developed an optical modulator neuron that performs multiple func-
tions: fan-in, optical-to-optical non-linearity (AF) and cascadability. They define the fan-in as the
capacity of one neuron to convert several weighted inputs to one single output. As for the cascad-
ability, it represents the possibility of chaining together multiple neurons without changing the
characteristics of the signal.

The main component of the modulator is a MRR, which is responsible for the non-linearity of
the neuron. The other components are balanced photodiodes that allow detection of small optical
power variations while suppressing the common variations of the input signal [46]. The diagram
of the electro-optical neuron is presented in Figure 4. The inputs IN+ and IN− are two incoherent
optical signals. They are converted into an electric current using a positive or negative photode-
tector. The electric currents are summed with a current bias Ib . Given that the source of the
incoming current is either positive or negative, the following operations are realized: Ib +i or Ib −i .
The resulting current modifies the refractive index of the MRR modulator (mod .) using free carrier
injection [47], which in turn modulates the intensity of the output signal. Finally, the output
signal is the result of the modulation of a CW laser signal (PUMP ) of wavelength λn by the MRR.

The experimental setup is controlled via lightlab1 and the optical output is observed in a sam-
pling oscilloscope. A 10 mW input pump power was used for their experiments. Different values of

1Lightlab is a python library specialized in remote laboratory monitoring [48].

ACM Computing Surveys, Vol. 56, No. 2, Article 35. Publication date: September 2023.



Survey on Activation Functions for Optical Neural Networks 35:11

Fig. 4. Illustration of the setup of the neuron. Reprinted with permission from Reference [42] (2023 American
Physical Society).

the bias current Ib result in various shapes of transmission curves, which translates into different
types of AFs, including sigmoid-like and ReLU-like functions and their inverses. In addition, the
MRR heater, which is controlled by the current Ih , allows the wavelength at which the nonlinearity
occurs to be shifted without changing the transmission shape.

The overall loss of their neuron is governed by a total fiber-to-chip insertion loss of 18 dB, which
leads to a photodetector responsivity of 0.76 A/W and causes a reduction of the pump power of
9 dB from the chip facet (−5.5 dBm) to the neuron (−14.5 dBm). The maximum tuning efficiency
to maintain a chosen wavelength is 0.26 nm/mW. The setup involved two erbium-doped fiber

amplifiers (EDFA) placed before the chip inputs before the oscilloscope. The authors noted that
increasing the power of the PUMP signal would increase the gain. Their device operates at 1 GHz
and its physical footprint is approximately 0.05 mm2.

The neuron is considered cascadable if a chain of neurons of length N meets two criteria: gain
cascadability and physical cascadability. In Reference [42], gain cascadability is defined by a neu-
ron with (i) a gain of at least one for low amplitude signals and (ii) a gain greater than one for high
amplitude signals. Physical cascadability is achieved when every neuron’s input and output are
optical and maintain the same wavelength. To show the cascadability of their neuron, the authors
build an autapse circuit. An autapse is a neuron whose output optical power is fed back to itself,
becoming the new input. With this circuit, the authors demonstrated that the gain is greater than
unity, thus proving the gain cascadability of the neuron. More details on indefinite gain cascad-
ability in an autapse circuit can be found in Reference [49]. As every input and output signals of
the autapse are the same, physical cascadability is also confirmed. However, the authors needed
to add to the feedback loop an EDFA to compensate for the high insertion losses.

In Reference [50], the architecture of the MRR modulator presented in Reference [42] is used to
implement the AF in an ONN on-chip. The linear operations are realized with optical attenuators
and the network is composed of two hidden layers and one output layer of 4, 3, and 2 neurons,
respectively. For the image recognition of four handwritten letters, “p,” “d,” “a,” and “t,” the authors
reach an average accuracy of 89.8%. As a point of comparison, they train a standard convolutional

neural network (CNN) [51]: a DNN architecture typically used in an image recognition task [52].
They obtain 96% accuracy.

5.3 MZI-based Electro-optical Activation Function

An electro-optical architecture based on a MZI enabling non-linear transformation on optical sig-
nals is proposed in Reference [53]. The non-linearity is obtained by modulating the signal phase
and amplitude. The authors postulate that the proposed design can be added or integrated with
coherent ONNs to achieve, for instance, matrix multiplication.
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Fig. 5. Architecture of the electro-optic AF f (Z ). Reprinted with permission from Reference [53] (2023 IEEE).

Figure 5 illustrates the architecture. A directional coupler transmits a fraction, kZ , of the input
optical signal amplitude,Z , toward a photodetector of responsivity R, which results in an electrical
current: Ipd = Rk2 |Z |2. The current is converted into a voltage with a gainG. A static bias voltage,
Vb , is added to this electrical signal and the resulting voltage is used to regulate the phase shift ϕb

of the MZI: ϕb = π (Vb + IpdG )/Vπ . The non-coupled optical signal
√

1 − k2Z , propagates through
the MZI where its amplitude undergoes a non-linear transformation, which depends on the phase
shift ϕb . Eventually, this corresponds to a non-linear transformation in function on the intensity

of the input signal Z , as defined by Equation (5), where дϕ = π k2GR
Vπ

represents the phase gain
parameter:

f (z) =j
√
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−j
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Different AFs can be obtained by changing the bias voltage, since it is directly related to the
phase shift. For instance, a phase shift of π would lead to ReLU-alike AF.

To validate the AF, the authors train two ONN models on two different tasks: the XOR logical
operation and the classification of the MNIST dataset. The library Neuroptica [39] was used to
simulate an ONN of two layers, with 4 neurons per layer, that obtains the final mean-squared

error (MSE) [54] of 10−5 for XOR. For MNIST, a three-layer ONN of 16 neurons each was modelled
using the neurophox library [40], which reached 94% accuracy.

Results show that a layer of 100 neurons would consume at least 10 W. This is significantly
high with regards to the required 10 mW input power for solely the architecture to be functional.
The power overhead is due to the use of optical receiver amplifiers (ORA) for the optical-
to-electrical conversion of the AF. Its power consumption ranges from 10 to 150 mW. One ORA
per neuron per layer is needed, causing the power consumption to escalate quickly with the
size of the network. Nevertheless, they also predict that layers of 100 neurons would lead to the
latency of 237 ps/layer, which is the equivalent of 121 ps/neuron, a footprint of 120 mm2/layer,
or 0.7 mm2/neuron, and a performance of 1014 multiply accumulate (MAC) operations/s/layer,
which is two orders of magnitude greater than the number of MACs that can be achieved in
modern graphics processing units (GPUs).

A similar solution is proposed in Reference [55], where the MZI is replaced by an MRR: a part
of the optical input signal is transformed by a photodiode and used to detune the resonance of a
pn-doped MRR. The remaining part of the signal is fed into the MRR. A major advantage of this
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Fig. 6. Schematic of the device under test. Reprinted with permission from Reference [59] (2023 The Optical
Society).

alternative is that it eliminates the need for an amplifier in the electro-optical conversion. The
result is a reduction in system latency and power consumption.

5.4 Summary

From these three designs, we can conclude that the integration of electro-optical AFs is very
promising. However the necessity to perform an optical-to-electrical (O/E) and electrical-to-

optical (E/O) conversion at every neuron is their main weakness. Indeed, it introduces delays and
increases the overall power consumption of the circuit. In References [42, 45], the E/O conversion
requires a supplementary light source, either being directly the modulator in Reference [45] or
an external laser in Reference [42]. In Reference [53], for the E/O conversion, only a fraction of
the input optical signal is kept, which in an ONN would lead to the signal vanishing throughout
the layers. To counteract this, optical amplifiers can be used, though it will increase the power
consumption.

6 ALL-OPTICAL ACTIVATION FUNCTIONS

Electro-optic AFs show promising results in terms of speed and power consumption compared
to modern GPUs. However, more aggressive and disruptive nanophotonic implementations [56]
involving all-optical AFs may lead to further gain. In this section, we introduce different designs for
the integration of all-optical AFs and their potential for ONNs. First, we present a reprogrammable
AF exploiting the technology of a MRR-assisted MZI. Then, we review several implementations
of AFs via SOAs: as a tanh in RC and as a reconfigurable sigmoidal AF. Finally, we consider the
saturable absorption effect and its available implementations.

6.1 MRR-assisted MZI

The phase and amplitude of MRRs may change non-linearly depending on the optical input
intensity due to the following optical effects: the Kerr effect, two-photon absorption (TPA), free

carrier absorption (FCA), and free carrier dispersion (FCD). These effects are explained in
detail in Reference [57]. In References [58, 59], the authors exploit the potential for non-linearity
of MRRs on silicon and propose an all-optical and reconfigurable AF, illustrated in Figure 6. A
Mach-Zehnder coupler (MZC) is used upstream of the circuit, followed by a MZI equipped
with a MRR on one of its arms. The FCD effect, which is the prevalent non-linearity in silicon
waveguides, is triggered via cavity build up in the MRR. The interferences of the MZI depend on
the MRR’s phase. Consequently, the output signal power is non-linearly dependent on the input
signal power. Furthermore, heaters placed on the MRR, the MZC, and the MZI enable control of
(i) the shift between the MRR resonance wavelength and the input signal wavelength and (ii) the
MZC coupling ratio and the MZI coupling ratio, respectively. This enables the configuration of
various AF shapes, as discussed in the following.

Simulations are carried out to evaluate the impact of the MRR wavelength detuning Δλ and
the coupling ratio r of the resulting AF. For example, Scenario a reported in Figure 7, with
Δλ = 0.05 nm and r = 0.65, corresponds to Clamped ReLU. In this scenario, the signal is initially
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Fig. 7. Figure representing the different type of AFs simulated: (a) clamped ReLU, (b) sigmoid, (c) radial-
basis, and (d) softplus. (i) Transfer functions with the output power plotted in function of the input power.
At the start and end of each graph is specified the shift between the MRR resonance wavelength (green) and
the input signal wavelength (yellow). (ii) The MRR transmission (TMRR ) and the non-linear phase change
(ΦMRR ) are plotted in function of the input power. Reprinted with permission from Reference [59] (2023 The
Optical Society).

red-detuned leading first to a linear increase in the output power. The generation of free carriers
results in a non-linear proportional phase change (Figure 7(a)(ii)). Once the maximum phase
change is reached, both the coupling into the MRR and the non-linear phase decrease due to the
blue shifting of the resonance. Using the same hardware, the authors show that different settings
for Δλ and r lead to (b) Sigmoid, (c) radial basis [60], and (d) softplus [61], which is a smooth
version of ReLU. Furthermore, the authors claim that the linear region of the clamped ReLU and
Softplus transfer functions can be adapted by changing the MZC coupling ratio.

For the experimental setup, the input signal is coupled by free-space coupling to the DUT. An
EDFA is added to the input of the DUT to offset the fiber-to-chip coupling loss of 8 dB. This setup
is controlled remotely by lightlab. The power of the signal is measured by photodetectors and
displayed on a sampling oscilloscope. In addition to the parameters tuned during the simulation,
the authors adjust the coupling ratio of the MZI. As a result, they obtain a wide range of shapes
for their transfer function. All of them are still classified among the four categories presented in
Figure 7.

The authors use the clamped ReLU and the sigmoid function to challenge the integration of the
MRR-assisted MZI as an AF into an ONN. From their experimental measurements, two functions
are approximated by spline interpolations. These functions are implemented directly in the desired
ANNs on a computer with the Pytorch library [27]. Two ANNs are built for two different classifi-
cation tasks. The first network, a DNN, is composed of one hidden layer of two neurons and one
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output layer of one neuron. The AF used is the sigmoid approximation. The DNN is trained on
a XOR binary classification task and obtains 100% accuracy. The second network is a CNN. The
activation function used is the clamped ReLU. The CNN is trained to classify the MNIST dataset
and obtains 94% accuracy on the test set.

They increased the speed of their device from 400 Mbit/s to 2.5 Gbit/s by reducing the carrier
lifetime [62]. They need to use an EDFA at the beginning of the circuit to compensate the coupling
loss of 8 dB and to be sure to trigger the non-linearity of the MRR. For this purpose, the signal is
amplified to 25 mW. An additional 2 dB loss is taken into account for the device insertion losses.
For now, the phase efficiency of their thermo-optic heaters is 25 mW/π , but authors claim that it
could reach 1.3 mW/π by using thermal isolation trenches [59]. The physical footprint of one AF
is around 0.3 mm2.

6.2 SOA-based

In this subsection, we review the existing implementation of SOAs-based AFs. First, we highlight
the potential of SOA in RC. Then, we present a reconfigurable sigmoid AF designed using SOAs.

6.2.1 SOAs in Reservoir Computing. The benefits of SOAs as AFs seem to have been first stud-
ied with the implementation of optical RC. As mentioned in Section 2, RC is a type of ANN that
connects its neurons in a recurrent manner, and each neuron performs a non-linear transforma-
tion on its input. This transformation is usually a tanh. A SOA is a good candidate to implement
optically this operation. Indeed, it can be observed that above a sufficient optical input power, the
gain of the SOA decreases: a phenomenon called gain saturation. This results in a transfer function
similar to the positive part of the tanh [63].

In Reference [63], the focus is on the integration of coupled SOAs as AFs in photonic RC. At the
time of publication of the paper, the software implementations of RC were quite slow and would
greatly gain from an optical implementation. However, the goal of the authors is to showcase the
potential of SOAs in optical RC, rather than optimizing its performance in terms of speed and
power. The behaviour of the SOAs is modelled with the standard travelling-wave equations [64].
When the internal losses are neglected, the output power Pout and the output phase ϕout can be
calculated by the following equations:

Pout (τ ) =Pin exph(τ ), (6)

ϕout (τ ) =ϕin −
1

2
αh(τ ), (7)

with α being the linewidth enhancement factor, Pin the input power, ϕin the input phase and τ the
spontaneous carrier lifetime. The gain integrated over the length of the SOA, h(τ ), is dependent
on the input power of the amplifier as well as its saturation power. As they use SOAs with anti-
reflection coating on their facets, they neglect the influence of reflections.

The authors perform numerical simulations of photonic RC and represent the optical non-
linearities using the toolbox presented in Reference [65]. The model is validated on a pattern
recognition task (signals with triangular and square waveforms) and compared to the same model
using tanh instead of the SOA function. Results reveal a slightly lower error rate (ER) with the
implementation using SOAs. They use for the simulation a mesh of 25 SOAs. The delay between
each SOA is 6.25 ps and the processing speed of one SOA is 0.5 GHz.

In Reference [66], the authors study in more depth the impact of the design and the fabrication
of the device proposed in Reference [63]. They train their architecture to classify spoken digits
from 0 to 9 from the ear model presented in Reference [67]. They introduce babble noises to the
initial dataset of 500 samples. They compare their optical architecture to a similar one with tanh
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Fig. 8. Diagram of the activation unit. Reprinted with permission from Reference [68] (2023 The Optical
Society).

AFs. The latter only use positive weights to compare with an optical reservoir whose values can
only be positive as they are defined by the optical power of the signal. To compare these two
architectures, they use a word error rate (WER): the number of incorrectly classified samples on
the total number of samples. The best WER obtained by a classical reservoir of tanh on this task
is of 7.3%.

In terms of characteristics of the circuit, the input signals are continuous. The architecture can
work with either coherent or incoherent light but achieve better results with a coherent circuit.
They identify two main parameters that have an influence on the obtained WER: the delay of the
interconnections between the SOAs and the phase delay. They found out that each application has
an optimal phase delay. For instance, classification of spoken digits leads to an optimal phase delay
of 190 ps, which is approximately half the duration of the audio signals. Then the performance of
the optical reservoir depends essentially on their ability to control the phase change. In the case of
a coherent circuit with delays of 190 ps, if the phase cannot be controlled, they still obtain results
comparable to classical reservoirs. However, with perfect tuning of the phase change they outrun
it. Finally, the physical footprint for a setup of 12 SOAs is 16 mm2.

6.2.2 Reconfigurable SOAs to Build a Sigmoidal AF. In Reference [68], the implementation of a
sigmoid AF is demonstrated using the saturation behaviour of SOAs. To achieve this, two SOAs are
used to saturate the output signal for different ranges of input power, mimicking the asymptotes
of a sigmoid. In their method, the authors compare experimental demonstration results with an
analytical model they proposed. By using their method, the authors illustrate how the circuit can
be configured. The following further detail their approach.

The activation unit is composed of a deeply saturated differentially biased SOA-MZI (cross
phase modulation) [69] followed by a SOA-XGM (Cross gain modulation) WC (wavelength

converter). Figure 8 represents the optical AF implementation. The authors use a pattern
generator to transform the CW input of the ONN into a pulse signal at λ2. The resulting control
signal is split into two identical streams by a directional coupler. The first stream enters port A of
the SOA-MZI and the second one is attenuated and then sent to port H as a counter-propagating
wave. Two CW signals of wavelength λ0 (port C) and λ1 (port D) and high optical power levels are
sent through port C and D, forcing SOA 1 and SOA 2 into their saturated regime. Consequently,
the output signal of the SOA-MZI is the inverted and saturated control signal with a wavelength
of λ0. A third (regular) SOA is used as a wavelength converter to restore the signal and the
wavelength by inserting an additional input CW signal of wavelength λ2.

The AF is measured experimentally with an oscilloscope, using 400 different input pulses with
their pick powers ranging from −25 to 0 dB. They consider that the gains of the SOA 1 and 2
are recovered before the following pulse is inserted into the AF unit. They obtain a sigmoid like
experimental transfer function, as shown in Figure 9 with the black dotted line. They find that this
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Fig. 9. Transfer function of the activation unit. Reprinted with permission from Reference [68] (2023 The
Optical Society).

type of AF can be approximated with the following equation: f (x ) = A2 +
(A1−A2 )

1+exp (x−x0 )/d
. To fit the

AF in Figure 8, they use A1 = 0.060, A2 = 1.005, x0 = 0.145, and d = 0.033, which gives the blue
curve.

They use a theoretical approximation (green line in Figure 9) to investigate the impact of the
control attenuation factor and the biasing attenuation factor and conclude that they, respectively,
influence the slope and the position of the curve along the x-axis.

For the overall configuration of their activation unit, SOA 1, SOA 2, and the output SOA are,
respectively, driven by direct currents of 240, 280, and 300 mA. Two CW optical signals of 3.5 and
4.5 mW go through port C and D. Finally, a CW signal of optical power 0.009 mW is added to the
input of the output SOA. During the experimental demonstration of the neuron, the authors inject
a periodic signal with 100 ps long pulses in the activation unit. Following the time traces plotted
in Figure 5 of Reference [68], the AF operates at a speed of 2.5 GHz.

6.3 Saturable Absorber

In this subsection, we introduce the saturable absorption effect. We present several materials suit-
able for the implementation of saturable absorption as an AF in an ONN. A saturable absorber

(SA) is an optical component that absorbs part of an electromagnetic signal, thereby decreasing its
intensity. This absorption rate decreases with the increase in intensity of the input optical signal.
Thus, the signal transmission of the SA is non-linear and possesses a saturated and non-saturated
region [70].

6.3.1 Atomic Vapor. In Reference [70], the authors propose an ONN architecture that can
perform both forward and backward propagation optically. The scheme is compatible with both
integrated and free-space platforms. They use a SA to achieve the AF. Equation (8) represents
the transfer function of the absorbent medium with Ep,in and Ep,out , being the input and output
electric field and α0 the optical depth, which corresponds to the opacity of the medium. All fields
are normalized by the saturation threshold:

Ep,out = exp

(
− α0/2

1 + E2
p,in

)
Ep,in . (8)
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The derivative of Equation (8), necessary to apply the gradient descent algorithm, is equal to the
linear response of the SA up to a constant factor. Therefore, the backpropagation can be realized
using the same optical components as the forward propagation. It should be noted that this
approximation is not valid for the entire domain of the SA response. For the system presented in
this article, the approximation holds within its non-linear region.

The authors observe that the optical depth of a SA directly influences the shape of its trans-
fer function and, more precisely, its degree of non-linearity. Indeed, for an optical depth of 0 the
function is linear. They carry out a numerical simulation of an ONN with the Pytorch library. The
optical DNN is composed of two hidden layers of 128 neurons activated by SAs and is trained on
the MNIST dataset. The best accuracy, 98.0 ± 0.2%, is observed for optical depths ranging from 10
to 30. As a point of comparison, they train a similar DNN using ReLUs as AFs and reach the same
accuracy.

They specify that interlayers of SOAs are necessary to maintain the field amplitude in deep
ONNs, specifically when using passive optical components for the SA. The authors point out that
SOAs also have a non-linear effect, called saturable gain, similar to saturable absorption. Therefore,
the SOAs could completely replace the SAs in their system.

For one neuron with SA built on the 87RbD2 line, the total input power necessary is approxi-
mately 5 × 10−4 mW and the speed at which it is processed is 10 MHz. The energy used by the
backpropagation is negligible. However, the forward propagation costs about 10 pJ every time the
light passes through.

6.3.2 C60 Molecules. In Reference [56], a reverse SA is presented, in which the absorption in-
creases with the input light intensity. The authors exploit the non-linear response ofC60 molecules.
The transfer function is obtained via a finite difference time domain (FDTD) solver. Specifically,
the solver simulates the response of C60 molecules dispersed in polyvinyl alcohol with a concen-
tration of 10 mM and the resultant set of points is approximated using quadratic functions. The
AF is tested in a three-layer NN to classify MNIST. Over 99% accuracy on the test set is obtained.
The processing speed of one AF is 103 GHz with only a few ps of latency.

6.3.3 Monolayer Graphene. Another component that shows potential of saturable absorption
is graphene, or more precisely monolayer graphene. In Reference [71], the authors use monolayer
graphene as a SA in a mode-locked laser and observe promising results, such as a capacity of
saturation at a low excitation intensity: 0.53 M.W.cm−2 and a large modulation depth of 65.9%.
The modulation depth is the maximum change of absorption caused by an input light [72]. They
reached a speed of 5 MHz during experiments with the latency of a few ps.

6.4 Summary

The MRR-assisted MZI has the ability to perform several types of AFs such as ReLU and sigmoid.
The circuit can be configured either before manufacturing, and therefore using passive compo-
nents, or after using active components. Passive components have the advantage of not requiring
any power consumption. Neither the MRR-assisted MZI nor the SA-based solutions use any addi-
tional power source for the non-linear transformation. On the one hand, the power consumption
is limited to the generation of the input signal of the circuit, but, on the other hand, it implies that
the amplitude of the optical signal decreases as the number of layers increases. Furthermore, these
two types of architecture require a minimum signal amplitude to trigger the non-linearity, which
prevents from designing ONNs with multiple layers. Two solutions to this problem have been pro-
posed: (i) using a SOA to both amplify the signal amplitude and realize the AF and (ii) exploiting
the capacity of parallelization of optical circuits. In References [63, 66], a single SOA is used as a
neuron and perform the AF, but the AF is bound to be a tanh and has only been tested in the case
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of RC. The authors in Reference [68] present a sigmoid AF built with SOAs and a MZI. However, it
requires the use of three SOAs per optical AF unit. It is important to mention that using either one
or three SOAs per AF in a deep NN may cause the power consumption to increase consequently.

Using a parallelized optical AF unit to process multiple inputs simultaneously would help to
reduce the overall power consumption of the circuit. In the free space implementations proposed
in References [73, 74], spatial parallelization takes place inside a single component. The authors
exploit the property of saturable absorption and electromagnetically induced transparency

(EIT) of atomic vapor, respectively. In both implementations, the non-linear transformation only
takes place locally in the medium. As a consequence, multiple light rays undergo independent
non-linear transformations when they are spatially distant from each other. However, these im-
plementations also have disadvantages. First is their physical footprint: for ONNs of two [73] and
three [74] layers, the authors, respectively, use five and four lenses with focal lengths of up to
30 cm. Additionally, the SLMs needed for the linear operations are quite power hungry and slow.
They consume 10 W [73] of additional power per layer (minus the input layer) and commercially
available SLMs are usually slower than computer implementations [74].

7 COMPARATIVE STUDY

To evaluate the performance of the optical and electro-optical AFs presented in this article, we
propose two levels of comparison: the device-level comparison and the network level comparison.
For the first one, we focus on the performance of each optical and electro-optical non-linearities
when integrated in a PIC. As for the network level comparison, we highlight the efficiency of these
non-linearities when used as an AF in an ONN.

7.1 Device-level Comparison

The device-level comparison is essential to investigate the scalability of existing optical AFs. In-
deed, the non-linear function is a recurring function in a DNN. The deeper the circuit, the greater
the impact of any latency or any power consumption overhead. For each AF, we consider the
following criteria:

• The input signal power in mW.
• The insertion losses in dB.
• The speed in GHz.
• The footprint in mm2.
• Whether the reported measurements were experimentally demonstrated.

The data is reported in Table 3. For each AF, the input signal power tested was limited to a
set or interval of power levels. It gives an indication of the power necessary to trigger each
non-linearity. The lowest reported results are obtained for SAs with an input power of 5×10−4 mW.
For “insertion losses,” we report the losses caused by the insertion of one signal into the AF. The
high loss of 6 dB for [63] accounts for the internal losses of the SOA. Next, the speed refers to
the frequency at which optical signals are transmitted through one AF. The SA [56] is simulated
with the highest frequency, which is 103 GHz. Experimentally, a maximum frequency of 3.33 GHz
is reported for an SOA [68]. Then, we indicate the physical footprint: the space taken up by an
AF when integrated on-chip. Finally, we note that four of the AFs presented in this survey were
studied experimentally: one electro-optic [42] and one for each of the technology presented:
MRR-MZI [59], SOA [68], and SA [71].

Overall, electro-optical AFs seem competitive with all-optical technologies: the experimentally
demonstrated MRR-based AF [42] reports the lowest physical footprint. The speed of the MZI [53]
and EAM [45] is only surpassed by a SA [70]. To take into account the power consumption in
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Table 3. Characteristics of Studied Optical AFs/Neurons

Technology Ref.
Input signal Insertion Speed Physical Exp.

power (mW) losses (dB) (GHz) footprint (mm2) results

E
le

ct
ro

-o
p

ti
c

EAM [45]
5 (QW)

− >10 − No
20 (graphene)

MRR [42] 10 (1) 1 0.05 Yes

MZI [53] [0.1, 10] − 10 0.7 No

A
ll

o
p

ti
ca

l

MRR-MZI [59] [14, 40] 2(2) 0.1 0.3 Yes

SOA

[63] ≤5 6 (3) 0.5 − No

[66] ≤1 (3) − 16 for 12 N No

[68] {1, 2, 3.4, 7.4} − 2.5 − Yes

SA

[70] 5×10−4 − 10(4) − No

[56] 1 × 10−3 − 103 − No

[71]
≤ 5×10−3 (5) 5.10

0.005 − Yes
>5×10−3 (6) 0.14

(1)Fiber-to-fiber insertion loss of 18 dB: 9 dB per grating coupler.
(2)Fiber-to-chip coupling loss of 8 dB + device insertion of 2 dB.
(3)SOAs’ gain can be used to compensate for the losses.
(4)With an excited state lifetime of 26 ns.
(5,6)Respectively, input powers for the linear state and saturation state.

our assessment, we compare the all-optical AF presented in Reference [59] and the electro-optical
MZI [53]. Both implementations rely on a MZI to which they apply a non-linear phase change with
respect to the input signal. The power consumption of the electro-optic AF is dominated by the
ORA in the optical-to-electrical conversion. It can be averaged to a 100 mW per neuron. In terms
of input signal, only 0.1 mW is needed to trigger the non-linearity. In comparison, the MRR-MZI
exhibits a non-linear behaviour for input power signals ranging from 14 to 40 mW. However, it does
not have energy expenditures comparable to the one caused by the ORA. The power consumption
of the reprogrammable shifters in both implementations can be considered negligible [53]. The
effect of the ORA on the electro-optical neuron’s consumption is significant. In a DNN involving
a large number of neurons, the use of an ORA in each AF would significantly increase the total
energy consumption. Overall, for the MZI technology, the all-optical implementation is less energy
consuming but slower. We lack information to properly compare other all-optical and electro-
optical AFs, in particular concerning the energy required to maintain the non-linearity.

As can be observed in Table 3, the data reported for each AF is highly inconsistent. In addi-
tion, only four of them propose an experimental demonstration of their device. We believe those
works are only the first step toward the deployment of each technology. Further analysis should
be performed to increase the performance of the circuit by either replacing some of the non-linear
components or changing the physical characteristics of an optical component (e.g., the radius of
the ring).

So far, our focus has been on the study of individual AFs. However, a layer of a DNN consists
of a multitude of AFs. For instance, for the SA in Reference [70], the authors determine that the
necessary input power for 1,000 neurons is 0.5 mW. In Reference [53], a thorough analysis of
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their AF lead to the following results: for one layer of a hundred neurons, the power consumption
would be 10 W, the latency 237 ps, the footprint 120 mm2 and the speed would increase from 1010

MAC/s for one neuron to 1014 MAC/s. We observe that the input power needs to be multiplied by
at least the number of neurons of the layer to trigger the non-linearity of each AF. When passive
components (e.g., SAs, MZIs, and MRRs) are employed, the repetitive application of the non-linear
function decreases the amplitude of the optical signal throughout the layers of an ONN. Using
SOAs as AFs can compensate for the amplitude and power losses. However, the power consump-
tion may drastically increase. To overcome this limitation, SOAs and passive components can be
employed alternatively in the circuit.2 Scalable AFs are essential for the implementation of deep,
and therefore more accurate, ONNs. Besides the required power threshold, the scalability of an AF
is ensured by maintaining the integrity of the optical signal during the non-linear transformation.
However, except for the autapse [42], no complete study of scalability is proposed.

7.2 Network-level Comparison

In this subsection, we investigate the efficiency of each optical non-linearity to implement an AF.
In Table 4, we present the ONNs in which the optical AFs were tested. Those ONNs are defined by
the following criteria:

• The shape of the AF: some optical non-linearities may be compared to existing AFs (e.g.,
sigmoid, ReLU, tanh, etc.).
• The model of the AF used during the simulation. It is possible that no direct equation of a

transmission function for a given technology exists. When it is the case, we specify if the
transmission curve was experimentally measured (EM) or simulated with a solver (e.g.,
FDTD) and how the final equation was approximated (app.).
• The dataset on which the network is trained.
• The size of the network. It is represented by the number of neurons of each layer, from the

first hidden layer to the output layer. We ignore the input layer as it does not employ AFs nor
weight multiplication. We do not detail the CNN architecture of Reference [58] but rather
use a similar computer-based CNN [51] as a point of comparison. For References [63, 66] the
number of neurons represents a “pool” of neurons instead of a classic ANN layer.
• The simulation tool used to implement and train the network.
• The percentage of accuracy (except in some cases where the metric is therefore specified)

obtained with the simulation tool.
• Experimental demonstration: We indicate whether the data were obtained by experimental

demonstration.

As a reference for the MNIST dataset, we present here the accuracy obtained on the validation
set of three computer-based ANNs: two DNNs and one CNN. The highest reported accuracy
with a fully connected DNN is 99.65% [76]. However, this network is composed of a significant
number of neurons: five hidden layers of 2,500, 2,000, 1,500, 1,000, and 500 neurons and an output
layer of 10 neurons. For a fair comparison, we present a smaller ANN with two hidden layers of
100 neurons and an output layer of 10 neurons, which reaches 98% accuracy with ReLU and 97.9%
with sigmoid [77]. We also present a computer-based CNN, which reaches 98.9% accuracy using
the LeNet-4 architecture [51].

We can see that the ONNs proposed in References [56, 70] are very competitive with the
computer-based DNNs presented here. Reference [56] is even more promising given that a single

2In Reference [75], authors explore the non-linearity caused by the Kerr effect in a crystal and how this could replace the

SOAs units of an ONN, as in Reference [63].
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Table 4. Table Highlighting the Potential of Integration in ONNs of the AFs Studied in This Article

Technology Ref.

Simulation parameters

Accuracy(3)
Exp.

AF Network
demons.

Shape Model Dataset Size Tool

E
le

ct
ro

-o
p

ti
ca

l EAM [45] Sigmoid Equation (4) MNIST 100/100/10 TensorFlow 95% No

MRR [50] ReLU NA
(2) Image

4/3/2 NA
(2)

89.8% Yes
recog.

MZI [53] ReLU Equation (5)
XOR 4/4 Neuroptica MSE<10−5

No
MNIST 16/16/16 Neurophox 94%

A
ll

o
p

ti
ca

l

MRR-
[59]

Sigmoid EM + XOR 2/1
Pytorch

100%
No

MZI ReLU spline app. MNIST CNN 94%

SOA

[63]
Tanh

Equations
Pattern

25 Matlab ER: 2.5% No

(6) and (7)
recog.

[65]
[66] Ear model 81 WER: 7.3% No

[68] Sigmoid NA NA NA NA NA NA

SA

[70] Original(1) Equation (8) MNIST 128/128/10 Pytorch 98% No

[56] Original
(1) FDTD +

MNIST 100/10 TensorFlow 99.6%
(4)

No
quad. app.

[71] Original(1) NA NA NA NA NA NA

Computer
[76] Tanh − MNIST

2,500/2,000/

− 99.65% −1,500/1,000/

500/10

based [77]
ReLU − MNIST 100/100/10 − 98.0% −

Sigmoid 97.9% −
[51] Tanh − MNIST CNN − 98.9% −

(1)We call the AF “original” when it cannot be compared to existing AFs (e.g., sigmoid, ReLU, tanh...).
(2)The ONN proposed in Reference [50] is completely simulated on-chip.
(3)When nothing is specified, the percentage displayed is the accuracy of the NN.
(4)Data extrapolated from Figure 5 of Reference [56].

hidden layer of 100 neurons reaches 99.6% accuracy. It should be noted that this level of accuracy
seems to have been achieved in an isolated case. Training and testing the ONN several times
on a randomized dataset and averaging the resulting accuracies would increase the fidelity of
the prediction. Compared to the all-optical implementations, the electro-optical NNs do not
perform as well on MNIST, having a maximum accuracy of 95%. However, all of these AFs rely on
simulation models purely theoretical. The only experimentally measured AF is the MRR-MZI [59].
Its approximation is used in a CNN and trained on MNIST. The accuracy obtained is 94%, 4.9%
lower than the computer-based one. Both CNNs have two convolution layers, two sub-sampling
layers and two fully connected layers laid out in the same way. The main difference is that LeNet-4
uses tanh as its AF.

For datasets other than MNIST, XOR yields the best results. However, this dataset is too simple
for a performance comparison to be based on. It is more useful as a first validation step of an
ONN with AF, as it cannot be classified without non-linearity. In the case of RC for References
[63, 66], the ONNs showed both comparable results to similar computer-based reservoirs. The
ONN in Reference [50] is trained on an image recognition dataset different from MNIST. As a
reference, the authors trained a CNN on the same task, achieving 96% accuracy. Nevertheless,
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they acknowledge that the architecture of the CNN is remarkably larger. It must be noted that the
simulation of this ONN is completely experimental. Therefore the accuracy can suffer from noise,
for example from the electro-optic transformations.

Overall, it is tedious to identify the main cause for the performance gap of the simulated ONNs.
Certainly, it could be due to the optical AF itself and its approximation. However, the performance
may also be impacted by the choice of the simulation tool. Indeed, Neuroptica and Neurophox
both implement their matrix multiplications using MZI models and therefore adapt their training
algorithm accordingly. This may be one of the reasons for the lower accuracy of the electro-optical
MZI [53]. Another factor may be the optimization of the hyperparameters used for the training of
each network. Nonetheless, the optimization methods were not shared. Consequently, we assume
the hyperparameters to have been carefully selected for an optimal accuracy.

We observe a gap between the small optical circuits used for experimental demonstrations
and the simulated deeper ONNs used to solve tasks such as MNIST. The first one prioritizes the
accuracy of the optical representation at the expense of the depth of its architecture. On the
contrary, deeper ONNs are essentially simulated as DNNs with unique AFs, without proper study
of the optical implementation. Advanced tools for the simulation of ONNs could help reduce this
gap.

8 KEY RESEARCH DIRECTIONS

It is undeniable that photonic integrated circuits have the potential to accelerate NNs. They ensure
high bandwidth and low power consumption. However, the research around the integration of
ONNs is only starting and there is still progress to be made. In this section, we propose different
research directions to consider for the development of efficient optical AFs. First, we present
the advantages of reconfigurability in integrated ANNs and give the example of four reconfig-
urable and optical AFs introduced in this survey. Then, we point out the necessity to develop
more comprehensive tools to test and compare ONNs. Finally, we discuss how WDM could impact
the performance of ONNs.

8.1 Reconfigurable AFs

The main objective of reconfigurable integrated ANNs is to exploit the advantages of paral-
lelization offered by hardware implementations, compared to software implementations, while
remaining flexible. Many articles focus on the implementation of reprogrammable FPGAs for
ANNs [78–80]. The ability to reconfigure the circuit is relevant for hardware implementations
in the following cases:

(1) The dataset on which the ANN has been trained evolves.
(2) A better ANN architecture has been found in the state-of-the-art for the given task.
(3) We want to use the same circuit for several tasks to optimize space.
(4) We want to train the ANN directly on-chip.

Those apply for the reconfiguration of the AF too. For CNNs for example, the AFs of choice
used to be tanh and sigmoid. However this recently shifted to ReLU and ReLU-like functions [81].
Research is always under way to find more suitable and more efficient AFs. In this context, an
interest in research is the trainable AFs: AFs that can be optimized during the training process of
the NN [82]. This approach could lead to a multitude of AFs being used in the same circuit, further
justifying the need to use reconfigurable AFs. Some of the papers presented in this article provide
the possibility to reconfigure their AF. We display these papers in Table 5, where we specify for
each technology (i) the configuration method to modify the shape of the AF, (ii) the particular
configurations used by each paper, and (iii) the resulting AF shapes.
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Table 5. Reconfigurable AFs

Technology Ref. Configuration method AF configurations AF shape

MRR [42]

Electrical bias: Ib
Q factor and depth: Sigmoid

Ib ReLU

Thermal bias: Ih
Wavelength selection: RBF(1)

Ih Quadratic

MZI [53] Phase shift of the MZI: ϕb
ϕb = {1.0π , 0.85π } ReLU

ϕb = {0.0π , 0.5π } Clipped(2)

MRR-MZI [59]

Coupling ratio of the MZC: Δλ = 0.05 nm; r=0.65
Clamped

r
ReLU

Wavelength detuning:
(3) Δλ = 0.05 nm; r=0.8 Sigmoid

Δλ
Δλ = 0.09 nm; r=0.3 RBF
Δλ = 0.14 nm; r=0.5 Softplus

SOA [68]

Control attenuation factor: Slope of 7°:

Sigmoid
af a f ∈[0, 0.25]

Bias attenuation factor: Bias of 4.5 dB:
b b ∈[0, 0.6]

(1)Radial Basis Function.
(2)Low input amplitudes lead to high output amplitudes and vice versa.
(3)Between the input signal and the MRR resonance.

The degree of reconfigurability differs from one technology to another. For example, in Refer-
ence [68], only one type of AF is programmed: a sigmoid. However both the slope and the bias
of the function may be configured to tune the function. In contrast, the MRR-MZI [58] can be
programmed to carry out four distinct AFs, but each AF has a very limited range of adjustment.

In situ training of an ONN is becoming more and more accessible. An integrated reconfigurable
AF on-chip is essential to provide a full range of updateable parameters for the ONN. In fact, the
type of AF used is an important hyper-parameter to achieve optimal accuracy. A reconfigurable
AF with a broad range of AF shapes such as the MRR-MZI is a promising technology.

8.2 Simulation Tools for ONNs

From our comparative study, we notice a significant heterogeneity in terms of simulation level:
from the all-theoretical simulation to the complete integration of an ONN on-chip. This is one
of the factors contributing to the difficulty of comparison of the studied AFs. In addition, recent
articles implementing optical non-linearities through the use of lithium niobate waveguides [83,
84] or based on homodyne detection [85] open new research directions. A comprehensive and
accessible simulation tool for ONNs would allow the user the following projections:

• The performance comparison of different optical AFs implemented into the same network
while trained on the same dataset.
• The analysis of the non-linear response of an optical component while modifying its physical

characteristics, such as the radius of a ring or the phase shift in a MZI.
• The analysis of an optical AF when one of its optical components is interchanged (e.g., a

SOA replaced by a crystal).

Given the diversity of the optical AFs in the state-of-the-art, detailed analysis such as the one
presented above are essential to determine their strengths and weaknesses.

We introduced a list of ONNs simulators in Section 4, but except for Neurophox and Neuroptica
with the electro-optical MZI [53], none were used for the ONNs presented in Table 4. Most of the
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simulations were performed with DNN simulators with a more or less precise approximation of
the AF. This allowed the authors to simulate larger networks at the cost of the accuracy of the
optical representation. However, the experimental demonstrations of AFs implemented on-chip
were either limited to the AF itself or to a very small network. Frameworks such as Neuroptica,
Neurophox or Photontorch seem to be a good trade-off between these two extremes. However,
their training speed is significantly slower than other DNNs simulators. The method employed
in Reference [41], where the weights of the networks are complex during training and then con-
verted to optical representation of MZIs, allows for faster training convergence. Overall, a good
compromise could be to decompose the simulation of ONNs in two phases: the training phase
and the test phase. During the first phase, the optical representation is simplified and the training
speed is prioritized. Once the hyper-parameters of the network are learned, more complex models
can be used to implement the various optical components during the test phase. For this second
phase, libraries such as Photontorch, Symphony, or SAX can implement and analyse the resulting
ONN circuits.

8.3 Wavelength Division Multiplexing

We notice that the use of nanophotonic is partly motivated by the potential for WDM to increase
the processing speed of ONNs while decreasing the overall power consumption and physical
footprint. As such, WDM can be used to build highly parallel matrix multiplications [86]. In
the context of a complete ONN, after the matrix multiplication, multiple signals would arrive at
one neuron to be transformed independently by the same AF. However, the current technology
does not allow it. The different AFs seen through this article are based on components that react
differently given the input intensity. At a given time t, these components cannot exhibit different
behaviour according to entries of various intensities. There is an exception in the case of the two
free-space implementations briefly presented in the summary of Section 6: References [73, 74]. As
the non-linear component is a gas, if each input crosses it at a different point, given a minimum
distance between them, they can be transformed independently. However, one must be careful
of the total space that could be needed to transform at the same time multiple input vectors or
matrices. To conclude, non-linear components such as atomic vapor, or other types of gas, show
great potential toward the implementation of fully parallel ONNs. Articles such as References
[87, 88], portraying examples of EIT on-chip, are a first step toward this direction.

9 CONCLUSION

In this work, we have reviewed state-of-the-art technologies and implementations of Activation
Functions (AFs) in Optical Neural Networks (ONNs). In our comparison, we assume an optimal
ONN training and, for each type of AF, we focus on the available information. To highlight
their pros and cons, we have evaluated (i) the computation speed, (ii) their impact on the ONN
accuracy, (iii) the losses and conversion required when crossing an AF, and (iv) the power
requirement to trigger the AFs. We classified the AFs in two main categories: electro-optical and
all optical. Both electro-optical and all optical AFs are very competitive in terms of speed. They
reach frequencies of up to 10 GHz and more, which is at least 10 times faster than modern GPUs.
However, electro-optical conversions are power-hungry as they need high amplification of the
signal, which is not the case for all-optical AFs. In terms of simulation results, both electro-optical
and all-optical NNs provide lower accuracy on the MNIST dataset with respect to computer-based
implementations. However, all-optical NNs lead to higher accuracy than the electro-optical
ones. Finally, electro-optical AFs are easily reconfigurable thanks to their electronic components.
The MRR-assisted MZI and the SOA are also both all-optical technologies that can implement
reconfigurable AFs. The use of reconfigurable circuits for most commonly used AFs (ReLU,
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Sigmoid, tanh, etc.) would simplify the architecture and facilitate the fabrication process. In
terms of scalability, the autapse is a first step toward the study of cascadable ONNs. Based on our
observation, we conclude that, despite the growing interest in ONNs, significant research and
development efforts are still needed for the design of reconfigurable and scalable AFs.

We also note that the level of detail for the AFs implementation discussed in the literature is
highly heterogeneous, which lead to a challenging comparison. Indeed, the ONNs rely on different
architectures, use different AFs and are trained on different datasets. Since the accuracy depends
on numerous criteria, such as the optimization method and the preprocessing of the dataset,
concluding on the efficiency of an AF solely is challenging, even when comparing ONNs trained
on the same dataset. Numerous key characteristics of AF are also missing for comprehensive
comparison of their performance, which raises the needs for standardized evaluation methods.
The implementation of ONNs is a multidisciplinary field involving photonics and machine
learning. Unfortunately, there is a lack of simulation tools for the integration of ONNs. On one
side, photonic simulation tools such as Lumerical enable the design and the simulation of ONNs
but do not cover the training and optimization phases. On the other side, NNs libraries such
as Tensorflow and Pytorch allow the training of complex NNs but cannot simulate photonic
components. Currently, Neuroptica, Neurophox, and Photontorch are the best compromise,
including models of MZIs and phase-shifters to build ONNs. However, they require heavy
computation and additional optical components such as AFs are needed for comprehensive design
and simulation. A holistic framework dedicated to ONNs would enable the production of fair, com-
prehensive, and reproducible results for ONNs, which are needed to compare specific blocks such
as AFs.
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