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Foreword 
This report has been prepared by Bernd Möller, who has been a visiting researcher at the 
Agricultural University of Iceland from 2004 to 2005. During this time a geographical 
model of wood for energy supply was prepared for the Northern Wood Heat project un-
der the EU Interreg IIIB Northern Periphery Programme.  
 
The report deals with the methodological considerations of analyses of the resource eco-
nomics of distributed renewable energy resources such as wood chips from newly planted 
forests. A specific model is being described, including data input, modelling of forest to 
energy process chains, and preliminary results.  
 
The findings in this report, including the methodology developed are considered prelimi-
nary as the involvement with the project was temporary and no successor for this work 
was found after the visit ended. The results of this work were discussed with the other 
project partners and presented at a project symposium in Joensuu, Finland in June 2005, a 
Northern Wood Heat project conference in Elgin, Scotland in November 2005 as well as 
a research conference (Möller, 2005) in Reykjavík, Iceland in September 2005. The con-
tent of this report, however, did not find application and reference in the final results of 
the Northern Wood Heat project. 
 
 
 
 
 
 
Aalborg, Denmark, November 29th, 2007 
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1 Introduction 
 
Wood fuels for heating have advantages against fossil fuels and other forms of heating. 
First of all, they can be considered CO2-neutral if the wood has been grown and harvested 
in a sustainable manner. This is widely understood as the main benefit of wood fuels. 
Another advantage is that wood fuels are local resources and can create local income, 
jobs and development. Furthermore, in replacing imported oil or electrical power, a re-
gion of a country can benefit from producing and using wood fuels when most of the en-
ergy demand is imported from abroad or other parts of the country.  
 
By utilising wood that is left over from necessary thinning operations, timber production 
and forest health are maintained. Thinning costs could partly be covered through sales of 
energy wood. Essential for such a scenario are two things: forest operations must be cost-
efficient and there must be a market for wood fuels. The economy of wood fuels very 
much depends on how efficiently the resources are managed in every link of the cost 
chain. Even marginal differences in the cost chain from forest to energy plant have sig-
nificant influence. The geographical aspects of forest location relative to consumers of 
energy wood as well as forest operation and other forests. 
 
Iceland is not an obvious location to implement a wood fuel supply system. All odds ap-
pear to be against such a solution. Almost 90 % of all heat demand is covered by geo-
thermal heat. Production of electricity, which covers most of the remaining heat demand 
in geothermally cold areas, is based on hydro power and geothermal energy. Only about 1 
% of the heat demand of Iceland’s population of 300,000 is covered with oil, with a di-
minishing tendency (Orkustofnun, 2003). Electrical power for heating is subsidised and 
drilling for geothermal heat advances even in “cold” bedrock formations. Population and 
forest densities are very low, suggesting high transport and distribution costs. There is 
little experience with forest operations and management and no established forest indus-
try. Information about the Icelandic forests is poor, as counts for data used to calculate 
standing tree volumes, growth and site index curves, and costs of silvicultural operations.  
 
On the other hand, more than 4,000 ha of private forests have been planted within the 
Heradsskogar project in East Iceland, with another 13,000 ha to follow. With an esti-
mated 20 solid m3 per ha recoverable thinning resources, the currently annually planted 
400 ha in the case area would produce 20,000 MWh of fuel per year 20-30 years from 
now. This is equal to annually 7,000 kWh for each of the 2,800 inhabitants, which comes 
close to what is needed to heat their homes today. If replacing light fuel oil with a fuel 
price of 9 €/ MWh, this production of local resource would create an annual turnover of 
180,000 €. 
 
A study of limited supply of bulky, comparably costly and difficult to procure resources 
must include not single techniques but interlinked chains of technologies. The economy 
of wood chip production not only depends on the cost of running a wood chipper; it also 
includes the costs of growing and felling trees, forwarding them to a chipper site, and fi-
nally storing and transporting them to locations where they can be used.  
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In contrast to supply cost calculations of commodities such as light fuel oil, the cost chain 
of wood fuels includes many factors determined by geography. Geographical density and 
distance between locations of production, supply and demand highly influence the 
amount of resources accessible at a given price. In other words, it depends how much 
biomass is accessible where. One m3 of biomass located 100 km away from the plant has 
not the same value to the plant than the same amount in the plant’s neighbourhood. Dis-
tance between source and consumer creates costs that have to be avoided by prioritising 
local fuels. 
 
The nature of the problem makes it interesting to use a geographical information system 
(GIS). A GIS is by definition a system to include, store, manage, retrieve, visualise and 
analyse geographical data. Most GIS-related applications in Iceland deal with the first 
five of these aspects, whereas the analysis of geographical data is not as frequently used 
yet. Much emphasis is still on the production and collection of geographical data within 
various disciplines, but little is done so far to combine existing geographical data to an 
interdisciplinary decision support system within a GIS. In doing so, a project like this is 
likely to benefit from the work that has already been done in the fields involved. On the 
other hand, this means a number of problems related to data quality and the like. Com-
promises on data quality go hand in hand with the exploration of new applications for 
data. 
 
To know the delivered fuel costs for a changing demand at a given location is an impor-
tant decision parameter when planning a wood fuel supply system. To assess recoverable 
amounts of resources and their delivered costs at a possible energy plant site, a model 
called GRASP (Geographical Resource Assessment, Supply and Processes) has been de-
signed. It is a method and an analytical framework developed at Aalborg University in 
Denmark in co-operation with Forest Research (now Scion Research) in New Zealand 
(Möller and Nielsen, 2007). It features a GIS-embedded, raster-based model for the 
analysis of resources and supply costs of processes from forest to end-use location, in-
cluding growing forests, thinning, harvesting and chipping operations, forwarding, stor-
age and road transport etc. The innovative element of GRASP is the translation of forest 
and logistical operations into geographically determined spatial modelling processes. Re-
source amounts and costs are described and modelled as continuous resource and cost 
surfaces, after which a statistical overlay operation of costs and resources returns the 
marginal costs of supply by cumulative amounts in so-called cost-supply curves. Every 
location features a differently shaped cost-supply curve.  
 
The main idea behind GRASP is that resources often are available at a forest location 
with only marginal costs to pay, such as extraction and transport, but not for growing re-
sources. Therefore the considerations can be vastly simplified excluding the economic 
consideration of profit maximisation by selection of crops or land use. The resulting mar-
ginal costs of biomass fuels can be used in several ways. Either to assess the total costs of 
a project of different scales; to determine the value of forest resources across a region de-
pending on the location of an energy plant; or to help setting the sales price for sellers or 
buyers of these resources. 
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GRASP is dynamic as it models resources and their costs and flow year by year, typically 
for the whole investment period or the technical lifetime of a plant. Costs can change, 
resulting in changes of cash flow. Forest resources, once planted, are rather predictable. 
The model is GIS-embedded and very flexible in terms of its adaptability to regions and 
the requirements of cost chains. The generic algorithm can be applied to assess several 
types of costs of supply problems. It is also flexible in terms of geographical scale. With 
a proper data base it is possible to build highly disaggregated models, as many applica-
tions require it. 
 
For this project the generic method incorporated in GRASP has been applied to the sup-
ply chain management problem in the Northern Wood Heat feasibility study of small- 
and medium scale wood fuel supply Iceland.  
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2 Objectives of the study 
 
This project aims at the development of a decision support system for the future utilisa-
tion of thinning residues from planted Larch forests in Eastern Iceland as wood fuels. In 
the national Hallormsstaður forest and the private forests of Heraðsskógar, Larch has 
been planted since the 1950´s and 1980´s, respectively. These forests have now or will 
soon reach an age at which thinning operations are required to secure timber production. 
Thinning operations, however, are very costly in Iceland, mainly due to lack of experi-
ence, the low forest density and the generally high price level. Income from selling 
thinned wood as energy wood would make thinning more attractive, in particular to pri-
vate forest owners in the Heraðsskogar programme.  
 
Only few experiences and reliable data exist on the yields and costs of thinning opera-
tions. The costs of these measures highly depend on the investments made into forest ma-
chinery, on the amounts and thus the achievable annual utilisation, and on the level of 
experience. The use of GRASP may contribute to increase the knowledge on the re-
source-economic aspects of this project. It is much less costly to carry out model calcula-
tions on a large scale than actual forest operations. For good modelling results, though, a 
sound data base has to be established. As this does not exist for several parts of the cost 
chain, modelling must be done in an iterative approach, where preliminary results are re-
ported to an auditory of decision makers and project participants, partly to hear their 
comments and suggestions, but most importantly to gradually improve the data basis by 
motivating partners to improve data collection. It is important to keep in mind the devel-
opment of the cost supply model depends on the delivery of data from many different 
partners. Few resources for primary data collection are available within the project, so 
that secondary data collection is the main source of model input. 
 
The main idea behind producing income from forest thinning is to establish a medium-
sized wood chip boiler in a central location, which is to be supplied with local fuel from 
thinning operations. The location of the boiler is Hallormsstaður, either the forest station 
or a nearby hotel. The boiler will have an installed capacity of about 300 kW heat, which 
at 4,000 hours of full load operation and an average efficiency of 80% results in an an-
nual consumption of about 1,250 m3 loose wood chips (560 m3 solid). This material will 
preferably come from Hallormsstaður forest, but if supply is not sufficient, Heraðsskógar 
forests could add to the supply, encouraging the forest owners to thin their planted for-
ests.  
 
Because it seems that wood resource availability is much better than these figures, some 
of the farms involved could produce their own fuel wood, making themselves independ-
ent from electrical or oil heating. This scenario would have to assess the economic and 
resource feasibility against established technologies such as subsidised electric heating, 
micro hydropower and new geothermal well. The study aims to assess the sufficiency of 
wood fuel resources and some of the costs associated with individual wood fuel supply. 
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The temporal dimension is important. Plantations of Larch in Hallormsstaður have now 
reached an age at which many of them will have to be thinned within the next decade if 
ages of first thinning of 17 to 30 years are applied, see Figure 1. This figure also shows a 
peak in planted Larch in the 1980´s, which will result in years with thinning demands 
many times the average. In recent years the plantation of Larch has come to a close.  
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Figure 1: Annually planted hectares of Larch (Larix) in Hallormsstadur forest. The years 1983 and 
1984 have contributed to a peak. 
 
Heraðsskógar forests on the other hand are rather young, meaning that their first thinning 
will be about a decade after Hallormsstaður, see Figure 2: Annually planted area of Larch 
in Heradsskogar forests, 1990-2004. The high volumes of the first years have since seen a 
decrease. The perspectives for the next years show even smaller volumes.Figure 2. For 
the future there seems to be a tendency that Larch will loose its role as the most important 
species and play a less dominant role. However, as two thirds of the areas under contract 
are to be afforested yet, there is still a large potential. On the other hand, the pace at 
which plantation of Larch is going to proceed is unknown and therefore future plantations 
of Larch have not been included in the first model described here. Some kind of random 
seed approach could be used to model plantation of Larch on the remaining contract ar-
eas.  
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Figure 2: Annually planted area of Larch in Heradsskogar forests, 1990-2004. The high volumes of 
the first years have since seen a decrease. The perspectives for the next years show even smaller vol-
umes.  
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Comparing the time horizon of the established plantations from planting to first thinning, 
and the average lifetime of the technical installations for a medium sized boiler station, a 
time horizon for the study of 20 years seems to be sensible. Any longer period will de-
mand a “what-if” approach of plantation scenarios, or cause problems with the assess-
ment of economic figures as economies of scale grow through that period.  
 
The feasibility of wood fuel supply depends largely on two factors. First, thinning opera-
tions have to be cost efficient and produce wood chips in sufficient quantities and quality 
when they are needed. This requires knowledge of and investment into forest operations 
and equipment. Furthermore, these operations are highly determined by economies of 
scale. Second, transport distances add a considerable cost to harvest and processing. In 
East Iceland, distances are comparably high because forest and population densities are 
generally low compared to countries where wood fuel solutions have proven successful. 
Therefore transport costs have to be minimised and resources used as locally as possible. 
 
Many parameters and factors in this study are very uncertain and even unknown by now. 
Any computational aid in the form of a computer model or decision support system must 
therefore accommodate uncertainty and allow for the adjustment of modelling parameters 
in order to present not one result, but rather tendencies or development possibilities and 
their uncertainty. It must be stressed that since most of the data collected has considerate 
uncertainty, this is reflected in the results, which have to be interpreted with great care. 
The outcome of this feasibility study can therefore by no means be a “go” or “no go” for 
a wood heat project. The results of this study can not support a standard investment 
analysis. It is rather a tool in a “what if” fashion, which assists a learning process at the 
end of which the partners involved know more about the application of wood heating 
technology from forest to end-use in their own geographical settings.  
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3 Overview on the case region 
 
The region of Northeast Iceland selected as a case is primarily defined by the locations of 
the Heradsskogar forests. All Heradsskogar forests are located within Fljotdalsherad and 
Fljotdalshreppur municipalities. It was decided to include the Austurlandsskogar forests 
for the resource side of the analysis. Austurlandsskogar forests are located in the 
neighbour municipalities.  
 
The geographical boundaries of the case study were therefore set as the Fljotdalsherad 
and Fljotdalshreppur municipalities, which cover 10,445 km2 or rather precisely 10 % of 
the land mass of Iceland. Extending the case region to include Austurlandsskogar, the 
area increases to include Seydisfjord and Eskifjord districts, covering 16,300 km2 or 15.8 
% of Iceland. For further reference the smaller case study area is referred to as case re-
gion and the larger area as extended case region. 
 

3.1 Geography of the case area 
The extended case area stretches from the central parts of Iceland with their glaciers and 
deserted highlands to the coastal lowlands in the Northeast and the fjords in the East. The 
average elevation for the extended case area is 568 m above sea level; the highest peak is 
1,820 m. 70 % of the area is situated above an elevation of 440 m, where afforestation is 
impossible; only 16 % of the area is less than 200 m above sea level. The annual average 
temperature is minus 0.5 degrees Celsius for the whole area, while areas below 440 m 
have an annual mean temperature of 1.8 degrees Celsius.  
 
The 120 farms participating in the Heradsskogar programme and the Hallormsstadur for-
est are concentrated in the central valleys of the glacial rivers. Most Austurlandsskogar 
forests are located in the East fjords.  
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4 Geographical analyses of resources, supply and proc-
esses along the cost chain 
 
 
If the locations of production and consumption of a commodity such as wood for heating 
purposes are known, this allows for the assessment of a series of aspects related to the 
economy of the entire cost chain from forest to energy plant. First of all, the growing of 
trees and the amounts of biomass recoverable through silvicultural operations such as 
thinning and harvesting can be quantified and located. Variations in site indices and envi-
ronmental factors may necessitate the geographical assessment of forest resources.  
 
Secondly, the various processes involved with removing wood from a stand, forwarding 
it to a landing or to the road side where it can be chipped, may include geographical fac-
tors such as the accessibility of forest stands, local topography or the time it takes forest 
workers to commute to their workplace.  
 
A major factor in the determination of the delivered costs of wood fuels is the transport 
on roads from forests and landing sites to a processing or energy plant. Loading and 
unloading a lorry induces terminal time and the travel distances and road conditions de-
termine wages, depreciation of investment, fuel costs and the like. The low energy den-
sity by transport volume makes the transport costs of wood fuels a critical element of the 
cost chain. 
 
Finally, the demand side location where wood is used for energy production also is a key 
element of the analysis of supply chains. First of all, the access to plenty of wood re-
sources nearby decreases costs. Connected to this is the size of the operation, i.e. the an-
nual fuel demand. The higher the demand, the higher the specific transport costs because 
resources have to be transported from further away. The resource area of a location grows 
with its demand.  
 

4.1 Methodological considerations 
If forest resources, the various cost chain elements and the amount and location of de-
mand can be mapped, these factors need to be combined by means of geographical analy-
sis. In raster-based GIS, where landscape elements are mapped using square cells with 
continuous fields, geographical analysis is applied in the form of functions between cells 
of one raster dataset and another. Thereby the single cell, but also its neighbourhood or 
defined zones of a raster theme can be the target. The magnitude of possible functions is 
available through so-called map algebra.  
 
In GRASP a distinction is made between resources and costs. Resources accumulate to 
usable amounts of wood, which are located around the case area and may come from dif-
ferent sources. In practice a series of raster data themes containing resources of several 
origin are combined in a raster that holds all values of resources in a unit such as solid 
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m3, tonnes or Giga Joule. The procurement and the transport of these amounts are usually 
connected with costs. These costs can likewise be mapped using raster themes. And like 
amounts of resources, costs can have their origin in several stages of the cost chain.  
 
Transport costs are a special case. The costs of transport increase with distance, so trans-
port costs can only be calculated for one consumer location at a time. Thereby each loca-
tion in the case area will have a distinct cost structure and the transport costs will usually 
follow the patterns of transport infrastructure. Transport costs in GRASP are calculated 
using an incremental least distances function, which calculates the rising costs from ori-
gin to all areas in the case area in a two-stage process. First the costs are accumulated 
along a linear raster representation of the road network, which may include friction val-
ues such as the achievable travel speed, using a cost-weighted distance function. This re-
sults in a linear raster holding the shortest distance to the origin. Secondly, the distance 
along the road network is perpendicularly allocated to areas away from the road, using a 
function called Euclidean allocation. Thereby all raster cells of the case area receive a 
value for the shortest distance to the point of origin. If costs are related to distance, this 
will also be the least cost of transportation. In a subsequent process, distance is converted 
to costs by applying fixed and distance-specific transport costs.  
 
All costs are given as specific numbers (e.g. ISK / m3) and they finally sum up to con-
tinuous cost levels in all areas of the case region. Costs are finally grouped into zones of 
integer values, e.g. Euro-cents or Icelandic Kroner, which means that now all areas 
within the case region are part of a cost zone. There can be hundreds of cost zones. The 
smaller the increment of costs the smoother the final result.  
 
According to resource economic principles, the resources located in zones with the low-
est costs are the most attractive, while it is less appealing to use more expensive resources 
before less costly have been utilized (In practice also the amount of resources at a given 
location has influence on its attractiveness). To establish a relation between accessible 
amounts and their costs, the layer structure of a GIS is quite useful: by overlaying the re-
source and the cost raster, for each location the amounts and their specific costs are al-
ready known. Next, the two figures need to be sorted by costs, multiplied and accumu-
lated. This is done in a two-stage process. First, by a function called zonal statistics the 
amounts within all cost zones are summarised and ordered by cost value. This results in a 
table, which is converted into a spreadsheet, where absolute costs are calculated as the 
product of amounts and specific costs, after which absolute costs and amounts are accu-
mulated and divided by each other. Then a diagram is prepared using the accumulated 
amounts and their average (or marginal) costs. This diagram is called a cost supply curve.  
 
Cost supply curves establish a relation between the amounts and the costs for a given lo-
cation. Each location on the map has different access to the road network that connects to 
larger or smaller amounts of biomass. This can be read from the cost supply curve by 
comparing two locations, see fig. From a number of likely locations the best location is 
the one with the lowest average costs for a given resource demand. For another demand, 
however, a different location may have lower costs. A cost supply curve therefore also 
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takes into account the demand. Different demand results in different costs. The rates at 
which costs develop for a point on the curve indicate the sensitivity of supply costs.  
 
According to cost supply curves, smaller plants have lower costs of fuel supply simply 
because specifically less transport is required. However, this allows not concluding that 
smaller is better. First, the costs calculated here do not reflect the fuel price. A supplier 
will usually set one price for all locations, except very remote ones, using the marginal 
transport costs as a rule. Economy of scale typically grants the larger customer a lower 
wholesale price. Second, fuel costs comprise usually a smaller proportion of the total 
generation costs for larger plants than for smaller units. This is because specific invest-
ments into boilers, buildings and auxiliary equipment are lower for larger units. Accord-
ingly, to find out which plant size is better for a location, a cost supply analysis has to 
include all cost elements and calculate the generation cost or even the net present value of 
an investment for a location.  
 

4.2 Model implementation  
From a number of possible software choices, ESRI’s ArcGIS 9 was chosen to build the 
GRASP model. ArcGIS is widely used, which means that GRASP can be adopted in 
many GIS departments and workgroups. It features a graphical modelling user interface 
called Model Builder, which is visually more appealing than scripts and more user 
friendly for updating and maintaining the model. On the downside, ArcGIS is expensive 
and implementations of highly structured models can be time-consuming and slow to 
compute.  
 
The model has been organised as a number of sub-models with different handles and op-
tions for parameter adjustment. The widely different modelling approaches for thinning 
resources in Hallormsstadur and Heradsskogar necessitated building two separate thin-
ning resource and thinning cost models. Also forwarding, chipping and storage costs are 
modelled separately for the two forest projects because of their different organisation. 
Common to both, however, is the road transport model. One overlay model takes care of 
producing cost supply tables for the whole case region.  
 
The model calculates resources for every year between 2005 and 2030. Costs are so far 
only calculated once, leaving out discounted costs or development of specific costs in this 
period. This could be done in the next version of GRASP.  
 
In constructing the model elements the main objective was to build a transparent model, 
which can be updated or altered with few efforts. Therefore the model is not optimised 
for computational speed. Some sub-models as the resource and thinning cost calculators 
are very extensive because they perform calculations repeatedly for all scenario years. 
Using point locations instead of real forest cells for the Heradsskogar forests brought 
along a rather complex way of model. It would have been easier to build this part of the 
model in a relational database programme such as Access, or even using a spreadsheet, 
but because the overlay of resources and costs demands the conversion to raster data 
anyway, the difference is not that important.  
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5 Data 
 
Obviously, data is important in a data-intensive project. The best available data has to be 
found and documented for further reference. Analysis and modelling has to be adapted to 
the data that exists. There were no funds available in this project to start intensive pri-
mary data collection, so the aim was to rely on existing data as much as possible. Pre-
ferred data sources were actual operation databases and forest plans, as well as reports 
recommended by the forest managers.  
 

5.1 Forest data 
Icelandic forest databases are generally less developed than in other countries. Annual 
statistics of the national forests are very general in terms of geography. There are no sta-
tistics on the inventory of private forests. A national forest inventory is on its way, but 
forest management systems do not exist as yet. Some approaches to map and quantita-
tively describe Icelandic public and private forests, however, do exist and have been de-
veloped through time. These are maintained by the various actors in the forest sector, e.g. 
the Icelandic Forest Service or Heradsskogar, and subsist in various software formats and 
standards. Common to all systems is the ongoing technological transition from CAD- and 
DBMS-based systems to GIS at the public and private forest stations and companies.  
 
A general recommendation and meta data prescription for mapping forests during estab-
lishment has been developed by Arnór Snorrason, Icelandic Forest Research, since 1987 
(Einarsson et al., 2004). Based on these recommendations mapping of forests was origi-
nally done using a CAD-based technical drawing system (Bentley Intergraph Microsta-
tion), extended with a tabular database system (a MS Access compatible DBMS). Only 
recently GIS has become more widely used, with ESRI´s ArcGIS becoming the most 
widely used software environment.  
 
Forest areas have seemingly been mapped using non-rectified aerial photos and satellite 
images, implicating that the areas derived from these maps differ with up to 7% from re-
ality. High resolution orthophotos are expensive but the best available mapping technol-
ogy, yet nowadays most forests are mapped using aerial photos or satellite images (SPOT 
5) at highly reduced costs. Disadvantages are the low resolution and the far from precise 
geographical references. The possibility to use the false-colour images for remote sens-
ing-based image analysis and automated land use recognition is not utilised. Forest fea-
tures are usually mapped manually as areas (polygons), using the background image as 
the geographical reference. In most cases no standard references are used, nor are forest 
maps rectified using trig points or the like. This causes problems when forest maps are 
overlain with other GIS-data. To be congruent with digital topographical maps such as IS 
50 by the Icelandic National Survey the produced maps need to be rubber-sheeted or 
stretched to fit the true planar extent. 
 
Apart from mapping forest geometries, forest inventories consisting of information about 
species, age, silvicultural measures and the like are difficult to procure in Iceland. A na-
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tional forest inventory is rally needed. Site indices and growth curves have not been pro-
duced systematically for Iceland. Single studies by Snorrason (unpublished) and others 
have produced information about tree growth as a function on environmental factors for a 
few sites only. Important parameters for site index assessment, such as height, diameter 
in breast height etc. only exist for few forests. A full dataset for the production of site in-
dex curves was neither available for Hallormsstadur nor parts of Heradsskogar forests.  
 
Forest maps are rarely kept up to date. The newest map content of Hallormsstadur is from 
the year 2000, and updates of Heradsskogar maps are a not even properly documented.  
 
  
 

Hallormsstaður 
For the national forest in Hallormsstaður and its neighbour Mjóanes an extensive map-
ping project was carried out by Lárus Heiðarsson of the Icelandic Forest Service in 
Egilsstaðir. Lárus has used forest maps and registers from the year 2000 together with 
SPOT 5 satellite images to map all planted and auxiliary plots in an area comprising 620 
ha. Many useful data are included in this map, most importantly being the planted spe-
cies, the stem density, dominant height and the year of plantation. Mapping, however, is 
not entirely complete. For example, species, age and stem density are registered for 139 
ha of the approx. 176 ha mapped Larch forest, equal to 20 % loss. It is recommended to 
update the mapping of Hallormsstadur with age and species data for the remaining stands 
of Larch.  
 
 

Heraðsskógar 
For Heradsskogar an extensive relational database (“Gullagrunnur”) exists, which is used 
for the daily administration and planning of the afforestation projects. In this project, it 
forms the main and only source for the afforested area by species and year of afforesta-
tion. For each participating farm it contains one or several compartments, under which 
the individual stands are registered. Plantation jobs are registered with species, number of 
seedlings and year; while areas are registered for the stands only. In this way the area of 
the forest cells cannot be extracted together with the plantation year. Instead the number 
of seedlings is divided with an average stem density of 3,600 per ha. Using the number of 
seedlings, however, has the advantage of being rather precise because the participating 
farms receive financial report for the number of planted trees, not hectares. It has been 
assessed that information about tree mortality in the first years is much more uncertain 
than these figures used, so they will not add as much to the total error bias. 
 
Using MS Access, a query was written to extract the number of stems by farm number 
and year. Because the year and/or the species and/or the stem number are not registered 
for all afforested areas, some plots have been lost on the way. The total number of seed-
lings is only slightly different from the data published in Heradsskogars annual reports.  
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The query result was then imported into MS Excel, where a pivot table was made to 
summarise the number of seedlings for each farm and year by year. Some faulty years 
(1700, 1980) were extracted and also a single farm, which obviously served as a dummy.  
 
In order to place these data on a map, the names of 121 farms were related to a point data 
theme with a place name register from the IS 50 digital vector map. In case two or more 
farm locations had the same name, the old municipality names contained in Gullagrunnur 
were used to sort out the right location. In case more than one farm with the same name 
existed in the same municipality, the national land ownership databases at Fasteignamat 
Rikisins (the National Property Agency) and Nytjaland (the National Land Ownership 
Database) were queried on the land parcel level.  
 
There is no national cadastral system in Iceland, which made it difficult to locate as many 
as 10 % of the farms properly. For some farms no point locations in the IS 50 map were 
existing, so they had been made up with the land parcel as the only reliable reference. 
The resulting farm locations should be precise within at least one kilometre for a few out-
liers, and within a couple 100 metres for the majority of farms. The precise location of 
the farms is subordinate because a few kilometres more or less do not compromise the 
calculation of transport costs.  
 

5.2 Road network data 
A national road network theme exists in the IS 50 digital vector map. With a recom-
mended scale of 1:50,000 the theme is sufficiently detailed for the project. It is, however, 
already 5 years old, adding some uncertainty on the quality and the location of roads. Ice-
land is in a constant process of improving its roads and new roads are constantly being 
built. But because road properties such as surface and number of lanes do not play a role 
and major road construction projects have not been carried out in the case region, the ex-
isting database was assumed to be sufficient for the purpose.  
 

5.3 Building data 
Geographical and descriptive data on the building stock in the area is used in two places 
in the model. First, the location of energy demand requires the location of heated build-
ings. Second, the participating farms have to be located for the assessment of farm gate 
prices and resources of wood fuels. 
 
To map buildings consistently with roads and other features, the IS 50 building theme 
was used for locating buildings and farms. Farm locations were found using the place 
name field in the building database, and, in case there were several buildings with the 
same place name, the property number was used to locate a building without doubt.  
 
Locations of heated buildings did also require the use of the land parcel theme produced 
by LBHÍ and in future managed by LMR. The calculated total heat demand was summa-
rised to the presumed main building on each property registered in this database.  
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There were few farms and quite a few records from the building register, which could not 
be spatially organised. In these cases help was sought at FMR.  
 

5.4 Geological data 
In order to assess the possibilities to use geothermal heat in parts of the case study area, 
some data were delivered by the Geological Survey of Iceland (ISOR). A polygon theme 
with the bedrock age, and point themes with geothermal boreholes, geothermal features 
and district heating systems were used for this analysis. The data is frequently updated 
and assumed to be rather reliable, as it forms the basis for continued planning and deci-
sion making on the important geothermal resources of the country.  
 

5.5 Other data 
In addition to the above mentioned data necessary to carry out the analyses, a few geo-
graphical data sets were used for cartographical purposes such as the production of maps 
for visualisation and illustration. A digital elevation raster (DER) with a 1 ha resolution 
was produced using elevation lines from the IS 50 map, which were converted to a con-
tinuous theme by a triangulated irregular network (TIN) interpolation and subsequent 
conversion to a raster. This DER served as the common spatial extent and analysis mask 
for all sub-models. A hill-shade model was produced to give the DER additional visual 
strength as a background map. 
 
Other themes used were hydrological features, land use, micro-hydropower stations, and 
place names; all derived from the IS 50 and IS 500 digital vector maps.  
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6 Model design 
 
This chapter presents the main ideas behind the models developed for the project. Two 
main ideas lay behind this model, as described in chapter 4. A very data-intensive part is 
the detailed modelling of the location and amount of recoverable thinning resources many 
years into the future. This part produces also the costs, as resources and their costs of 
procurement are attached to the same process. The second part involves the logistics and 
the remaining cost chain elements such as forwarding, chipping and road transport. Using 
more general model parameters, it is less data intensive when it comes to detailed map-
ping, but the higher number of model parameters requires extra thought and considera-
tion. It is mainly here that alternatives regarding forwarding, chipping and transport tech-
nologies are modelled.  
 

6.1 Growth and thinning residue models 
Sub-models for calculating the extractable resources from thinning processes have been 
developed separately for Heradsskogar and Hallormsstadur forests. Both models, how-
ever, produce the same type of results. 
 
The general idea behind the resource models is that for the species chosen, the extractable 
biomass is known for the years in which the trees should be thinned according to the de-
cision model by Vesterager & Sundstrup (2000). Wood resources of a given amount are 
thus available at the stand site in a given year after plantation. This does not take into ac-
count that silvicultural management may postpone or reschedule thinning operations. In 
reality, a forest compartment is thinned according to thinning prescriptions as well as the 
availability of manpower, demand for wood fuel, etc.  
 
Vesterager & Sundstrup (2000) have produced thinning plans for Hallormsstadur and 
other forests in the region. These plans are tables, which establish a relation between 
stand age and thinning residues per ha for the same site index. The same site index curve 
is used for the whole case area, which seems to be a safe assumption according to Hei-
darsson (2005). The thinning plans were produced with two alternatives, resulting in 
three possible thinning scenarios, where, economically, 1 is the most likely and 3 is the 
least likely of those alternatives. All scenarios produce slightly different amounts of tim-
ber at the rotation age of 90 years, and the recoverable thinning resources and the costs 
associated with thinning the stands are different. An overview of the thinning scenarios is 
given in Figure 3. These thinning scenarios were applied for Hallormsstadur as well as 
Heradsskogar with no modifications.  
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Figure 3: Thinning scenarios based on the recommendations by Vesterager & Sundstrup (2000). 
Three to five thinnings sooner or later in the plantation life result in different timber output at a ro-
tation age of 90 years, with different recoverable thinning volumes and at different costs.  
 
 

Hallormsstadur forest 
Areas of larch by age were available in the Hallormsstadur map by Heidarsson (2005), 
see Figure 4. This map was converted into a raster of 1 ha cells (100 x 100 metres) for 
more efficient raster modelling. The error induced is not significant, because the average 
stand size is about 1 ha, and the total area has been maintained in this process. The bene-
fit of using a 1 ha model is that it is no longer necessary to calculate the area. The number 
of discrete cells in the raster model is proportional to the forest area. 
 
A grid with the plantation year of each department has been produced to calculate the 
stand age for each scenario year. Age was then reclassified to resources in solid m3. The 
result is a series of grids for the years 2005 to 2030, which show a geographical distribu-
tion of thinning residues. From these grids a few statistics such as the annual sum, aver-
age etc. can be produced, but their main purpose is to be overlain with cost data.  
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Figure 4: Map of Hallormsstadur forest showing areas where larch plantations have been registered; 
plantations of other species; as well as areas not afforested or where natural birch forest grows.  
 
An example for an annual thinning resource map is shown in (Insert figure here). As can 
be seen from the figure, the total number of forest cells is rather small, which might sug-
gest that the cell size either can be decreased or the forest size be increased, e.g. in a sce-
nario where Hallormsstadur gradually grows.  
 
 

Heradsskogar forest 
Detailed forest maps were not readily available for Heradsskogar forests, which is why it 
has been decided to treat the 121 individual forest projects as point locations. The amount 
of resources and the costs associated with thinning were considered to be “at farm gates”.  
 
The point theme for the participating farms was joined with the area planted every year 
and the plantation years, resulting in two new point themes, which were converted to 
raster themes holding plantation area for each year from 1990 to 2004, as well as the 
plantation age. The two raster maps were used to calculate stand age for each of the plan-
tation years. Then age was reclassified to specific volumes and costs by area, and multi-
plied with areas. Then for each of the plantation years costs and volumes were summa-
rised to produce the total volumes recoverable at every farm location at the calculated 
costs and for all years between 2005 and 2030.  
 
Fig 4 shows the location of the participating forests and their volumes and costs for a 
chosen year. Locating costs and volumes at farm gate does not create much error, as most 
of the plantations are located close to farms anyway and the farm house location usually 
is the best accessible spot on a farm, making it an obvious pick-up place for forest resi-
dues.  
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6.2 Least cost distance road transport model 
The Icelandic road network is composed of a main ring road, which circumcises the 
whole country mainly in the coastal lowland rim; a number of secondary roads that con-
nect smaller settlements; and a few mountain roads only usable in summer with 4WD ve-
hicles. Most of the ring road surface is covered with asphalt, while the majority of secon-
dary roads have a gravel surface. On almost all roads an average speed of 80 km/h can be 
maintained by standard trucks, while travel time increases considerably on mountain 
roads.  
 
Most of the roads linking forests and settlements in the case region are sections of the 
ring road as well as secondary roads. Only few mountain roads seem to offer alternative 
routes, but in reality they are unattractive to commercial transport and can be excluded 
from the road transport model. Fig shows a road map for the case study together with its 
topography and the location of Hallormsstadur forest station.  
 
Connectivity and circuitry of a network are good indicators for the quality of connection 
through a road network. The connectivity γ is calculated as the number of arcs (road 
segments connecting nodes) divided through three times the number of nodes (cross-
roads, intersections, ends) minus 2. A connectivity index of 0 means no connectivity at 
all, and a 1 indicates that all nodes on the network are connected to each other. The roads 
in the case area have a connectivity index of 0.8. Circuitry as a measure to assess the pos-
sibilities to find alternative routes has not been analysed. The system is rather closed, as 
only four roads leave the area, two being sections of the ring road, another being a moun-
tain road. The nearest forests outside the area are rather far away and the delineation of 
the case region does not cut off alternative routes. These aspects comprise good opportu-
nities and reason to carry out an accessibility analysis for the case region.  
 
The geographical database used was the IS 50 digital vector map by LMI (2000). Its de-
tail and level of maintenance was judged to be sufficient for the project, partly because 
the conversion to raster adds an error of up to 100 m to the precise location of roads, 
partly because its degree of detail fits with the locations of farms and forests, and finally 
because it was the most comprehensible at hand. If the transport model needs to be fine-
tuned to accommodate travel time instead of plain distance, the road surface and con-
struction data contained in this data base would allow for a classification of truck speeds. 
 
To use the IS 50 line theme for cost weighted distance analysis, it needs to be converted 
to a linear grid. This conversion induces errors, mainly because the distance between lo-
cations is no longer given by the length of the line that depicts the road, but of the cell 
size of the raster theme and, in case a cell is travelled over diagonally, the cell size times 
the square root of 2. The road distance between Hallormsstadur and Egilsstadir, accord-
ing to the IS 50 line segment length, is lengthened by 4 % compared to the 100 m raster 
model, an error easily compensated for if acceleration and braking would be included. 
Another error is induced by using a linear raster rather than a true network data base with 
nodes only where roads are interconnected. This way all crossing roads become intersec-
tions; an error significant when analysing motorway intersections. But because there are 
no unconnected road intersections, and no one-way roads or the like, this is not a prob-
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lem. Finally, in areas with a road network density higher than the square rood of the 
raster cell area, roads become interconnected without being that. This is usually the case 
in built-up areas. But since not much traffic is passing through the few instances of built-
up areas in the case region, this is not a problem, either.  
 
 

6.3 Cost chain modelling 
In the following the elements of the cost chain, from thinning operations to road transport 
from landings to an energy plant, are described. Data input as well as the implementation 
of the process model are described and suggestions for improvements are given where 
appropriate.  
 

Thinning models 
Only one thinning model, developed as part of a Master’s project in forestry at the Royal 
Veterinary and Agricultural University of Denmark, is applied (Vesterager & Sundstrup, 
2000). This model uses an average site index for the whole Fljotsherad region, where the 
case region is located. Considerable differences in local productivity may therefore be 
expected.  
 
Thinning resources are calculated including stems and bark, but excluding branches and 
needles. Excluding thick branches from the model might reduce the amount of recover-
able biomass resources, but as thinning strategies aim at producing trees with focus on 
stem quality, this underestimate of resources should not be a big issue, albeit during thin-
ning usually the unwanted trees are removed, among them often being the ones with thick 
crowns.  
 
The model in its present form equals stem volumes of trees to be thinned at the calculated 
age with the volumes recoverable as wood fuels. In reality tops and stumps would be left 
in the forest. The volume unit, solid m3, is kept through the entire cost chain although 
drying might reduce the volumes.  
 
The thinning model suggests thinning operations at several ages, see Table 1. Being a 
recommendation only, it can not be certain whether these ages are applied in reality. But 
since this is the best offer in a situation where experience with thinning is little, it was 
chosen to work with these curves.  
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Stand age Thinning resources [m3/ha/year] 
0 - 16 years 0 

17 years 17 
18 - 34 years 0 

35 years 72 
36 - 44 years 0 

45 years 67 
46 - 59 years 0 

60 years 100 
61 - 89 years 0 

90 years 239 
Above 90 years 0 

Table 1: Ages of stands and the recoverable thinning residues, suggested thinning strategy 1of 3. 
 
The thinning curves have been implemented in the model as reclassifications of the plan-
tation years for each stand or raster cell. Age is calculated for all scenario years, and re-
classified to either the recoverable thinning resources when the stand is ready for thinning 
at this age, or to the value zero for the years in between. Figure 5 shows the recoverable 
thinning residues for the three suggested alternatives.  
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Figure 5: Recoverable thinning volumes by stand age for the three thinning scenarios suggested by 
Vesterager and Sundstrup (2000). 3 to 5 thinnings bring the typical stand of Larix to maturity at an 
age of 90.  
 



 23

The model includes all three alternative thinning scenarios, and new thinning specifica-
tions can relatively easy be produced by coding new or changing the existing reclassifica-
tion tables in the thinning models for Heradsskogar and Hallormsstadur.  
 
A local reduction of the amount of recoverable resources, be it due to the wish to leave 
some resources in the forest or because a certain type of harvester is used, can be 
achieved by adding a multiplier raster to the model. 
 
The thinning resource model produces raster data sets for the two forest projects indi-
vidually, for the three thinning alternatives, and for all scenario years from 2005 to 2030. 
The raster data sets hold values in m3 solid pr. ha, assigning a value “0” to cells outside 
the forest areas but within the case region. The latter is required for the spatial addition of 
Hallormsstadur and Heradsskogar rasters.  
 
The thinning costs model works in the same way. The only difference is that age values 
are reclassified to costs per area unit, in this case in thousands of ISK / ha because the 
ESRI Grid format uses integer values for raster themes. Costs can be changed by editing 
the reclassification tables. If the economic calculations should include a net present value 
calculation or an inflation rate, then the cell values need to be discounted with the differ-
ence of the scenario year and a reference year. This type of calculation could be added to 
the model.  
 
 

Forwarding costs 
Felled stems need to be forwarded to landings or processing sites. This can be done in 
several ways, depending on the choice of machinery or cost chain element. Common to 
all technological possibilities are the geographical factors tree density, thinning volumes 
by area unit, distance to forest track and distance along forest track to landing. Forward-
ing costs are modelled as functions of local geography only for the Hallormsstadur forest. 
The lack of distance and area for the point-based Heradsskogar forests make it pointless 
to include forwarding costs as a function of local topography. Instead, cost factors are 
multiplied with wood volumes.  
 
The forwarding cost model calculates the distance from the centre of a forest cell to the 
nearest forest track, adding half the cell size (50 m) to avoid zero-values. It then multi-
plies this distance with the resource extracted from the cell and multiplies this value with 
a specific cost given in costs per volume unit and distance to forest track (ISK / m3 solid / 
m). This cost factor is assumed to be useful for the manual extraction using a tractor-
mounted winch as well as for harvester-forwarder systems.  
 
The second part of the forwarding cost uses the calculated distance along forest tracks 
and roads to four landing sites in the area. Forwarding costs are calculated as a function 
of track distance and average forwarder load. These data can be used to model the exist-
ing form of forwarding using a grapple and a tractor with trailer, or a harvester-forwarder. 
This part of the process can also be included in modelling a chipper-forwarder, as it 
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represents the commuting of the vehicle between the approximate forest stand location 
and the nearest landing.   
 
There have not been representative data collected for the costs of extracting stems from 
the stand to the nearest forest tracks. Instead, an estimate is used, based on a single thin-
ning event in Hallormsstadur in the year 2004. The costs are assumed to be a function of 
volumes and distance from the stand to the nearest track. This extraction model should 
operate at a much smaller scale, but to keep model elements consistent the same raster 
resolution of 100 m was chosen.  
 
For the cost assessment it was estimated that a tractor and two operators can pull 1 m3 of 
wood at a speed of 0.25 m/s forth and back. A tractor costs 2,200 ISK/h, two men 4,440 
ISK/h, which translates a cost function of 7.4 ISK/m3/m. Fixed costs are not considered 
as no terminal time is involved.  
 
The cost function is implemented using a raster with the distance to the nearest forest 
track and the recoverable volume raster. 
 
For the model calculating the forwarding costs along tracks in this preliminary version 
the following cost data was used. According to Thor Thorfinsson, stand no. 216-1 in Hal-
lormsstadur was thinned in the year 2004. Planted in 1983 with Russian Larch, the 3.7 ha 
of forest were thinned from 3,000 to (estimated) 1,500 stems pr. ha. Using the growth 
curves by Vetsterager and Sundstrup (2000), the 21 year old stand produced 24 m3 (solid) 
extractable stem wood pr. ha, or 88.8 m3 in total. It took 20 working hours to remove 
these resources and to transport them to a landing 1.5 km away. At an hourly cost of 
5,500 ISK for a tractor with timber trailer and driver, an estimated 15 minutes of terminal 
time and an hourly transport speed of 1.5 km forth and back (including loading on the 
way), this leads to the following cost function: 
 
  C = cvar V d + cfix 
 
Where   C: total costs 
  cvar: variable costs pr. m3 and km 
  V: volume (pr. ha) 
  d: distance to landing 
  cfix: fixed costs (terminal time) 
 
This cost function is the basis for the calculation of costs of extraction from forest track 
in a raster model. Distance to landings is calculated using a 100 m grid.  
 

Chipping costs 
Chipping costs are not much influenced by geography, and therefore calculated as func-
tions of volumes. Several sizes of chippers with different costs can be modelled by classi-
fication of volumes per area or forest compartment. As chipping costs are independent of 
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location and distance, they are modelled as a constant factor multiplied with the recover-
able volumes.  
 
 
 

Road transport costs 
The costs of road transport are modelled on the basis of the transport distances calculated 
in the road transport model, the load volumes and an optional fixed cost per trip allowing 
for terminal costs. The model differentiates between two types of vehicles used. For 
shorter distances up to a distance free of choice the same tractor also used for forest for-
warding is applied. Distances above that are managed by a truck. Tractor and truck have 
different costs per kilometre and different load volumes.  
 
The model is implemented as follows. First, the model calculates the distance to a select-
able location, in this case Hallormsstadur forest station, along the road network. Moun-
tain roads can be classified as being extra time consuming or excluded from the road 
transport model using a reclassification process. With the distances calculated, the model 
uses a Euclidean allocation function to assign a distance value to every cell in the case 
region. Then the model separates between distances covered by tractor or by truck using 
a conditional statement. For each modes of transport the costs are calculated as a function 
of distance and transport volume pr. load. A fixed terminal cost is added at the end.  
 
Model variables are the Shape-file with the location of processing or energy plant, the 
minimum distance for truck transport, the truck- and tractor costs pr. kilometre, the load 
volumes for both types of vehicles, and the fixed trip costs. Figure x shows the user inter-
face of the road transport model. Once the model has been run for a location, the road 
costs are saved in a grid called “roadcosts_m3”´, which is used by the overlay model to 
produce a cost supply table for each year and thinning scenario. 
 
 

Addition of costs 
All costs along the cost chain add up to a total cost to be applied for cost supply overlay. 
This requires that all cost raster data sets cover the same area as the case region. Loca-
tions without costs assigned must have the value zero and no-data cells are not allowed. 
Costs are added in the overlay model. Because thinning costs are in thousand ISK pr. ha, 
they need to be divided by the recoverable resources. This is done in the overlay model 
because additional costs or a smaller amount of resources might be the result of changes 
to either the cost model or the resource model. 
 
It is possible here to add more cost chain elements, or to assign additional costs, e.g. in 
for form of levies by area unit, for parts of the region or as balancing factors of some sort.  
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6.4 Overlay of resources and costs 
The knowledge of amounts of resources and their aggregated costs along the cost chain 
and for each raster location in the case region makes it possible to combine both types of 
information in a spatial summation of resources by incremental costs. This is done using 
the zonal statistics as table function in ArcGIS Spatial Analyst tools. Zones are here de-
fined as the integer values of costs (in ISK) calculated for each cell in the case region. 
The values to be summarised are the recoverable amounts in solid m3. The zonal statistics 
as table function results in a table in Dbase4-format, where for each instance of a cost 
value [in ISK / m3 solid] holding resource values the sum and various other statistics are 
reported. The table is sorted by increasing costs. The only fields of the table necessary to 
produce cost-supply curves are called VALUE, COUNT and SUM. VALUE contains the 
costs, COUNT is used to check the area (its contents are the number of cells and hence 
the area in ha), and SUM contains the amounts of biomass at the given costs. All other 
fields of the table can be deleted. 
 
To produce a cost-supply curve the resulting table is copied to an MS Excel spreadsheet, 
and four more columns are added, see Figure 6. The first contains the costs [in ISK] as 
the product of specific costs [in ISK / m3 solid] and amounts [in m3 solid]. The next col-
umn accumulates the costs by adding the costs for a cost zone to the costs of the previous 
zone. The third column accumulates the amounts, and the fourth column divides accumu-
lated costs by accumulated amounts to produce the marginal costs. A cost supply curve is 
then produced drawing an x,y-diagram using the accumulated amounts as x-values and 
the marginal costs as y-values. Several curves can be combined in this way.  
 
 

 
Figure 6: The spreadsheet used to produce cost-supply curves from the overlay statistics resulting 
from the GRASP model. The Fields VALUE, COUNT and SUM (columns A, B and C) are taken 
over from the original Dbase4-table; columns D, E, F and G are used to calculate the costs, accumu-
lated amounts and costs, and the marginal costs per accumulated amounts. Field H1 is used as a lable 
field for the cost-supply curve.  
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7 End-use heat consumption and wood fuel markets 
 
Wood heat has to compete against subsidised electric heating, which also requires less 
investment into heating technology, and geothermal heat, which becomes more and more 
available even in areas so far considered geothermally “cold”. Therefore, of the total heat 
consumed, only the share that is located outside areas with district heating, individual 
geothermal heat supply as well as micro-hydropower, can be considered a possible mar-
ket for wood heat.  
 
The study presented here includes a GIS-based market survey for small-scale wood heat, 
ranging from the use of wood in summer houses to the installation of small and medium-
sized boilers. It could be seen as a form of “heat atlas”, as it tries to quantify heat demand 
geographically.  
 
The study starts with an attempt to quantify the heat demand in individual farms. The 
next part of the study features an exclusion of unlikely locations. The final part tries to 
quantify the amount of heat used in the remaining settlements and houses.  
 

7.1 Assessment of individual heat demand 
The heat demand of a building is usually defined as the amount of thermal energy re-
quired to maintain a certain indoor temperature. In the contest of this study, heat demand 
is the annual share of the energy consumed in a single building of all buildings in the 
area, by the proportion of its heated floor space or volume.  
 
Heat demand in buildings can be assessed in different ways. The truest inventory of heat 
demand is made by installing meters to register annual consumption of energy carriers 
and levelling out climatic differences from one year to another. This option has been out 
of scope for the study.  
 
A less time-intensive approach is the preparation of questionnaires. The questionnaire 
produced for this project (see Jonsson) returned only results for a quarter of the partici-
pating farms, which are less than half of all homes outside towns with district heating 
networks. By regression analysis of questionnaire replies a few correlations between que-
ried factors and data registered in a national property register could be established.  
 
For this purpose an excerpt of the national property register at Fasteignamat Ríkisins 
(The Icelandic Property Agency, FMR), which is used for the valuation and taxation of 
property, was ordered. The excerpt included, for each building registered, the property 
number, by which it can be geographically referenced to a land parcel; the type of build-
ing; its volume; and its outer wall materials. By the type of building it could be told 
which buildings are heated and which not.  
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Building stock in the case area 
 

Building type 

No of 
sub-
types 

 No of 
build-
ings   Volumes [m3]  

Percent 
of total 
volume 

Assumed 
heated 

Agricultural buildings 70 1.191 643.386 38% Partly 
Detached dwellings 54 838 402.380 24% Yes 
Public buildings 74 232                     256.753 15% Yes 
Commerce and service 53 102                     139.755 8% Yes 
Other 73 506                     107.746 6% No 
Industrial buildings 24 77                       97.379 6% Partly 
Summer house 45 171                       26.786 2% Partly 
Appartment buildings 9 18                       10.850 1% Yes 
Terraced homes 1 10                         4.816 0% Yes 

 
Table 1 shows a summary of the building types registered by their count and sum of vol-
umes. It has been necessary to make a clear and unambiguous set of building types. As it 
can be seen from the number of sub-types recorded in FMR’s database, there is no clear 
classification so far, making it difficult to describe building types.  
 
 
 

Building type 

No of 
sub-
types 

 No of 
build-
ings   Volumes [m3]  

Percent 
of total 
volume 

Assumed 
heated 

Agricultural buildings 70 1.191 643.386 38% Partly 
Detached dwellings 54 838 402.380 24% Yes 
Public buildings 74 232                     256.753 15% Yes 
Commerce and service 53 102                     139.755 8% Yes 
Other 73 506                     107.746 6% No 
Industrial buildings 24 77                       97.379 6% Partly 
Summer house 45 171                       26.786 2% Partly 
Appartment buildings 9 18                       10.850 1% Yes 
Terraced homes 1 10                         4.816 0% Yes 

 
Table 1: Building types in the case area, based on a reclassification of building types registered by 
Fasteignamat Rikisins. 
 
The table shows building volumes in m3, making it necessary to convert to areas of 
heated floor space used in the statistics. By far the highest volumes are registered for ag-
ricultural buildings, followed by various forms of dwellings and other types of buildings. 
Some types of buildings are assumed to be heated, some not, while a few building types 
are assumed to be partially heated, either in terms of area or time of the year. Among the 
3,145 buildings registered, 1,200 are assumed to be heated by this classification.  
 
For farm houses and heated agricultural buildings in connection with Heradsskogar farms 
is most interesting to know their head demand for a self supply scenario in farms would 
consider either to sell wood to a larger boiler or to use the wood themselves. However, 
currently there exists not enough data to model either side of the supply chain.  
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Assessing the specific heat demand 
An assessment of the specific heat demand by building type has so far been impossible 
because of two reasons. First, there exist no statistics on the heat demand of buildings. 
Second, the questionnaire did not produce data that could be used to carry out a regres-
sion analysis from which specific energy consumption data could be derived. The build-
ings connected to the participating farms show a high diversity and too few common 
characteristics to be used for comparative analyses of this kind.  
 
FMR does register a few physical building properties, but without a proper reference 
group, specific heat consumption values are impossible to produce. 
 
 

Statistical analysis of the questionnaire 
Out of the 121 farms currently participating in the Heradsskogar programme, 36 have re-
plied the call for answers with more or less detailed and useful data, equal to a return rate 
of 30 %. Of these 36 replies, 29 could be identified by their farm name, which lets the 
return rate useful for geographical analysis decrease to 24 %. 29 out of the 36 (81 % of 
the farms) have a permanent residence on their grounds. There are 1 to 2 residential 
buildings on each farm, with mostly one or two, rarely more dwellings. Most of the farms 
are not mainly used for silviculture; sheep farming, horses and tourism are the main 
forms of commerce.  
 
 

Calculation of the heat demand for analysis 
In the FMR table, property data for 1,214 individual property parcels is registered. Of 
these, only the buildings which belong to the participating farms are included for further 
analysis, leaving out the remaining farms and the buildings in the towns, which are 
heated collectively anyway.  
 
 

7.2 Exclusion of geothermally heated farms 
Geothermal heat covers almost 90 % of the total heat consumed for space heating, hot 
water, industrial processes, public baths and horticulture. During the past two decades in 
particular district heating networks have been installed in an increasing number of areas. 
Installation costs are determined by the distance to a geothermal well and the costs for the 
well itself. Pipe networks have seen a decrease in costs since the evolution of PEX-type 
heating pipes that are delivered by the roll. Geothermal drilling has also advanced, and 
drillers are now able to offer wells to deeper depths and horizontal drilling techniques at 
lower prices than just a few years ago. This means that the likeliness of new geothermal 
heating systems is a function of access to geothermal reservoirs and heat consumption 
density. The first determines the costs of drilling, the latter the costs for heating networks. 
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The specific costs of drilling decrease with the number of users. In case of individual 
boreholes for one consumer only, the costs are much higher. In a GIS, the consumer den-
sity and the age of the bedrock have therefore been pinpointed as the two determinants 
for access to geothermal heat. 
 
The case region is outside high-temperature geothermal heat areas, where steam evapo-
rates from the surface of the Earth. The most close by of these areas, Hrúthálsar, is still 
more than 50 km away from the nearest farm in the case area.  
 

7.3 Exclusion of farms heated with micro-hydropower 
Small hydropower plants with an installed capacity of between 0.1 and 120 kW are quite 
commonly used to produce cheap electricity for heating purposes. 461 plants with a total 
capacity of merely 4.2 MW exist in Iceland. They are usually not connected to the public 
grid, but produce power to resistors only. In the case region, 30 plants with a total capac-
ity of 450 kW are estimated to produce 1,500 MWh annually. It is assumed that the plants 
can produce a certain share of a farm’s heat demand, depending on the installed capacity 
and the heat demand at the farm; the latter and the number of full-load hours of the tur-
bines being estimates. 
 
There is no data available on which farms the micro plants belong to. Instead it was as-
sumed to be a safe estimate that a hydropower plant belongs to a farm if it is located on 
that farm’s property. This analysis was carried out with selection by location and a spatial 
joint.  
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8 Results 
 
The results presented in this chapter are preliminary and subject of further discussion be-
tween the project partners. It should be stressed once again that the results of this report 
are not so much the numbers of amounts and costs, but the model framework and struc-
ture as well as the implementation of the model. Results can in most cases easily be re-
calculated in case conditions and variables change.  
 

8.1 Available wood fuel resources 2005 - 2030 
Wood fuel resources are a function of the areas planted with Larch, the stand age and its 
productivity, and the thinning scenario and technologies chosen. Wood resources from 
thinning operations have been calculated for Hallormstadur and Heradsskogar separately 
for the years 2005 to 2030.  
 
Figure 7 shows the total amounts of wood resources in solid m3 for the two forests and 
for thinning scenario 1. It can be seen that the annually recoverable potentials highly de-
pend on the areas planted 17 years earlier. The resources from the first thinning become 
exploited at around the year 2020, because future plantation in Heradsskogar has not been 
included in the model yet. A second thinning period commences in the year 2025, yield-
ing volumes a magnitude higher than during the first thinning. This is because the spe-
cific yield is higher and because the afforested areas of Heradsskogar accumulate to con-
siderable amounts. What also can be seen from the diagram is that Hallormsstadur must 
rely on the delivery of wood chips from surrounding forests if the annual consumption is 
higher than 200-300 solid m3 a year in the first 10 years.  
 
Finally, the figure also indicates that if thinning procedures could be moved 2-3 year in 
either direction, the resources available could be controlled in a way that would allow for 
more efficient utilisation of resources. This will be discussed later in detail. 
 
 
 



 32

0

5.000

10.000

15.000

20.000

25.000

30.000

2005 2010 2015 2020 2025 2030

[year]

[m
3  s

ol
id

] Heradsskogar
Hallormsstadur

 
Figure 7: Annual potential for wood resources from thinning operations. The first thinning after 17 
years ends at around 2020, followed by a few years without scheduled thinnings and a second period 
of thinnings, which would create much higher amounts than earlier. 
 
For the assessment of the cost structure it is also important to analyse where the resources 
come from. In a later version of the model, a function will be added to allow drawing the 
boundaries of the “cost sheds” around a consumer location. In this version, however, the 
number of cells from which wood chips are available has been calculated year by year. 
This gives an idea on how distributed resources are, and on how many individual data 
points the statistics are based. 
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Figure 8: Number of cells producing thinning resources, year by year. The number of cells is a indi-
cator for supply diversity as well as statistical significance. 
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Figure 8 shows the number of cells that can possibly supply wood to the demand loca-
tion. Resource distribution is an indicator for supply diversity. A diverse supply is practi-
cally more stable, because a single failing supply unit means less need to find alternative 
supply. Likewise, a in a market situation it strengthens the position of the buyer to have 
many sellers to choose from.  It can be seen that the supply diversity has to do with the 
number of cells that are mature in a given year.  
 
The figure could also be produced for Hallormsstadur and Heradsskogar, separately. For 
Hallormsstadur the curve will be the approximate number of stands (of 1 ha size) to be 
thinned in that year. This would be valuable information for the forester. For Heradssko-
gar on the other hand, it means the number of farms being able to supply wood chips in a 
given year because Heradsskogar and Austurlandsskogar farms are treated as single cells. 
For the energy plant operator at Hallormsstadur it would be valuable to know how many 
possible suppliers there were in a given year, to assess supply safety and negotiate prices.  
 

8.2 Cost-supply analysis for a planned energy plant located at 
Hallormsstadur 
The costs of supplying a given location with a varying amount of wood fuel resources 
depends on the amounts of thinning residues and their location for the entire period. Cost 
supply curves have been produced for the years 2005 to 2021, see Figure 9.  
 
The figure is complex and needs some explanation because so many data are included. 
First of all, the tendency of increasing costs with increasing demand at the Hallorm-
sstadur location is clear. With every m3 that has to be brought in from further away, the 
costs increase with the distance. Also, there is a clear indication for a minimum cost, 
caused by the terminal time needed independent of the transport distance. The costs for a 
given amount of resources vary significantly year by year. The reason is that forest stands 
ready to be thinned are located in different areas every year. It follows that the variation 
of costs is induced by the pattern of afforestation.  
 
The diagram also gives a clear hint on the additional costs for transporting resources from 
Heradsskogar, as some of the curves show a bend. This bend is located where the Hal-
lormsstadur resources become exhausted and additional resources have to be hauled from 
further away.  
 
As this analysis has only been carried out for one location yet, most of the cost curves 
have the same shape because the location of the demand is the same.  
 
The costs for a consumption of wood fuels in the order of 500 to 2,000 m3 solid per year 
vary by a factor 2, from about 4,000 to 8,000 ISK/m3 solid. Most cost curves seem to fol-
low the same pattern of some logarithmic increase, where the cost increase most for the 
small amounts, while flattening out the higher the amounts grow. Some curves are very 
flat with only little increase for amounts over 1,000 – 1,500 m3. The curves for those 
years where only few resources are available do not look very “nice” because they have 
been based on very few data points only.  
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Figure 9: Cost-supply curves for the Hallormsstadur location and for wood resources from Hallorm-
sstadur and Heradsskogar forests. There is a clear tendency of increased costs for increasing 
amounts. A few years are outliers because of few available resources. A bend in the curves indicates 
the increase of costs when resources have to be imported from Heradsskogar.  
 
From the cost supply curves another form of diagram can be produced, where the mar-
ginal costs for supplying a given amount is shown year by year. This has been done for 
the period between 2008 and 2021, where supply was available and costs were represen-
tative (no outliers). Figure 10 shows the marginal costs of supply for 500, 1 000 and 2 
000 m3 solid annually for the Hallormsstadur location. As already shown with the cost-
supply curves, the specific fuel supply costs increase with the annual demand. What can 
be seen from this figure, however, is that a smaller demand also means a greater variation 
of costs from year to year.  
 
 
 
2008 - 2018 500 m3 1,000 m3 2,000 m3 
Average costs, [ISK/m3 solid]   
Standard deviation   

Table 2: Average costs and the standard deviation of costs for the period 2008 to 2018 for 500, 1 000 
and 2 000 m3 wood resources delivered to Hallormsstadur forest station. The average costs as well as 
their variation grow with increasing demand.  
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Figure 10: Marginal costs for supplying 500, 1 000 and 2 000 m3 annually to Hallormsstadur forest 
station. The higher the demand, the higher the costs, as also can be concluded from the cost-supply 
curves. When it comes to the influence of resource availability year by year, a smaller demand means 
a relatively higher sensitivity to costs. 
 
All in all, the level of the costs calculated with this version of the model has to be 
checked against real conditions. A few model adjustments are required. So far, travel dis-
tance only counts as single distance. The distance travelled is actually twice the lead dis-
tance between forest and location of demand. Secondly, the estimated terminal time 
needed to load and unload is rather low at 15 minutes for the forwarding process. The 
fixed costs of road transport, also including terminal time, have been set to zero in this 
version to have a clearer image of the influence of the distance factor. Finally, wood 
chipping and storage costs are not included in this model because data were missing. As 
these factors are location-independent, however, they could just be added as a factor of 
volumes.  
 

8.3 Sensitivity analysis 
A sensitivity analysis on various factors is going to be carried out in the final phase of the 
feasibility study, when the model results are agreed upon in the project group. 
 

8.4 Applicability of the model 
This chapter summarises the experiences made with the use of the model. Special atten-
tion is going to be on the use by other project partners. 
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9 Perspectives and recommendations for further devel-
opment 
 

9.1 Recommendations on data improvement 
Many data used for the project have major insufficiencies and errors. Of course these can 
not be taken care of at once and without careful planning. There are however a few data 
sets that could be improved with no big effort.  
 

Hallormsstadur forest maps 
Despite being the best available forest maps for the area, there seem to be a few things, 
which could be improved to achieve better results. First of all it should be considered to 
update the data for the stands containing Larch. Some of them lack data about the age; an 
estimated age would be much better than no data at all. Also the map could contain un-
mapped Larch stands, which also could be added without much effort.  
 
An improved thinning residue model could be achieved with specific site index or growth 
curves. This would require the registration of the breast height diameter for the stands. 
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10 Conclusions 
A forest to energy cost chain model was developed in a geographical fashion with spa-
tially explicit locations of forests, conversion plants as well as energy demand. Forest 
production was modelled geographically using existing forest growth functions and avail-
able stand information. Distances between these locations across the available transport 
infrastructure, as well as the incremental costs were modelled using continuous cost sur-
faces. A combination of resources and costs results in spatial supply curves valid for a 
specific location.  
 
The preliminary nature of forest resource estimation, forest growth modelling, and the 
assessment of costs associated to thinning, felling, in forest and road transport, chipping 
and other processes such as storage in Iceland make the development and application of 
spatial cost-chain model an uncertain business. The final findings and results of this study 
should be used to point out the necessity of the collection of better input data, as well as 
the high risk associated to enterprises of this kind.  
 
The study was terminated because the flow of information between those project partners 
involved with the collection of actually experienced costs and wood resources turned out 
to be inefficient. There are therefore no further conclusions to make. 
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Appendix 1: GRASP model operation 
 

Copyright information 
The GRASP (Geographical Resource Assessment, Supply and Processes) model and its 
version for Iceland are copyright protected and the intellectual property of the author 
Bernd Möller (berndm@plan.aau.dk). The model must not be used outside the Northern 
WoodHeat project without asking the author for permission. Without the consent of the 
author the GRASP model, including the ArcGIS Toolbox and the model data, must not be 
given to people who are not affiliated with institutions that participate in the Northern 
WoodHeat project. The GRASP model, its methodology, design or results may not be 
published without consent from the author, who shall give proper scientific reference to 
published work and who may request co-authorship in scientific articles. The author has 
no responsibility for the results produced with the model and is not liable for errors in the 
model code, the input data, or other sources. The author is, however, thankful for report-
ing errors and suggesting improvements. 
 

Introduction 
The GRASP model is implemented using ArcGIS Model Builder. All models are hard-
wired to Shape themes and Grids on certain hard disk locations in a folder on the c:-drive 
called NWH-GIS. If data are deleted or moved the models may stop to function. The 
model code is written in a Toolbox called GRASP Ice 1.x, which includes all models re-
quired to carry out the calculations mentioned in this report. The models can be edited as 
they are open-source, uncompiled scripts. Utmost care must be taken if the models shall 
be run from edit mode. Inexperienced users should run the models by double-clicking the 
model icons. In case alterations shall be made, it is highly recommended to copy and re-
name the Toolbox file.  

Requirements 
The run the models, ArcGIS version 9.0 with service pack 3 and Spatial Analyst is re-
quired. The models run on a pc with a Pentium III, 600 MHz processor and 320 MByte 
RAM, but a faster computer will speed up the computations considerably. The model 
needs up to 1 GByte space on the hard disk.  
 
 

Running the model 
The models need to be run in a certain order. Some of the more basic submodels produce 
data that are used in succeeding models…. 
 
 


