

Aalborg Universitet

A game-theoretic approach to real-time system testing

David, Alexandre; Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

Published in:
Design, Automation and Test in Europe

DOI (link to publication from Publisher):
10.1145/1403375.1403491

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
David, A., Larsen, K. G., Li, S., & Nielsen, B. (2008). A game-theoretic approach to real-time system testing.
Design, Automation and Test in Europe, 443-448. DOI: 10.1145/1403375.1403491

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

http://dx.doi.org/10.1145/1403375.1403491
http://vbn.aau.dk/en/publications/a-gametheoretic-approach-to-realtime-system-testing(8a1693f0-a26e-11dc-8188-000ea68e967b).html

A Game-Theoretic Approach to Real-Time System Testing

Alexandre David, Kim G. Larsen, Shuhao Li, Brian Nielsen
Center for Embedded Software Systems (CISS)

Aalborg University
DK-9220 Aalborg, Denmark

{adavid, kgl, li, bnielsen}@cs.aau.dk

Abstract

This paper presents a game-theoretic approach to the
testing of uncontrollable real-time systems. By modelling
the systems with Timed I/O Game Automata and specifying
the test purposes as Timed CTL formulas, we employ a re-
cently developed timed game solver UPPAAL-TIGA to syn-
thesize winning strategies, and then use these strategies to
conduct black-box conformance testing of the systems. The
testing process is proved to be sound and complete with re-
spect to the given test purposes. Case study and preliminary
experimental results indicate that this is a viable approach
to uncontrollable timed system testing.

1. Introduction

Model-based conformance testing of real-time systems
has attracted increasing research interests in recent years.
A large proportion of these work employ Timed Automata
(TA) or its variants to model the systems. Among them
some make the assumptions that the system TA model is
output-urgent and has isolated outputs [14][7]. “Output-
urgent” means that if the system can produce an output, then
it should produce the output immediately. “Isolated output”
means that at any moment in time if the system can produce
an output, then it cannot accept inputs and cannot produce
a different output. These assumptions on TA contribute to
the testability property [14]. However, in many cases they
are unnecessarily strong.

In this paper we aim to cancel these two assumptions and
present a test method for uncontrollable real-time systems,
i.e., systems with uncontrollable outputs and timing uncer-
tainty of outputs. By “uncontrollable outputs” we mean that
it is the system under test rather than the tester that deter-
mines whether or which one of the several possible outputs
will occur. By “timing uncertainty of outputs” we mean
that the system under test can produce an output during a
certain time interval rather than only at a fixed time point.

The benefits of allowing uncontrollable outputs and timing
uncertainty of outputs in the system models include:

• It allows the implementors some freedom;
• The tester is usually concerned only with the high-level

requirements rather than the implementation details;
• Modelling with uncontrollable outputs and timing un-

certainty of outputs is more succinct and natural.

Systems with uncontrollable outputs and timing uncer-
tainty of outputs may be modelled by Timed Game Au-
tomata (TGA), which is a variant of TA with their actions
partitioned into controllable ones and uncontrollable ones.
A play of the timed game between the plant (modelling the
system) and the controller (modelling the environment) is a
run of the TGA towards a specified test purpose, say, “loca-
tion IUT.Bright can always be eventually reached”. We
have already implemented a timed game solver UPPAAL-
TIGA, which can check whether a specified Timed CTL test
purpose can be satisfied by a TGA, and if so, it can syn-
thesize a winning strategy. Since a winning strategy is a
step-by-step guidance towards the goal states which satisfy
the test purpose, it can be viewed as a test case. This opens
up the possibility of game-based testing of uncontrollable
real-time systems.

Related work. There are much work on model-based
black-box conformance testing of real-time systems based
on TA or Timed Transition Systems [14][7][11][4] [9][8].
For the sake of testability, some of them assume that the TA
are controllable in the sense that it should be possible for an
environment to drive a TA through all of its transitions [14].
This in turn requires that the TA have output-urgency and
isolated outputs. In this paper, both of these two require-
ments are cancelled.

Testing as a game problem for untimed systems has been
discussed in [15]. Dense-time control problem based on
timed game automaton has been investigated and solved in
[13]. As part of the UPPAAL toolbox, UPPAAL-TIGA can
synthesize winning strategies for TGA models and user-
specified test purposes using a real on-the-fly algorithm

[5][12]. Thanks to a complete re-implementation of the
first prototype [5], there has been a dramatic performance
improvement over the past two years [2][3]. This makes it
possible for controller synthesis for non-trivial timed sys-
tems.

2. Test Setup

2.1. The timed control problem

In a timed control problem, the control program (or
“controller”) actively offers inputs to and passively observes
outputs from the plant at appropriate time (or time periods),
as shown in Fig. 1. For a given control objective we can
possibly synthesize a control strategy, guided by which the
control program ensures that the plant will be operating in
a desired manner and thus fulfilling the control objective.

Plant Control Progran

Strategy

output

input

guidanc e

Figure 1. The timed control problem.

2.2. Timed I/ O Game Automaton

Let X be a finite set of real-valued clocks, then C(X) is
the set of constraints generated by the grammar:

ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ

where k ∈ Z, x, y ∈ X and ∼ ∈ {<,≤,=,≥, >}.

Definition 1 (Timed Automaton [1]). A timed automaton
(TA) is a tuple S = (L, l0, Act,X,E, Inv) where L is a
finite set of locations, l0 ∈ L is the initial location, Act is
the set of actions, X is a finite set of real-valued clocks,
E ⊆ L×C(X)×Act×2X ×L is a finite set of transitions,
Inv : L → C(X) associates to each location its invariant.

To characterize the uncontrollability of some actions, we
adopt the notion of Timed Game Automaton [13].

Definition 2 (Timed Game Automaton). A timed game
automaton (TGA) is a timed automaton with its set of ac-
tions Act partitioned into controllable ones (Actc) and un-
controllable ones (Actu).

In this paper we further refine the above definition by
assuming all output actions Actout to be uncontrollable and
all input actions Actin to be controllable.

Definition 3 (Timed I/O Game Automaton). A timed I/O
game automaton (TIOGA) is a timed game automaton with
its set of actions Act partitioned into input actions Actin

and output actions Actout such that Actin = Actc and
Actout = Actu.

In a plant TIOGA, the controllable actions model the in-
puts from the controller (or the tester in the testing architec-
ture) to the plant, and the uncontrollable actions model the
outputs from the plant to the controller. A run of the plant
involves a sequence of controller-chosen stimuli and plant-
produced reactions. Therefore it can be viewed as a timed
I/O game where the controller acts as a player and the plant
acts as the opponent. Since sometimes the opponent may
choose not to produce any output by just staying quiescent,
the game is not a strictly alternating sequence of inputs and
outputs.

touch? bright!

dim!

dim!

off! touch?

touch?touch?

touch?

dim!
touch?

touch?

touch?

touch?

bright!off! touch? touch?

dim!
touch?Off Dim Bright

Tp<=2

Tp<=2Tp<=2

Tp<=2

L2 L3

L6

L5

L1 L4x=0,
Tp=0

x<Tidle

x=0,
Tp=0

x>=Tsw x<Tsw

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

Tp<=2x>=Tidle

x>=Tidle

x<Tidle

Tidle = 20
Tsw = 4

Tp<=2

Figure 2. TIOGA of the light.

dim?

bright?

touch!

off? touch!

Init

Work

z=0

z=0

Treact = 1

z>=Treact

Figure 3. TA of the user.

This paper uses the simple Smart Light problem [7] as
a running example. Fig. 2 is a TIOGA of the light (the
“plant”), where solid lines represent transitions of control-
lable actions and dotted lines represent transitions of uncon-
trollable actions. Fig. 3 is the TA of the user or the “envi-
ronment” of the light (the “controller”). The user interacts
with the light by touching a touch-sensitive pad. In Fig. 2,
there are three brightness levels for the light: Off, Dim and
Bright. The light is initially in location Off. Assume
that our goal is to reach location Bright. If the light has
been in location Off for a long time (“x ≥ Tidle” in Fig.
2), then it is supposed to reactivate upon a touch? and go to
location L5, and then either to produce output bright! and
go directly to location Bright in 2 time units, or to pro-

duce output dim! and go to location Dim in 2 time units,
or even not to produce any output and remain in L5 dur-
ing that period. The user does not know whether or which
output will be produced. This is the so-called output uncon-
trollability. If an output is ever produced, the user cannot
anticipate the exact time of the output. This is the so-called
timing uncertainty of outputs.

We use Timed I/O Transition System (TIOTS) as the
underlying semantic model of TIOGA and TA.

Definition 4 (Timed I/O Transition System). A
timed I/O transition system (TIOTS) is a tuple
(S, s0, Actin, Actout,→), where S is a set of states, s0 ∈ S
is the initial state, and →∈ S×(Actin∪Actout∪R≥0)×S
is a transition relation satisfying the following sanity
constraints:
• time determinism: (s d−→ s′)∧(s d−→ s′′)⇒(s′=s′′),
• time additivity: (s d1−→ s′)∧(s′ d2−→ s′′)⇒(sd1+d2−→ s′′),

where R≥0 is the set of non-negative real numbers,
s, s′, s′′ ∈ S, and d, d1, d2 ∈ R≥0.

Let s ∈ S and α ∈ (Act ∪ R≥0). We write s
α−→ if

∃s′ ∈ S.s
α−→ s′. Here α can be extended to strings of

observable actions and time delays as usual.
We define the following characteristics of TIOTS:
• A TIOTS has isolated output if ∀s ∈ S.∀α ∈

Actout.∀β ∈ Act.(((s α−→) ∧ (s
β−→)) ⇒ (α = β)),

• A TIOTS is output-urgent if ∀s ∈ S.∀α ∈
Actout.((s

α−→) ⇒ ∀d ∈ R>0.(s�
�d−→)).

The semantics of a TA or a TIOGA
(L, l0, Act,X,E, Inv) is defined as a TIOTS
(S, s0, Actin, Actout,→), where S ⊆ L ×RX is the set of
semantic states of location and clock vector, s0 = (l0, 0) is
the initial state, and →⊆ S × (Actin ∪Actout ∪R≥0)× S
satisfies the sanity constraints and consists of the following
transitions:

• time transition: (l, u) d−→ (l, u + d) if ∀d′ ∈
[0, d].((u + d′) |= Inv(l)),

• action transition: (l, u) a−→ (l′, u′) if ∃e =
(l, a, g, r, l′) ∈ E.((u |= g)∧(u′ = [r → 0]u)∧(u′ |=
Inv(l′))).

A run of the TIOGA is characterized by a timed trace.
An observable timed trace σ ∈ (Act∪R≥0)∗ is of the form
σ = d1a1d2a2 . . . akdk+1. We define the set of observable
timed traces of state s as:

TTr(s) = {σ ∈ (Act ∪R≥0)∗|s σ−→}.
For a state s and a timed trace σ, (s After σ) is the set of

states that can be reached after σ:
s After σ = {s′|s σ−→ s′}.

The set of (immediately) observable outputs or delays at
state s is defined as:

Out(s) = {a ∈ (Actout ∪R≥0)|s a−→}.
The definitions of After and Out can both be extended to

sets of states as usual.
A run of a TIOGA (L, l0, Act,X,E, Inv) is a timed

trace (i.e., a sequence of alternating time and action tran-
sitions) in its TIOTS (S, s0, Actin, Actout,→). We use
Runs(s,S) to denote the set of all runs of S that start from
state s ∈ S. If σ is a finite run, we use last(σ) to denote the
last state of σ.

In this paper, we only impose the following restrictions
on the model of the plant:

• determinism,
• strong input-enabledness.

In particular we do NOT require the plant model to be
output-urgent (thus allowing timing uncertainty of outputs)
or to have isolated outputs (thus allowing uncontrollable
outputs).

A TIOGA which has uncontrollable outputs and timing
uncertainty is called an uncontrollable TIOGA. Likewise,
its corresponding TIOTS is called an uncontrollable TIOTS.

Moreover, we can define the parallel composition of sev-
eral TIOTS’s in the usual manner.

2.3. Timed I/ O conformance relation

To decide whether the behavior of the implementation
under test (IMP) conforms to that of the system specifica-
tion (SPEC), we use the Timed Input/Output Conformance
relation.

Definition 5 (Timed Input/Output Conformance rela-
tion, tioco [9]). Let i, s ∈ S be two states of a TIOTS.
The timed input/output conformance relation tioco between
i and s is defined as:

i tioco s iff ∀σ ∈ TTr(s).(Out(i After σ) ⊆
Out(s After σ)).

Assume that the behavior of the IMP can be modelled by
a TIOTS I. Assumed the initial state of I is i0, and the
initial semantic state of the specification TIOGA S is s0. If
i0 tioco s0, we say that I is a correct implementation of S,
denoted I tioco TIOTS(S).

Let S be input-enabled with states i, s ∈ S. The rela-
tion tioco can also be characterized in terms of timed trace
inclusion as: i tioco s iff TTr(i) ⊆ TTr(s).

We can also use the environment-relativized timed in-
put/output conformance relation rtioco [11].

2.4. Test purpose

This paper aims to conduct targeted rather than compre-
hensive testing of whether an IMP conforms to a SPEC.

This means that we should have in mind a test purpose. In
this paper, we use annotated Timed CTL formulas to spec-
ify test purposes, e.g., control: A 〈〉 IUT.Bright,
where control means it is a test purpose for a game
problem. The formula says that according to the SPEC
model, whatever uncontrollable outputs the system may
produce, we can always choose to offer inputs or to delay
such that the system is guaranteed to reach the goal location
IUT.Bright.

2.5. Test hypotheses

For the purpose of proving the soundness and complete-
ness properties of our test method, we assume that the sys-
tem implementation IMP can be modelled by a TIOTS and
it has the same sets of input actions Actin and output actions
Actout as the SPEC. Furthermore, the IMP is assumed to be
deterministic and controllable, i.e., it has the characteristics
of isolated outputs and output urgency. This is reasonable
since IMP is usually more deterministic than SPEC.

3. Testing with winning strategies

3.1. The testing framework

The framework of testing with winning strategies is il-
lustrated in Fig. 4. The inputs to UPPAAL-TIGA are the
TIOGA model of the plant, the TA model of its environ-
ment, and the test purpose in a formula of an extended sub-
set of the TCTL logic. The output from UPPAAL-TIGA
is a winning strategy. With the SPEC models, the winning
strategy and the black-box implementation IMP we can do
conformance testing and produce a verdict of pass or fail.

winning strategy :
next move guidance

strategy
generation :
by UPPAAL-

TIGA
test verdict

test
generation

and
execution

IMP

SPEC :
TIOGA

test purpose :
TCTL formula

Figure 4. Testing with winning strategies.

3.2. Generating winning strategy

The key idea of our test method is to use a winning strat-
egy as a test case. A reachability control problem is that
given a TIOGA S = (L, l0, Act,X,E, Inv) and a set of
goal states K ⊆ L × RX of its corresponding TIOTS, we
should find a winning strategy f such that S supervised by
f can reach some states in K. Obviously, the test purpose
ϕ determines K, and it is used to synthesize f .

We view the reachability control problem (S,K) as a
game problem. A finite or infinite run of S σ = s0

α0−→
s1

α1−→ . . .
αn−→ sn+1 is winning if ∃k ≥ 0.(sk ∈ K).

The set of all winning runs in S starting from state s is de-
noted by WinRuns(s,S,K). Winning runs in the underly-
ing TIOTS are defined similarly.

A strategy f is a function that during the course of the
timed game constantly gives information as to what the
player should do in order to win the game [13]. At a given
state of the run, the player can be guided either to do a
particular controllable action (i.e., to offer an input to the
plant), or to do nothing at this point in time and just wait
(denoted by “ λ ”).

Definition 6 (State-Based Strategy). Let
S = (L, l0, Act,X,E, Inv) be a TIOGA, and let
(S, s0, Actin, Actout,→) be the TIOTS of S. A state-
based strategy f over S is a partial function from S to
Actc ∪ {λ}.

Definition 7 (Supervised Run). Let S =
(L, l0, Act,X,E, Inv) be a TIOGA and f a state-
based strategy over S. Let s be a state in the TIOTS
of S. The f -supervised runs of S from s is a subset
SupRuns(s, f) ⊆ Runs(s,S) defined inductively as:

• s ∈ SupRuns(s, f),
• σ′ = (σ e−→ s′) ∈ SupRuns(s, f) if σ ∈

SupRuns(s, f), σ′ ∈ Runs(s,S) and one of the fol-
lowing three conditions holds:

– e ∈ Actu,
– e ∈ Actc and e = f(last(σ)),
– e ∈ R≥0 and ∀e′ ∈ [0, e).∃s′′ ∈

S.((last(σ) e′
−→ s′′) ∧ (f(s′′) = λ)),

• σ ∈ SupRuns(s, f) if σ is an infinite run whose finite
prefixes are all included in SupRuns(s, f).

For a reachability game with K ⊆ L × RX , a maximal
run σ is either an infinite run, or a finite run such that either
last(σ) ∈ K, or (last(σ) /∈ K) ∧ ((last(σ) α−→) ⇒ (α =
0)). We denote the set of all maximal runs from state s as
MaxRuns(s).

Let σ = s0
α0−→ s1

α1−→ . . .
αn−→ sn+1

be a run of TIOGA S, and K be a set of goal
states. If σ is a maximal run, then σ is losing if
∀0 ≤ k ≤ min{index(last(σ)),∞}.(sk /∈ K).

Definition 8 (Winning Strategy). Let S =
(L, l0, Act,X,E, Inv) be a TIOGA and f a state-
based strategy over S. Let s be a state in the
TIOTS of S. We say f is winning from state s if
MaxRuns(s) ∩ SupRuns(s, f) ⊆ WinRuns(s,S,K). If
f is winning from s0, then f is called a winning strategy
for S.

A strategy being winning means that if the controller acts
strictly according to what the strategy suggests, then what-
ever responses the plant might make, the behavior of the
plant will satisfy the test purpose.

Fig. 5 shows a state-based winning strategy for the
TIOGA in Fig. 2 and test purpose control: A 〈〉
IUT.Bright. It is automatically generated by UPPAAL-
TIGA.

Note that there may exist more than one winning strat-
egy for the same TIOGA and test purpose. We use
Strategy(S, ϕ) to denote the set of all winning strategies
for TIOGA S and test purpose ϕ.

Figure 5. An example winning strategy.

3.3. Test execution

Definition 9 (Test Execution). Let SPECS be the set of
system specifications, F be the set of winning strategies,
and IMPS be the set of system implementations. A test
execution is defined as a function:

T : SPECS×F×IMPS → {pass, fail}.
The basic idea of test execution is to incrementally build

a test run by constantly consulting the winning strategy and
the SPEC model, as shown in Algorithm 3.1. If an occurred
output is prohibited according to tioco, we report fail, oth-
erwise after reaching a goal state we report pass.

3.4. Soundness and completeness

In conformance testing, the soundness property says that
if there exists a failing test run, then the implementation
does not conform to the specification.

Theorem 10 (Soundness). Let S = (L, l0, Act,X,E, Inv)
be a TIOGA specification with Act = Actin ∪

Algorithm 3.1 TestExec(S, I, K, f)
Input: TIOGA specification S, system implementation I,
set of goal states K, and state-based winning strategy f ;
Output: test verdict pass or fail, and test run σ;
Algorithm:

1: σ := 〈〉; /* the test run is initially an empty trace */
2: while (σ /∈ WinRuns(s0,S,K)) do /*s0: init state*/
3: case f(last(σ)) of
4: “input i”:
5: send i to I;
6: σ := σ ·i;
7: “delay d”:
8: if output o occurs at d′ ≤ d then
9: σ := σ ·d′;

10: if o /∈ Out(s0 After σ) then
11: return(fail);
12: else
13: σ := σ ·o;
14: else
15: σ := σ ·d;
16: endcase
17: endwhile
18: return(pass).

Actout, TIOTS(S) be its corresponding TIOTS, I =
(I, i0, Actin, Actout,→) be a TIOTS implementation, K
be the set of goal states, and f be a winning strat-
egy, then ∃σ ∈ TestExec(S, I,K, f).(σ is failing) ⇒
(I ���tioco TIOTS(S)).

The completeness property says that if an implementa-
tion does not conform to a specification, then there exists a
failing test run. In this paper, because we are conducting
targeted testing with a test purpose, given a test purpose ϕ
that is satisfied by the specification, if the implementation
does not conform to the specification w.r.t. ϕ, we will be
able to find a failing run. Hence the following theorem of
partial completeness.

Theorem 11 (Partial Completeness). Let S =
(L, l0, Act,X,E, Inv) be a TIOGA specification with
Act = Actin ∪ Actout, I = (I, i0, Actin, Actout,→) be
a TIOTS implementation, ϕ be a test purpose such that
S |= ϕ, and Sf the strategy-constrained behavior of S,
then ∃f1 ∈ Strategy(S, ϕ).(I ���tioco Sf1) ⇒ ∃f2 ∈
Strategy(S, ϕ).∃σ ∈ TestExec(S, I,K, f2).(σ is fail-
ing).

Proofs can be found in [6].

4. Case study

We consider a simple Leader Election Protocol (LEP)
[10] (more details in [6]), which is essentially a distributed

Table 1. Strategy generation for LEP protocol.

Time (s) Memory (MB)
n=3 4 5 6 7 8 n=3 4 5 6 7 8

TP1 0.03 0.14 0.7 3.1 11.1 33.5 0.1 4 9 28 85 242
TP2 0.81 2.13 8.4 67.1 452.0 / 11.2 33 88 462 2977 /
TP3 0.89 2.79 25.9 73.2 453.8 / 11.9 40 289 578 3015 /

consensus algorithm with timing constraints. The idea is to
elect the node with the lowest address as the leader by using
message passing.

We model the problem as two parts: one TIOGA for an
arbitrary node as the plant, and two TA for its simulated
chaotic environment including all the other nodes and a
buffer with certain capacity as the controller. The TIOGA
has uncontrollable actions in the sense that in the plant node
a timeout! event can be produced at any point of a time
frame after the node has been waiting for a certain period of
time without receiving any “useful” messages.

We defined the following test purposes:

• TP1: control: A 〈〉 (IUT.betterInfo == 1)
and IUT.forward

• TP2: control: A 〈〉 forall (i: BufferId)
(inUse[i] == 1)

• TP3: control: A 〈〉 forall (i: BufferId)
(inUse[i] == 1) and IUT.idle

All the above three test purposes are checked to be true
using UPPAAL-TIGA. We carried out the strategy gener-
ation experiments on an application server with dual-core
2.4GHz CPU, 4096MB RAM and Suse Linux Enterprise
Desktop. Table 1 presents the performance results for these
test purposes with different protocol parameter settings,
where / means “out of memory”. The time and memory
columns represent the time overheads and the memory con-
sumptions, respectively. Each sub-column corresponds to
one parameter configuration, where n means that there are
n nodes in the protocol, and there is a message buffer of
size n, and the maximum distance between any two nodes
is limited to (n − 1).

As can be seen from Table 1, winning strategy generation
for the LEP protocol with up to 7 nodes takes less than 8
minutes and the memory consumption is not well beyond
out expectation considering the complexity of the problem.

5. Conclusions and future work

We examine the problem of black-box conformance test-
ing of uncontrollable real-time systems using a game-
theoretic approach. We model the systems with timed I/O
game automata and specify the test purposes with TCTL
formulas. With the help of a recently developed timed game

solver, we can do testing based on winning strategies. Ex-
perimental results of the Leader Election Protocol indicate
that this approach is viable and computationally feasible.
This opens up a new possibility for testing TA-modelled
timed systems with timing uncertainty of outputs and un-
controllable outputs, which are previously thought of as
somewhat under-specified.

Future work include: 1) generalizing state-based strat-
egy to history-based strategy; 2) building a fully automated
strategy-based testing environment, of which a big concern
is efficient strategy representation; 3) evaluating strategy-
based test effectiveness in terms of e.g. fault detecting ca-
pability; 4) if there does not exist a winning strategy, we
hope to make a small “retreat” by doing cooperative test-
ing; 5) strategy-based testing with partial observability.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

[2] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G.
Larsen, and D. Lime. Uppaal-tiga: Time for playing games!
In CAV 2007, pages 121–125, 2007.

[3] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G.
Larsen, and D. Lime. UPPAAL TIGA User-manual.
http://www.cs.aau.dk/∼adavid/tiga/, July 2007.

[4] L. B. Briones and E. Brinksma. A test generation framework
for quiescent real-time systems. In FATES 2004, pages 64–
78, 2004.

[5] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Efficient on-the-fly algorithms for the analysis of timed
games. In CONCUR 2005, pages 66–80, 2005.

[6] A. David, K. G. Larsen, S. Li, and B. Nielsen. A game-
theoretic approach to real-time system testing. Technical
report, Aalborg University, to appear.

[7] A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and
A. Skou. Time-optimal realtime test case generation using
uppaal. In FATES 2003, pages 114–130, 2003.

[8] C. Jard and T. Jéron. TGV: theory, principles and algorithms.
STTT, 7(4):297–315, 2005.

[9] M. Krichen and S. Tripakis. Black-box conformance testing
for real-time systems. In SPIN 2004, pages 109–126, 2004.

[10] L. Lamport. Real-time model checking is really simple. In
CHARME 2005, pages 162–175, 2005.

[11] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing
of real-time systems using uppaal. In FATES 2004, pages
123–137, 2004.

[12] X. Liu and S. A. Smolka. Simple linear-time algorithms for
minimal fixed points. In ICALP 1998, pages 53–66, 1998.

[13] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of dis-
crete controllers for timed systems. In STACS 1995, pages
229–242, 1995.

[14] J. Springintveld, F. Vaandrager, and P. R. D’Argenio. Test-
ing timed automata. Theoretical Computer Science, 254(1-
2):225–257, 2001.

[15] M. Yannakakis. Testing, optimizaton, and games. In ICALP
2004, pages 28–45, 2004.

