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Abstract 
 

For improved flexibility and concurrent usage existing 

transaction management models for Web services relax 

the isolation property of Web service-based transactions. 

Correctness of the concurrent execution then has to be 

ensured by commit order-preserving transaction 

schedulers. However, local schedulers of service 

providers typically do take into account neither time 

constraints for committing the whole transaction, nor the 

individual services' constraints when scheduling decisions 

are made. This often leads to an unnecessary blocking of 

transactions by (possibly long-running) others. In this 

paper, we propose a novel nonblocking scheduling 

mechanism that is used prior to the actual service 

invocations. Its aim is to reach an agreement between the 

client and all participating providers on what transaction 

processing times have to be expected, accepted, and 

guaranteed. This enables service consumers to find a set 

of best suited providers fitting their deadlines. Service 

providers on the other hand can benefit from the 

proposed mechanism due to the now possible intelligent 

scheduling of service invocations for best throughput. In 

fact, our experiments show a significant improvement in 

terms of overall throughput, service chain completions 

and resources' utilization.    

 

1. Introduction 
 

Web service-based business processes are generally 

composed of invocations to internal business processes 

outsourced by loosely coupled providers. A key 

requirement for the success of Web service-based 

integration of business applications is to ensure a correct 

and reliable execution of the composed process with 

regards to partners’ transactional requirements. Web 

services technology provides standard interfaces like 

WSDL and XML SOAP messaging for the integration of 

enterprise applications, however, do not fully support 

transactional management yet. Web service providers 

have to control their local resources and ensure their 

consistency and integrity. Web service requests are 

treated by local transaction managers as independent 

transactions and strict ACID properties are enforced by 

special error recovery and concurrency control 

components.  

In contrast to classical database systems, however, a 

Web service-based transaction is generally long-running 

and involves some independent services that might need 

to be synchronized manually. To optimize their 

throughput (and thus their profits) service providers, 

therefore, cannot grant locks on their resources for some 

consumers for long time spans. Hence, strict locking-

based distributed transaction protocols are difficult to 

apply in Web service environment. 

More optimistic transaction models with relaxed 

isolation property have been recently adopted for Web 

service transactions where the intermediate results of 

previous activities are already made visible to the new 

consumers, even if they are not yet committed (‘dirty 

read’). Providers leverage compensation mechanisms to 

recover from any failures or cancellations of executed 

operations (see e.g. [9, 15, 17, 18] and [4, 5]). 

Ensuring the correctness of the execution of concurrent 

transactions under relaxed isolation is left to the local 

transaction managers of the service providers. However, 

conventional scheduling algorithms typically do not take 

into account the timing characteristics of transaction 

execution and individual time constraints are ignored 

when scheduling decisions are made (i.e. which 

transaction is allowed to commit and which transactions 

have to be delayed). This often leads to blocking 

transactions later by earlier transactions that still not 

committed, though they could already be willing to 

commit their individual execution. This has a great impact 

on Web service-based business transactions as those are 

usually combined with time constraints. For example, 

consider a Web service-based process for arranging a 

business trip to attend some meeting on a specific day. 

The time factor in such transactions is very valuable and 

the initiators of these transactions usually have a deadline 

for committing these transactions and might not be 

interested in a successful termination after this deadline.     

In this paper, we propose a nonblocking scheduling 

mechanism for enhancing the transaction management of 

Web services to cope with these limitations. Our approach 

takes into account the deadline constraints of both the 

consumers and the providers of Web services while 

scheduling the execution of a global transaction at every 

participating site. The proposed solution can be applied in 

a fully decentralized fashion for open dynamic 



environments where global transaction manager does not 

exist. In particular, our contributions are the following:  

• Minimizing the number of aborted transactions due to 

missed deadlines (advantage for consumers) 

• Maximizing resource utilization, i.e. the service 

throughput (advantage for providers) 

This paper is structured as follows: Section 2 

describes a motivating scenario and in Section 3 a formal 

description of the problem is introduced and related work 

is reviewed. Section 4 describes and discusses our 

approach for addressing the problem in details. In Section 

5 we describe our implementation and the experimental 

results that show the significant improvement in terms of 

service chain completions, throughput, and resources 

utilization. Section 6 concludes our paper and gives an 

outlook on future work. 

 

2. Motivating Scenario 
 

The following scenario (Figure 1) shows a completion 

dependency between two concurrent business transactions 

that leads to a blocking situation. An airline company 

offers flight tickets to a travel agency, who in turn sells 

them to customers. Assume the agency requests 10 seats 

for a particular flight by invoking the reservation service. 

In the meantime to increase the utilization of its resources, 

the travel agency already makes the tickets available for 

customers instead of safely locking them until a commit is 

issues by the airline. A customer may now already request 

a ticket through this travel agency. Upon receiving the 

request, the scheduler of the local transaction 

management and based on the current status of concurrent 

active transactions decides upon the right scheduling of 

the request such that the consistency of all transactions is 

maintained. In our scenario the 10 tickets may be 

available though not yet committed, which means that the 

customer’s transaction has to be serialized after the 

airline’s transaction, i.e. before the customer’s request can 

be committed the airline has to commit the transaction 

first. The agency thus reserves the ticket for the customer 

on an optimistic base. The customer transaction now 

might also involve some other activities served by other 

providers like reserving a hotel room, registering for a 

conference, thus he/she proceeds in invoking all 

corresponding web services. At the end of the process the 

transaction coordinator tries to commit all activities and 

starts to run a 2PC protocol to insure that really all 

participants are ready to commit. This is important, 

because if some individual activity like the flight booking 

fails, also other activities like the hotel reservation might 

be affected. The coordinator therefore sends a “ready to 

commit” message to Web services all providers including 

the travel agency’s Web service. However, in case the 

offer from the airline company is still not committed, the 

travel agency cannot immediately issue such a message. 

Aborting the transaction at this late stage is too expensive, 

therefore, the customer request has to be delayed until the 

final confirmation from the airplane company is received. 

By preserving the order of completion, consistent 

outcome of concurrent transactions can be achieved. 

However, the amount of time the customer’s commit 

request has to be delayed is unpredictable and strongly 

depends on the dominant transaction(s). This can be seen 

as a live lock, because at the end the whole transaction of 

the client is blocked. Assuming that the customer has a 

deadline for committing the transaction (the date of the 

trip is too close or the deadline for confirming the Hotel 

booking is approaching), the client would not be 

interested in a late successful completion after the 

deadline is missed (see the dashed line in Figure 1).  

The duration of the 2PC protocol (or any consensus-

based commitment protocol) is strongly influenced by the 

underlying concurrency control mechanism, which is 

applied by the transaction managers of the service 

providers. In this paper, we propose an approach for 

intelligently scheduling concurrent transaction requests 

prior the actual execution to minimize the waiting times 

during the execution of the 2PC protocol and thus 

avoiding transaction blocking. 

 

3. Background and Related Work 

 
A web services-based transaction T is a partially ordered 

set of n tasks T = {t1, …, tn}. To execute T, a concrete 

Web service implementation WSi for every abstract 

service ti in T is needed. As a result of relaxing the 

isolation property completion dependencies among 
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transactions in the local schedule of every provider occur 

dynamically. There is a completion dependency between 

two transactions T1 and T2 if WS1 and WS2 invoked by T1 

and T2 respectively, are semantically in conflict, i.e. 

access the same resource held by a common provider and 

at least one of them is influencing the result of the other 

(for example by writing a data item used to compute the 

output of the other one).  
To maintain transactional consistency of concurrent 

executions, local transaction schedulers of service 

providers use special concurrency control mechanisms to 

ensure the serializability of the produced schedules. 

Serializability with ordered termination has been 

identified as the correctness criterion for the applied 

concurrency control mechanism that counts for addressing 

both atomicity and isolation [14]. Local schedules, 

therefore, preserve the order of transactions commitments 

according to the completion dependencies. By Qi we 

denote the ordered list of transactions that have an access 

to the ith resource. The first transaction in Qi is the only 

one that has an exclusive lock on the resource while all 

other post-ordered transactions in the queue have a shared 

lock. Any transaction T that has an exclusive lock is 

allowed to commit immediately, i.e. if provider receives a 

ready-to-commit request from T, it replies immediately 

with a ready message. The commitment of Transactions 

holding shared locks has to be delayed until exclusive 

locks are acquired. 

 

3.1 Waiting Times during 2PC  
 

Adopting the concept of shared locks under relaxed 

isolation by optimistic transaction schedulers allows 

providers to increase the throughput of their Web 

services. However, a main problem that remains is that 

transactions still need to acquire the exclusive locks of all 

accessed resources before being able to commit. And the 

fact that Web service-based transactions are usually long-

running and completion dependencies among transactions 

occur dynamically renders the problem even more 

challenging. The example in Figure 2 shows how the 

required time for acquiring exclusive locks is crucial to 

the length of the 2-phase-commit protocol execution. In 

the first phase the transaction coordinator sends a call for 

commit to all participants and waits until it receives a 

positive (ready) or negative (failed) answer on his request. 

The length of the waiting time (Wc in Figure 2) depends 

on the pre-ordered transactions that have to commit 

before this client can commit. This is the time necessary 

for acquiring an exclusive lock on the requested resource. 

After granting the exclusive lock, providers usually have 

to wait for getting the final decision (commit or 

compensate) from the coordinator in the second phase. 

This waiting time (Wp in Figure 2) can also be long since 

the coordinator cannot start the second phase before it 

receives the answer from all providers (i.e. all exclusive 

locks are acquired). 

 

3.2 Blocking vs. Nonblocking Schedules  
 

Given that business transactions are usually combined 

with time constraints (e.g. customer’s deadline for 

committing the transaction or provider’s deadline for 

releasing the exclusive lock on local resource), long 

waiting times during the execution of a 2PC protocol 

increases the probability of violating these constraints, 

hence, aborting the already successfully executed 

transaction by any partner because of missed deadlines. 

Figure 3 illustrates a transaction with three Web 

services in three different possible schedules based on the 

offered spans for holding exclusive locks by service 

providers. In Figure 3.a we see that the offered spans (i.e. 

time span between lock acquisition L and lock release R) 

do not violate the client’s deadline (Dc) for committing 

the whole transaction. Furthermore, all offered spans are 

overlapping, i.e. locks can be acquired (and released) 

before the earliest provider’s deadline is missed. 

Consequently, such schedule ensures that  time 

constraints of all participants in this transaction are met 

and the transaction is not going to be blocked at commit 

time. In Figures 3.b there is a conflict between the client’s 

deadline and the expected time for acquiring the exclusive 

lock for WS2 (L2), which means that the transaction is 

going to be blocked until the deadline is missed. In Figure 

3.c all offered spans respect the client’s deadline but there 

is a conflict between the deadlines of the providers of 

WS1 and WS3 (L3 > R1), which leads to blocking the 

provider of WS1 until the lock of WS3 is acquired and the 

coordinator is able to commit.  
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Figure 2. Waiting times on both sides during 
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We consider any global schedule that leads to violating 

time constraints of transaction partners (like in Figures 

3.b and 3.c) as a blocking schedule. In the following we 

give a formal definition of blocking and nonblocking 

global schedules (we refer the reader to [24] for formal 

definitions of transaction schedules).  

 

Definition 1: (Global Schedule) 

Let G be a set of global transactions and T
1
, …, T

n
 be 

sets of local subtransactions at provider sites P1, …, 

Pn. Let S1, …, Sn be local schedules such that T
i
 ⊆   Si 

and GI Si ≠ 0 for 1≤  i ≤n. A global schedule is a 

schedule S for G such that its local projection equals 

the local schedule in each provider site, i.e., ∏i(S) = Si 

for all i,  1 ≤  i ≤  n. 

 

Definition 2: (Blocking vs. Nonblocking Schedule) 

Let S be a global schedule, T be a transaction 

composed of m Web services and Dc be the deadline 

for commitment. Let Li be the expected time for 

acquiring the exclusive lock and Ri the deadline for 

releasing the lock according to the projection of S at 

local sites ∏i(S) for all i, 1 ≤  i ≤  m. A global schedule 

S is a nonblocking schedule iff:  Li < Dc ∧  Ri > Lj  for 

all i, j, 1 ≤  i, j ≤  m, and a blocking schedule otherwise. 

 

Our contribution in this paper is proposing a 

scheduling mechanism for long-running global Web 

service transactions, which produces a nonblocking global 

schedule in the sense of the given definitions, i.e. for 

every global transaction T∈G, lock holding spans: 

• do not violate the client’s deadline, and 

• do not mutually conflict 

 

 

3.3 Related Work  
  

Two different open specifications have been 

introduced to handle ACID properties of web service 

transactions: Web service Atomic Transaction [6] for 

short transactions that require strict ACID properties and 

Web service Business Activity [5] for long-running 

flexible transactions that require relaxed atomicity and 

isolation properties. The latter relies on the notion of 

compensations [9, 15, 17, and 18] which are triggered 

whenever a subset of a transaction fails. Compensations 

are introduced either at the client level as part of the 

business process execution [10] or on both, client and 

participant sides [11]. The compensation approach is very 

flexible and reduces especially long waiting times when 

long running transactions are locked and wait for each 

other. On the other hand, if the environment triggers too 

many compensations, cascading compensations may 

result in long and costly replacements of concrete Web 

services, making Web service transactions too long.   

Ensuring a fault-tolerant execution of Web service 

transactions and reliable composition of transactional 

composite Web services has been the focus of recent 

research work (e.g. [8], [12], [16] and [19]). However, 

maintaining consistency of the concurrent transactions is 

neither addressed by these papers nor by the existing 

industrial specifications. Several distributed transaction 

protocols for concurrency control of Web services have 

been recently proposed (e.g.  0,  0, or  0). The proposed 

solutions ensure global consistency by ensuring the 

serializability of local schedules. Serializability with 

ordered termination has been identified as the correctness 

criterion for the applied concurrency control mechanism 

that counts for addressing both atomicity and isolation 

[14]. However, conventional scheduling algorithms 

typically do not take into account the timing deadlines for 

transaction execution of service consumers nor of service 

providers. Consequently, post-ordered transactions in the 

transactions schedule are blocked at commit time (for 

example during the execution of a 2PC protocol) by their 

pre-ordered ones. Given that Web-services-based business 

transactions are usually long-running process, blocked 

transactions which have some deadlines (e.g. the date of 

the business trip) are likely to abort because of the missed 

deadlines. The higher the degree of concurrency in the 

Dc 

Acquisition time(L) Release deadline(R) 

Client’s  deadline 

Figure 3. Different synchronizations of locks acquisition for a transaction with three 

Web services: a) conflict-free, b) conflict with client’s deadline and c) conflict between 

deadlines of WS1 and WS2 
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system, the higher the number of aborted transactions 

because of missed deadlines. The problem becomes even 

worse if the aborted transaction has post-ordered 

transactions in the schedule, which leads to cascading 

aborts.  

In this paper we introduce an enhancement to the 

transaction management for Web services to cope with 

these limitations. The proposed scheduling mechanism 

takes into account the time characteristics of transactions 

to produce a non-blocking global schedule. It can be 

executed in cooperation between transaction coordinators 

and local transaction schedulers of service providers to 

ensure global consistency and correctness of the produced 

schedule. The goal of our approach is similar to the goal 

of the research work introduced in the area of real-time 

databases [e.g. 20, 21 and 22]. However, the introduced 

solutions for real-time databases still tend to solve 

conflicts by aborting or delaying some transactions on the 

favor of other transactions in a priority-based manner. 

Our approach on the other hand avoids such conflicts by 

producing a conflict free schedule that meets all partners’ 

deadlines prior the actual execution to better suit the Web 

service environment. We will also show that our approach 

features improved throughput independently on the level 

of concurrency and execution time of Web services.  

 

4. Nonblocking Transaction Scheduling 
 

 Figure 4 gives an overview of our approach. The Web 

service-based transactional process is composed at design 

time by specifying abstract services and predefined 

deadlines. The scheduling can be then conducted by the 

transaction manager of the client’s application i.e. the 

transaction Coordinator in the terminology of [23]. The 

Coordinator takes the abstract transactional process as 

input and produces as output a concrete execution plan 

(i.e. a concrete service implementation for each abstract 

service) that does not suffer the problem of long waiting 

times (i.e. Wc and Wp). All participants in the produced 

plan agree on a common and acceptable time span for 

holding exclusive locks during the execution the commit 

protocol (e.g. 2PC protocol), hence, the output of this 

scheduling process is always a non-blocking schedule.  

 

4.1 The Transaction Scheduling Algorithm 
 

In the following we sketch the overall algorithm to 

show how the Coordinator can communicate with the 

candidate providers to agree in advance on an acceptable 

timing for the acquisition and release of exclusive locks. 

We assume that service providers advertise information 

about the expected processing time (e.g. average or 

maximum execution time based on statistical information) 

or provide methods to enquire about it and that a 

discovery component exists and is able to find equivalent 

Web service implementations (see e.g. [7]). 

 

Transaction Scheduling Algorithm: 

Input: 

1. T = {t1,t2,…,tn}, a transaction composing n tasks 

2. Dc = client’s deadline for transaction commit 

Start: 

1. Coordinator collects offline information about service 

implementations (e.g. from UDDI) including maximum 

expected execution time E for each task t from T 

 

2. Coordinator  requests online offers from local schedulers of 

service providers, i.e.: 

              L  = expected time for acquiring exclusive lock 

              R  = provider’s deadline for releasing the lock. 
 

3. Providers: based on the position k of T in the local schedule 

Q (refer to Section 3 for the definition of Q), every provider 

prepares its offer as follows: 

          Lk = E + 0        , if  k = 0 

  or     Lk = Rk-1       , otherwise 

                          Rk = Lk+1       , if ∃  Tj ∈  Q,   j > k 
  or    Rk = m               , otherwise  

         where m is a predefined maximum acceptable time span 

for holding an exclusive lock 

 

4. Coordinator constructs an execution plan using   

ProviderSelectionAlgorithm (Section 4.2) 

 

5. Coordinator computes the mutually agreed upon time span 

for holding the exclusive locks as follows: 

• Deadline for acquiring all locks: 

L  = max(Li)       , ∀ ti ∈  T 
• Deadline for releasing all locks: 

                      R = min(Ri)        , ∀ ti ∈  T 
 

6. Coordinator establishes service level agreements with the 

selected providers on the specified values in 5 and starts the 

actual execution of T  

 

Step 3 of the Transaction Scheduling Algorithm, 

(which is conducted by the service providers) shows how 

the service providers construct their offers for a service 

request (i.e. how the values of L and R are computed). 

Service providers use their local transaction schedulers to 

allocate the submitted request in the current schedule. 

They base their offer on the existing agreements with 

active transactions. If there is no pre-ordered transaction 

in the local schedule, the exclusive lock can be granted as 

soon as the service is executed; otherwise, the provider 

offers a shared lock and the estimated time to acquire an 

exclusive one is set to the (agreed) commit time of the 

closest pre-ordered transaction in the queue. The 

provider’s deadline for releasing the lock depends on the 

list of post-ordered transactions. If there is a post-ordered 

transaction in the local schedule, the provider sets the 

deadline to the (agreed) time of granting an exclusive lock 



for  the closest post-ordered transaction, otherwise, the 

provider sets its deadline to some arbitrary value (e.g. the 

maximum accepted holding time). After receiving all 

offers and selecting the candidate providers, the 

Coordinator defines the start and end time of the 2PC 

protocol, i.e. the required time of acquiring all exclusive 

locks and the expected time of releasing them (Step 5) 

and sends this information to the providers. 

 

4.2 Provider Selection 
 

Step 4 of the Transaction Scheduling Algorithm is the 

most challenging part in this algorithm. Given all required 

information from local schedules at the different provider 

sites, the Provider Selection Algorithm is used to 

efficiently find a correct and possibly optimal 

combination of Web service providers such that no timing 

conflicts between their local schedules occur, and hence, 

no transaction blocking is needed.  This is not a trivial 

task, especially when the number of available providers 

for each service is relatively high.  For example, a 

transaction T involving N Web services, with M available 

providers for each service would result in M
N
 possible 

execution plan for T. And given that the scheduling phase 

should be executed prior the actual start of the transaction 

as a short and atomic process, the provider selection 

process is crucial to the performance of the whole 

scheduling mechanism. In this section we provide the 

Provider Selection Algorithm to solve this problem. 

Consider the example shown in Figure 5 to explain the 

given algorithm. A transaction consists of three Web 

services WS1, WS2 and WS3. There are three different 

providers for each service. Figure 5.a shows the collected 

offers (time spans for holding the exclusive locks) from 

all providers after sorting them in an ascending order with 

respect to the expected time of lock acquisition. 

 

Provider Selection Algorithm: 

1. Input: 

2. Dc = client’s deadline for committing transaction T 

3. F ={F1, F2, …, Fn},   a set of collected offers, 

4.  Fi := list of provider offers for task  ti  ∈T,   1< i < n 
5. each offer in Fi  has the form (P, L, R), where  

               P is a reference to the provider, 

               L and R: lock acquisition and release times  

              Fi  is a sorted list in ascending order with respect to L   

6. Start: 

7. do 

8.      /* find Lmax : the time of acquiring the last lock */ 

9.      Let Lmax = Max (x| x= Fv[0](L) ,     1≤  v ≤  n) 

10.      Plan[v] � Fv[0]  
11.      foreach  ti  in T , i ≠ v   do                    
12.             while (Fi[0](L) ≤  Lmax  ∧  Plan[i] isEmpty)  do             

13.                   if  ( Fi[0](R) >  Lmax)  then  Plan[i] � Fi[0] 

14.                  else   Fi = Fi - Fi[0] 

15.             end while 
16.             if  (Plan[i] isEmpty )  then 

17.                   Fv = Fv – Fv[0] 

18.                   Plan = {},  goto 21                                       

19.             end if     

20.      end for 

21.  while (Plan  == {}     Lmax <  Dc) 

22. return Plan 

 

 The algorithm goes in several rounds until an acceptable 

plan is found or the client’s deadline Dc (the red line) is 

reached. In each round the algorithm considers only the 

offers in the top of each order-list of provides’ offers (P1, 

∧
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P4 and P7 in Figure 5.a), and determines the offer with the 

latest time (Lmax) for acquiring the lock among them (the 

green dashed line). The algorithm then cancels all offers 

that: 1) have conflict with the offer of Lmax and 2) lies to 

the left of Lmax on the time line. The algorithm then 

checks if there is at least one provider for each service 

whose offer overlaps with this offer. In the given example 

(Figure 5.a) the first round fails because WS1 has no valid 

offer. The second round then starts (Figure 5.b) by 

determining the new Lmax value and repeating the 

previous steps. In this round the offers P4, P5 and P7 are 

canceled because they conflict with P2 (Lmax) and lie to 

the left of the dashed line (Lmax). The algorithm however 

succeeds in finding a conflict-free offer for each service 

in this round, i.e. P2, P6 and P8 for the services WS1, WS2, 

and WS3 respectively. 

Thus, by ordering the offers of each group of 

providers and eliminating all offers that conflict with Lmax 

in each round, we argue that the proposed algorithm is 

able to find a conflict-free execution plan (if any) as early 

as possible without the need to try all possible 

combinations of service providers.  

 

4.4 Discussion 

 
In the following we discuss the proposed approach 

from different perspectives.  

Blocking prevention vs. resolution: In contrast to the 

proposed solutions in the literature for real-time 

databases, which attempt to solve the blocking problem at 

run-time in a priority-based manner (by either aborting or 

delaying transactions with lower priority), our approach 

aims at avoiding blocking prior the actual execution. This 

is necessary since aborting long-running transactions in 

such a late stage (at commit time) is very expensive and 

might require cascading aborts of other transactions. 

Decentralization: The proposed scheduling 

mechanism does not assume (and does not require) the 

existence of a global transaction manager, since such an 

assumption is unrealistic in the environment of 

autonomous and loosely coupled Web services. The 

proposed mechanism can be deployed in a fully 

decentralized fashion since it does not require the global 

knowledge over all running transactions when the 

scheduling decisions are made. Information about 

potential completion dependencies among concurrent 

transactions is processed and kept locally by the service 

providers. Such information is taken into account when 

scheduling offers are made by the providers, but not 

directly communicated to the transaction coordinators. 

Moreover, our approach preserves the autonomy of 

service providers since it does not influence the locally 

applied scheduling mechanism. Instead, it exploits the 

provided information from the local schedulers to 

intelligently select service providers and construct a 

globally agreed upon schedule that meets all participants’ 

deadlines and timing requirements.  

Correctness issues: Global serializability as a measure 

of the correctness and consistency of concurrent 

execution of transactions can be achieved through local 

guarantees [24]. The correctness of the produced global 

schedule in our approach is ensured by the applied 

concurrency control mechanism of local schedulers [e.g. 

1, 2 and 3] as long as their local schedules belong to the 

COCSR family, i.e. commit-order preserving conflict 

serializable schedules [24]. Our algorithm focuses on 

selecting an acceptable execution plan out of all possible 

and correct plans that meets the time constraints of the 

transaction partners and avoids unnecessary blocking at 

commit time.  

It is important to ensure that the local scheduling offers 

are kept valid during the provider selection process. Thus, 

the scheduling phase has to be executed in a timely 

manner and service providers should not accept any 

further scheduling requests until the end of this phase. We 

propose to execute the scheduling steps in an atomic 

manner, e.g. according to the AtomicTransaction 

specifications [6]. If the Coordinator fails in finding an 

acceptable execution plan or one of the selected providers 

rejects its offer, the whole AtomicTransaction is canceled, 

and providers can accept new scheduling requests. 

Given that the Coordinator successfully completed the 

scheduling phase and all involved parties agreed on an 

acceptable 2PC length, every provider should insure that 

the promised time for granting an exclusive lock is held. 

This means that providers cannot offer exclusive locks on 

the respective resources for new transactions unless such 

locks will be released before the promised time expires.  

Performance issues: The benefits of the proposed 

scheduling and pre-selection of providers do not come 

Figure 5. Example of Provider Selection 

Algorithm 

P
ro

v
id

e
rs

 o
f 

W
S

1
 

Dc 

P1 

P2 

P3 

time 

P4 

P5 

P6 

P7 

P8 

P9 

d 

Lmax 

(a) 

P
ro

v
id

e
rs

 o
f 

W
S

2
 

P
ro

v
id

e
rs

 o
f 

W
S

3
 

Dc 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

d 

Lmax 

(b) 



without extra costs. However, we believe that the extra 

overhead of the pre-processing can be neglected 

compared to the cost of the unnecessary abort of 

transactions at the commit time because of missed 

deadlines. This is especially important, given that the 

compensation of some already successfully executed 

services is sometimes too expensive and often leads to 

cascading aborts of dependent transactions. Moreover, 

collecting the offline information about service 

implementations (e.g. expected execution length) as well 

as the online information (e.g. local schedule offers) can 

be performed as part of the service discovery and the 

negotiation on service level agreements with the selected 

providers. The required computations and processing of 

the collected scheduling offers and selecting service 

providers can then be performed locally at the 

Coordinator’s machine. And given that the execution time 

of the Web service transactions is usually long (hours or 

even days) the required time for pre-processing can be, 

therefore, neglected. 

Implementation issues: We assume in this paper that 

service providers advertise information about the 

expected processing time (e.g. average or maximum 

execution time based on statistical information). This can 

be realized for instance by extending the WSDL 

descriptions of the Web services to include such 

information and publish them in UDDI repositories. To 

support the proposed scheduling mechanism service 

providers need to provide Web services for requesting 

local scheduling offers by the transaction coordinators. 

Figure 6 sketches the proposed architecture and different 

components on both sides. The Execution Schedule and 

Exclusive Locks Schedule are used by the Offers 

Manager component at the service provider side to keep 

track of active agreements and help those making 

appropriate offers such that their local resources 

utilization is maximized. This component also facilitates 

monitoring any violation of established agreements. 

For the scope of this paper we adopt the use of the 

Open Grid Forum’s WS-Agreement Specification [25] for 

specifying and establishing agreements between the 

service coordinator and each service provider, which are 

called Agreement Initiator and Agreement Responders in 

the WS-Agreement terminology, respectively. 

 

5. Implementation and Experimental Results 
 

To evaluate our proposed protocol we implemented a 

prototype and ran several experiments, which we describe 

in this Section. We built our prototype on top of an 

implemented version of the WS-Transaction specification 

[5] with an extension to support concurrency control and 

handle distributed deadlocks as described in our previous 

work [1]. We extended the given architecture by 

implementing the components shown in Figure 6 to 

support the proposed scheduling mechanism.    

For experimental evaluation purposes we simulated the 

environment of concurrently running web service-based 

transactional processes. In each experiment we ran a 

number of concurrent transactions each of them is 

assigned to a coordinator and is executed in a different 

thread. Every transaction is composed of a (randomly set) 

number of tasks; each of them can be accomplished by 

one of several available Web services from different 

providers. Every call to a service starts a new thread, 

which performs some transactional operations 

(read/write) on some local resources (text files) assigned 

to some specific provider.  

To simulate variant execution lengths of the Web 

services, we delay the return of the results by a randomly 

set amount of time and to simulate the time needed by the 

client to process the results (human interaction) we 

introduce a randomly set delay at the client side between 

Discovery 
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Local Scheduler 

Provider 
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Figure 6. The proposed Architecture 

Time Transaction 

T3 

T1 

T5 

t1 

t2 

t3 

Offers Manager 

Offers Manager 

WS-Agreement 

num. of  concurrent transaction 10  to  100 

num. of Web services per transaction 3 to 5 

num. of providers per service 10 

Service execution length  5 to 60 sec 

User interaction length 5 to 60 sec 

Transaction length  30 to 400 sec 

Distribution of transaction  lengths Normal 

Transactions arrival average 1 trans per sec 

Max Client’s deadline for committing 

whole transaction 

60 sec after 

execution 

Max Providers’ deadline for holding 

lock on one resource 
20 sec 

 

Table 1. Simulation setup 



service invocations. All random numbers including 

transactions’ execution length (see Figure 7) follow the 

normal distribution. Table 1 summarizes the different 

parameters of the simulation setup in our experiments. 

We ran all experiments on a machine with a 2GHz 

Genuine Intel CPU, T2500, processor and 2GB RAM 

equipped with Microsoft Windows XP Professional 

Version 2002. The JVM used is J2SE 1.5. 

In the experiments we compared between the 

conventional (blocking) scheduling and our proposed 

nonblocking scheduling mechanism. In the former case 

each task in a transaction is assigned to a random service 

provider and the service is invoked directly according to 

the given workflow. Service providers ensure the 

serializability of their local schedules and preserve the 

commit order of concurrent transactions. In the latter case, 

transaction Coordinator constructs an execution plan and 

pre-selects service providers based on their current offers 

using the proposed algorithms in Section 4. Figure 8 

shows the advantage of the proposed approach from the 

provider’s perspective. The number of processed requests 

per second at each provider was measured. Using the 

nonblocking scheduling has improved the utilization of 

local resources at all provider sites significantly. In Figure 

9 we measured the percentage of successfully completed 

transactions when applying the proposed nonblocking 

scheduling in comparison with the normal scheduling 

without pre-selection of providers. In this experiment, 

transactions that fail to commit before the deadlines are 

not restarted. We ran the experiment in different runs with 

different concurrency levels represented by the varying 

number of concurrent transactions between 10 and 100. 

By increasing the level of concurrency the probability that 

completion dependencies between transactions occur, 

increases and hence the probability that transactions are 

blocked at the commit time increases as well. The results 

of the experiment (Figure 9) show that with nonblocking 

scheduling almost all transactions terminated successfully 

before the deadlines. This is a significant improvement 

from the client’s perspective since the number of aborted 

transactions because of missed deadlines is minimized. 

Figure 10 shows that the overall throughput (i.e. 

number of successfully terminated transactions per second 

in the whole system) using the proposed approach is 

much higher than using the conventional scheduling. With 

blocking scheduling the throughput reaches its peak very 

quickly and starts to decrease while the level of 

concurrency increases. In this experiment, the total time 

between submitting and committing transactions 

including the required time for provider selection process 

was considered.  
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6. Conclusion and Future Work 
 

In this paper we described a nonblocking mechanism 

for scheduling global transactions. The proposed solution 

enhances conventional scheduling algorithms for 

concurrency control to support the time characteristics of 

the transactions in Web service environment. By applying 

the proposed scheduling mechanism unnecessary 

blocking of transaction commitment during the execution 

of a 2PC protocol is avoided, thus saving time and costs 

of later abort or missed deadlines. The proposed approach 

is beneficial for both the service consumer and service 

provider. The experimental results showed a significant 

improvement in terms of number of successfully 

completed transactions within acceptable time frames as 

well as in terms of resources utilization. Our future work 

will focus build a cost-based model for both the client and 

provider that can help them making decisions regarding 

the available offers. We also plan to extend the proposed 

scheduling mechanism especially the Provider Selection 

Algorithm to allow negotiation-based adjustments to 

established agreements at run time if required.  
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