

Aalborg Universitet

Nonblocking Scheduling for Web Service Transactions

Alrifai, Mohammad; Balke, Wolf-Tilo; Dolog, Peter; Nejdl, Wolfgang

Published in:
Proceedings of Fifth European Conference on Web Services (ECOWS'07)

DOI (link to publication from Publisher):
10.1109/ECOWS.2007.16

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Alrifai, M., Balke, W-T., Dolog, P., & Nejdl, W. (2007). Nonblocking Scheduling for Web Service Transactions. In
Proceedings of Fifth European Conference on Web Services (ECOWS'07) (pp. 213). IEEE Computer Society
Press. DOI: 10.1109/ECOWS.2007.16

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60395461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ECOWS.2007.16
http://vbn.aau.dk/en/publications/nonblocking-scheduling-for-web-service-transactions(21795b70-a25a-11dc-8188-000ea68e967b).html

Nonblocking Scheduling for Web Service Transactions

Mohammad Alrifai
1

 Wolf-Tilo Balke
1

Peter Dolog
2

 Wolfgang Nejdl
1

1
L3S Research Center

University of Hannover, Germany

{alrifai, balke, nejdl}@l3s.de

2
Department of Computer Science

Aalborg University, Denmark

dolog@cs.aau.dk

Abstract

For improved flexibility and concurrent usage existing

transaction management models for Web services relax

the isolation property of Web service-based transactions.

Correctness of the concurrent execution then has to be

ensured by commit order-preserving transaction

schedulers. However, local schedulers of service

providers typically do take into account neither time

constraints for committing the whole transaction, nor the

individual services' constraints when scheduling decisions

are made. This often leads to an unnecessary blocking of

transactions by (possibly long-running) others. In this

paper, we propose a novel nonblocking scheduling

mechanism that is used prior to the actual service

invocations. Its aim is to reach an agreement between the

client and all participating providers on what transaction

processing times have to be expected, accepted, and

guaranteed. This enables service consumers to find a set

of best suited providers fitting their deadlines. Service

providers on the other hand can benefit from the

proposed mechanism due to the now possible intelligent

scheduling of service invocations for best throughput. In

fact, our experiments show a significant improvement in

terms of overall throughput, service chain completions

and resources' utilization.

1. Introduction

Web service-based business processes are generally

composed of invocations to internal business processes

outsourced by loosely coupled providers. A key

requirement for the success of Web service-based

integration of business applications is to ensure a correct

and reliable execution of the composed process with

regards to partners’ transactional requirements. Web

services technology provides standard interfaces like

WSDL and XML SOAP messaging for the integration of

enterprise applications, however, do not fully support

transactional management yet. Web service providers

have to control their local resources and ensure their

consistency and integrity. Web service requests are

treated by local transaction managers as independent

transactions and strict ACID properties are enforced by

special error recovery and concurrency control

components.

In contrast to classical database systems, however, a

Web service-based transaction is generally long-running

and involves some independent services that might need

to be synchronized manually. To optimize their

throughput (and thus their profits) service providers,

therefore, cannot grant locks on their resources for some

consumers for long time spans. Hence, strict locking-

based distributed transaction protocols are difficult to

apply in Web service environment.

More optimistic transaction models with relaxed

isolation property have been recently adopted for Web

service transactions where the intermediate results of

previous activities are already made visible to the new

consumers, even if they are not yet committed (‘dirty

read’). Providers leverage compensation mechanisms to

recover from any failures or cancellations of executed

operations (see e.g. [9, 15, 17, 18] and [4, 5]).

Ensuring the correctness of the execution of concurrent

transactions under relaxed isolation is left to the local

transaction managers of the service providers. However,

conventional scheduling algorithms typically do not take

into account the timing characteristics of transaction

execution and individual time constraints are ignored

when scheduling decisions are made (i.e. which

transaction is allowed to commit and which transactions

have to be delayed). This often leads to blocking

transactions later by earlier transactions that still not

committed, though they could already be willing to

commit their individual execution. This has a great impact

on Web service-based business transactions as those are

usually combined with time constraints. For example,

consider a Web service-based process for arranging a

business trip to attend some meeting on a specific day.

The time factor in such transactions is very valuable and

the initiators of these transactions usually have a deadline

for committing these transactions and might not be

interested in a successful termination after this deadline.

In this paper, we propose a nonblocking scheduling

mechanism for enhancing the transaction management of

Web services to cope with these limitations. Our approach

takes into account the deadline constraints of both the

consumers and the providers of Web services while

scheduling the execution of a global transaction at every

participating site. The proposed solution can be applied in

a fully decentralized fashion for open dynamic

environments where global transaction manager does not

exist. In particular, our contributions are the following:

• Minimizing the number of aborted transactions due to

missed deadlines (advantage for consumers)

• Maximizing resource utilization, i.e. the service

throughput (advantage for providers)

This paper is structured as follows: Section 2

describes a motivating scenario and in Section 3 a formal

description of the problem is introduced and related work

is reviewed. Section 4 describes and discusses our

approach for addressing the problem in details. In Section

5 we describe our implementation and the experimental

results that show the significant improvement in terms of

service chain completions, throughput, and resources

utilization. Section 6 concludes our paper and gives an

outlook on future work.

2. Motivating Scenario

The following scenario (Figure 1) shows a completion

dependency between two concurrent business transactions

that leads to a blocking situation. An airline company

offers flight tickets to a travel agency, who in turn sells

them to customers. Assume the agency requests 10 seats

for a particular flight by invoking the reservation service.

In the meantime to increase the utilization of its resources,

the travel agency already makes the tickets available for

customers instead of safely locking them until a commit is

issues by the airline. A customer may now already request

a ticket through this travel agency. Upon receiving the

request, the scheduler of the local transaction

management and based on the current status of concurrent

active transactions decides upon the right scheduling of

the request such that the consistency of all transactions is

maintained. In our scenario the 10 tickets may be

available though not yet committed, which means that the

customer’s transaction has to be serialized after the

airline’s transaction, i.e. before the customer’s request can

be committed the airline has to commit the transaction

first. The agency thus reserves the ticket for the customer

on an optimistic base. The customer transaction now

might also involve some other activities served by other

providers like reserving a hotel room, registering for a

conference, thus he/she proceeds in invoking all

corresponding web services. At the end of the process the

transaction coordinator tries to commit all activities and

starts to run a 2PC protocol to insure that really all

participants are ready to commit. This is important,

because if some individual activity like the flight booking

fails, also other activities like the hotel reservation might

be affected. The coordinator therefore sends a “ready to

commit” message to Web services all providers including

the travel agency’s Web service. However, in case the

offer from the airline company is still not committed, the

travel agency cannot immediately issue such a message.

Aborting the transaction at this late stage is too expensive,

therefore, the customer request has to be delayed until the

final confirmation from the airplane company is received.

By preserving the order of completion, consistent

outcome of concurrent transactions can be achieved.

However, the amount of time the customer’s commit

request has to be delayed is unpredictable and strongly

depends on the dominant transaction(s). This can be seen

as a live lock, because at the end the whole transaction of

the client is blocked. Assuming that the customer has a

deadline for committing the transaction (the date of the

trip is too close or the deadline for confirming the Hotel

booking is approaching), the client would not be

interested in a late successful completion after the

deadline is missed (see the dashed line in Figure 1).

The duration of the 2PC protocol (or any consensus-

based commitment protocol) is strongly influenced by the

underlying concurrency control mechanism, which is

applied by the transaction managers of the service

providers. In this paper, we propose an approach for

intelligently scheduling concurrent transaction requests

prior the actual execution to minimize the waiting times

during the execution of the 2PC protocol and thus

avoiding transaction blocking.

3. Background and Related Work

A web services-based transaction T is a partially ordered

set of n tasks T = {t1, …, tn}. To execute T, a concrete

Web service implementation WSi for every abstract

service ti in T is needed. As a result of relaxing the

isolation property completion dependencies among

Customer
Travel
Agency

reserve a ticket?

 ticket is reserved

ready to commit?

ready

Figure 1. Two inter-dependent business

processes

commit

commited

check other

services

2PC

Airline

Company

Reserve 10 tickets?

10 reserved

ready to commit?

ready

commit

commited

1st Process 2nd Process

Dc

transactions in the local schedule of every provider occur

dynamically. There is a completion dependency between

two transactions T1 and T2 if WS1 and WS2 invoked by T1

and T2 respectively, are semantically in conflict, i.e.

access the same resource held by a common provider and

at least one of them is influencing the result of the other

(for example by writing a data item used to compute the

output of the other one).
To maintain transactional consistency of concurrent

executions, local transaction schedulers of service

providers use special concurrency control mechanisms to

ensure the serializability of the produced schedules.

Serializability with ordered termination has been

identified as the correctness criterion for the applied

concurrency control mechanism that counts for addressing

both atomicity and isolation [14]. Local schedules,

therefore, preserve the order of transactions commitments

according to the completion dependencies. By Qi we

denote the ordered list of transactions that have an access

to the ith resource. The first transaction in Qi is the only

one that has an exclusive lock on the resource while all

other post-ordered transactions in the queue have a shared

lock. Any transaction T that has an exclusive lock is

allowed to commit immediately, i.e. if provider receives a

ready-to-commit request from T, it replies immediately

with a ready message. The commitment of Transactions

holding shared locks has to be delayed until exclusive

locks are acquired.

3.1 Waiting Times during 2PC

Adopting the concept of shared locks under relaxed

isolation by optimistic transaction schedulers allows

providers to increase the throughput of their Web

services. However, a main problem that remains is that

transactions still need to acquire the exclusive locks of all

accessed resources before being able to commit. And the

fact that Web service-based transactions are usually long-

running and completion dependencies among transactions

occur dynamically renders the problem even more

challenging. The example in Figure 2 shows how the

required time for acquiring exclusive locks is crucial to

the length of the 2-phase-commit protocol execution. In

the first phase the transaction coordinator sends a call for

commit to all participants and waits until it receives a

positive (ready) or negative (failed) answer on his request.

The length of the waiting time (Wc in Figure 2) depends

on the pre-ordered transactions that have to commit

before this client can commit. This is the time necessary

for acquiring an exclusive lock on the requested resource.

After granting the exclusive lock, providers usually have

to wait for getting the final decision (commit or

compensate) from the coordinator in the second phase.

This waiting time (Wp in Figure 2) can also be long since

the coordinator cannot start the second phase before it

receives the answer from all providers (i.e. all exclusive

locks are acquired).

3.2 Blocking vs. Nonblocking Schedules

Given that business transactions are usually combined

with time constraints (e.g. customer’s deadline for

committing the transaction or provider’s deadline for

releasing the exclusive lock on local resource), long

waiting times during the execution of a 2PC protocol

increases the probability of violating these constraints,

hence, aborting the already successfully executed

transaction by any partner because of missed deadlines.

Figure 3 illustrates a transaction with three Web

services in three different possible schedules based on the

offered spans for holding exclusive locks by service

providers. In Figure 3.a we see that the offered spans (i.e.

time span between lock acquisition L and lock release R)

do not violate the client’s deadline (Dc) for committing

the whole transaction. Furthermore, all offered spans are

overlapping, i.e. locks can be acquired (and released)

before the earliest provider’s deadline is missed.

Consequently, such schedule ensures that time

constraints of all participants in this transaction are met

and the transaction is not going to be blocked at commit

time. In Figures 3.b there is a conflict between the client’s

deadline and the expected time for acquiring the exclusive

lock for WS2 (L2), which means that the transaction is

going to be blocked until the deadline is missed. In Figure

3.c all offered spans respect the client’s deadline but there

is a conflict between the deadlines of the providers of

WS1 and WS3 (L3 > R1), which leads to blocking the

provider of WS1 until the lock of WS3 is acquired and the

coordinator is able to commit.

Customer Travel Agency

reserve a ticket?

ticket reserved

ready to commit?

ready

Figure 2. Waiting times on both sides during

the execution of the 2PC protocol

2PC

Wc

commit

commited

Wp wait for all

exclusive

locks

wait for pre-ordered

transactions

We consider any global schedule that leads to violating

time constraints of transaction partners (like in Figures

3.b and 3.c) as a blocking schedule. In the following we

give a formal definition of blocking and nonblocking

global schedules (we refer the reader to [24] for formal

definitions of transaction schedules).

Definition 1: (Global Schedule)

Let G be a set of global transactions and T
1
, …, T

n
 be

sets of local subtransactions at provider sites P1, …,

Pn. Let S1, …, Sn be local schedules such that T
i
 ⊆ Si

and GI Si ≠ 0 for 1≤ i ≤n. A global schedule is a

schedule S for G such that its local projection equals

the local schedule in each provider site, i.e., ∏i(S) = Si

for all i, 1 ≤ i ≤ n.

Definition 2: (Blocking vs. Nonblocking Schedule)

Let S be a global schedule, T be a transaction

composed of m Web services and Dc be the deadline

for commitment. Let Li be the expected time for

acquiring the exclusive lock and Ri the deadline for

releasing the lock according to the projection of S at

local sites ∏i(S) for all i, 1 ≤ i ≤ m. A global schedule

S is a nonblocking schedule iff: Li < Dc ∧ Ri > Lj for

all i, j, 1 ≤ i, j ≤ m, and a blocking schedule otherwise.

Our contribution in this paper is proposing a

scheduling mechanism for long-running global Web

service transactions, which produces a nonblocking global

schedule in the sense of the given definitions, i.e. for

every global transaction T∈G, lock holding spans:

• do not violate the client’s deadline, and

• do not mutually conflict

3.3 Related Work

Two different open specifications have been

introduced to handle ACID properties of web service

transactions: Web service Atomic Transaction [6] for

short transactions that require strict ACID properties and

Web service Business Activity [5] for long-running

flexible transactions that require relaxed atomicity and

isolation properties. The latter relies on the notion of

compensations [9, 15, 17, and 18] which are triggered

whenever a subset of a transaction fails. Compensations

are introduced either at the client level as part of the

business process execution [10] or on both, client and

participant sides [11]. The compensation approach is very

flexible and reduces especially long waiting times when

long running transactions are locked and wait for each

other. On the other hand, if the environment triggers too

many compensations, cascading compensations may

result in long and costly replacements of concrete Web

services, making Web service transactions too long.

Ensuring a fault-tolerant execution of Web service

transactions and reliable composition of transactional

composite Web services has been the focus of recent

research work (e.g. [8], [12], [16] and [19]). However,

maintaining consistency of the concurrent transactions is

neither addressed by these papers nor by the existing

industrial specifications. Several distributed transaction

protocols for concurrency control of Web services have

been recently proposed (e.g. 0, 0, or 0). The proposed

solutions ensure global consistency by ensuring the

serializability of local schedules. Serializability with

ordered termination has been identified as the correctness

criterion for the applied concurrency control mechanism

that counts for addressing both atomicity and isolation

[14]. However, conventional scheduling algorithms

typically do not take into account the timing deadlines for

transaction execution of service consumers nor of service

providers. Consequently, post-ordered transactions in the

transactions schedule are blocked at commit time (for

example during the execution of a 2PC protocol) by their

pre-ordered ones. Given that Web-services-based business

transactions are usually long-running process, blocked

transactions which have some deadlines (e.g. the date of

the business trip) are likely to abort because of the missed

deadlines. The higher the degree of concurrency in the

Dc

Acquisition time(L) Release deadline(R)

Client’s deadline

Figure 3. Different synchronizations of locks acquisition for a transaction with three

Web services: a) conflict-free, b) conflict with client’s deadline and c) conflict between

deadlines of WS1 and WS2

(a) (b) (c)

Dc

WS1

WS2

WS3

L3

WS1

WS2

WS3

R1 Dc

WS1

L2

WS2

WS3

time time time

system, the higher the number of aborted transactions

because of missed deadlines. The problem becomes even

worse if the aborted transaction has post-ordered

transactions in the schedule, which leads to cascading

aborts.

In this paper we introduce an enhancement to the

transaction management for Web services to cope with

these limitations. The proposed scheduling mechanism

takes into account the time characteristics of transactions

to produce a non-blocking global schedule. It can be

executed in cooperation between transaction coordinators

and local transaction schedulers of service providers to

ensure global consistency and correctness of the produced

schedule. The goal of our approach is similar to the goal

of the research work introduced in the area of real-time

databases [e.g. 20, 21 and 22]. However, the introduced

solutions for real-time databases still tend to solve

conflicts by aborting or delaying some transactions on the

favor of other transactions in a priority-based manner.

Our approach on the other hand avoids such conflicts by

producing a conflict free schedule that meets all partners’

deadlines prior the actual execution to better suit the Web

service environment. We will also show that our approach

features improved throughput independently on the level

of concurrency and execution time of Web services.

4. Nonblocking Transaction Scheduling

 Figure 4 gives an overview of our approach. The Web

service-based transactional process is composed at design

time by specifying abstract services and predefined

deadlines. The scheduling can be then conducted by the

transaction manager of the client’s application i.e. the

transaction Coordinator in the terminology of [23]. The

Coordinator takes the abstract transactional process as

input and produces as output a concrete execution plan

(i.e. a concrete service implementation for each abstract

service) that does not suffer the problem of long waiting

times (i.e. Wc and Wp). All participants in the produced

plan agree on a common and acceptable time span for

holding exclusive locks during the execution the commit

protocol (e.g. 2PC protocol), hence, the output of this

scheduling process is always a non-blocking schedule.

4.1 The Transaction Scheduling Algorithm

In the following we sketch the overall algorithm to

show how the Coordinator can communicate with the

candidate providers to agree in advance on an acceptable

timing for the acquisition and release of exclusive locks.

We assume that service providers advertise information

about the expected processing time (e.g. average or

maximum execution time based on statistical information)

or provide methods to enquire about it and that a

discovery component exists and is able to find equivalent

Web service implementations (see e.g. [7]).

Transaction Scheduling Algorithm:

Input:

1. T = {t1,t2,…,tn}, a transaction composing n tasks

2. Dc = client’s deadline for transaction commit

Start:

1. Coordinator collects offline information about service

implementations (e.g. from UDDI) including maximum

expected execution time E for each task t from T

2. Coordinator requests online offers from local schedulers of

service providers, i.e.:

 L = expected time for acquiring exclusive lock

 R = provider’s deadline for releasing the lock.

3. Providers: based on the position k of T in the local schedule

Q (refer to Section 3 for the definition of Q), every provider

prepares its offer as follows:

 Lk = E + 0 , if k = 0

 or Lk = Rk-1 , otherwise

 Rk = Lk+1 , if ∃ Tj ∈ Q, j > k
 or Rk = m , otherwise

 where m is a predefined maximum acceptable time span

for holding an exclusive lock

4. Coordinator constructs an execution plan using

ProviderSelectionAlgorithm (Section 4.2)

5. Coordinator computes the mutually agreed upon time span

for holding the exclusive locks as follows:

• Deadline for acquiring all locks:

L = max(Li) , ∀ ti ∈ T
• Deadline for releasing all locks:

 R = min(Ri) , ∀ ti ∈ T

6. Coordinator establishes service level agreements with the

selected providers on the specified values in 5 and starts the

actual execution of T

Step 3 of the Transaction Scheduling Algorithm,

(which is conducted by the service providers) shows how

the service providers construct their offers for a service

request (i.e. how the values of L and R are computed).

Service providers use their local transaction schedulers to

allocate the submitted request in the current schedule.

They base their offer on the existing agreements with

active transactions. If there is no pre-ordered transaction

in the local schedule, the exclusive lock can be granted as

soon as the service is executed; otherwise, the provider

offers a shared lock and the estimated time to acquire an

exclusive one is set to the (agreed) commit time of the

closest pre-ordered transaction in the queue. The

provider’s deadline for releasing the lock depends on the

list of post-ordered transactions. If there is a post-ordered

transaction in the local schedule, the provider sets the

deadline to the (agreed) time of granting an exclusive lock

for the closest post-ordered transaction, otherwise, the

provider sets its deadline to some arbitrary value (e.g. the

maximum accepted holding time). After receiving all

offers and selecting the candidate providers, the

Coordinator defines the start and end time of the 2PC

protocol, i.e. the required time of acquiring all exclusive

locks and the expected time of releasing them (Step 5)

and sends this information to the providers.

4.2 Provider Selection

Step 4 of the Transaction Scheduling Algorithm is the

most challenging part in this algorithm. Given all required

information from local schedules at the different provider

sites, the Provider Selection Algorithm is used to

efficiently find a correct and possibly optimal

combination of Web service providers such that no timing

conflicts between their local schedules occur, and hence,

no transaction blocking is needed. This is not a trivial

task, especially when the number of available providers

for each service is relatively high. For example, a

transaction T involving N Web services, with M available

providers for each service would result in M
N
 possible

execution plan for T. And given that the scheduling phase

should be executed prior the actual start of the transaction

as a short and atomic process, the provider selection

process is crucial to the performance of the whole

scheduling mechanism. In this section we provide the

Provider Selection Algorithm to solve this problem.

Consider the example shown in Figure 5 to explain the

given algorithm. A transaction consists of three Web

services WS1, WS2 and WS3. There are three different

providers for each service. Figure 5.a shows the collected

offers (time spans for holding the exclusive locks) from

all providers after sorting them in an ascending order with

respect to the expected time of lock acquisition.

Provider Selection Algorithm:

1. Input:

2. Dc = client’s deadline for committing transaction T

3. F ={F1, F2, …, Fn}, a set of collected offers,

4. Fi := list of provider offers for task ti ∈T, 1< i < n
5. each offer in Fi has the form (P, L, R), where

 P is a reference to the provider,

 L and R: lock acquisition and release times

 Fi is a sorted list in ascending order with respect to L

6. Start:

7. do

8. /* find Lmax : the time of acquiring the last lock */

9. Let Lmax = Max (x| x= Fv[0](L) , 1≤ v ≤ n)

10. Plan[v] � Fv[0]
11. foreach ti in T , i ≠ v do
12. while (Fi[0](L) ≤ Lmax ∧ Plan[i] isEmpty) do

13. if (Fi[0](R) > Lmax) then Plan[i] � Fi[0]

14. else Fi = Fi - Fi[0]

15. end while
16. if (Plan[i] isEmpty) then

17. Fv = Fv – Fv[0]

18. Plan = {}, goto 21

19. end if

20. end for

21. while (Plan == {} Lmax < Dc)

22. return Plan

 The algorithm goes in several rounds until an acceptable

plan is found or the client’s deadline Dc (the red line) is

reached. In each round the algorithm considers only the

offers in the top of each order-list of provides’ offers (P1,

∧

INPUT

OUTPUT

Abstract Tasks +

Client’s deadline

Figure 4. Overview of the proposed approach

Compose the process

and specify deadlines

Discover services

Contact providers and get

local scheduling offers

Filter offers against consumer deadlines and

Select providers whose local schedulers are

synchronizable

UDDI

Local schedule

Provider1

Local schedule

Provider2

Local schedule

Provider3

Produce execution plan

t1

t2

t3

t4

Coordinator

Acceptable and synchronized

schedule of concrete services
WS1

WS2

WS3

WS4

P4 and P7 in Figure 5.a), and determines the offer with the

latest time (Lmax) for acquiring the lock among them (the

green dashed line). The algorithm then cancels all offers

that: 1) have conflict with the offer of Lmax and 2) lies to

the left of Lmax on the time line. The algorithm then

checks if there is at least one provider for each service

whose offer overlaps with this offer. In the given example

(Figure 5.a) the first round fails because WS1 has no valid

offer. The second round then starts (Figure 5.b) by

determining the new Lmax value and repeating the

previous steps. In this round the offers P4, P5 and P7 are

canceled because they conflict with P2 (Lmax) and lie to

the left of the dashed line (Lmax). The algorithm however

succeeds in finding a conflict-free offer for each service

in this round, i.e. P2, P6 and P8 for the services WS1, WS2,

and WS3 respectively.

Thus, by ordering the offers of each group of

providers and eliminating all offers that conflict with Lmax

in each round, we argue that the proposed algorithm is

able to find a conflict-free execution plan (if any) as early

as possible without the need to try all possible

combinations of service providers.

4.4 Discussion

In the following we discuss the proposed approach

from different perspectives.

Blocking prevention vs. resolution: In contrast to the

proposed solutions in the literature for real-time

databases, which attempt to solve the blocking problem at

run-time in a priority-based manner (by either aborting or

delaying transactions with lower priority), our approach

aims at avoiding blocking prior the actual execution. This

is necessary since aborting long-running transactions in

such a late stage (at commit time) is very expensive and

might require cascading aborts of other transactions.

Decentralization: The proposed scheduling

mechanism does not assume (and does not require) the

existence of a global transaction manager, since such an

assumption is unrealistic in the environment of

autonomous and loosely coupled Web services. The

proposed mechanism can be deployed in a fully

decentralized fashion since it does not require the global

knowledge over all running transactions when the

scheduling decisions are made. Information about

potential completion dependencies among concurrent

transactions is processed and kept locally by the service

providers. Such information is taken into account when

scheduling offers are made by the providers, but not

directly communicated to the transaction coordinators.

Moreover, our approach preserves the autonomy of

service providers since it does not influence the locally

applied scheduling mechanism. Instead, it exploits the

provided information from the local schedulers to

intelligently select service providers and construct a

globally agreed upon schedule that meets all participants’

deadlines and timing requirements.

Correctness issues: Global serializability as a measure

of the correctness and consistency of concurrent

execution of transactions can be achieved through local

guarantees [24]. The correctness of the produced global

schedule in our approach is ensured by the applied

concurrency control mechanism of local schedulers [e.g.

1, 2 and 3] as long as their local schedules belong to the

COCSR family, i.e. commit-order preserving conflict

serializable schedules [24]. Our algorithm focuses on

selecting an acceptable execution plan out of all possible

and correct plans that meets the time constraints of the

transaction partners and avoids unnecessary blocking at

commit time.

It is important to ensure that the local scheduling offers

are kept valid during the provider selection process. Thus,

the scheduling phase has to be executed in a timely

manner and service providers should not accept any

further scheduling requests until the end of this phase. We

propose to execute the scheduling steps in an atomic

manner, e.g. according to the AtomicTransaction

specifications [6]. If the Coordinator fails in finding an

acceptable execution plan or one of the selected providers

rejects its offer, the whole AtomicTransaction is canceled,

and providers can accept new scheduling requests.

Given that the Coordinator successfully completed the

scheduling phase and all involved parties agreed on an

acceptable 2PC length, every provider should insure that

the promised time for granting an exclusive lock is held.

This means that providers cannot offer exclusive locks on

the respective resources for new transactions unless such

locks will be released before the promised time expires.

Performance issues: The benefits of the proposed

scheduling and pre-selection of providers do not come

Figure 5. Example of Provider Selection

Algorithm

P
ro

v
id

e
rs

 o
f

W
S

1

Dc

P1

P2

P3

time

P4

P5

P6

P7

P8

P9

d

Lmax

(a)

P
ro

v
id

e
rs

 o
f

W
S

2

P
ro

v
id

e
rs

 o
f

W
S

3

Dc

P2

P3

P4

P5

P6

P7

P8

P9

d

Lmax

(b)

without extra costs. However, we believe that the extra

overhead of the pre-processing can be neglected

compared to the cost of the unnecessary abort of

transactions at the commit time because of missed

deadlines. This is especially important, given that the

compensation of some already successfully executed

services is sometimes too expensive and often leads to

cascading aborts of dependent transactions. Moreover,

collecting the offline information about service

implementations (e.g. expected execution length) as well

as the online information (e.g. local schedule offers) can

be performed as part of the service discovery and the

negotiation on service level agreements with the selected

providers. The required computations and processing of

the collected scheduling offers and selecting service

providers can then be performed locally at the

Coordinator’s machine. And given that the execution time

of the Web service transactions is usually long (hours or

even days) the required time for pre-processing can be,

therefore, neglected.

Implementation issues: We assume in this paper that

service providers advertise information about the

expected processing time (e.g. average or maximum

execution time based on statistical information). This can

be realized for instance by extending the WSDL

descriptions of the Web services to include such

information and publish them in UDDI repositories. To

support the proposed scheduling mechanism service

providers need to provide Web services for requesting

local scheduling offers by the transaction coordinators.

Figure 6 sketches the proposed architecture and different

components on both sides. The Execution Schedule and

Exclusive Locks Schedule are used by the Offers

Manager component at the service provider side to keep

track of active agreements and help those making

appropriate offers such that their local resources

utilization is maximized. This component also facilitates

monitoring any violation of established agreements.

For the scope of this paper we adopt the use of the

Open Grid Forum’s WS-Agreement Specification [25] for

specifying and establishing agreements between the

service coordinator and each service provider, which are

called Agreement Initiator and Agreement Responders in

the WS-Agreement terminology, respectively.

5. Implementation and Experimental Results

To evaluate our proposed protocol we implemented a

prototype and ran several experiments, which we describe

in this Section. We built our prototype on top of an

implemented version of the WS-Transaction specification

[5] with an extension to support concurrency control and

handle distributed deadlocks as described in our previous

work [1]. We extended the given architecture by

implementing the components shown in Figure 6 to

support the proposed scheduling mechanism.

For experimental evaluation purposes we simulated the

environment of concurrently running web service-based

transactional processes. In each experiment we ran a

number of concurrent transactions each of them is

assigned to a coordinator and is executed in a different

thread. Every transaction is composed of a (randomly set)

number of tasks; each of them can be accomplished by

one of several available Web services from different

providers. Every call to a service starts a new thread,

which performs some transactional operations

(read/write) on some local resources (text files) assigned

to some specific provider.

To simulate variant execution lengths of the Web

services, we delay the return of the results by a randomly

set amount of time and to simulate the time needed by the

client to process the results (human interaction) we

introduce a randomly set delay at the client side between

Discovery

Component

Global Scheduler

 Locks Schedule Execution

Schedule

Local Scheduler

Provider

Coordinator

Figure 6. The proposed Architecture

Time Transaction

T3

T1

T5

t1

t2

t3

Offers Manager

Offers Manager

WS-Agreement

num. of concurrent transaction 10 to 100

num. of Web services per transaction 3 to 5

num. of providers per service 10

Service execution length 5 to 60 sec

User interaction length 5 to 60 sec

Transaction length 30 to 400 sec

Distribution of transaction lengths Normal

Transactions arrival average 1 trans per sec

Max Client’s deadline for committing

whole transaction

60 sec after

execution

Max Providers’ deadline for holding

lock on one resource
20 sec

Table 1. Simulation setup

service invocations. All random numbers including

transactions’ execution length (see Figure 7) follow the

normal distribution. Table 1 summarizes the different

parameters of the simulation setup in our experiments.

We ran all experiments on a machine with a 2GHz

Genuine Intel CPU, T2500, processor and 2GB RAM

equipped with Microsoft Windows XP Professional

Version 2002. The JVM used is J2SE 1.5.

In the experiments we compared between the

conventional (blocking) scheduling and our proposed

nonblocking scheduling mechanism. In the former case

each task in a transaction is assigned to a random service

provider and the service is invoked directly according to

the given workflow. Service providers ensure the

serializability of their local schedules and preserve the

commit order of concurrent transactions. In the latter case,

transaction Coordinator constructs an execution plan and

pre-selects service providers based on their current offers

using the proposed algorithms in Section 4. Figure 8

shows the advantage of the proposed approach from the

provider’s perspective. The number of processed requests

per second at each provider was measured. Using the

nonblocking scheduling has improved the utilization of

local resources at all provider sites significantly. In Figure

9 we measured the percentage of successfully completed

transactions when applying the proposed nonblocking

scheduling in comparison with the normal scheduling

without pre-selection of providers. In this experiment,

transactions that fail to commit before the deadlines are

not restarted. We ran the experiment in different runs with

different concurrency levels represented by the varying

number of concurrent transactions between 10 and 100.

By increasing the level of concurrency the probability that

completion dependencies between transactions occur,

increases and hence the probability that transactions are

blocked at the commit time increases as well. The results

of the experiment (Figure 9) show that with nonblocking

scheduling almost all transactions terminated successfully

before the deadlines. This is a significant improvement

from the client’s perspective since the number of aborted

transactions because of missed deadlines is minimized.

Figure 10 shows that the overall throughput (i.e.

number of successfully terminated transactions per second

in the whole system) using the proposed approach is

much higher than using the conventional scheduling. With

blocking scheduling the throughput reaches its peak very

quickly and starts to decrease while the level of

concurrency increases. In this experiment, the total time

between submitting and committing transactions

including the required time for provider selection process

was considered.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

co
m

m
it

te
d

 t
ra

n
sa

ct
io

n
s(

%
)

number of concurrent transactions

blocking

Nonblocking

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

co
m

m
it

te
d

 t
ra

n
sa

ct
io

n
s

p
e

r
se

c

number of concurrent transactions

blocking

Nonblocking

Figure 10. Overall throughput Figure 9. Committed transactions

before deadlines

Figure 7. Ditribution of transactions’ lengths

0

5

10

15

20

25

30

35

n
u

m
 o

f
tr

a
n

sa
ct

io
n

s Transaction execution length (sec)

Figure 8. Resources utilization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p
ro

ce
ss

e
d

re

q
u

e
st

s
 p

e
r

 s
e

co
n

d

Providers:

Nonblocking

Blocking

6. Conclusion and Future Work

In this paper we described a nonblocking mechanism

for scheduling global transactions. The proposed solution

enhances conventional scheduling algorithms for

concurrency control to support the time characteristics of

the transactions in Web service environment. By applying

the proposed scheduling mechanism unnecessary

blocking of transaction commitment during the execution

of a 2PC protocol is avoided, thus saving time and costs

of later abort or missed deadlines. The proposed approach

is beneficial for both the service consumer and service

provider. The experimental results showed a significant

improvement in terms of number of successfully

completed transactions within acceptable time frames as

well as in terms of resources utilization. Our future work

will focus build a cost-based model for both the client and

provider that can help them making decisions regarding

the available offers. We also plan to extend the proposed

scheduling mechanism especially the Provider Selection

Algorithm to allow negotiation-based adjustments to

established agreements at run time if required.

7. References

[1] M. Alrifai, P. Dolog, and W. Nejdl, “Transaction

Concurrency Control in Web Service Environment“. In Proc. of

the Europ. Conf. on Web Services (ECOWS), Zurich,

Switzerland, 2006.

[2] K. Haller, H. Schuldt, and C. Türker, “Decentralized

coordination of transactional processes in peer to peer

environments”, In Proc. of the ACM Int. Conf. on Information

and Knowledge Management (CIKM), Bremen, Germany, 2005.

[3] S. Choi, et al., “Maintaining consistency under isolation

relaxation of web services transactions”, In Proc. of Int. Conf.

on Web Information Systems Engineering (WISE), New York,

NY, USA, 2005.

[4] OASIS Business transaction protocol, 2004, published at

http://www.oasis-open.org/committees/

documents.php?wg_abbrev=business-transaction.

[5] Web services Business Activity framework, 2005, published

at ftp://www6.software.ibm.com/

software/developer/library/WS-BusinessActivity.pdf

[6] Web services Atomic Transaction, 2005, published at

ftp://www6.software.ibm.com/software/ developer/library/WS-

AtomicTransaction.pdf

[7] W.-T. Balke and M. Wagner, “Cooperative Discovery for

User-centered Web Service Provisioning”, In Proc. of the Int.

Conf. on Web Services (ICWS), Las Vegas, NV, USA, 2003.

[8] S. Bhiri, O. Perrin and C. Godart, “Extending workflow

patterns with transactional dependencies to define reliable

composite Web services”, In Proc. of the Int. Conference on

Internet and Web Applications and Services, 2006.

[9] J. Gray, “The transaction concept: Virtues and limitations”,

In Intl. Conference on Very Large Data Bases, 1981.

[10] D. Karastoyanova, A. Houspanossian, M. Cilia, F.

Leymann, and A. P. Buchmann, “Extending bpel for run time

adaptability”, In the 9th Int. Enterprise Distributed Object

Computing Conference, Enschede, The Netherlands, 2005.

[11] M. Schäfer, P. Dolog, and W. Nejdl, “Engineering

Compensations in Web Service Environment”, In International

Conference on Web Engineering, Como, Italy, July 2007

[12] B.W. Lampson, "Atomic Transactions," in Distributed

Systems: Architecture and Implementation--An Advanced

Course, B.W. Lampson (Ed.), Lecture Notes in Computer

Science, Vol. 105, Springer-Verlag, 198l, pp. 246-265.

[13] M. P. Papazoglou, “Web Services and Business

Transactions”, World Wide Web, v.6 n.1, p.49-91, 2003

[14] Alonso, G. et al, “Unifying concurrency control and

recovery of transactions”, Information Systems, Volume 19,

Issue 1 (Jan. 1994), P101-115.

[15] Garcia-Molina, H. and Salem, K. Sagas. In Proc. of the Int.

Conference on the Management of Data (SIGMOD), 1987.

[16] Bhiri, S., Perrin, O., and Godart, C., “Ensuring Required

Failure Atomicity of Composite Web Services”, In Proc. of 14th

Int. Conference on World Wide Web (WWW’05), Japan, 2005.

[17] A. Elmagarmid, “Transaction Models for Advanced

Database Applications”, Morgan-Kaufmann, 1992.

[18] Gustavo Alonso , et al., “Advanced Transaction Models in

Workflow Contexts”, Proceedings of the Twelfth International

Conference on Data Engineering, p.574-581, 1996

[19] Fauvet, M., et al., “Handling Transactional Properties in

Web Service Composition”, In Proceedings of 6th International

Conference on Web Information Systems Engineering

(WISE’05), New York, NY, USA, 2005

[20] L. Sha, R. Rajkumar, and J. P. Lehooczky, “Concurrency

control for distributed real-time databases”, ACM SIGMOD Rec.

17, 82-98, Mar. 1988.

[21] Lin, Y., and Son, S., “Concurrency control in real-time

databases by dynamic adjustment of serialization order”, IEEE

Rea-time Syst. Symp., 104– 112, 1990

[22] J. R. Haritsa, M. Carey and Y. M. Livny, “Dynamic real-

time optimistic concurrency control”, IEEE Real-Time Sys.

Symp., 94-103, (Dec. 1990)

[23] Web services coordination 2005, published at

ftp://www6.software.ibm.com/software/developer/library/WS-

Coordination.pdf.

[24] G.Weikum and G.Vossen, Transactional Information

Systems: Theory, Algorithms, and the Practice of Concurrency

Control. Morgan Kaufmann, 2002

[25] Web Services Agreement Specification (WS-Agreement),

September 2005, published at

http://www.gridforum.org/Public_Comment_Docs/Documents/

Oct-2005/WS-AgreementSpecificationDraft050920.pdf

