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ABSTRACT

Music recommendation systems have become very popular
in the recent years. While their first generation was only
based on a few manually extracted musical descriptors, the
new generation will provide richer and more accurate meta-
data over very large volumes of music and will be able to
generate personalized playlists automatically. These new
major improvements call for the development of innovative
data management techniques. We propose to create Mu-
sic Warehouses, dedicated data warehouses optimized for
the storage and analysis of music content. We take three
major challenges: (i) to provide a framework for song simi-
larity searches with respect to different criteria and for the
aggregation of low level metadata into high level metadata
accessible by end-users, (i) to create advanced dimensions
able to support fuzzy hierarchies and versioned hierarchies,
and (4i1) to adequately pre-compute searches to increase the
performance of the descriptors analyses. Our current work
addresses nearest neighbor searches and the generation of
personalized user playlists.

1. INTRODUCTION

The generalization of fast Internet connections and the
development of new digital music formats have led to the
explosion of digital music available on-line. Large on-line
music stores and on-line radios are becoming increasingly
popular. This trend is creating a high demand for applica-
tions able to organize and search in large music databases.
However, current search tools still remain very limited: pop-
ular search engines only provide searches based on external
annotations, but to offer truly natural and intuitive infor-
mation retrieval, search and query into the primary media
is required. These needs have given a further impulse to the
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development of new methods for music information retrieval
and research on digital music databases.

The Music Information Retrieval (MIR) community has
put a lot of efforts into defining and extracting music fea-
tures, referred to as low level musical metadata. Musical
metadata is classified into four categories depending on the
source from which the information was extracted: acoustic
metadata, editorial metadata, cultural metadata and phys-
ical metadata [4, 17]. New similarity functions using the
musical metadata are constantly being defined; they allow
pieces of music to be compared with respect to specific as-
pects. Unfortunately, the extracted metadata is rarely un-
derstandable by regular end-users and in order to be useful,
more accessible and meaningful descriptors are needed. At
the opposite edge on the scale of music descriptors stands
the high level musical metadata that allow organizing music
into categories, such as genres. Genres benefit from a greater
user understanding but suffer from loose definitions. While
various taxonomies of high level metadata exist, no real con-
sensus seems to have emerged on generally accepted defini-
tions. Music retailers, music labels, copyright companies,
radio stations, end users, etc., have all designed their own
taxonomies. Even among the same group of interested par-
ties, e.g., online music portals, inconsistencies are frequent.
This situation is source of confusion and finding “new songs
that I like” often turns into a long crusade.

The ongoing Ph.D. project focuses on providing dedicated
data warehouses optimized for the analysis of music content,
referred to as Music Warehouses (MWs). MWs will offer
the advanced framework necessary to support tools suited
to bridge the semantic canyon between low level descriptors
and high level contextual representations that carry richer
semantics. This goal can be achieved by developing appro-
priate data structures and enabling analyses of low level de-
scriptors in order to aggregate them into semantically richer
representations. The challenges are threefold. First, in order
to obtain a better understanding of what types of analyses
are appropriate, a survey of existing music management sys-
tems was conducted and a case study was built. As a result,
we decided to focus on providing automatic playlist gen-
eration based on nearest neighbor search analysis. Second,
to support such analyses, the problem of modeling advanced
data types, which are inherent to the music domain, must be
considered. Additionally, new types of dimension hierarchies
have to be developed. Fuzzy hierarchies raise the question
on how to aggregate data with various degrees of fuzziness.
Furthermore, techniques enabling multiple versions of a sin-



gle dimension hierarchy have to be investigated. Third, the
issue of data pre-computation must be addressed in order
to increase the performance of the analysis while preserving
the wide heterogeneity of high level music representations.
This issue is of critical importance given the high computa-
tional requirements of extracting and calculating similarity
values between musical descriptors.

The ultimate goal of the project is to build the first pub-
licly available MW and to integrate it into the platform de-
veloped by the Intelligent Sound project'. The dissertation
has so far one year of development and a research plan has
been drawn for the next two years. A first prototype of
MW is currently being built and consists of 60000 songs and
their corresponding extracted features. The database was
constructed with the data gathered using the MIRocket?
Winamp plugin and proper tag information was verified
against the Music Brainz database®.

The remainder of this paper is organized as follows. We
present related music search databases approaches and mu-
sic information retrieval work in Section 2. Section 3 pro-
vides more details on previous and ongoing work on the MW.
We proceed by discussing the research challenges building an
MW offers in Section 4. Finally, we conclude in Section 5.

2. RELATED WORK

Today, most of the music recommendation systems avail-
able online are solely based on editorial information avail-
able through tags or on collaborative filtering. With the
growth of the Web, techniques based on publicly available
data have emerged. They combine data from many sources
using text analysis and collaborative filtering techniques to
determine similarity. Since they are based on human opin-
ion, these approaches capture many cultural and other in-
tangible factors. A main disadvantage of these techniques,
however, is that they are only applicable to music for which
a reasonable amount of reliable public information is avail-
able. MoodLogic? is an example of how editorial information
and cultural information can be gathered. The core idea of
MoodLogic is to associate metadata to songs automatically,
thanks to two basic techniques: first, an audio fingerprinting
technology able to recognize music titles on personal hard
disks, second, a database collecting user ratings on songs,
which is incremented automatically in a collaborative fash-
ion. No acoustic analysis of the song is, however, performed.
Pandora® adopts a radically different approach and bases its
recommendations on acoustic metadata. The acoustic meta-
data is generated through the music genome project that
consists of a small group of music experts manually describ-
ing the audio content of songs. While these systems provide
useful services for Electronic Music Distribution (EMD) sys-
tems, their scalability remains limited as they rely only on
expensive and external sources of information.

Many researchers have studied the music similarity prob-
lem by analyzing symbolic representations such as MIDI mu-
sic data, musical scores, and the like. For example, methods
have been developed to search for pieces of music with a par-
ticular melody. The queries can be formulated by humming

"http://www.intelligentsound.org
http://www.intelligentsound.org/demos/mirocket.htm
3http://musicbrainz.org
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®http://www.pandora.com

and are usually transformed into a symbolic representation,
which is matched against a database of scores, e.g., in MIDI
format [10]. However, techniques based on MIDI or scores
are limited as they are format dependent. Acoustic represen-
tation allows music content to be directly analyzed and can,
therefore, be applied to any music. A considerable amount
of work has been reported on automatic extraction of audio
features [12]. For monophonic music, Downie indexed with
good results a database of 10000 songs by adapting existing
text information retrieval techniques to music [§8]. Blum et
al. [2] present an indexing system based on matching fea-
tures such as pitch, loudness or Mel-frequency cepstral coef-
ficients, briefly MFCC. Tzanetakis extracts a variety of fea-
tures representing the spectrum, rhythm and chord changes
and concatenates them into a single vector to determine sim-
ilarity [24].

Research on distributed music database in P2P and Wire-
less Ad-hoc networks was conducted by Karydis et al. [13].
They also have developed an algorithm that efficiently re-
trieves audio data similar to an audio query. The proposed
method utilizes a feature extraction technique for acousti-
cal music sequences [14]. Downie et al.[7] describe a secure
and collaborative framework for evaluating music informa-
tion retrieval algorithms but little attention has been paid
so far to the storage issues of audio features in data ware-
houses. A more traditional approach is to use classical rela-
tional models such as the one proposed by Rubenstein that
extends the entity-relationship data model to implement the
notion of hierarchical ordering, commonly found in musical
data [20]. Through some examples, Rubenstein illustrates
how to represent musical notation in a database using the
extensions he introduces, but no detailed data types and op-
erations are given. A multimedia data model, following the
layered model paradigm that consists of a data definition
layer, a data manipulation layer, a data presentation layer,
and a control layer, is presented by Wynblatt et al. [28], but
no query language is proposed. Surprisingly, none of these
models adopts a multidimensional approach by representing
data in cubes, a very convenient structure for performing
on-the-fly analysis of large volumes of data that has already
proved its strengths in data warehouses [18]. Finally, the
most relevant related work is the music data model and its
algebra and query language presented by Wang et al. [25].
The data model is able to structure both the musical con-
tent and the metadata but does not address performance
optimization issues. In particular, it does not provide an
adequate framework to perform similarity based search, di-
mensions do not support hierarchies, and no discussion is
provided about the indexing issues.

Existing indexing techniques, such as M-grid [6] or M-
tree [3], can be applied to index high dimensional musical
feature representations. However, as a consequence of the
subjective nature of musical perception, the triangular in-
equality property of the metric space is typically not pre-
served for similarity measures [1, 16, 19]. Therefore, addi-
tional techniques have to be employed to ensure a suitable
foundation for musical similarity search. Nearest neighbor
searches are a popular topic in the database community for
their usage in content based retrieval and similarity searches.
An impressive amount of work can be found in the litera-
ture for both high and low dimensional spaces [15, 22, 26,
30]. However, these techniques are inspired by geometric
problems and rely on the existence of a Euclidian space
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Figure 1: Overview of the Music Recommendation System Architecture

in order to eliminate potential candidates using upper and
lower bounds. Unfortunately, they are not suitable for non-
metric space and are therefore not applicable for the simi-
larity measures where the triangular inequality property is
not fulfilled. Work on indexes for non-metric space is pre-
sented in the literature [11, 21, 23, 29]. Though the similar-
ity function is non-metric, it remains confined in a pair of
specifically constructed lower and upper bounds. However,
as no consensus has yet been reached in the MIR commu-
nity, our aim is to create MWs as parametrized frameworks,
able to work simultaneously with several and user-defined
similarity functions.

3. OUR APPROACH

In this section, we provide more details on our previous
and ongoing work on the MW. We first propose a short usage
scenario, then present the overall architecture of the music
recommendation framework and discuss our solutions for an-
swering song similarity queries and manipulating playlists.

3.1 Scenario

We propose to develop a on-line music recommendation
system able to find the song the most similar to another
with respect to one or a combination of musical aspects.
The musical aspects should represent high level metadata
accessible to users such as the beat or the genre of a song.
They should not only be based on audio analysis but also on
cultural elements such as the targeted audience, on editorial
aspects such as the artists, or on physical information such
as the type of format. Furthermore, the MW has to handle
user playlists and offer playlist manipulation tools. Eventu-
ally, we want to offer to users an automatic music playlist
generation service. The playlist should be created with re-
spect to constrains such as the user’s profile. Additionally,
the user could specify the length of the playlist and how the
playlist should evolve.

3.2 Architecture Overview

Figure 1 shows our prototypical system architecture. The
system is composed of a client and a server. The client is
responsible for extracting new music features, for building
the user profile, and for all the user interface related issues.
The server is responsible for centralizing music information,
for storing the user profile, for finding similar songs, and for

generating playlists. First, the music not yet present on the
server gets analyzed and the low level features are extracted
and transmitted to the server. Based on the low level fea-
tures, computationally expensive similarity value are gener-
ated. Second, once the data cubes are generated, queries to
obtain the songs the most similar to a given seed song or
to generate a playlist can be answered. User feedbacks on
the provided results are saved for a future integration in the
MW.

3.3 Song Similarities

The music recommendation is able to compare and pro-
vide a similarity value for any pair of songs. Using the sim-
ilarity values, it is easy to tell if the two songs of any given
pair of songs are “very different”, “different”, “somewhat
similar”, or “very similar” from the perspective of a given
attribute such as the beat for example. But, in order to
keep our scenario as general as possible, as few assumptions
as possible should be made about the properties of the sim-
ilarity functions. In particular, the similarity aspects do not
have to be a metric in a mathematical sense (positive, tri-
angular inequality, and symmetry properties). However, we
assume that the similarity values can be mapped to values
in the interval from 0 to 1.

For each song, referred to as the seed song, the similar-
ity values with the other songs are computed and stored in
a fuzzy set [5]. The similarity value between two songs is
then represented using a membership degree, e.g., the more
similar two songs are, the closer to 1 the membership de-
gree will be. To retrieve the closest songs to a given song
seed, the MW reads the fuzzy set and returns the songs
having the highest membership degree. While this solution
offers fast retrieval of the most similar songs regardless of
the properties of the similarity functions, it also suffers from
major drawbacks namely the storage consumption and the
updating process.

We are currently extending the fuzzy set algebra presented
by Galindo et al [9]. We have created operators to per-
form Top, selections, reductions, and average aggregations
among fuzzy sets. The Top, operator changes the member-
ship degree to zero to all elements that are not part of the
k elements having the highest degree. The reduction op-
erator changes to 0 all membership degrees below a given
threshold. As an example, Figure 2 shows the aggregation



of two song sets using the intersection operator. Using the
fuzzy set algebra, it is possible to execute complex queries
such as retrieving the songs that are the most similar to
two given song seeds, or to one song seed with respect to
different similarity aspects.
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Figure 2: Intersection of Fuzzy Sets of Closest Songs

Additionally, we are now focusing on query optimization
aspects of these operators for the different physical storage
options. We have studied the use of tables, arrays and WAH
compressed bitmaps [27] as internal storage solutions for the
fuzzy sets and discussed the advantages of each. Tables
are space consuming but allow pivoting between songs seeds
and songs in the fuzzy set. The choice between arrays and
compressed bitmaps depends on the number of bits required
to identify uniquely an element of the fuzzy set and to store
the membership degrees. The choice is, therefore, depending
on the data set.

We envision the use of fuzzy sets in two additional cases.
First, fuzzy sets can be used to represent users’ opinion
about the previously suggested songs. It is possible to re-
trieve the set of the proposed songs which a user liked or dis-
liked in a particular session. Second, regardless of the con-
text, e.g., the previously played songs, the suggested songs,
or the criteria used, a user is able to grade if he likes a song
or not. For example, a song banned by the user should never
be played. To the contrary, other songs should be proposed
more often as the user likes them. The list of songs a given
user likes, and the songs he dislikes can also be stored using
a fuzzy set. The MW allows aggregation to be performed
using the favorite songs fuzzy set attribute of the user di-
mension, e.g., counting the users having marked a particular
set of songs as their favorites.

User dimension All users

Similarity dimension
All similarity functions

Continent

Agé/group
Language Sex Favorite songs Similarity function group
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Figure 3: Dimension Hierarchies

The closest songs cube provides a set of songs which are
the closest to a given one, referred to as the seed song, with
respect to a similarity function, so that, for each song, for
each similarity function, the closest songs are stored using

a fuzzy set. It is composed of the song and the similar-
ity dimensions as shown in Figure 3. The user feedback
cube gathers relevance statistics about the songs proposed to
users by the music recommendation system. It is composed
of the user dimension and the query dimension. For each
user and query, the user feedback is stored. The feedback
given for a particular song played is stored as a membership
degree representing how the proposed song is pertinent in
the context of the query. A very low membership degree is
given when the user believes the song should not have been
proposed.

3.4 Generic Playlists

We want to build, through user collaborative filtering,
playlists composed of a given number of songs and a theme.
For example, 100 users have to build a playlist that is made
of ten songs, that is composed of 3 rocky songs, 3 jazzy
songs, 3 romantic songs and 1 blues song. Furthermore, the
users are asked to respect some smooth transitions between
the songs so that the third rocky song sounds a bit jazzy. Fi-
nally, let’s also assume that independently from the playlist
building process each registered user has a list of songs he
likes and dislikes.

The playlists created by the voting users are merged into
a unique playlist, referred to as a generic playlist, that can
be shared among all the users registered in the system.
However, some users might be disappointed by the generic
playlist if inserted blindly to their music player. For exam-
ple, the user might have previously banned some songs and
would prefer the system to find alternatives. To the con-
trary, if a song was very close from being selected as part of
the playlist and the user rated it as his favorite song, the sys-
tem should switch the song originally present in the generic
playlist with the user’s favorite song. Figure 4 illustrates
the construction of a generic playlist and how it can at be
derived into a personalized playlist a later stage.

voting generic playlist user favorite songs
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Figure 4: Generic Playlists Usage Scenario

Generic playlists offer a concrete scenario for the usage of
fuzzy lists, the fuzzy counterpart of the well-known (crisp)
lists. We propose to define a finite fuzzy list, A, of size m,
over a domain of discourse, denoted X, as follows:

A= {pale,n)/nfo
zeX,ne{l,...,m}pua: X xN~—[0,1]}

where x is an element of X, where n is a non-negative inte-
ger, and where pa(z,n), referred to as the sequential mem-
bership degree of x at position n, is a real number belonging
to [0, 1], with pa(xz,n) = 0 when z does not belong to A at
position n, and pa(z,n) = 1 when x completely belongs to



A at position n. The fuzzy list concept is new and new oper-
ators such as the concatenation, the intersection, the union,
the subset, the inverse, and the negation have to be formally
defined and studied. We believe fuzzy lists are a superset of
both fuzzy sets and classical crisp lists theories, they could
therefore be used in a large scope of applications. We are
currently conducting further investigations on the storage
and the query processing issues fuzzy lists introduce.

4. NEXT CHALLENGES

During the first year of the Ph.D. project, a case study has
been initiated by analyzing complex real-world music data
taken from various music data extraction and management
systems. In parallel, concepts and techniques underlying the
system have been studied and have led to the identification
of new research challenges for the database community [4].
We present below the three research topics that will be pur-
sued in the remainder the PhD project. They add significant
functionalities to Section 3 and will be addressed in the fol-
lowing order as time permits. For each, query processing
and optimization techniques such as the usage of material-
ized views and pre-aggregation will be studied.

4.1 Fuzzy Hierarchies

Non-strict hierarchies, i.e., hierarchies supporting elements
having multiple parents, allow different paths to be followed
when performing roll-up operations. In the time dimension,
days can be rolled-up into months and in turn into years.
Similarly, days can be rolled-up into weeks by following a
different path since there are overlaps between week—month
and week—year precision levels. While non-strict hierarchies
are useful, they seem sometimes very artificial. In the time
dimension example, a linear aggregation path composed of
overlaps, dayweekmonthsyears, appears more intuitive.

T All Genres
Genre Pop Rock
] 30 10
60 i} 50
Sub-genre Pop Rock 2
Pop Rock 1

Figure 5: Fuzzy Hierarchy of the Genre Dimension

The expected contribution of the PhD project will consist
in the creation of a data model and its algebra enabling the
use of fuzzy hierarchies. Fuzzy hierarchies enable “children”
to belong to multiple parents with various degrees of affil-
iation evaluated through membership functions as defined
by fuzzy logic. While fuzzy hierarchies are not required to
handle typical data warehousing demands, they become un-
avoidable for MWs in order to represent complex hierarchies
such as in the genre dimension as illustrated in Figure 5.
Sub-genres would belong to genres to a certain degree, e.g.,
the genre Jazz-Rock could belong 60% to Jazz and 40% to
Rock, a notion that multidimensional data models have not
been able to fully capture so far. Moreover, issues on mod-
eling fuzzy hierarchies will be compared with current work
on ontologies.

4.2 Versioned Hierarchies

In a multidimensional database, a dimension hierarchy is
said to be: strict, if all dimension values have no more than

one direct parent, onto, if the hierarchy is balanced, and
covering, if no containment path skips a level.In a MW, the
hierarchy of the genre dimension is non-strict, non-onto and
non-covering. However, this is not sufficient.

Since very little consensus exists on taxonomies, the tech-
niques already in place for slowly changing dimensions in
multidimensional databases may not be appropriate. In-
stead, MWs require support for versioning abilities, mimick-
ing software versioning systems such as CVS or Subversion,
where different hierarchies can coexist and evolve.
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We expect the Ph.D. project to contribute in the creation
of a data model and algebra enabling the use of versioned
hierarchies. Figure 6 shows a versioned genre hierarchy that,
for example, defines a classification of the genre dimension
for different user profiles. Versioned hierarchies call for the
creation of new database operators. Examples of such op-
erators are: navigation in the different branches of the hier-
archy, comparison of the branches between users, evolution
of a user hierarchy over time, and ability to derive branches
from existing ones.

4.3 Precision Aware Retrieval

Certain queries performed in an MW do not require exact
answers. Rather, rough approximations would be sufficient.
For example, nearest neighbor queries, such as the ranking
of the k nearest neighbors of a given song, do not focus on
the exact position of each song compared to a given one,
but rather on coarser notion of distance, such as very close,
close, or far. The exact granularity of the answer should not
be fixed but rather determined either implicitly by an appro-
priate algebra, or explicitly in the query. Queries including
the notion of ranking, referred to as Top-K queries, are very
frequent in data warehouses. At the query processing level,
optimizations can be performed in order to drastically im-
prove the response time. Operators such as ranked selection
and ranked joins use specific algorithms that have already
demonstrated their usefulness for relational models.

precision Lemteel seed

time
Figure 7: Precision Aware Retrieval

In MWs, however, Top-K queries require ranking at a
coarse level of granularity where elements need to be ordered
only in subsets, e.g., very close, close and far. Another as-
pect of quality-of-service in MWs is the response time. Time
consuming queries, such as music comparison and nearest



neighbor searches, spark the need for new techniques able to
trade fast response time for precision. Query answers need
to take the form of streams, updated progressively with more
precise and reliable information as pictured in Figure 7. Our
contribution will consist in developing an algebra and query
processing techniques to enable both coarse Top-K queries
and precision improvement streams. For example, asking
what the common characteristics of a set of songs are could
result in the immediate creation of a stream of music char-
acteristics in their high-level representation, starting with
coarse similarities and progressively refining similarities as
the query processing continues.

5. CONCLUSION

Music recommendation systems intensively rely on meta-
data extraction and similarity functions. However, to ob-
tain valuable recommendations, extraction and similarity
functions become computationally expensive. In parallel,
new features such as the generation of personalized playlists,
playlists sharing, and collaborative playlist creation are ap-
pearing. This calls for the development of efficient data
management solutions for the computed similarity values
and customized playlists. In this paper, we have presented
an MW prototype to tackle these issues. First, we proposed
to store similarity values using fuzzy sets. Second, we in-
troduced fuzzy lists to manipulate generic playlists. Our
current research is focused on creating an adequate algebra,
and addressing storage, indexing and query processing is-
sues for both fuzzy sets and fuzzy lists. Finally, we have
presented three research challenges that will be investigated
at a later stage in the project. We expect the project to
generate valuable results profitable to both the music infor-
mation retrieval and the database communities.
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