HiSE: Hierarchical (Threshold) Symmetric-key Encryption

Pousali Dey
Indian Statistical Institute
Kolkata, India
deypousali95@gmail.com

Swagata Sasmal
Indian Statistical Institute
Kolkata, India
swagata.sasmal@gmail.com

ABSTRACT

Threshold symmetric encryption (TSE), introduced by Agrawal et
al. [DiSE, CCS 2018], provides scalable and decentralized solution
for symmetric encryption by ensuring that the secret-key stays
distributed at all times. They avoid having a single point of attack
or failure, while achieving the necessary security requirements.
TSE was further improved by Christodorescu et al. [ATSE, CCS
2021] to support an amortization feature which enables a “more
privileged” client to encrypt records in bulk by interacting only
once with the key servers, while decryption must be performed
individually for each record, potentially by a “less privileged” client.
However, typical enterprises collect or generate data once and query
it several times over its lifecycle in various data processing pipelines;
i.e., enterprise workloads are often decryption heavy! ATSE does
not meet the bar for this setting because of linear interaction /
computation (in the number of records to be decrypted) — our
experiments show that ATSE provides a sub-par throughput of a
few hundred records / sec.

We observe that a large class of queries read a subsequence of
records (e.g. a time window) from the database. With this access
structure in mind, we build a new TSE scheme which allows for
both encryption and decryption with flexible granularity, in that a
client’s interactions with the key servers is at most logarithmic in
the number of records. Our idea is to employ a binary-tree access
structure over the data, where only one interaction is needed to
decrypt all ciphertexts within a sub-tree, and thus only log-many
for any arbitrary size sub-sequence. Our scheme incorporates ideas
from binary-tree encryption by Canetti et al. [Eurocrypt 2003]
and its variants, and carefully merges that with Merkle-tree com-
mitments to fit into the TSE setting. We formalize this notion as
hierarchical threshold symmetric-key encryption (HiSE), and argue
that our construction satisfies all essential TSE properties, such as
correctness, privacy and authenticity with respect to our definition.
Our analysis relies on a well-known XDH assumption and a new
assumption, that we call /-masked BDDH, over asymmetric bilinear
pairing in the programmable random oracle model. We also show
that our new assumption does hold in generic group model.

We provide an open-source implementation of HiSE. For practi-
cal parameters, we see 65X improvement in latency and throughput
over ATSE. HiSE can decrypt over 6K records / sec on server-grade
hardware, but the logarithmic overhead in HiSE’s encryption (not
decryption) only lets us encrypt up to 3K records / sec (about 3-4.5x
slowdown) and incurs roughly 500 bytes of ciphertext expansion

Pratyay Mukherjee
Supra Research
Kolkata, India
pratyay85@gmail.com

Rohit Sinha
Swirlds Labs
Fremont, USA
sinharo@gmail.com

per record — while reducing this penalty is an important future
work, we believe HiSE can offer an acceptable tradeoff in practice.

KEYWORDS
Threshold Cryptography, Distributed Encryption

1 INTRODUCTION

Consumer-facing applications, such as payments processing or ads,
collect many billions of events everyday, in order to perform a vari-
ety of downstream analytics on them. Since this data is business
sensitive and often containing personally-identifiable information,
these applications protect the data at rest using key management
systems (KMS) that are often backed by hardware security mod-
ules (HSMs), which are deployed on-premise or in the cloud (e.g.
AWS KMS). While HSMs are inexpensive to procure, they require
dedicated facilities with operational costs, have complex update pro-
cedures (e.g. with designated trusted personnel) and are susceptible
to hardware side-channels [30, 32].

Threshold Key Management System. To address these shortcom-
ings of HSMs, there is growing interest [31] in the use of threshold
cryptosystems, where the secret key material is distributed across
multiple (commodity) servers under a secret-sharing scheme, and
never reconstructed during use in encryption or decryption queries;
i.e., the security of the system rests on the assumption that the at-
tacker is unable to compromise a significant (configured threshold)
fraction of the servers. Since they use commodity machines, thresh-
old cryptosystems can allow the KMS to scale to enterprise-level
workloads at low costs. Due to these obvious benefits, threshold
cryptosystems have made their way into an increasing number of
commercial products - recent examples include Hashicorp Vault [3],
Coinbase Custody [1], and the HSM replacements by Unbound
Tech [2] - and is being standardized in an ongoing workstream by
the U.S. National Institute of Standards and Technology (NIST) [16].

Threshold Symmetric-Key Encryption. Targeting the use case of
enterprise data protection, we focus our attention on threshold
symmetric-key encryption (TSE). In the symmetric-key setting,
the application must interact with the KMS to encrypt or decrypt
any data!, which lets us ensure authenticity of the encrypted data
and also enforce fine-grained access control policies. In contrast,
public-key encryption schemes allow any actor to encrypt data,

!the KMS authenticates the application prior to responding to encryption or decryption
queries, and can also maintain an audit trail of all queries.

which exposes the application to attacks such as data corruption or
poisoning. Existing TSE schemes [5, 7, 20] follow a basic schemata:

— A setup phase establishes a threshold secret-sharing of the
private key. This setup is either implemented as a ceremony
wherein a trusted admin or group of admins provision a share
to each KMS server, or as a distributed key generation protocol.

— To encrypt a record, the client application interacts with a
threshold number of KMS servers, who evaluate a (variant of)
distributed pseudo-random function (DPRF) using the above
shares to derive a specific key that is bound to that record.

— To decrypt any record, the client application must again inter-
act with a threshold number of KMS servers, using a compo-
nent of the ciphertext as input to the DPRF function to derive
the same key material (as in the encryption step above).

Limitations. The first TSE scheme in literature, DiSE [7], required
the application to interact with the KMS servers for encrypting or
decrypting each message, which posed a clear scaling bottleneck?.
Payment processors are expected to handle several thousands of
data records every second®, whereas (the maliciously secure vari-
ant of) DiSE can process at most a few hundred operations per
second, even when deployed in a LAN setting. Addressing this
shortcoming of DiSE, ATSE [20] allowed the client to perform bulk
encryption, where the client commits to a large chunk of records
that it is encrypting, and only interacts once with the KMS servers
based on that commitment — effectively, ATSE provides the same
authenticity guarantee as DiSE. Nevertheless, decryption in ATSE
still mandates interaction for each record. While this type of ac-
cess control suffices in certain settings, in many other settings it
becomes problematic: for example, enterprise workloads are of-
ten decryption-heavy, as data is created once but is queried and
analyzed several times over its lifetime. For a threshold KMS to
scale to enterprise workloads, this number of interactions is just
not affordable - the interaction is not only expensive in terms of
communication (specifically, bandwidth), but also the computation
on both the client and server (see Table 1 and Section 7).

Our Key Observation. Our exploration in efficient decryption
starts with an observation about a large class of queries in typi-
cal enterprise workloads, where a consumer-facing service stores
event-level data as it collects them from its users, in a time-ordered
sequence. We find that most large-data queries operate on a subset
of data within a time window. For instance, a payment processor
or ads platform may query for transactions in a specific one-hour
window for computing various aggregate statistics. We can lever-
age this inherent structure or partial ordering in the access pattern
structure to perform sub-linear number of interactions — ideally,
and as achieved in HiSE, we can decrypt an entire, contiguous (sub-)
sequence of records with only (at most) a logarithmic number of

2As demonstrated in [20], even with optimizations such as batching requests to save
on roundtrip communication, and using high-bandwidth and low-latency network
links, DiSE provides orders-of-magnitude lower performance than what the workload
requires. This is because DiSE imposes a heavy compute requirement on both the KMS
servers (due to linear number of group operations for PRF and NIZK proofs) and the
client (due to linear number of DPRF reconstructions and NIZK verifications).

3Visa processes 5K TPS on average, with a maximum capacity of 65K TPS [4].

server interactions (in the number of records),* each interaction
requiring constant work and bandwidth®.

Objectives. To summarize our requirement, we seek a TSE scheme
that has the following properties:

1. Bulk Encryption: when encrypting a large set of records, the
KMS interaction (in terms of bandwidth and server computa-
tion) does not depend on the number or size of the records;
i.e,, the server performs constant (and concretely efficient)
work. In HiSE, the client sends to the KMS servers a short com-
mitment computed over the set of messages, and the servers
return a common commitment-specific key to encrypt and lo-
cally authenticate all messages together. This lets us attain the
same authenticity property as DiSE (and ATSE), but without
the need for interaction on each individual record.

2. Bulk Subsequence Decryption: when decrypting any con-
tiguous range of records from the entire dataset, the KMS
interaction (in terms of bandwidth and server computation) is
sub-linear, ideally logarithmic in the worst case, in the number
of records.

3. Authenticity and Access Control: Any valid ciphertext can
only be produced by interacting with a threshold number of
KMS servers — specifically, a valid ciphertext must encrypt a
message that is contained within the set of messages commit-
ted to by the encrypting client, within the interactive protocol.
This property implies that the key material given by the KMS
server(s) to the encrypting application is bound to the set of
messages represented by the commitment. We formalize this
property via a game-based definition in Section 5.° Dual to
authenticity is the requirement of fine-grained access control:
the decrypting client must only be able to decrypt messages
for which the KMS server(s) issue the key material in the
interactive protocol.

1.1 Contributions

Definition. We put forward and formalize the notion of hierar-
chical threshold symmetric-key encryption (HiSE), which enables
bulk encryption and subsequence decryption in a threshold man-
ner. We capture the various important properties using game-based
definitions in Section 5.

Construction. We provide an efficient HiSE construction based
on asymmetric bilinear pairing. We show that our construction
meets our definitions assuming standard XDH assumption and a
new assumption, called £-masked BDDH, that we introduce here. In
Appendix G we show that this new assumption holds in the generic

4Note that, in the best case, the number of interactions may be as little as constant.
For example, if all ciphertexts are exactly within a sub-access structure, then only one
interaction is needed.

5 A reader may observe that this requirement can be easily met by allowing the applica-
tion to use a long-term symmetric key that encrypts large portions of the dataset, and
protecting that key with the KMS, so a single KMS interaction will suffice. However,
in this design, any application that needs to decrypt any record in the dataset must be
given the long-term key, and there is no way for the KMS to enforce fine-grained access
control as the application can decrypt any number of records. Worse, the compromise
of any such application gives the attacker access to the entire dataset.

®We note that, like prior works [7, 20] our formalization also considers a “one-more
type” definition - a malicious client may not produce more ciphertexts than what is
accounted for by the honest servers.

group model. The concrete benefits of our HiSE scheme over prior
works is characterized in Table 1.

Implementation and Evaluation. We provide an open-source im-
plementation of our HiSE construction, made available at https:
//github.com/rsinha/hise. Our experiments indicate latency reduc-
tion between 15-65X and throughput improvement between 10-
70X, compared to the ATSE decryption, when interacting with 6-24
KMS servers and decrypting hundreds to thousands of records in
bulk. HiSE can decrypt over 6K records / sec on a single server-
grade machine. Moreover, as we scale to larger workloads which
decrypt a large number of records, both network latency and server
computation becomes an increasingly insignificant fraction of the
total decryption running time in HiSE, thus incentivizing threshold
KMS deployments that have more geo-distributed servers — this
is beneficial for increased availability and security. However, the
improvement in decryption efficiency comes with a caveat: the
logarithmic overhead in HiSE’s encryption only lets us encrypt
about 3K records / sec (about 3-4.5x slowdown compared to ATSE’s
encryption, yet 7 — 12X faster than “parallelized DiSE”, as bench-
marked as a baseline in ATSE [20]) and incurs roughly 500 bytes
of ciphertext expansion per record. Nevertheless, we believe HiSE
can offer an acceptable tradeoff in practice.

2 RELATED WORKS

Threshold Symmetric Encryption (TSE). Previous works in TSE
by Agrawal et al. and Christodorescu et al. are closely related to our
work. Agrawal et al. provided the first formal treatment of a TSE
technique in DiSE [7] using a distributed pseudorandom function
based construction. For each encryption and decryption, the scheme
requires user interaction. In ATSE [20], the flexible key derivation
protocol allows for encryption of a group of messages with just a
single user interaction. In short, the user is required to commit to
a group of messages and interactively derive a partial/whole key
for the group. Individual encryption of each of the messages in the
group can then be carried out locally. The threshold key derivation
process uses a constrained PRF evaluation borrowing ideas from
the works of Boneh and Waters [14] and Naor-Pinkas-Reingold’s
DPRF construction [34]. However, the decryption process in ATSE
still requires the user to interact for each individual ciphertext.
In this paper, we propose a scheme which reduces the number of
interactions during decryption to logarithmic (in the number of
ciphertexts) on average (and constant in the best case).

Recently Duc et al. (DiAE [24]) extended DiSE [7] using en-
cryptment [23] instead of commit-then-encrypt technique. This
facilitates computation of ciphertexts before interaction, and there-
fore requires lesser online memory. Using similar techniques to
optimize on-line memory requirement for HiSE (and ATSE) is an
interesting future direction.

HiBE, ABE etc. Our construction borrows idea from identity-
based encryption (IBE) and its variants, like attribute-based encryp-
tion (ABE). In particular, our construction uses an encryption for
binary-tree access structure. The primary idea comes from binary-
tree encryption [18]. However, our construction is more similar to
the recent work iTire [10], which gets rid of "key-delegation" prop-
erty as well, though for a different purpose. Similar constructions

are used for different HIBE [9, 12, 13, 26] and ABE schemes [11,
27, 35] in the literature. In particular, the work [9] constructed a
multi-receiver IBE where ciphertexts are tagged to different parties,
whereas our scheme uses a binary-tree node as a tag. Combining
the Boneh et al. [12] HIBE and Baek et al’s IBE [9], Chang et al [19]
proposed a hierarchical designated decryption scheme that pre-
vents ancestors from having access to all the messages intended
for their descendants. Encryption can be performed under different
choices so that decryption is allowed by a set of permitted ancestors.

However, all of these constructions constructed public-key prim-
itives and therefore do not offer important features such as authen-
ticity. From another perspective, our scheme can be thought of
as a (threshold) symmetric version of ABE scheme for a specific
binary-tree access structure.

For more related work on threshold cryptography [6, 17, 17, 22,
28, 33] and multi-party computation [29] we refer to ATSE [20] and
DiSE [7].

3 TECHNICAL OVERVIEW

HiSE leverages the inherent hierarchy or partial ordering in the ac-
cess pattern structure to perform sub-linear number of interactions.
That is, we decrypt an entire range of records with at most a loga-
rithmic number of server interactions (in the number of records),
each interaction requiring constant work and bandwidth. In this
paper, we do not attempt to optimize for random access patterns or
point queries. Let us first elaborate on the motivation.

3.1 A motivating use case

We start from a similar use case as the one in ATSE [20], but we fo-
cus on the largely unexplored part of the data lifecycle: decryption.
Our performance goals (and parameter settings, later in our experi-
mental evaluation) are influenced by our observations in the data
analytics pipelines of a payments processor, such as Visa [4]; that
said, the following description applies generally to any modern en-
terprise serving a consumer-facing application (e.g., ads, payments,
social network, etc.).

Our enterprise collects events at the source containing sensitive
user data — these can be payment transactions or ads conversions, as
examples. These event records will be later processed via a diverse
set of data processing (ETL) pipelines, but first, the source applica-
tion must store them with data-at-rest protections, by encrypting
them with the assistance of a KMS.

We find the following architecture to be quite typical. At the
source of data ingress, a designated application is responsible for
one task: encrypting records as they arrive and forwarding it to
a storage service. As it accepts all user data in the clear, we will
refer to this application as a privileged client or encryptor — it is
developed with simplicity and hardened with common security
measures. The encrypted data is later accessed by different analyt-
ics workloads. In practice, as a large variety of teams within the
enterprise are responsible for developing downstream analytics,
security, regulatory, and compliance concerns typically require us
to limit the amount of data they can access and also maintain an
audit trail describing which records each query has accessed. Both
access control and audit trail are implemented at the KMS layer.

https://github.com/rsinha/hise
https://github.com/rsinha/hise

. Encryption Encryption Decryption Decryption

Scheme Operations (client) (server) (client) (server)
H mt 2m 2m 2m

DiSE [7] G 6mt exp, 4mt add 4m exp, m add 6mt exp, 4mt add 4m exp, m add
P 0 0 0 0
H 3m+t 3 3m 3m

ATSE [20] G 6t exp, 4t add 4Gy exp, 1 G add 6mt Gr exp, 4mt G add 4m Gt exp, m Gt add
P m 0 0 m
H mlogm+2m+t 2 3m+t 3
HiSE G mlog m+ 6t Gy exp, 4t Gy add 4Gy exp, 1 Gy add 10t Gy exp, 7t Gy add, m G add 6 Gy exp, 3 Gy add

P m 0 2m 0

Table 1: Computation for encrypting or decrypting m messages in a threshold ¢ setting (with the maliciously-secure construction):
H denotes hash operations (either hash to group or bitstring e.g. SHA256); G denotes group operations, and since ATSE and
HiSE use pairing-based groups, we denote the specific group operations by G, G2, and Gr; P denote pairing operations.

Recall that the encryptor produces a continuous stream of records.

A typical analytics query will request for access to some subsequence
of this data; as an example, a metrics application will periodically
compute aggregate statistics on, say, one minute interval of records.
Such a query is implemented by issuing a decryption query to the
KMS, which replies with sufficient key material to decrypt that
subsequence, but no other record beyond that. Our goal in this
paper is to make this interaction with the KMS - both bandwidth
and compute — sublinear in the number and size of the records.

Observe that, by arranging data in a binary tree, any subsequence
can be described by at most logarithmic number of descriptors,
with each descriptor denoting a sub-tree. In the remainder of this
paper, we consider the problem of efficient decryption (in constant
time) of a sub-tree of records, with the idea that an algorithm for
this problem then lets us efficiently decrypt subsequences with
logarithmic complexity.

While having efficient decryption, we would like to preserve the
property of efficient encryption from ATSE. That is, we want the
encryptors to encrypt a large chunk of messages efficiently and pri-
vately with fine-grained decryption, but we also want authenticity:
the encryptor must only produce legitimate ciphertexts, where the
temporary key derived by encryptor through interaction is bound
to the set of messages (the key servers hold a long-term key in a
threshold fashion which is never reconstructed explicitly).

3.2 Our Construction: An Overview

DiSE Framework. In the overview, for ease of exposition we con-
sider a toy example, in that only four messages m = (my, ma, ms, myg)
are considered. Let us start by recalling the basic framework of (a
simplifed variant of) DDH-based DiSE [7] construction that uses
a (DDH-based) DPRF by Naor, Pinkas and Reingold [34]. Both en-
cryption and decryption use the same interaction pattern to derive
a message-specific key (to be used for masking) k; for each message
m;, such that k; = ‘H(yi)s’C where y; is the commitment to message
m; (and H is the hash function, modeled as random oracle). Then k;
is used to “mask” m;. Clearly, here both encryption and decryption
require to derive the k; by interacting with the key servers who
holds the DPRF key sk (possibly in a ¢ out of n threshold structure).
Message privacy is guaranteed by the pseudorandomness of k; plus
hiding of the commitment scheme, whereas authenticity (which
guarantees that an encryption is only possible through a legitimate
interaction with the key servers, and not otherwise) follows from

the binding property of the commitment and the fact that the key
ki is bound to the message m; as well via the DPRF (which works
effectively as a distributed message authentication code).

ATSE: Asymmetry in Encryption and Decryption. In ATSE [20],
instead of a DPRF, another primitive, called a flexible threshold key-
derivation function (FTKD) is used - this enables the masking key k;
to be derived through a bilinear pairing as k; = e(H;(5), Ha (yi))Sk,
where the commitment to m; now consists of two parts § and y;,
among them ¢ is common among all messages in m - this is imple-
mented by computing a Merkle-tree on m where § is the root hash,
and y; is the hash values corresponding to the unique path from
root to the i-th leaf (each message m; corresponds to leaf-i). Now,
exploiting the bilinear property we note that the same masking key
can be derived in multiple ways; in particular we are interested in
two different ways: (i) during bulk encryption a common partial
key 7{1(5)5k is derived interactively, and then each k; is locally
computed as k; = e(H; (8)Sk, H, (vi)); (ii) during decryption k; is
derived directly as e(H(6), ‘Hg(yl-))Sk. The key point is: during
decryption, deriving masking key k; for message m; does not allow
derivation of another masking key k; for another message m;. So,
in contrast to DiSE, ATSE provides support for a more fine-grained
encryption and decryption. However, the decryption always has to
happen individually. For example, if one needs to decrypt both m;
and my, it must interact twice to derive both k1 and ky - this scales
up quickly when one needs to decrypt a large sub-sequence.

A ndive extension of ATSE. One may think about a potential naive
extension of ATSE to incorporate hierarchy in the decryption: for
example, by allowing one to also derive partial keys 7, (8)°* during
decryption. This, however, allows one to decrypt all four messages
that are committed to Merkle-root 8. This idea manifests that while
it is possible to enable a hierarchy in the decryption using ATSE, the
hierarchy does not go beyond a single level and therefore does not
provide any additional utility beyond “all-or-nothing”. In particular,
it is not clear how to extend the core idea from ATSE to support
multiple levels of decryption efficiently.

Our scheme: HiSE. Our main idea is to construct a binary-tree
such that decryption can be done at any node. For our toy example,
we consider a binary tree of depth log(4) = 2 for 4 messages. In
particular, we construct a Merkle-tree where each label at leaf-i is a
commitment to message m; using hash H™; for example, Xy is a

commitment of my, and so on. Each node of the tree is indexed by a
binary-string « that encodes the path from root (indexed by empty
string ¢) to that node, plus each node-w is labeled with a hash value
X, of the binary-tree. This is depicted in Figure 1 below.

ANAN

Xoo Xo1 X0 Xn

Figure 1: Each node w is labeled with Merkle-hash X,,. The
leaves are commitments to messages: Xoo is commitment to
message m; and so on.

Now, our encryption follows an idea similar to BTE [18] and
its variant iTire [10]. However, since both of them are public-key
schemes, we made a number of crucial changes to ensure that our
encryption stays symmetric and satisfies ciphertext authenticity.
The first major change is: we now use two field elements as the
long-term secret key sk = (a, f) — they are secret shared together
as t out of n. Also pp = gf is made public.

Now, for each message m;, the message-specific key k; (or mask-
ing key) is computed, first by interacting with the (threshold) key-
servers to derive z = H(X,)%, and then locally computing k; =
e(g;i, z) (where g1 is generator of Gy in pairing G; X G, — Gr)
which is unique to the m;, as the randomness r; is sampled uniquely
for each message m;. The ciphertext c; contains log-many group
elements:

(Ri = 91, Seoy>Seolys - - -» S Ei)
where E; is the masked plaintext (m; masked using k;), and each
Se|; is computed as 7‘((Xw|j)’i.7 Here o is the binary expression
of i — 1 and the notation w|; refers to the first j bits of the string w.
For example, in our toy example, for my, my, ms, my the ciphertexts
c1, €2, c3, ¢4 would look like:

(R1 = g7, S1,0 = H(X0)™, S1.00 = H (Xo0)"", E1)
(Rz = g%, S2,0 = H(X0)™, So.01 = H(Xo1)"%, E2)
(R3 =g, 831 = H(X1)", S3,10 = H(X10)", E3)
(Rq = g}*, 841 = H(X1)™, S411 = H(X11)™, Es)

Now, let us see how decryption works. Suppose that we want to
decrypt mj and my, both of which are exactly covered under the sub-
tree rooted at node-0 with label X - so it is possible to decrypt them
with a single interaction. In particular, the decryption interaction
derives Z = H (X,)*H (Xo)? in a threshold manner. Then it locally
computes the masking keys for c1, ¢z respectively as:

ki =e(R1,%) - e(pp, S1,0) ' and ky = e(Ry, 2) - e(pp, S20) ™

A little calculation shows that these computations basically cancels
out the components dependent on f, and leaves with the keys
k1 = e(Ry, H(X,)%) and ky = e(Ry, H (X,)%). Also, we note that, if

"We defer the exact description of how exactly E; is computed until later in this section.

we want to decrypt only c1, but not ¢, that would also be possible
by deriving z’ = H(X)*H (Xoo)? and then computing only

ki = e(Ry,Z') - e(pp, S1.00)?

Thereby a multi-leveled hierarchical decryption is possible. Now,
let us argue about the security of the scheme next.

Privacy of HiSE. First note that, the value H (X,)? is just like a
DPRF computation on the root commitment - this is very similar
to ATSE’s masking key and hence provides privacy. However, to
argue that the masking key is indeed private we need to argue that
from the decryption with respect to a specific node-w, it should not
be possible compute the masking key for any other ciphertexts that
are not covered by the sub-tree rooted at that node-w. Elaborating
more through our example, the above decryption at node-0 (labeled
Xo) should not allow computation of masking keys for c3 or c4.
Intuitively, this can be seen from the fact that: to compute the
masking key it seems essential to compute H (X;)%; and since the
value H(X,)® is multiplied with H (Xo)# in z, 8 it should not be
possible to “extract” H(X,)* from that — in fact, the decryption
never has H(X,)% in the clear, instead it uses the S-values from
the ciphertext to directly compute the message specific masking
keys e(R;, H(X,))%. So, for ¢3 or c4, the S-values, included in the
ciphertexts, are outside the path from root to that node: for example,
¢3 has only H(X7)™ and H(X10)™, but not, e.g. H(Xp)"™ - this
ensures that the decryption is not possible for cs. In fact, trying to

B

use pp = g; with the available S values in c3, ¢4 yields, for example:

e(pp, S31) = e(Rs, H(X1)P)

and attempting to divide Z with this leads to

ﬂ(xw)ﬁ
H(X1)

e (RS,(]’{(XS)H : (

which is not independent of (an unknown) f8. Formalizing this, how-
ever, turns out to be trickier, and require using our new assumption,
¢-masked BDDH along with XDH (see Section 4.1).

Authenticity of HiSE. The broad authenticity argument follows
from ATSE. However, there are some crucial differences. First note
that, in contrast to ATSE, DiSE our encryption is randomized. This
would let the encryptor use the derived masking key multiple times
to generate many ciphertexts for the same message. So, though
we would obtain a property similar to plaintext integrity, we still
would not have a stronger property akin to ciphertext integrity, in
that the encryptor can produce only a fixed number (determined
by the size of the Merkle-tree) of ciphertexts via one interaction.”

8This also shows why we need two components e and f3. Giving gy inpp like iTire/BTE

would immediately break the privacy. Instead, we give out glﬁ and use f-dependent
elements to “mask” H (X,)*.

9Ciphertext integrity prevents a corrupt encryptor to produce anylegitimate ciphertext
locally that are unaccounted for — honest servers know exactly how many legitimate
ciphertexts are being produced by one interaction. With only plaintext integrity one
could locally produce arbitrary many legitimate ciphertexts encrypting the same
messages without further interaction. In the enterprise KMS application ciphertext
integrity helps in reducing the possibility of data duplication. See Remark 7.14 of
ATSE [21] for more discussion.

To remedy this, we also commit to R; = g;" for each message m;.10

So for m;, the masked value would look like

Ei =H' (ki) ® (mj, pi, H" (Ry)).

Where H’ maps to bit-string. During decryption one obtains (m;, p;, h;)

after demasking and then checks whether X, = H™ (m;, p;, h;)
and H"' (R;) = h;, where w is a binary expression of (i — 1).

Another issue, similar to ATSE, is that the root of the Merkle-tree
X, does not contain information about the number N of messages
committed to it. This can be exploited by a malicious encryptor
by pretending to encrypt N’ < N, such that the server would
undercount the number of valid ciphertext that can be produced
- in our definition (cf. Definition 5.5) this would constitute a valid
forgery. To prevent this we instead compute z as H (N, X,)*. So,
such behavior would be caught during the decryption, in that an
honest decryptor, who has now access to the Merkle-tree uses a
correct N, and hence results in a different z’ # z.

We do not discuss a few other issues here, which are common
to all TSE schemes (DiSE, ATSE) in the literature, for example,
need for a authenticated channel and inclusion of identity (j) of
the encryptor in computing the masking key, which changes the
scheme as k = H(j, N, X,). To illustrate we provide a simple flow
for our toy HiSE scheme in Figure 2.

4 NOTATION AND PRELIMINARIES

We use N to denote the set of positive integers, and [n] to denote
the set {1,2,...,n} (for n € N). We denote the security parameter
by x. We assume that, every algorithm takes k as an implicit input
and all definitions work for any sufficiently large choice of k € N.
We will omit mentioning the security parameter explicitly except a
few places. Throughout the paper we use the symbol L to denote
invalidity; in particular, if any algorithm returns L that means the
algorithm failed or detected an error in the process.

We use negl to denote a negligible function; a function f : N —
N is considered negligible is for every polynomial p, it holds that
f(n) < 1/p(n) for all large enough values of n. We use D(x) =: y
or y := D(x) to denote the evaluation of a deterministic algorithm
D on input x to produce output y. Often we use x := var to denote
the assignment of a value var to the variable x. We write R(x) — y
or y < R(x) to denote evaluation of a randomized algorithm R on
input x to produce output y. R can be determinized as R(x;r) =: y,
where r is the explicit randomness used by R.

We model computationally bounded adversaries by probabilistic
polynomial time (PPT) algorithms. Sometimes we say a particular
problem is computationally hardto imply that for any PPT adversary,
the probability of solving a random instance of that problem is
bounded by negl(k).

We denote a sequence of values or a tuple (x1,x2,...) by a stan-
dard vector notation x, and its i-th element is denoted by x[i] or
x;. |x| denotes the number of elements in the vector x. For a tuple
x = (x1,...,xp), we write x* = (x],..., x;) to denote another tuple
for which x} € {x;, L} fori € [¢]. A list can be thought of as an
ordered set; the i-th element of a list L is denoted by L[i]. Lists and

1°0One may wonder we do not commit to r; instead of glri. We remark that it using r;
in the clear would cause a technical issue in the privacy proof, in that the reduction to
£-masked BDDH needs to implicitly set an unknown secret to r;. For more details we
refer to Appendix E.2

vectors can be used interchangeably. Concatenation of two strings
a and b is denoted by (a,b), or (a,b).

We denote w € {0,1}=¢ to denote that w is a bitstring with
maximum length ¢. For any integer k € N we define its ¢-digit
binary expression as Bin(k,£) € {0,1}". For a binary string & €
{0, 1}(for some integer ¢, the truncated string with the first k bits
of w is denoted by w|g. Also, for w, the corresponding bit-string
with most significant £ — 1 bits are the same as w and the last bit
flipped is denoted by LBF(w).

We write [j : x] to denote that the value x is private to party j.
This is natirally extended to a set [S : x] which means all parties
i € S has x. For a protocol 7, we write [j : 2] «— #([i: (x,y)],[j :
z], ¢) to denote that party i has two private inputs x and y; party j
has one private input z; all the other parties have no private input;
¢ is a common public input; and, after the execution, only j re-
ceives a private output z’. We write [i : xj]v;ecs or more compactly
[x]g to denote that each party i € S has a private value x;. For a
description on our communication model and protocol structure
see Appendix A. For notations of security games and oracles we
refer to Appendix B. For definition of Shamir’s secret sharing see
Appendix C.

4.1 Bilinear Pairing and our Assumptions

Our construction uses an asymmetric bilinear pairing. We consider
three groups Gy, Gy, Gt all are of prime order g. A bilinear pairing
e : G1XGy — Gr is an efficiently computable map which is bilinear
and non-degenerate. We prove the security of our scheme under
XDH and a new assumption, which we call £-masked BDDH.

— External Diffie-Hellman (XDH): Given uniform random gener-
ators g1 € G1, g2 € G2 and values g7, gé’ for uniform random
a,b € Zg, it is computationally hard to distinguish between
ggb and a uniform random h € Gy.

— ¢-masked BDDH. Given uniform random generators g; € Gy, g2
Ga2,97 € Gr and elements g, gi’, {ggi, g§+bdi }ie[e) for uni-
form random q, b, ¢, dj<g¢Zg it is computationally hard to dis-
tinguish g7° from a uniform random element in Gr. While ¢
is a parameter which is always bounded by a polynomial in «.
Note that, breaking this is easier than breaking BCDH, because

one can always compute e(g, gg+bd") = g?f”bd", and break-

ing BCDH, compute gCled". However, the other direction is not
clear. Nevertheless, we show in Appendix G this assumption
holds in the generic group model.

4.2 Message and Cipher trees

We consider a new data structure for accessing a tuple of plain-
texts and ciphertexts with a labeled binary tree. We assume that
the nodes of the binary-tree are indexed by a binary string with
prefix-ordering. Assuming the root has depth 0, and the leaves have
depth d, any node at depth d” € {0,...,d} is indexed by a binary
string v € {0, 1}d,. For each node with index w, its left-child is
indexed by w, 0 and right child is indexed by w, 1, and this is done
recursively starting from the root which is indexed by empty-string
¢. Furthermore, each node is additionally labeled by a k-bit string

m

Group Encryption of (mq, ma, m3, mg) by encryptor Client-1

Compute Merkle-tree X using hash H™ on the set
((my, p1, H” (gfl))s-ens (my, pa, H” (g;"))) and compute the
commitment X, to MT. (cf. Fig. 1).

— Send (4,X,) to servers {2,3,4}. Each server returns
zi = H(1, 4, X.)%.

— Compute z := []; z?i by Lagrange using partial values.

— For (my, ..., my), locally compute the ciphertexts as:

o

— store C := (1, X, ¢ (00,c1), (01,¢2), (10, ¢3), (11, ¢4)).

— Sample random values pi, p2, p3, pa<—3Zq and ri, 12,73, r4¢—5Zq.

c1 = (g7 H(Xo) ™, H(Xoo) ™, (my, p1, H” (g1)) & H' (e(gy'.2))),
ez = (97" H(X0) ™2, H(Xo1) "2, (ma, p2, H' (9)) & H' (e(gy*.2))),
3= (97", H(X)™, H(X10) "™, (m3, p3, H (97)) @ H' (e(g;*,2))),
cq = (g HX)™, H(X11)"™, (ma, pa, H' (971)) & H' (e(g7*,2)))

Group Decryption of Cy by decryptor Client-7

— Parse 60 as (1,X,0,(00,¢1),(01,¢2)). Let N denote the no.
of leaves of X. Here N = 4.
— Send (1,4, X,) and the value X at node-0 to servers
{4,5,6}. Each server i computes and returns
Zi = H(1,4,X.) % H(Xo)Pi
— Compute Z = []; Z;* by Lagrange using partial values.
— Decrypt ciphertexts ¢; and c; locally as follows:
— Parse c1 as (R1,51’0,51’00,E1).
— Compute D :=e(Ry,2) - e(gif, 51,0)’1
— Compute (my, p1,h1) = E; & H' (D).
- Verify if Xgo = Wmt(ml,pl, hl) and if (}‘{" (R1) = hl. If
both succeed, then output m;; else output L.
— Perform the above steps for c;.

(4.X,

(1,4, X,)*%

Server-4

4.X) % H(Xo) P

H (1,4, X,)% H(X,)P5

A X,)4 H (Xp)Pa
(1; 4, XE;XO)

Server-6

ke

Figure 2: Flow of HiSE protocol for n = 7 and ¢ = 4. Encryptor client (id-1) encrypts messages (my, mz, ms, m4) in group using ¢t — 1 servers 2, 3,4,
and decryptor client (id-7) decrypts ¢ — 1, ¢; in group C,, for v =0 using servers 4, 5,6 — both using a single interaction. Fig.1 illustrates the

corresponding Merkle-tree structure.

or tags.!! The tag at node o is denoted by X,,. The tree is denoted
by X = (X¢, X0, X1, X01, - - - » Xw, - - -) which contains a sequence of
tags starting from the root and is ordered according to increasing
order of magnitude of w — we simply assume « can be computed
efficiently from each tag X,.

Let m = (my,...,mp) be a tuple of messages. For simplicity
24 for some integer d — this is without loss of
generality. Then consider an associated binary tree X, such that
each leaf is associated with a message; therefore, m; is associated
with node Bin(i — 1). With respect to this binary tree we say all
messages my, ..., my are covered by the root of the tree. For any
arbitrary node w, let (mg, . m;) C (my,...,mp) be all messages
that are associated with the leaves within the sub-tree rooted at w,
and these are the only such messages. Then we say the messages
(m],...,m}) are covered by node w, and are denoted by m,,. We
can naturally extend this such that the set is covered by multiple
nodes.

For any node w, we call the tuple (X , ((w1, ml) . (we, mp)))
a message-tree, which is denoted by M, or just M when the node
is not specified. Note that, here we have ¢ = gd=d’ , where d’ is the
depth of node w € {0, 1}‘1,. For each pair (wj, m;), w; denotes the

we assume N =

100king ahead, these tags will be the hash outputs of a Merkle-tree constructed
based on the commitments of the messages.

index of the leaf-node, to which m; corresponds to. For the same
tree X, consider two message-trees M,, and er such that w is
a prefix of w’, and therefore appears in the sub-tree rooted at w.
We then say M, is a sub-message-tree of M, and denote by the
ordered relation ﬁw/ < 1\71@ - this naturally extends to JVIw/ < ﬁw
when «’ can possibly be the same as w. If 0 and ’ are such that
no string is preﬁx of the other, then we can define a message-forest
asMww/ = Mw UM

Once encrypted, each message m; yields a corresponding ci-
phertext c;. The tuple (X w,(c1,...,cp)) is called a cipher-tree
and is denoted by C, or C. The message-tree notations described
above naturally extend to this setting. For a message-tree M,,, the
messages that are associated with the leaves under the sub-tree
rooted at node w are compactly denoted by my, . Similarly the

ciphertext tuple under w is compactly denoted by ¢ . A mes-

Vo,
sage/cipher tree can be extended to include auxiliary information
as, e.g. C = (aux, X, w, (w1, ¢1), ...). Looking ahead, in our con-
structions we use identity of an encryptor as aux within a produced
cipher-tree.

For better understanding let us take a look at an example, pro-
vided in Figure 3. The entire message-tree is of depth 3, and has
8 associated messages (my, ..., mg). Within this, the message-tree

Figure 3: A plaintext message tuple m corresponds to a tree
of depth 3. A few sub-trees are marked for exposition. We
implicitly assume each node w has a label X,,,.

rooted at node-01, for example, is written as (X, 01, (010, m3), (011, my)).

Among these, the elements (m1, m2, ms, mg, my, mg) are covered by
node-00 and node-1. So, MOO,I is a message forest (marked with
dotted blue). The message tree Moo is a sub-message-tree of M,
(marked with dotted red), and hence Moo < M.

4.3 Merkle Tree Commitments

We will be using a variant of Merkle-tree commitments in our
constructions. Below we directly present the construction along
with syntax. We also discuss the security properties offered by
Merkle-tree commitments, which we use to prove the security of
our construction.

Let H : {0,1}* — {0, 1}* be a hash function (to be modeled as
random oracles). Then for any integer N = 24 for an integer d,'? a
Merkle-tree commitment is defined as a triple of deterministic al-
gorithms (MTCom, MTOpen, MTVer) with following descriptions.

MTCom(vy,...,0n) — X. On input N values v1,...,0n do
as follows:
— setd :=log(N)
— set L := N and fori € [N] set x; g := v;.
— forje[d]do:
— forie [L]:
— setw =Bin(i—1,d—j+1)
- set Xy =X g ji1-
— setx;gj = H(xXzi-1,d- j+1, X2id j+1)-
— setL:=1LJ2.
— return X := (X, ..., X11...1).
MTOpen(X, w) — (X, X,). On input a Merkle-tree X and
any node w do as follows:
— Let X,, denotes the sub-tree rooted at w.
— Define X,, as follows:
— set X, = {X;, X0}
— for j € [|w|] do :
— set Xw = X(,) U {XLBF((Ulj)}
— return (X, X,,).

12For simplicity we assume N to be power of 2. If not, we can simply use padding to
ensure this holds. So, this is without loss of generality.

MTVer(w, X, Xe») — 1/0.
— Check the consistency of the sub-tree X, with respect
to the node X, as root.
— Check the consistency of root X, of the full-tree using
X, and the siblings contained within X
— If both checks pass, output 1, else output 0.

Correctness and Binding. The correctness property of MT com-
mitments can be seen straightforwardly — correctness requires that
if the commitment is done correctly then an opening would verify
correctly; we do not formalize this. The binding holds when for any
security parameter x € N and any tuple v := (v ...,on) € {0,1}7,
any PPT adversary A can win the following security game with at
most negl(x) probability.

— Define a hash function H : {0,1}* — {0, 1}* to be modeled
as random oracles.
— run (o, X, X)) — .?{(H(u).
— set X := MTCom(v).
run (Y:‘),XZJ) := MTOpen(X,).
— if (MTVer(w, Xo, X)) = 1) and (MTVer(w, X, X)) = 1))
then return 1; else return 0.

5 OUR DEFINITION: HIERARCHICAL
THRESHOLD SYMMETRIC ENCRYPTION
(HiSE)

Definition 5.1 (HiSE). A HiSE scheme consists of a tuple of algo-
rithms/protocols (Setup, DistGrEnc, DistGrDec) with the follow-
ing description.

— Setup(1%,1™,1%) — (pp, [sk]{,))- This is a non-interactive
algorithm!® which takes as input the security parameter «,
the total number of parties n and a threshold value t < n. It
generates the public parameters pp and shares of secret key
[[Sk]] [n]-

— DistGrEnc(pp, [sk] 1 [j : m,S]) — ([j : C/11,[S : N.Xc]).
This is an interactive protocol, in that the party j has a tuple
m of messages and (identities of) a set of parties S C [n] as
input and every other party i participates with her key share
sk;. At the end of the protocol party j receives a cipher-tree c
(or L denoting failure) as the output, and every party in set S
receives the root X, of a message-tree and size N of m.

~ DistGrDec(pp, [sk] . [j : C.S1) = ([j : m/1],[S: N, Xe, Xo]).

This is an interactive protocol, in that the party j has a cipher-
tree C and (identities of) a set of parties S C [n] as input and
every other party i participates with her key share sk;. At
the end of the protocol party j receives a tuple of decrypted
messages m (or L denoting failure) as the output and every
party in the set S receives the root X, and the size of messages

N in the cipher tree C.

They are required to satisfy the following consistency guarantee.

Consistency: Forany k,n, t, N € Nsuchthatt < n, all ([sk] [n]> pp)
output by Setup(1¥, 17, 1%), for any sequence of messages
m=mi...,my,any o € {0, 1}Sr1°gN], two sets S, S’ C
[n] such that |S|,|S’| > t, and any two parties j € S, j’ € §,

3However, in a full decentralized setting we can deploy a distributed key-generation
(DKG) protocol to realize it interactively,.

if all the parties behave honestly, then there exists a negli-
gible function negl for which the following probability is
at least 1 — negl(x).

Pr (([j:me/1],[S: N, X, X,]) — DistGrDec([sk]) [i’ : Carr S'])

([j : /1), [S : N, X]) « DistGrEnc([sk[. [: m, S])

where the probability is over the random coin tosses of the
parties involved in DistGrEnc and DistGrDec.

Let us now define the security of a HiSE scheme. Similar to prior
works [7, 20] the overall security requirement is captured by three
distinct properties: correctness, message-privacy and authenticity,
where correctness and authenticity supports stronger versions. We
defer the stronger definitions to Appendix D.1.

Definition 5.2 (Security of HiSE). A HiSE scheme is said to be
secure if it satisfies correctness (Def. 5.3), message-privacy (Def 5.4)
and authenticity (Def 5.5).

Correctness. Intuitively, a HiSE scheme is correct whenever a le-
gitimately produced ciphertext (by executing a DistGrEnc protocol,
possibly in presence of malicious parties), when decrypted (again,
potentially in presence of malicious parties) yield either the actual
message, or L — in particular, the malicious parties can not make it
successfully decrypt to something other than the actual message
without getting detected.

Definition 5.3 (Correctness). A HiSE scheme is correct, if for any
k,n,t € N and any PPT adversary (A, there exists a negligible
function negl such that the game HiSE-Cor 4, defined in Fig. 4,
outputs 1 with probability at most negl(x).

Message privacy. Message privacy is naturally defined as an ex-
tension of ATSE message-privacy [20]. In particular, the adversary
is given access to an “honest” decryption oracle O"S™P-d¢ in which
even the challenge cipher-tree C* canbe queried, but the decryp-
tion takes place at an honest party’s disposal, and the result is not
explicitly given to the adversary - this is similar to both DiSE [7]
and ATSE [20]. Finally, just like ATSE, the adversary is pro