
Communication-Optimal Convex Agreement

DIANA GHINEA, ETH Zurich

CHEN-DA LIU-ZHANG, Luzern University of Applied Sciences and Arts & Web3 Foundation

ROGER WATTENHOFER, ETH Zurich

Byzantine Agreement (BA) allows a set of 𝑛 parties to agree on a value even when up to 𝑡 of the parties

involved are corrupted. While previous works have shown that, for ℓ-bit inputs, BA can be achieved with

the optimal communication complexity O(ℓ𝑛) for sufficiently large ℓ , BA only ensures that honest parties

agree on a meaningful output when they hold the same input, rendering the primitive inadequate for many

real-world applications.

This gave rise to the notion of Convex Agreement (CA), introduced by Vaidya and Garg [PODC’13], which

requires the honest parties’ outputs to be in the convex hull of the honest inputs. Unfortunately, all existing

CA protocols incur a communication complexity of at least Ω(ℓ𝑛2). In this work, we introduce the first CA

protocol with the optimal communication of O(ℓ𝑛) bits for inputs in Z of size ℓ = Ω(𝜅 · 𝑛2 log𝑛), where 𝜅 is

the security parameter.

CCS Concepts: • Theory of computation→ Cryptographic protocols.

Additional Key Words and Phrases: convex agreement, optimal communication, long messages

1 INTRODUCTION

Reaching collaborative decisions becomes tricky in decentralized systems, especially when partici-

pants might be unreliable or even malicious. This is where agreement protocols come in, acting as

crucial tools for finding common ground. One such primitive is Byzantine Agreement (BA), where

a group of 𝑛 parties agree on a value, even if up to 𝑡 of the parties are byzantine.

The standard BA definition comes with certain limitations when applied to real-world scenarios.

Consider, for instance, a network of sensors deployed within a cooling room, responsible for

measuring and reporting the room’s temperature. One can expect minor discrepancies in the

measurements, such as correct sensors obtaining temperatures between −10.05◦𝐶 and −10.03◦𝐶 .
In such a scenario, standard BA allows the honest parties to agree on a value proposed by the

byzantine parties, such as +100◦𝐶 , instead of requiring the output to reflect the correct sensors’

measurements.

A stronger variant of BA, known as Convex Agreement (CA), addresses this issue, as it requires

the honest parties to agree on a value within the convex hull of their inputs (or within the range of

their inputs, if the input space is uni-dimensional). The synchronous model, where parties have

synchronized clocks and messages get delivered within a publicly known amount of time, facilitates

a straightforward approach for achieving CA through Synchronous Broadcast (BC). Essentially,

each party sends its input value via BC, which provides the parties with an identical view of the

inputs. Afterwards, the parties decide on a common output by applying a deterministic function to

the values received. While this approach yields optimal solutions in terms of resilience and round

complexity, there is still a gap in terms of communication. Specifically, if the honest parties hold

inputs of at most ℓ bits, a lower bound on the communication complexity is Ω(ℓ𝑛) bits [28], and
this approach incurs a sub-optimal communication cost of Ω(ℓ𝑛2) bits. For BA and BC, this gap

was long closed in a beautiful line of works [4, 15, 16, 22, 28] via so-called extension protocols, that

achieve a communication complexity of𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, where 𝜅 is a security parameter. In

this work, we focus on closing this gap in the synchronous model for CA. In this setting, we ask

the following question:

Can we achieve CA with the asymptotically optimal communication of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits?

1

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

We answer this question in the affirmative. More concretely, we introduce a deterministic protocol

in the plain model (no setup) that achieves the optimal resilience 𝑡 < 𝑛/3, optimal asymptotic

communication complexity of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) and round complexity 𝑂 (𝑛 log𝑛).1 The protocol
makes use of collision-resistant hash functions and takes as inputs ℓ-bit strings interpreted as

integer values. This is without loss of generality and only used to establish an ordering between

the inputs (one could alternatively interpret the inputs being rational numbers with some arbitrary

pre-defined precision).

1.1 Related work

Convex-Hull Validity. The requirement of obtaining outputs within the honest inputs’ range

has been first introduced in [10] for Approximate Agreement (AA). AA relaxes the agreement

requirement, allowing the parties’ outputs to deviate by a predefined error 𝜀 > 0. While this

relaxation allows for deterministic asynchronous protocols, circumventing the FLP result [14], it

also has advantages in the synchronous model if 𝑛 is Ω(ℓ). Namely, the runtime of deterministic

AA algorithms may only depend on ℓ instead of 𝑛, bypassing the 𝑂 (𝑛) rounds requirement [11].

Such algorithms proceed in iterations, where each iteration involves a step where parties send a

value to all parties, hence incurring a communication cost of Ω(ℓ𝑛2) bits. AA has been a subject

of an extensive line of works, focusing on optimal convergence rates [3, 12, 13], higher resilience

thresholds both in asynchronous and synchronous networks [1, 17, 21], and different input spaces,

such as multidimensional inputs [18, 25, 34], or abstract convexity spaces [2, 9, 20, 30].

CA was formally defined by Vaidya and Garg in [26, 34], assuming that the input space consists

of multidimensional values. Feasibility with optimal resilience has been considered for abstract

convexity spaces as well [9, 30]. Another line of works has investigated the feasibility of an even

stronger requirement for inputs in R or Z, i.e. that the output is close to the median of the honest

inputs [8, 32], or, more generally, to the 𝑘-th lowest honest input [24].

Extension Protocols. The problem of reducing the communication complexity of BA on multi-

valued inputs was first addressed by Turpin and Coan [33], where the authors assume 𝑡 < 𝑛/3 and
give a reduction from long-messages BA to short-messages BAwith a communication cost of Ω(ℓ𝑛2)
bits. Fitzi and Hirt [15] later achieve BA in the honest majority setting with the asymptotically

optimal communication complexity 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, assuming a universal hash function.

Further works have provided error-free solutions focusing on reducing the additional poly(𝑛, 𝜅)
factor in the communication complexity both in the 𝑡 < 𝑛/3 [16, 23, 28] setting and in the honest-

majority setting [4, 16, 28].

Extension protocols have also been a topic of interest for problems related to BA, such as BC in

the 𝑡 < 𝑛 setting [6, 19], or asynchronous Reliable Broadcast [5, 28].

1.2 Comparison to previous works

In terms of techniques, our solution differs significantly from both prior works on BA extension

protocols and prior works on CA or AA. In comparison to BA, the honest-range requirement of CA

adds a new level of challenges when it comes to reducing the communication. Roughly, in prior

works on communication-optimal BA, each party first computes a short 𝜅-bit encoding of its long

ℓ-bit input value (using e.g. a hash function). Afterwards, the parties agree on an encoding 𝑧★ using

a BA protocol for short messages. Finally, parties holding the (unique) input value 𝑣★ matching the

encoding 𝑧★ distribute 𝑣★ to all the parties in a non-trivial manner. The main issue when trying to

adapt this approach to CA is that the short 𝜅-bit encodings lost information about the ordering of

1
With randomization, our protocol can be made to achieve𝑂 (𝜅 log𝑛) = 𝑂̃ (1) rounds.

2

Communication-Optimal Convex Agreement

the original values, and in particular cannot reflect the honest inputs’ range. On the other hand,

existing protocols satisfying this validity requirement, regardless of whether they achieve CA or its

weaker variant AA, involve some step where all parties send their ℓ-bit values to all other parties. It

might seem intuitive that the parties need a possibly consistent or identical view over their actual

values to decide on a valid output. However, we show that this intuition is not true.

Our protocol relies on a byzantine variant of the longest common prefix problem, and makes use

of a BA protocol for short messages as a building block. The central insight behind our approach is

that the longest common prefix of the honest parties’ inputs represented as bitstrings reveals a

subset of the honest inputs’ range. While finding the exact longest common prefix of the honest

inputs is impossible due to the byzantine parties involved, the longest common prefix of any values

in the honest inputs’ range will suffice to obtain an output.

2 PRELIMINARIES

We denote by 𝜅 the security parameter. We consider a setting with 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 in a

fully connected network, where each pair of parties is connected by an authenticated channel. We

assume that the network is synchronous: the parties’ clocks are synchronized and all messages

get delivered within Δ time, where Δ is publicly known. We consider an adaptive adversary that

can corrupt up to 𝑡 < 𝑛/3 parties at any point in the protocol’s execution, causing them to become

byzantine: corrupted parties may deviate arbitrarily from the protocol. Our protocols make use

of a collision-resistant hash function 𝐻𝜅 : {0, 1}★ → {0, 1}𝜅 , and we assume that the adversary

is computationally bounded. For simplicity of presentation, our proofs will assume that 𝐻𝜅 is

collision-free; our protocols are secure conditioned on the event that a collision occurs.

2.1 Binary representations

We need to establish a few notations and implicit remarks. For a value 𝑣 ∈ N, we define its binary
representation bits(𝑣) := b1b2 . . . b𝑘 such that 2

𝑘−1 ≤ 𝑣 < 2
𝑘
, b𝑖 ∈ {0, 1} for every 1 ≤ 𝑖 ≤ 𝑘 ,

and

∑𝑘
𝑖=1 b𝑖 · 2𝑘−𝑖 = 𝑣 . For ℓ ≥ 𝑘 , we additionally define bitsℓ (𝑣) as the ℓ-bit string obtained

by prepending ℓ − 𝑘 zeroes to bits(𝑣). We denote the length of a bitstring bits by

��
bits

��
. The

reverse operation will be val(bits): given a bitstring bits := b1b2 . . . b𝑘 (where every b𝑖 ∈ {0, 1}),
val(bits) := ∑𝑘

𝑖=1 b𝑖 ·2𝑘−𝑖 = 𝑣 . For any ℓ ≥
��
bits(𝑣)

��
, val(bitsℓ (𝑣)) = 𝑣 . We also include the remark

below, which we use implicitly in our proofs. Note that ∥ is the concatenation operator.

Remark 1. Consider some bitstrings prefix, bits
1
and bits

2
, suffix

1
and suffix

2
such that

��
bits

1

�� =��
bits

2

�� > 0, and

��
suffix

1

�� = ��
suffix

2

��
. If val(bits1) > val(bits2), then val(prefix∥bits1 ∥suffix1) >

val(prefix ∥ bits2 ∥ suffix2).

2.2 Definitions

We recall the definitions of CA and BA. We mention that, throughout the paper, we will use valid

value to refer to a value satisfying Convex-Hull Validity (as opposed to the Validity definition of

BA), as defined below.

Definition 1 (Convex Agreement). Let Π be an 𝑛-party protocol where each party holds a value 𝑣in
as input, and parties terminate upon generating an output 𝑣out. Π achieves Convex Agreement if the

following properties hold even when up to 𝑡 of the parties involved are corrupted:

• (Termination) All honest parties terminate;

• (Convex-Hull Validity) Honest parties’ outputs lie in the honest inputs’ convex hull (i.e. range);

• (Agreement) All honest parties output the same value.

3

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Definition 2 (Byzantine Agreement). Let Π be an 𝑛-party protocol where each party holds a value

𝑣in as input, and parties terminate upon generating an output 𝑣out. Π achieves Byzantine Agreement

if the following properties hold even when up to 𝑡 of the parties involved are corrupted:

• (Termination) All honest parties terminate;

• (Validity) If all honest parties hold the same input value 𝑣 , they output 𝑣out = 𝑣 ;

• (Agreement) All honest parties output the same value.

For a BA or CA protocol Π, we use bitsℓ (Π) to refer to its communication complexity for ℓ-

bit inputs. That is, bitsℓ (Π) denotes the worst-case total number of bits sent by honest parties,

assuming that they hold inputs of at most ℓ bits. In addition, we denote the worst-case round

complexity of Π by rounds(Π) (note that this is independent of the inputs’ length ℓ).

We also need to recall the definition of BC.

Definition 3 (Synchronous Broadcast). Let Π be a protocol where a designated party 𝑆 (called the

sender) holds a value 𝑣𝑆 , and every party 𝑃 terminates upon generating an output 𝑣out. We say that Π
achieves BC if the following properties hold even when 𝑡 of the parties involved are corrupted:

• (Termination) All honest parties terminate;

• (Validity) If 𝑆 is honest, every party outputs 𝑣out = 𝑣𝑆 ;

• (Consistency) All honest parties output the same value.

Similarly to BA and CA protocols, for a BC protocol Π, we use rounds(Π) to denote its round

complexity. For the bit complexity, we will distinguish between an honest sender and a byzantine

sender. Hence, bitsℓ (Π) denotes the worst-case bit complexity assuming that the sender is honest

and its input consists of at most ℓ bits. For the worst-case bit complexity in the case of a byzantine

sender, we use the notation bitsbyz (Π).

3 OVERVIEW

We provide an overview of our main protocol, outlining the main challenges and techniques. First,

note that 𝑂 (ℓ𝑛 + poly(𝑛, 𝑘)) bits do not allow for a step where the parties distribute their ℓ-bit

values. Instead, we aim to only work with the prefixes of the values’ ℓ-bit representations. In the

following, and in our main protocol, we solely concentrate on interpreting the input bitstrings as

values in N. The extension to Z is explained in Section 6.

For intuition, it will be useful to arrange the honest inputs’ range in a so-called prefix tree (or

trie). As shown in Figure 1, a prefix tree is a (rooted) tree where each node stores a string’s prefix.

The edges from nodes to their children are labelled with characters (0 or 1) indicating the prefixes

stored on the children. Note that CA requires the parties to find a leaf in this prefix tree.

Fig. 1. Prefix tree storing the honest inputs’ range, assuming that ℓ = 4 and the honest inputs are 5, 7 and 11.

4

Communication-Optimal Convex Agreement

3.1 Inputs’ length

The bit representations bits(𝑣in) of the parties’ inputs 𝑣in may be of different lengths, and, to

compare prefixes effectively, the parties first agree on a common input length of ℓest bits, such that

every party can modify its input to a valid input of length ℓest.

A straightforward approach for parties to estimate ℓest is to simply run iterations, where at each

iteration 𝑖 , parties use a BA protocol to agree on whether their input is smaller than 2
𝑖
(which is

within the convex hull of original inputs). If the output is 1, the parties that had a larger input

modify their input to the value 2
𝑖 − 1. This approach would require a number of rounds that is in

the worst case proportional to the longest original input.

We provide instead an optimized mechanism that requires a number of rounds independent

of the length of the original inputs and is based on BC. A challenge here is that the parties are

not aware of what message length to expect, which enables the byzantine parties to blow up the

communication complexity by sending very long messages via BC. We prevent this by providing

the parties with (possibly distinct) limits on the inputs’ lengths, and by requiring our BC protocol

to achieve the property below. See Section 4.2 for details.

Definition 4. (Limited Length) Let Π be a broadcast protocol. We say that Π achieves Limited Length

if the following property holds: Assume that every party 𝑃 holds a value length_limit such that, if 𝑆

is honest, its input 𝑣𝑆 satisfies

��
bits(𝑣𝑆)

�� ≤ length_limit. Then, bitsbyz (Π) ≤ bitslength_limit
max

(Π),
where length_limit

max
is the highest among the values length_limit held by honest parties.

3.2 Warm-up

As a starting point towards our final solution, we describe a simple (yet inefficient) approach that

finds a leaf in the prefix tree of the honest inputs’ range using ℓest iterations. In iteration 𝑖 , the parties

hold valid values 𝑣 such that the bit representations bitsℓest (𝑣) share a common prefix prefix
★
of

𝑖 − 1 bits. The parties extend the common prefix with one bit with the help of a BA protocol ΠBA:

they join ΠBA with input b𝑖 := the 𝑖-th bit of bitsℓest (𝑣) and agree on bit prefix
★
𝑖 . Parties holding

b𝑖 ≠ prefix
★
𝑖 need to update their value 𝑣 to some valid value matching the prefix agreed upon. We

know that prefix
★
𝑖 was proposed by an honest party, hence prefix ∥ prefix★𝑖 is the prefix of a valid

ℓest-bit value 𝑣
★
. This allows the parties to update their values as follows: if b𝑖 = 0 and prefix

★
𝑖 = 1,

meaning that 𝑣 < 𝑣★, then the lowest ℓest-bit value having prefix prefix
★ ∥ prefix★𝑖 is in [𝑣, 𝑣★]

and therefore is valid. Similarly, if b𝑖 = 1 and prefix
★
𝑖 = 0, meaning that 𝑣 > 𝑣★, then the highest

ℓest-bit value having prefix prefix
★ ∥ prefix★𝑖 is in [𝑣★, 𝑣] and therefore is valid.

Fig. 2. In iteration 𝑖 , the parties hold values with a common prefix of 𝑖 − 1 bits, and agree on the 𝑖-th bit

prefix
★
𝑖
. In this figure, prefix

★
𝑖
= 1, and parties holding values with b𝑖 = 0 update their values.

For a bitstring prefix of at most ℓ bits, maxℓ (prefix) denotes the highest ℓ-bit value having
prefix as prefix (obtained by concatenating prefix with ℓ −

��
prefix

��
ones). Similarly, minℓ (prefix)

denotes the lowest ℓ-bit value having prefix as prefix (obtained by concatenating prefix with

5

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

ℓ −
��
prefix

��
zeroes). The remark below then ensures that the update step indeed leads to valid

values. The proof is included in Appendix A.

Remark 2. Consider two values 𝑣, 𝑣 ′ ∈ N satisfying 𝑣 ≤ 𝑣 ′ < 2
ℓ
, and let common_prefix denote the

longest common prefix of bitsℓ (𝑣) and bitsℓ (𝑣 ′).
If

��
common_prefix

�� < ℓ , then maxℓ (common_prefix ∥ 0),minℓ (common_prefix ∥ 1) ∈ [𝑣, 𝑣 ′].

This way, at the end of iteration ℓest, CA is achieved: the parties hold valid ℓest-bit values with a

common prefix of ℓest bits, and therefore they have agreed on a valid value.

3.3 From bits to blocks

Instead of building some valid values’ prefix bit by bit, we may do so block by block. Assume without

loss of generality that ℓest is a multiple of 𝑛. Then, for 𝑣 ∈ N satisfying

��
bits(𝑣)

�� ≤ ℓest, we define

blocks(𝑣) := (block1, block2, . . . , block𝑛) such that bitsℓest (𝑣) = block1 ∥ block2 ∥ . . . ∥ block𝑛 ,
and, for any 1 ≤ 𝑖 ≤ 𝑛,

��
block𝑖

�� = ℓest/𝑛. For 1 ≤ 𝑖 ≤ 𝑛, use block𝑖 (𝑣) to refer to block𝑖 . We will

use the term block to refer to such sequences of ℓest/𝑛 bits.

Following the outline of the warm-up approach, in iteration 𝑖 , the parties hold valid ℓest-bit

values 𝑣 having a common prefix prefix
★
of 𝑖 − 1 blocks. In an attempt to extend prefix

★
by one

block prefix
★
𝑖 , the parties join a BA protocol ΠℓBA (for long messages) with block𝑖 (𝑣) as input.

When the parties agree on a block. If the parties agree on a block prefix
★
𝑖 , the honest parties

holding block𝑖 ≠ prefix
★
𝑖 should update their values 𝑣 to match the prefix agreed upon. However,

unless all honest parties hold block𝑖 = prefix
★
𝑖 , prefix

★
𝑖 may be a block proposed by a corrupted

party, forcing the updated values outside the honest range. To prevent this, we make use of the

special symbol ⊥, and we require ΠℓBA to achieve an additional property, as defined below.

Definition 5. No Corrupted Output: If honest parties output 𝑣 ≠ ⊥, 𝑣 is some honest party’s input.

If ΠℓBA satisfies No Corrupted Output and the parties agree on a block prefix
★
𝑖 , then prefix

★ ∥
prefix

★
𝑖 is the prefix of an honest party’s (valid) value. If a party 𝑃 holds a value 𝑣 with block𝑖 (𝑣) ≠

prefix
★
𝑖 , it updates its value to match the prefix agreed upon. If block𝑖 < prefix

★
𝑖 , then 𝑃 updates

its value as 𝑣 := minℓest (prefix★ ∥ prefix★𝑖), and, if block𝑖 > prefix
★
𝑖 , 𝑃 updates its value as

𝑣 := maxℓest (prefix★ ∥ prefix★𝑖). The result below is a more general version of Remark 2 and

ensures that updated values indeed remain valid. The proof is included in Appendix A.

Remark 3. Consider two values 𝑣, 𝑣 ′ ∈ N such that 𝑣, 𝑣 ′ < 2
ℓ
, and let common_prefix denote the

longest common prefix of bitsℓ (𝑣) and bitsℓ (𝑣 ′). Let next_bits and next_bits
′
denote two non-

empty bitstrings of equal length such that common_prefix ∥ next_bits is a prefix of bitsℓ (𝑣), and
common_prefix ∥ next_bits′ is a prefix of bitsℓ (𝑣 ′). Then, if val(next_bits) < val(next_bits′),
then minℓ (common_prefix ∥ next_bits′),maxℓ (common_prefix ∥ next_bits) ∈ [𝑣, 𝑣 ′].

When the parties agree on ⊥. If ΠℓBA returns ⊥ in some iteration 𝑖★ ≤ 𝑛, honest parties hold

different blocks block𝑖★ . In fact, this means that we are very close to finding a valid output.

Looking at Figure 1, a crucial observation is that nodes that have two children, and hence that

store valid values’ longest common prefixes, reveal subsets of the honest inputs’ range. For example,

the node storing 01 indicates that the highest 4-bit value having prefix 010 (in this case, this is

5) and the lowest value having prefix 011 (namely, 6) are valid. This means that, once the parties

identify some valid values’ longest common prefix, they may immediately derive an output with

the help of Remark 2. On the other hand, this property applies to valid values’ longest common

prefix in terms of bits, while, at this point, the parties are only aware of a longest common prefix in

terms of blocks: some of the bits in block 𝑖★ may be common. We then enable honest parties to

6

Communication-Optimal Convex Agreement

find two different valid values’ prefixes, and hence a longest common prefix in terms of bits, by

requiring ΠℓBA to achieve a second additional property, defined below. Note that, when 𝑡 < 𝑛/3,
this property is equivalent to requiring that at most 𝑡 honest parties have the same input value.

Definition 6. (𝑡 + 1)-Disagreement: If the honest parties output ⊥, then, for any value 𝑣 , there are

𝑡 + 1 honest parties holding inputs 𝑣in ≠ 𝑣 .

3.4 A round-efficient approach

Although the approach described so far already achieves our goal regarding communication

complexity, the round complexity will be𝑂 (𝑛) ·rounds(ΠℓBA). We reduce the number of iterations

from 𝑂 (𝑛) to 𝑂 (log𝑛) (while maintaining the communication complexity) by employing binary

search: the parties are looking for an index 𝑖★ such that, roughly, running ΠℓBA on valid values’

prefixes of 𝑖★ blocks returns ⊥, while ΠℓBA returns a non-⊥ output on valid values’ prefixes of 𝑖★− 1

blocks. Then, we proceed as follows: in the first iteration, the parties check whether ΠℓBA returns

⊥ on the first half of their blocks block1 ∥ . . . ∥ blockmid. If ΠℓBA returns ⊥, mid is an upper bound

for 𝑖★, and we continue the search for 𝑖★ within the first half of the blocks block1, . . . , blockmid−1
in the next iteration, using an identical approach. Otherwise, if ΠℓBA returns a bitstring of mid

blocks prefix
★
1
∥ . . . ∥ prefix★

mid
, the parties update their values to match this prefix and use the

same approach to find 𝑖★ within the second half of their updated values’ blocks in the next iteration.

After 𝑂 (log𝑛) iterations, either ΠℓBA never returned ⊥ and the parties now hold identical values,

or 𝑖★ is found.

While this approach is more efficient, it adds a couple of challenges for deciding on the final output

once 𝑖★ is found. The values held by the honest parties at the end of the 𝑂 (log𝑛) iterations will
indeed have a common prefix of 𝑖★−1 blocks. However, as opposed to the𝑂 (𝑛)-iterations approach,
these values might have been updated, which prevents us from using the (𝑡 + 1)-Disagreement

property of ΠℓBA to immediately obtain an output. Instead, we need to make use of the values 𝑣⊥
held in the last iteration where ΠℓBA has returned ⊥: (𝑡 + 1)-Disagreement holds for these values’

prefixes of 𝑖★ blocks. Hence, we use the values 𝑣 to derive some valid value’s prefix of 𝑖★ blocks,

denoted by prefix
1
, and the 𝑡 + 1 honest parties that hold values 𝑣⊥ not having prefix

1
as a prefix

will complain by announcing the first mismatch between prefix
1
and the values 𝑣⊥. Each of the

honest complaints will lead to a valid value, enabling the parties to agree on a valid output. See

Section 5 for details.

4 BUILDING BLOCKS

In Section 3, we have introduced a few additional properties which enable us to use BC and BA

protocols as building blocks. In the following, we describe how these properties can be achieved.

4.1 Recap: BA for long messages

We describe an extension protocol for BA following the outline of prior works [4, 28]. We may

remove the trusted setup assumption since we only focus on 𝑡 < 𝑛/3 corruptions instead of an

honest majority. We make use of Reed-Solomon (RS) codes [31], which allow each party to split

its value into 𝑛 codewords so that reconstructing the original value only requires 𝑛 − 𝑡 of these 𝑛

codewords. To enable the parties to detect corrupted codewords, and also to compress the parties’

values, prior works [4, 28] make use of collision-free cryptographic accumulators [29]. Essentially,

accumulators convert a set (in our case, the 𝑛 codewords) into a 𝜅-bit value and provide witnesses

confirming the accumulated set’s contents. For this task, we use Merkle Trees (MT) [27], which do

not require a trusted dealer. We define RS codes and MT below.

7

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Linear erasure-correcting codes. [31] We use standard RS codes with parameters (𝑛, 𝑛 − 𝑡).
This provides us with a deterministic algorithm RS.encode(𝑣), which takes a value 𝑣 as input and

converts it into 𝑛 codewords (s1, . . . , s𝑛) of𝑂 (
��
bits(𝑣)

��/𝑛) bits each. The codewords s𝑖 are elements

of a Galois Field F = 𝐺𝐹 (2𝑎) with 𝑛 ≤ 2
𝑎 − 1. To reconstruct the original value, RS codes provide

a decoding algorithm, RS.decode, which takes as input 𝑛 − 𝑡 of the 𝑛 codewords and returns the

original value 𝑣 . Any 𝑛 − 𝑡 of the 𝑛 codewords uniquely determine the original value 𝑣 .

Merkle trees. [27] An MT is a balanced binary tree that enables us to compress a multiset of

values into a 𝜅-bit encoding, and to efficiently verify that some value belongs to the compressed

multiset. Given a multiset 𝑆 = {s1, . . . , s𝑛}, the MT is built bottom-up: starting with 𝑛 leaves, where

the 𝑖-th leaf stores 𝐻𝜅 (s𝑖). Each non-leaf node stores 𝐻𝜅 (ℎleft ∥ ℎright), where ℎleft and ℎright
are the hashes stored by the node’s left and resp. right child. This way, the hash stored by the

root represents the encoding of 𝑆 . Given the root’s hash 𝑧, one can prove that s𝑖 belongs to the

compressed multiset using a witness 𝑤𝑖 of 𝑂 (𝜅 · log𝑛) bits. The witness 𝑤𝑖 contains the hashes

needed to verify the path from the 𝑖-th leaf to the root. Note that the collision-resistance assumption

leads to different encodings for different multisets, and prevents the adversary from producing

witnesses for values of its own choice. We will use MT.Build(𝑆) to denote the (deterministic)

algorithm that creates the MT for the given multiset 𝑆 and returns the hash stored by the root 𝑧

and the witnesses𝑤1,𝑤2, . . .𝑤𝑛 . Afterwards, MT.Verify(𝑧, 𝑖, s𝑖 ,𝑤𝑖) returns true if𝑤𝑖 proves that

𝐻𝜅 (s𝑖) is indeed stored on the 𝑖-th leaf of the MT with root hash 𝑧 and false otherwise.

BA for long messages. [4, 28] We sketch the outline of existing BA protocols for long messages.

(1) Each party computes s1, . . . , s𝑛 := RS.encode(𝑣in); 𝑧,𝑤1, . . . ,𝑤𝑛 := MT.Build({s1, . . . s𝑛}).
(2) The parties agree on an encoding 𝑧★ with the help of a BA protocol for short messages.

To ensure that 𝑧★ was proposed by an honest party (i.e., that the No Corrupted Output

property holds) and therefore the value 𝑣★ behind 𝑧★ can be reconstructed, the parties join

BA with input 1 if 𝑧 = 𝑧★ and 0 otherwise.

(3) If the bit agreed upon is 0, the parties output ⊥. Otherwise, every party 𝑃★ holding 𝑧 = 𝑧★

distributes 𝑣★ := 𝑣in to all the parties. To achieve this using only 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits,
𝑃★ sends s𝑖 and its MT witness𝑤𝑖 to each party 𝑃𝑖 . The MT witnesses allow the parties to

detect and discard any corrupted codewords. In addition, RS codes are deterministic, so

each party 𝑃𝑖 obtains a unique codeword s𝑖 from RS.encode(𝑣★). Every party 𝑃𝑖 then sends

(s𝑖 ,𝑤𝑖) to all parties, which allows the parties to reconstruct 𝑣★.

This leads to the result below. We include the formal presentation and analysis in Appendix B.1.

Theorem 1 ([28]). Given a BA protocol ΠBA secure against 𝑡 < 𝑛/3 corruptions, there is a protocol
ΠℓBA achieving BA secure against 𝑡 < 𝑛/3 corruptions with communication complexity bitsℓ (ΠℓBA) =
𝑂 (ℓ𝑛 +𝜅 ·𝑛2 log𝑛) +𝑂 (1) · bits𝜅 (ΠBA), and round complexity rounds(ΠℓBA) = 𝑂 (1) · rounds(ΠBA).

4.2 Limited Length Synchronous Broadcast

The lemma below explains how the Limited Length property can be achieved with the help of BA.

Lemma 1. Given a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, there is a BC protocol ΠBC+

resilient against 𝑡 < 𝑛/3 corruptions that achieves Limited Length, with communication complexity

bitsℓ (ΠBC+) = 𝑂 (ℓ𝑛) + bitsℓ (ΠBA) and round complexity rounds(ΠBC+) = 𝑂 (1) + rounds(ΠBA).

Proof. In ΠBC+, the sender 𝑆 sends its value 𝑣𝑆 to all parties (hence, it sends 𝑂 (ℓ𝑛) bits). Af-
terwards, each party joins ΠBA: with input 𝑣 if the value 𝑣 received from 𝑆 satisfies

��
bits(𝑣)

�� ≤
length_limit, and with input ⊥ otherwise. Then, the parties output the value returned by ΠBA.

The round complexity is therefore rounds(ΠBC+) = 𝑂 (1) + rounds(ΠBA).

8

Communication-Optimal Convex Agreement

If 𝑆 is honest, the precondition on the values length_limit (in Definition 4) ensures that 𝑣𝑆
satisfies

��
bits(𝑣𝑆)

�� ≤ length_limit for every honest party. Then, all honest parties join ΠBA with

𝑣𝑆 as input and agree on 𝑣𝑆 , hence Validity holds. The total communication cost is bitsℓ (ΠBC+) =
𝑂 (ℓ𝑛) + bitsℓ (ΠBA). Otherwise, if 𝑆 is corrupted, every honest party joins ΠBA with an input of

at most length_limit
max

bits. Then, the parties obtain the same output in ΠBA, which ensures

Consistency, and a total communication cost bitsbyz (ΠBC+) ≤ bitslength_limit
max

(ΠBA). □

Theorem 1 and Lemma 1 imply the following result for long messages.

Corollary 1. Given a BA protocol ΠBA secure against 𝑡 < 𝑛/3 corruptions, there is a BC protocol ΠℓBC+

secure against 𝑡 < 𝑛/3 corruptions that achieves Limited Length, with communication complexity

bitsℓ (ΠℓBC+) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) + 𝑂 (1) · bits𝜅 (ΠBA) and round complexity rounds(ΠℓBC+) =

𝑂 (1) · rounds(ΠBA).

4.3 BA with additional properties

To obtain a BAprotocol for longmessages that achievesNoCorrupted Output and (𝑡+1)-Disagreement,

we only need the underlying BA protocol for short messages to achieve these properties. We design

such a protocol with the help of the BC protocol ΠBC+ described in Lemma 1. Every party distributes

its input 𝑧 via ΠBC+, where all parties set length_limit := 𝜅. Then, the parties receive the same

(at least 𝑛 − 𝑡) values 𝑧. If a value 𝑧★ was sent by 𝑡 + 1 parties, this will be the value agreed upon.

Otherwise, the parties output ⊥.

Protocol 𝚷BA+

Code for party 𝑷 with input 𝒛

1: Send 𝑧 to all the parties via ΠBC+. (Set length_limit := 𝜅 in every ΠBC+ invocation).

2: If there is no value 𝑧 received from 𝑡 + 1 parties, output ⊥.
3: Otherwise, output 𝑧★ := the lowest value 𝑧 received from 𝑡 + 1 parties.

ΠBA+ achieves BA with the additional properties No Corrupted Output and (𝑡 + 1)-Disagreement

when 𝑡 < 𝑛/3. We may then replace Step (2) of the sketch included in Section 4.1 as follows: the

parties join ΠBA+. If ΠBA+ returns 𝑧★ ≠ ⊥, then 𝑧★ was proposed by an honest party, which is

enough for 𝑣★ to be correctly distributed in Step 3. Otherwise, if ΠBA+ returns ⊥, the parties output
⊥. This way, if the parties output ⊥ in the long-messages protocol, then ΠBA+ guarantees that there
was no set of 𝑡 + 1 honest parties holding the same encoding 𝑧★, and therefore no 𝑡 + 1 honest

parties held the same input value 𝑣in. Hence, the (𝑡 + 1)-Disagreement property is maintained. If the

parties output a non-⊥ value, then ΠBA+ guarantees that the encoding 𝑧★ that led to this output was

proposed by an honest party, and therefore the No Corrupted Output property is also maintained.

This leads us to the result below. For the formal presentation and proofs, see Appendix B.2.

Corollary 2. Given a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, there is a BA protocol

ΠℓBA+ resilient against 𝑡 < 𝑛/3 corruptions that additionally achieves No Corrupted Output and

(𝑡 +1)-Disagreement. The communication complexity of ΠℓBA+ is bitsℓ (ΠℓBA+) = 𝑂 (ℓ𝑛+𝜅 ·𝑛2 log𝑛) +
𝑂 (𝑛) · bits𝜅 (ΠBA), and the round complexity is rounds(ΠℓBA+) = 𝑂 (1) + rounds(ΠBA).

5 PROTOCOL FOR N

We are now ready to present our protocolΠN achieving CA on natural numbers with communication

complexity 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) and round complexity 𝑂 (𝑛 log𝑛). In the following, we assume a BA

protocol ΠBA, and we make use of the building blocks presented in Section 4: the BA protocol

9

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

ΠℓBA+ that also achieves No Corrupted Output and (𝑡 + 1)-Disagreement, described in Corollary 2,

and the BC protocol ΠℓBC+ that also achieves Limited Length, described in Corollary 1.

5.1 Estimating the inputs’ length

The parties first estimate their inputs’ length with the help of the subprotocol Estimate. In this

subprotocol, the parties agree on a length ℓest (that is a multiple of 𝑛) satisfying ℓmin ≤ ℓest ≤
⌈ℓmax/𝑛⌉ · 𝑛. In addition, each party obtains a valid value 𝑣 such that

��
bits(𝑣)

�� ≤ ℓest.

As the parties are not yet aware of what message length to expect, we first allow each party

to learn a length_limit: every party sends ⌈
��
bits(𝑣in)

��/𝑛⌉ to all parties, which takes 𝑂 (𝑛 · log ℓ)
bits. Then, every party receives 𝑛 − 𝑡 + 𝑘 such values, out of which at most 𝑘 are sent by corrupted

parties. The lemma below (proven in Appendix C.1) ensures that the multiset safe_values obtained

by discarding the lowest 𝑘 and the highest 𝑘 values received is included in the range of values

⌈
��
bits(𝑣in)

��/𝑛⌉ sent by the honest parties.

Lemma 2. Let received_values denote a multiset of 𝑛 − 𝑡 + 𝑘 values, where 0 ≤ 𝑘 ≤ 𝑡 , and let

honest_values ⊆ received_values denote a multiset of 𝑛 − 𝑡 values. Then, if safe_values is a

multiset obtained by discarding the lowest 𝑘 and highest 𝑘 values in received_values, it holds that��
safe_values

�� ≥ 𝑡 + 1, and safe_values ⊆ [minhonest_values,maxhonest_values] .

Note that both𝑛 ·min safe_values and𝑛 ·max safe_values are good candidates for ℓest. To agree

on ℓest, each party distributes 𝑙min := min safe_values through the BC protocol ΠBC+ described in

Corollary 1. Each party sets length_limit := ⌈log
2
max safe_values⌉ + 1 for these invocations:

one can show that the multisets safe_values obtained by honest parties pair-wise intersect, which

implies that honest values 𝑙min satisfy these limits. The parties then receive the same 𝑛 − 𝑡 + 𝑘

values 𝑙min, out of which 𝑘 come from corrupted parties, and Lemma 2 ensures that the (𝑘 + 1)-th
lowest value 𝑙min received, denoted by 𝑙est, is in the range of honest values 𝑙min. Parties then set

ℓest := 𝑛 · 𝑙est. The communication cost of this step is at most 𝑂 (𝑛) · bits⌈log
2
⌈ℓmax/𝑛⌉ ⌉+1 (ΠBC+).

Estimate(𝒗in)

Code for party 𝑷 with input 𝒗in

1: Send 𝑙 := ⌈
��
bits(𝑣in)

��/𝑛⌉ to all parties.

2: Out of the 𝑛 − 𝑡 + 𝑘 values received, discard the lowest 𝑘 and the highest 𝑘 values. Let safe_values

be the multiset containing the remaining values, and let 𝑙min := min safe_values and 𝑙max :=

max safe_values.

3: Send 𝑙min to all parties via ΠℓBC+. Join each ΠℓBC+ invocation with length_limit := ⌈log
2
𝑙max⌉ + 1.

4: Out of the 𝑛 − 𝑡 + 𝑘 values 𝑙min received, set 𝑙est := the (𝑘 + 1)-th lowest value, and ℓest := 𝑙est · 𝑛.
5: Set 𝑣 := 𝑣in if

��
bits(𝑣in)

�� ≤ ℓest and 𝑣 := 2
ℓest − 1 otherwise. Output ℓest, 𝑣 .

The lemma below states the guarantees of Estimate. The proof is included in Appendix C.1.

Lemma 3. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, and let ℓmin and ℓmax

denote the lowest and resp. the highest lengths

��
bits(𝑣in)

��
of the honest inputs 𝑣in. Then, in Estimate,

honest parties agree on a value ℓest that is a multiple of 𝑛 and satisfies ℓmin ≤ ℓest ≤ ⌈ℓmax/𝑛⌉ · 𝑛.
In addition, every honest party obtains a valid ℓest-bit value 𝑣 . Estimate achieves communication

complexity bitsℓ (Estimate) = 𝑂 (ℓ𝑛 + 𝑘 · 𝑛3 log𝑛) + 𝑂 (𝑛) · bits𝜅 (ΠBA), and round complexity

rounds(Estimate) = 𝑂 (1) · rounds(ΠBA).

10

Communication-Optimal Convex Agreement

5.2 Finding some valid values’ longest common prefix

As described in Section 3, the parties’ goal is to determine some valid values’ longest common

prefix. In our implementation, the honest parties try to find the longest common prefix of their

ℓest-bit values 𝑣 . To achieve this, the parties first look for a longest common prefix of blocks with the

help of a subprotocol BlocksLCP. In this subprotocol, the parties agree on an index 1 ≤ 𝑖★ ≤ 𝑛 + 1,

and each party obtains valid values 𝑣 and 𝑣⊥ with the following properties:

• The ℓest-bit representations of the honest parties’ values 𝑣 share a prefix of 𝑖
★ − 1 blocks.

• For any bitstring bits of 𝑖★ blocks, there are 𝑡 + 1 honest parties holding values 𝑣⊥ whose

ℓest-bit representations do not have bits as a prefix.

If 𝑖★ > 𝑛, CA is already achieved. Otherwise, the parties run a subprotocol AddLastBlock,

where they append one block to the common prefix of their values 𝑣 , with the guarantee that the

prefix obtained is still a valid value’s prefix. This way, there are 𝑡 + 1 honest parties holding valid

values 𝑣⊥ that do not match this prefix. The parties then run a third subprotocol Complain, where

the parties announce where their values 𝑣⊥ differ from the prefix of 𝑖★ blocks agreed upon, which

enables the honest parties to obtain an output.

Valid values’ longest common prefix of blocks.We zoom in on the subprotocol BlocksLCP,

where the parties try to find the longest common prefix of their values 𝑣 in terms of blocks, denoted

by prefix
★
. The parties initially set prefix

★
to an empty string. Then, they run 𝑂 (log𝑛) iterations

where each party holds a pair of valid values 𝑣 and 𝑣⊥, and the parties compare pieces of their

values 𝑣 to decide whether and how prefix
★
should be extended. In each iteration, the parties only

focus on a substring of their values 𝑣 , namely blocks blockleft (𝑣), . . . , blockright−1 (𝑣), where the
indices left and right satisfy 1 ≤ left ≤ right ≤ 𝑛 + 1 and have the following meaning:

• prefix
★
consists of left − 1 blocks and is a common prefix of the honest parties’ values 𝑣 .

• Roughly, the honest parties’ initial values 𝑣 did not have a common prefix of right blocks.

More precisely, the honest parties hold valid values 𝑣⊥ such that, for any bitstring bits of

right blocks, the values 𝑣⊥ of 𝑡 + 1 honest parties do not have prefix bits.

While left < right holds, the parties check if the first half of this substring, namely blocks

blockleft (𝑣), . . . , blockmid (𝑣) where mid := ⌊(left + right)/2⌋, should extend the current com-

mon prefix prefix
★
of their values 𝑣 (consisting of left − 1 blocks). They do so by joining ΠℓBA+

with inputs blockleft (𝑣) ∥ . . . ∥ blockmid (𝑣). If ΠℓBA+ returns ⊥, then, for any bitstring of mid

blocks, there are 𝑡 + 1 honest parties whose values 𝑣 do not have that bitstring as a prefix. Then,

the parties set 𝑣⊥ := 𝑣 and continue the search within blocks blockleft (𝑣), . . . , blockmid−1 (𝑣) in
the next iteration. Otherwise, if ΠℓBA+ returns mid − left + 1 blocks prefix

★
left

∥ . . . ∥ prefix★
mid

,

the parties update their values 𝑣 to match the prefix agreed upon: No Corrupted Output ensures

that there is some valid value having prefix prefix
★ ∥ prefix★

left
∥ . . . ∥ prefix★

mid
. Then, if a party

holds 𝑣 with a lower prefix, it sets 𝑣 to minℓest (prefix★ ∥ prefix★
left

∥ . . . ∥ prefix★
mid

). Otherwise, if
𝑣 has a higher prefix, the party sets 𝑣 to maxℓest (prefix★ ∥ prefix★

left
∥ . . . ∥ prefix★

mid
). Remark 3

ensures that the updated values are indeed valid. Afterwards, the parties continue the search in the

next iteration within blocks blockmid+1 (𝑣), . . . , blockright−1 (𝑣) of the updated values 𝑣 .

The size of the sequence considered, namely right − left, gets halved in each iteration. The

stopping condition is left = right, which enables us to set 𝑖★ := left: the parties hold valid values

𝑣 with a common prefix of 𝑖★− 1 blocks, and valid values 𝑣⊥ such that, for any bitstring of 𝑖★ blocks,

the values 𝑣⊥ of 𝑡 + 1 honest parties do not have this bitstring as a prefix.

11

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

BlocksLCP(ℓest, 𝒗)

Code for party 𝑷

1: left := 1, right := 𝑛 + 1; 𝑣 := 𝑣in, 𝑣⊥ := 𝑣in, prefix
★
:= empty string.

2: loop

3: If left = right, set 𝑖★ := left and exit the loop.

4: (block1, block2, . . . , block𝑛) := blocks(𝑣).
5: Join ΠℓBA+ with input blockleft ∥ . . . ∥ blockmid, where mid := ⌊(left + right)/2⌋.
6: If ΠℓBA+ has returned ⊥, set 𝑣⊥ := 𝑣 and right := mid.

7: Otherwise, if ΠℓBA+ has returned mid − left + 1 blocks prefix
★
left

∥ . . . ∥ prefix★
mid

:

8: prefix
★
:= prefix

★ ∥ prefix★
left

∥ . . . ∥ prefix★
mid

.

9: If val(block1 ∥ . . . ∥ blockmid) < val(prefix★): 𝑣 := minℓest (prefix★).
10: If val(block1 ∥ . . . ∥ blockmid) > val(prefix★): 𝑣 := maxℓest (prefix★).
11: Set left := mid + 1.

12: end loop

13: Return 𝑖★, 𝑣 , 𝑣⊥.

We state the guarantees of BlocksLCP below. We highlight the main details of the proof, and

we defer the formal analysis to Appendix C.2.

Lemma 4. Assume a BA protocol ΠBA, and that the honest parties join BlocksLCP with the same

value ℓest (that is a multiple of 𝑛) and valid ℓest-bit values 𝑣 . Then, the honest parties obtain the same

index 𝑖★, and each honest party obtains a pair of valid ℓest-bit values 𝑣 , 𝑣⊥ such that:

• the ℓest-bit representations of the values 𝑣 have a common prefix of 𝑖★ − 1 blocks;

• for any bitstring bits of 𝑖★ blocks, there are 𝑡 + 1 honest parties holding values 𝑣⊥ such that

bitsℓest (𝑣⊥) does not have prefix bits.
BlocksLCP has communication complexity bitsℓest (BlocksLCP) = 𝑂 (ℓest·𝑛+𝜅 ·𝑛2 log2 𝑛)+𝑂 (𝑛 log𝑛)·
bits𝜅 (ΠBA) and round complexity rounds(BlocksLCP) = 𝑂 (log𝑛) · rounds(ΠBA).

Proof Sketch. We consider the properties below. If these properties are satisfied at the begin-

ning of iteration 𝑖 ≥ 1 of the loop, then either the stopping condition left = right is met, or the

properties hold at the beginning of iteration 𝑖 + 1 as well. We also note that these properties hold at

the beginning of iteration 1 due to the variables’ initialization.

(A) All honest parties hold the same indices 1 ≤ left ≤ right ≤ 𝑛 + 1, and the same bitstring

prefix
★
consisting of left − 1 blocks.

(B) 0 ≤ right − left ≤ 2
⌈log

2
𝑛⌉−(𝑖−1)

.

(C) Honest parties hold valid ℓest-bit values 𝑣 such that bitsℓest (𝑣) has prefix★ as a prefix.

(D) Honest parties hold valid ℓest-bit values 𝑣⊥, and, for any bitstring bits of right blocks, the

ℓest-bit representations of the values 𝑣⊥ of 𝑡 + 1 honest parties do not have prefix bits.

Property (B) implies that the condition left = right is met by iteration 𝑖 = ⌈log
2
𝑛⌉ + 2. Then,

due to Properties (A), (C) and (D), setting 𝑖★ := left ensures the guarantees on 𝑖★, 𝑣 , and 𝑣⊥ given in

the lemma’s statement. We still need to discuss the round complexity and the communication com-

plexity. Since each of the at most 𝑂 (log𝑛) iterations invokes ΠℓBA+ once, rounds(BlocksLCP) =
𝑂 (log𝑛) · rounds(ΠℓBA+), and applying Corollary 2 gives our claimed round complexity. In each

iteration 𝑖 < ⌈log
2
𝑛⌉ + 2, Property (B) ensures that BlocksLCP runs ΠℓBA+ on a bitstring of at

most 2
⌈log

2
𝑛⌉−𝑖

blocks, hence 2
⌈log

2
𝑛⌉−𝑖 · ℓest/𝑛 ≤ ℓest/2𝑖−1 bits. Therefore, bitsℓest (BlocksLCP) =∑⌈log

2
𝑛⌉+1

𝑖=1
bitsℓest/2𝑖−1 (ΠℓBA+). Using Corollary 2 and the fact that

∑∞
𝑖=0 1/2𝑖 ≤ 2, we obtain that

bitsℓest (BlocksLCP) = 𝑂 (ℓest · 𝑛 + 𝜅 · 𝑛2 log2 𝑛) +𝑂 (𝑛 log𝑛) · bits𝜅 (ΠBA). □

12

Communication-Optimal Convex Agreement

Valid values’ longest common prefix of bits. If BlocksLCP has returned 𝑖★ > 𝑛, the honest

parties hold the same valid value 𝑣 ; therefore, CA is already achieved. Otherwise, we continue our

search for some valid values’ longest common prefix. As mentioned in Section 3, the parties use the

values 𝑣 returned by BlocksLCP to obtain a valid value’s prefix of 𝑖★ blocks, denoted by prefix
1
.

This way, there will be 𝑡 + 1 honest parties whose values 𝑣⊥ do not have prefix
1
as a prefix and

that announce these differences, which afterwards enables the parties to agree on a valid output.

Hence, if 𝑖★ ≤ 𝑛, the parties run the subprotocol AddLastBlock, where they compute prefix
1
:

as the first 𝑖★ − 1 blocks of their 𝑣 (which are identical), plus one block prefix
1

𝑖★
. As ensured

by the remark below, it will be sufficient if the parties agree on some block prefix
1

𝑖★
such that

val(prefix1
𝑖★
) is within the range of values val(block★𝑖 (𝑣)) of the honest values 𝑣 .

Remark 4. Let 𝑣, 𝑣 ′ ∈ N denote two values satisfying 𝑣 ≤ 𝑣 ′ < 2
ℓest

, and assume that 𝑣 and 𝑣 ′ have a
common prefix prefix

★
of 𝑖★ − 1 blocks, but not of 𝑖★ blocks: ∀𝑖 < 𝑖★ : block𝑖 (𝑣) = block𝑖 (𝑣 ′), but

block𝑖★ (𝑣) ≠ block𝑖★ (𝑣 ′). Then, for any block block satisfying val(block𝑖★ (𝑣)) ≤ val(block) ≤
val(block𝑖★ (𝑣 ′)), there is a value 𝑣★ ∈ [𝑣, 𝑣 ′] such that bitsℓest (𝑣★) has prefix prefix★ ∥ block.

To agree on prefix
1

𝑖★
, every party sends block𝑖★ (𝑣) to all the parties using the protocol ΠℓBC+

of Corollary 1 (where parties join with length_limit = ℓest/𝑛). The parties receive the same

𝑛 − 𝑡 + 𝑘 blocks’ values, out of which 𝑘 are sent by byzantine parties. Then, Lemma 2 implies that

the (𝑘 + 1)-th lowest value received, denoted by safe_block_val, is within the range of honest

values val(block𝑖★ (𝑣)), and therefore parties may set prefix
1

𝑖★
:= bitsℓest/𝑛 (safe_block_val).

AddLastBlock(ℓest, 𝒊★, 𝒗)

Code for party 𝑷

1: Send val(block𝑖★ (𝑣)) to all parties via ΠℓBC+. (Join all invocations with length_limit = ℓest/𝑛).
2: Let safe_block_val := the (𝑘 + 1)-th lowest out of the 𝑛 − 𝑡 + 𝑘 values received.

3: Return prefix
1
:= block1 (𝑣) ∥ . . . ∥ block𝑖★−1 (𝑣) ∥ bitsℓest/𝑛 (safe_block_val).

The proof of the result below is included in Appendix C.3.

Lemma 5. Assume a BA protocol ΠBA, and that honest parties join AddLastBlock with the same

value ℓest (that is a multiple of 𝑛), with the same index 1 ≤ 𝑖★ ≤ 𝑛, and with valid ℓest-bit values 𝑣

that have a common prefix of 𝑖★ − 1 blocks. Then, honest parties agree on a bitstring prefix
1
of 𝑖★

blocks such that there is a valid value 𝑣1 whose ℓest-bit representation has prefix prefix
1
.

AddLastBlock has communication complexity bitsℓest (AddLastBlock) = 𝑂 (ℓest ·𝑛+𝑘 ·𝑛3 log𝑛)+
𝑂 (𝑛) · bits𝜅 (ΠBA) and round complexity rounds(AddLastBlock) = 𝑂 (1) · rounds(ΠBA).

Once prefix
1
is obtained, the parties run the subprotocol Complain. In this subprotocol, the

parties’ goal is to find a bitstring prefix
2
that is the prefix of a valid ℓest-bit value 𝑣

2
, such that

prefix
1
and prefix

2
are not prefixes of one another. This way, Remark 2 enables us to obtain a

valid output from the longest common prefix of prefix
1
and prefix

2
, which is the longest common

prefix of bitsℓest (𝑣1) and bitsℓest (𝑣2). Honest parties’ values 𝑣⊥ that do not have prefix prefix
1
are

candidates for 𝑣2, and their prefixes are candidates for prefix2. If, for party 𝑃 , the leftmost bit where

bitsℓest (𝑣⊥) differs from prefix
1
is in block block𝑖 (𝑣⊥), 𝑃 sends (𝑖, block𝑖 (𝑣⊥)) to all parties via

ΠℓBC+. Then, for complaint (𝑖, block𝑖) from a party 𝑃 holding value 𝑣⊥, the parties define prefix2

as the first 𝑖 blocks of 𝑣⊥: the first 𝑖 − 1 blocks of prefix
1
, followed by block𝑖 . Since prefix

1
and

prefix
2
differ in block 𝑖 , the parties obtain a potential output 𝑣out? ∈ [min(𝑣⊥, 𝑣1),max(𝑣⊥, 𝑣1)] as

discussed in Remark 2. This ensures that, if 𝑃 is honest, 𝑣out? is a valid output.

13

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Fig. 3. This figure shows how an output candidate is obtained from a party’s complaint. The first row shows

prefix
1
, the prefix of the ℓest-bit representation of some valid value 𝑣1. Some party holds a value 𝑣⊥ with

prefix 0001 1001 as opposed to 0001 1110, and therefore the party sends a complaint (2, 1001). The prefix 0001
1001 becomes a candidate for prefix

2
. Then, the parties obtain an output candidate minℓest (0001 11) ∈ [𝑣⊥, 𝑣1]

from the longest common prefix of prefix
1
and prefix

2
. If 𝑣⊥ is valid, then this output candidate is also valid.

The parties receive a total of (𝑡 + 1) +𝑘 complaints, where 0 ≤ 𝑘 ≤ 𝑛 − (𝑡 + 1). Since 𝑡 + 1 of these
complaints are honest and all honest complaints lead to valid values 𝑣out?, at most min(𝑘, 𝑡) + 1

complaints lead to values 𝑣out? outside the honest range. Parties may then choose 𝑣out := the

min(𝑘, 𝑡) + 1-th lowest value 𝑣out? as their final output.

Complain(ℓest, 𝒗⊥, prefix1 = prefix
1
1 ∥ . . . ∥ prefix

1
𝒊★
)

Code for party 𝑷

1: Find candidates for prefix
2
:

2: If prefix
1
is not a prefix of bitsℓest (𝑣⊥): send (𝑖, block𝑖 (𝑣⊥)) to all parties via ΠℓBC+, where 𝑖

satisfies ∀𝑖′ < 𝑖 : block𝑖′ (𝑣⊥) = prefix
1

𝑖′ and block𝑖 (𝑣⊥) ≠ prefix
1

𝑖
. (Join each ΠℓBC+ invocation

with length_limit := ℓest/𝑛 + ⌈log
2
𝑛⌉ + 1).

3: outputs_from_complaints := empty multiset.

4: For every complaint (𝑖, block𝑖) received (with 𝑖 < 𝑖★,
��
block𝑖

�� = ℓest/𝑛, and block𝑖 ≠ prefix
1

𝑖
):

5: prefix
2
:= prefix

1

1
∥ . . . ∥ prefix1

𝑖−1 ∥ block𝑖 .
6: common_prefix := the longest common prefix of prefix

1
and prefix

2
.

7: Add 𝑣
out?

:= minℓest (common_prefix ∥ 1) to outputs_from_complaints.

8: Compute the output value 𝒗out:
9: 𝑘 :=

��
outputs_from_complaints

�� − (𝑡 + 1).
10: Return 𝑣out := the min(𝑘, 𝑡) + 1-th lowest value in outputs_from_complaints.

The proof of the following lemma is included in Appendix C.4.

Lemma 6. Assume a BA protocol ΠBA, and that honest parties join Complain with the same value

ℓest (that is a multiple of 𝑛) and with the same bitstring of 1 ≤ 𝑖★ ≤ 𝑛 blocks prefix
1
representing the

prefix of some valid value’s ℓest-bit representation. In addition, assume that each party joins with some

valid ℓest-bit input 𝑣⊥ such that the ℓest-bit representations of 𝑡 + 1 honest parties’ values 𝑣⊥ do not

have prefix
1
as a prefix. Then, the honest parties obtain the same valid value 𝑣out.

Complain has communication complexity bitsℓest (Complain) = 𝑂 (ℓest · 𝑛 + 𝜅 · 𝑛3 log𝑛) +𝑂 (𝑛) ·
bits𝜅 (ΠBA) and round complexity rounds(Complain) = 𝑂 (1) · rounds(BA).

5.3 Putting it all together

We present the code of our protocol ΠN and its analysis.

14

Communication-Optimal Convex Agreement

Protocol 𝚷N

Code for party 𝑷 with input 𝒗in ∈ N

1: Run Estimate(𝑣in) obtain ℓest, 𝑣 .

2: Run BlocksLCP(ℓest, 𝑣) and obtain 𝑖★, 𝑣, 𝑣⊥. If 𝑖★ > 𝑛, output 𝑣out := 𝑣 . Otherwise:

3: Run AddLastBlock(ℓest, 𝑖★, 𝑣) and obtain prefix
1
.

4: Run Complain(ℓest, 𝑣⊥, prefix1) and obtain 𝑣out. Output 𝑣out.

Theorem 2. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions. Then, if the honest
parties hold ℓ-bit inputs 𝑣in ∈ N, ΠN is a CA protocol resilient against 𝑡 < 𝑛/3 corruptions, with

communication complexity bitsℓ (ΠN) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛3 log𝑛) + 𝑂 (𝑛 log𝑛) · bits𝜅 (ΠBA), and round

complexity rounds(ΠN) = 𝑂 (log𝑛) · rounds(ΠBA).

Proof. According to Lemma 3, Estimate enables the parties to agree on (a multiple of 𝑛) ℓest
and obtain valid values 𝑣 such that: ℓest ≤ ⌈ℓ/𝑛⌉ · 𝑛 and

��
bits(𝑣)

�� ≤ ℓest. Hence, parties’ values

ℓest and 𝑣 meet the preconditions of BlocksLCP. We may then apply Lemma 4 and conclude that

parties obtain the same index 𝑖★ satisfying 1 ≤ 𝑖★ ≤ 𝑛 + 1, and valid ℓest-bit values 𝑣, 𝑣⊥ such that

the values 𝑣 share a common prefix of 𝑖★ − 1 blocks. If 𝑖★ > 𝑛, the honest parties hold the same

valid value 𝑣 , and therefore CA is achieved. Otherwise, Lemma 5 ensures that parties obtain the

same bitstring prefix
1
of 𝑖★ blocks that is the prefix of a valid value’s ℓest-bit representation. Since

Lemma 4 additionally implies that there are 𝑡 + 1 honest parties whose values 𝑣⊥ do not have

prefix
1
as a prefix, Complain’s preconditions are met, and Lemma 6 ensures that CA is achieved.

The communication complexity and the round complexity follow by summing up the complexities

of each subprotocol, taking into account that ℓest ≤ ⌈ℓ/𝑛⌉ · 𝑛.
□

6 PROTOCOL FOR Z

To extend the input space toZ, we assume that the parties’ inputs 𝑣in are represented as (−1)signin ·𝑣N
in
,

where signin ∈ {0, 1} and 𝑣N
in

∈ N. Then, in order to cover negative numbers using ΠN, the parties
make use of the assumed BA protocol ΠBA to agree on their values’ sign. If the sign agreed upon,

denoted by signout, differs from a party 𝑃 ’s signin, then 𝑃 will update its input value 𝑣N
in
to 0, since

it is guaranteed to be valid. Afterwards, the parties join ΠN with their possibly updated inputs 𝑣N
in

and agree on 𝑣N
out

such that 𝑣out := (−1)signout · 𝑣N
in
is valid. We present the code and the guarantees

of ΠZ below. The formal proof is included in Appendix D.

Protocol 𝚷Z

Code for party 𝑷 with input 𝒗in = (−1)signin · 𝒗N
in

1: Join ΠBA with input signin and obtain output signout.

2: If signout ≠ signin, set 𝑣
N
in

:= 0. Join ΠN with input 𝑣N
in

and obtain output 𝑣N
out

.

3: Output 𝑣out := (−1)signout · 𝑣N
out

.

Corollary 3. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions. Then, if the honest
parties hold inputs 𝑣in ∈ Z with bits(

��𝑣in��) consisting of at most ℓ bits, ΠZ is a CA protocol resilient

against 𝑡 < 𝑛/3 corruptions, with communication complexity bitsℓ (ΠZ) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛3 log𝑛) +
𝑂 (𝑛 log𝑛) · bits𝜅 (ΠBA), and round complexity rounds(ΠZ) = 𝑂 (log𝑛) · rounds(ΠBA).

15

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

We state the final corollary, where we instantiate the BA protocol with a deterministic BA

protocol with quadratic communication (e.g. [7]).

Corollary 4. If the honest parties hold inputs 𝑣in ∈ Z with bits(
��𝑣in��) consisting of at most ℓ

bits, ΠZ is a CA protocol resilient against 𝑡 < 𝑛/3 corruptions, with communication complexity

bitsℓ (ΠZ) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛3 log𝑛), and round complexity rounds(ΠZ) = 𝑂 (𝑛 log𝑛).

7 CONCLUSIONS

Our work investigates whether 𝑂 (ℓ𝑛) bits of communication are sufficient for achieving CA

on N, and shows that this lower bound is tight when ℓ = Ω(𝜅 · 𝑛2 log𝑛). We have presented a

synchronous protocol ΠN that relies on finding some valid values’ longest common prefix, achieving

CA with optimal resilience (without cryptographic setup), asymptotically optimal communication

complexity, and efficient round complexity. In addition, we have extended this result to Z.
We leave a number of exciting open problems. While we expect that our techniques can be

easily extended to the asynchronous setting for a lower number of corruptions 𝑡 < 𝑛/5, it would
be interesting to see whether achieving asymptotically optimal communication complexity for

𝑡 < 𝑛/3 corruptions in the asynchronous model is possible. The same question applies to the

synchronous model with 𝑡 < 𝑛/2 corruptions assuming cryptographic setup. A different direction

could investigate whether the round complexity can be reduced from𝑂 (𝑛 log𝑛) to the optimal𝑂 (𝑛)
while maintaining the communication complexity. Further works could also consider reducing the

poly(𝑛, 𝜅) factor, or extending our question to input spaces beyond Z.

16

Communication-Optimal Convex Agreement

REFERENCES

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. 2005. Optimal Resilience Asynchronous Approximate Agreement. In

Principles of Distributed Systems, Teruo Higashino (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229–239.

[2] Dan Alistarh, Faith Ellen, and Joel Rybicki. 2021. Wait-Free Approximate Agreement on Graphs. In Structural

Information and Communication Complexity, Tomasz Jurdziński and Stefan Schmid (Eds.). Springer International

Publishing, Cham, 87–105. https://doi.org/10.1007/978-3-030-79527-6_6

[3] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. 2010. Brief Announcement: Simple Gradecast Based Algorithms.

In Distributed Computing, Nancy A. Lynch and Alexander A. Shvartsman (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 194–197.

[4] Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. 2023. Efficient adaptively-secure byzantine

agreement for long messages. In Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory

and Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part I. Springer,

504–525.

[5] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information dispersal. In 24th IEEE Symposium

on Reliable Distributed Systems (SRDS’05). IEEE, 191–201.

[6] Wutichai Chongchitmate and Rafail Ostrovsky. 2018. Information-Theoretic Broadcast with Dishonest Majority

for Long Messages. In TCC 2018, Part I (LNCS, Vol. 11239), Amos Beimel and Stefan Dziembowski (Eds.). Springer,

Heidelberg, 370–388. https://doi.org/10.1007/978-3-030-03807-6_14

[7] Brian A Coan and Jennifer L Welch. 1992. Modular construction of a Byzantine agreement protocol with optimal

message bit complexity. Information and Computation 97, 1 (1992), 61–85.

[8] Andrei Constantinescu, Diana Ghinea, Lioba Heimbach, Zilin Wang, and Roger Wattenhofer. 2024. A Fair and

Resilient Decentralized Clock Network for Transaction Ordering. In 27th International Conference on Principles of

Distributed Systems (OPODIS 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 286), Alysson Bessani,

Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 8:1–8:20. https://doi.org/10.4230/LIPIcs.OPODIS.2023.8

[9] Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann. 2023. Meeting in a Convex World:

Convex Consensus with Asynchronous Fallback. Cryptology ePrint Archive, Paper 2023/1364. https://eprint.iacr.org/

2023/1364 https://eprint.iacr.org/2023/1364.

[10] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl. 1986. Reaching Approximate

Agreement in the Presence of Faults. J. ACM 33, 3 (May 1986), 499–516. https://doi.org/10.1145/5925.5931

[11] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12,

4 (1983), 656–666.

[12] Alan David Fekete. 1987. Asynchronous Approximate Agreement. In 6th ACM PODC, Fred B. Schneider (Ed.). ACM,

64–76. https://doi.org/10.1145/41840.41846

[13] Alan David Fekete. 1990. Asymptotically optimal algorithms for approximate agreement. Distributed Computing 4, 1

(1990), 9–29.

[14] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility of distributed consensus with one

faulty process. Journal of the ACM (JACM) 32, 2 (1985), 374–382.

[15] Matthias Fitzi and Martin Hirt. 2006. Optimally efficient multi-valued Byzantine agreement. In 25th ACM PODC, Eric

Ruppert and Dahlia Malkhi (Eds.). ACM, 163–168. https://doi.org/10.1145/1146381.1146407

[16] Chaya Ganesh and Arpita Patra. 2016. Broadcast Extensions with Optimal Communication and Round Complexity. In

35th ACM PODC, George Giakkoupis (Ed.). ACM, 371–380. https://doi.org/10.1145/2933057.2933082

[17] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2022. Optimal Synchronous Approximate Agreement with

Asynchronous Fallback. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing (Salerno, Italy)

(PODC’22). Association for ComputingMachinery, New York, NY, USA, 70–80. https://doi.org/10.1145/3519270.3538442

[18] Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2023. Multidimensional Approximate Agreement with

Asynchronous Fallback. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures

(Orlando, FL, USA) (SPAA ’23). Association for Computing Machinery, New York, NY, USA, 141–151. https://doi.org/

10.1145/3558481.3591105

[19] Martin Hirt and Pavel Raykov. 2014. Multi-valued Byzantine Broadcast: The 𝑡 < 𝑛 Case. In ASIACRYPT 2014, Part II

(LNCS, Vol. 8874), Palash Sarkar and Tetsu Iwata (Eds.). Springer, Heidelberg, 448–465. https://doi.org/10.1007/978-3-

662-45608-8_24

[20] Jérémy Ledent. 2021. Brief Announcement: Variants of Approximate Agreement on Graphs and Simplicial Complexes.

In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC’21).

Association for Computing Machinery, New York, NY, USA, 427–430. https://doi.org/10.1145/3465084.3467946

[21] Christoph Lenzen and Julian Loss. 2022. Optimal Clock Synchronization with Signatures. In Proceedings of the

2022 ACM Symposium on Principles of Distributed Computing (Salerno, Italy) (PODC’22). Association for Computing

17

https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1007/978-3-030-03807-6_14
https://doi.org/10.4230/LIPIcs.OPODIS.2023.8
https://eprint.iacr.org/2023/1364
https://eprint.iacr.org/2023/1364
https://eprint.iacr.org/2023/1364
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/41840.41846
https://doi.org/10.1145/1146381.1146407
https://doi.org/10.1145/2933057.2933082
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3558481.3591105
https://doi.org/10.1145/3558481.3591105
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1145/3465084.3467946

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Machinery, New York, NY, USA, 440–449. https://doi.org/10.1145/3519270.3538444

[22] Guanfeng Liang and Nitin Vaidya. 2011. Error-free multi-valued consensus with Byzantine failures. In Proceedings of

the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing. 11–20.

[23] Guanfeng Liang and Nitin H. Vaidya. 2011. Error-free multi-valued consensus with byzantine failures. In 30th ACM

PODC, Cyril Gavoille and Pierre Fraigniaud (Eds.). ACM, 11–20. https://doi.org/10.1145/1993806.1993809

[24] Darya Melnyk and Roger Wattenhofer. 2018. Byzantine Agreement with Interval Validity. In 2018 IEEE 37th Symposium

on Reliable Distributed Systems (SRDS). 251–260. https://doi.org/10.1109/SRDS.2018.00036

[25] Hammurabi Mendes and Maurice Herlihy. 2013. Multidimensional approximate agreement in Byzantine asynchronous

systems. In 45th ACM STOC, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM Press, 391–400.

https://doi.org/10.1145/2488608.2488657

[26] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K Garg. 2015. Multidimensional agreement in Byzantine

systems. Distributed Computing 28, 6 (2015), 423–441.

[27] Ralph C Merkle. 1987. A digital signature based on a conventional encryption function. In Conference on the theory

and application of cryptographic techniques. Springer, 369–378.

[28] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. 2020. Improved Extension Protocols for

Byzantine Broadcast and Agreement. In 34th International Symposium on Distributed Computing (DISC 2020) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 28:1–28:17. https://doi.org/10.4230/LIPIcs.DISC.2020.28

[29] Lan Nguyen. 2005. Accumulators from bilinear pairings and applications. In Topics in Cryptology–CT-RSA 2005: The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005. Proceedings. Springer,

275–292.

[30] Thomas Nowak and Joel Rybicki. 2019. Byzantine Approximate Agreement on Graphs. In 33rd International Symposium

on Distributed Computing (DISC 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 146), Jukka Suomela

(Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 29:1–29:17. https://doi.org/10.4230/

LIPIcs.DISC.2019.29

[31] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite fields. Journal of the society for

industrial and applied mathematics 8, 2 (1960), 300–304.

[32] David Stolz and Roger Wattenhofer. 2016. Byzantine Agreement with Median Validity. In 19th International Conference

on Principles of Distributed Systems (OPODIS 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 46),

Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 1–14. https://doi.org/10.4230/LIPIcs.OPODIS.2015.22

[33] Russell Turpin and Brian A Coan. 1984. Extending binary Byzantine agreement to multivalued Byzantine agreement.

Inform. Process. Lett. 18, 2 (1984), 73–76.

[34] Nitin H. Vaidya and Vijay K. Garg. 2013. Byzantine vector consensus in complete graphs. In 32nd ACM PODC, Panagiota

Fatourou and Gadi Taubenfeld (Eds.). ACM, 65–73. https://doi.org/10.1145/2484239.2484256

18

https://doi.org/10.1145/3519270.3538444
https://doi.org/10.1145/1993806.1993809
https://doi.org/10.1109/SRDS.2018.00036
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.4230/LIPIcs.OPODIS.2015.22
https://doi.org/10.1145/2484239.2484256

Communication-Optimal Convex Agreement

APPENDIX

A OVERVIEW: MISSING PROOFS

Remark 2. Consider two values 𝑣, 𝑣 ′ ∈ N satisfying 𝑣 ≤ 𝑣 ′ < 2
ℓ
, and let common_prefix denote the

longest common prefix of bitsℓ (𝑣) and bitsℓ (𝑣 ′).
If

��
common_prefix

�� < ℓ , then maxℓ (common_prefix ∥ 0),minℓ (common_prefix ∥ 1) ∈ [𝑣, 𝑣 ′].

Proof. We show that 𝑣 ≤ maxℓ (common_prefix ∥ 0) ≤ minℓ (common_prefix ∥ 1) ≤ 𝑣 ′ .
We first note that, since 𝑣 ≤ 𝑣 ′, bitsℓ (𝑣) has prefix common_prefix ∥ 0, while bitsℓ (𝑣 ′) has prefix

common_prefix ∥ 1. Secondly, since maxℓ (common_prefix ∥ 0) is the highest ℓ-bit value having
prefix common_prefix ∥0, and 𝑣 is an ℓ-bit value with the same prefix, 𝑣 ≤ maxℓ (common_prefix ∥
0). In addition, note that maxℓ (common_prefix ∥ 0) + 1 = minℓ (common_prefix ∥ 1). We use a

similar argument to show that 𝑣 ′ ≥ minℓ (common_prefix ∥ 1): 𝑣 ′ is an ℓ-bit value with prefix

common_prefix ∥ 1, while minℓ (common_prefix ∥ 1) is the lowest ℓ-bit value having prefix

common_prefix ∥ 1. □

Remark 3. Consider two values 𝑣, 𝑣 ′ ∈ N such that 𝑣, 𝑣 ′ < 2
ℓ
, and let common_prefix denote the

longest common prefix of bitsℓ (𝑣) and bitsℓ (𝑣 ′). Let next_bits and next_bits
′
denote two non-

empty bitstrings of equal length such that common_prefix ∥ next_bits is a prefix of bitsℓ (𝑣), and
common_prefix ∥ next_bits′ is a prefix of bitsℓ (𝑣 ′). Then, if val(next_bits) < val(next_bits′),
then minℓ (common_prefix ∥ next_bits′),maxℓ (common_prefix ∥ next_bits) ∈ [𝑣, 𝑣 ′].

Proof. Since bitsℓ (𝑣) has prefix common_prefix∥next_bits, 𝑣 is at most the highest ℓ-bit value

having prefix common_prefix ∥ next_bits. Similarly, since bitsℓ (𝑣 ′) has prefix common_prefix ∥
next_bits

′
, 𝑣 is at least the lowest ℓ-bit value having this prefix common_prefix ∥ next_bits′.

In addition, since val(next_bits) < val(next_bits′), we have that max(common_prefix ∥
next_bits) ≤ minℓ (common_prefix ∥ next_bits′). Therefore, we have obtained the following

inequality: 𝑣 ≤ maxℓ (common_prefix ∥ next_bits) ≤ minℓ (common_prefix ∥ next_bits′) ≤
𝑣 ′ . □

B BA FOR LONG MESSAGES

B.1 BA for 𝒕 < 𝒏/3, without setup

We restate the protocol and prove of the BA protocol for long messages described in Section 4.1,

which was introduced in [28].

Protocol 𝚷ℓBA

Code for party 𝑷𝒊 with input 𝒗in

1: Let s1, s2, . . . , s𝑛 := RS.encode(𝑣in); 𝑧,𝑤1,𝑤2, . . . ,𝑤𝑛 := MT.Build({s1, s2, . . . s𝑛}).
2: Join ΠBA with input 𝑧 and obtain output 𝑧★.

3: Join ΠBA with input 𝑏 = 1 if 𝑧 = 𝑧★ and 𝑏 = 0 otherwise. Obtain output 𝑏′.
4: If 𝑏′ = 0, output ⊥.
5: Otherwise, if 𝑏′ = 1, run the distributing step:

6: If 𝑧★ = 𝑧: for every 1 ≤ 𝑗 ≤ 𝑛, send (𝑗, s𝑗 ,𝑤 𝑗) to 𝑃 𝑗 .
7: If you have received a tuple (𝑖, s𝑖 ,𝑤𝑖) such that MT.Verify(𝑖, 𝑧★, s𝑖 ,𝑤𝑖) = true:
8: Send (𝑖, s𝑖 ,𝑤𝑖) to all parties.

9: Discard any tuples (𝑗, s𝑗 ,𝑤 𝑗) where MT.Verify(𝑖, 𝑧★, s𝑖 ,𝑤𝑖) = false.
10: Let 𝑆 := the set of correct tuples received. Output 𝑣★ := RS.decode(𝑆).

19

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Lemma 7. Assume that the parties join the distributing step and that at least one honest party has

proposed 𝑧 = 𝑧★. Then, the honest party agree on a value 𝑣★ that is an honest party’s input. In addition,

this step has communication complexity 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) and round complexity 𝑂 (1).

Proof. Since at least one honest party 𝑃𝑖 holds 𝑧 := 𝑧★, 𝑃𝑖 holds an input value 𝑣★ whose RS

encoding s1, . . . , s𝑛 leads to an MT tree with root 𝑧★. 𝑃𝑖 sends to each party 𝑃 𝑗 a tuple (𝑗, s𝑗 ,𝑤 𝑗)
such that MT.Verify(𝑧★, 𝑗, s𝑗 ,𝑤 𝑗) = true.

Note that party 𝑃 𝑗 ignores any tuples (𝑗, s′𝑗 ,𝑤 ′
𝑗) with s′𝑗 ≠ s𝑗 : a different RS encoding (s′1, . . . , s′𝑛) ≠

(s1, . . . , s𝑛) leads to an MT with root 𝑧 ≠ 𝑧★. Hence, such a tuple is sent by a corrupted party. We

note that finding a witness𝑤 ′
𝑗 with MT.Verify(𝑧★, 𝑗, s′𝑗 ,𝑤 ′

𝑗) = true requires the adversary to find

collisions for 𝐻𝜅 , which we assumed to be impossible. Therefore, MT.Verify(𝑧★, 𝑗, s′𝑗 ,𝑤 ′
𝑗) = false,

and 𝑃 𝑗 discards this tuple.

Then, every party 𝑃𝑖 holds a unique correct tuple (𝑖, s𝑖 ,𝑤𝑖) (possibly received from multiple

parties), and forwards this tuple to all parties. Each party 𝑃𝑖 receives 𝑛−𝑡 correct tuples from honest

parties, plus at most 𝑡 tuples from corrupted parties. Once again, if an honest party 𝑃 𝑗 receives

(𝑗, s′𝑗 ,𝑤 ′
𝑗) with an incorrect codeword s

′
𝑗 , 𝑃 𝑗 discards this tuple: MT.Verify(𝑧★, 𝑗, s′𝑗 ,𝑤 ′

𝑗) = false.

Hence, all (at least 𝑛 − 𝑡) tuples remaining are correct, which allows the parties to reconstruct 𝑣★

correctly. Therefore, the parties agree on an honest party’s input value.

It remains to discuss the communication complexity and the round complexity. There are two

communication rounds, where every party sends to all parties at most two tuples. Each such tuple

contains an index of 𝑂 (log𝑛) bits, a RS codeword of 𝑂 (ℓ/𝑛) bits, and a MT witness of 𝑂 (𝜅 · log𝑛)
bits. Therefore, this step has a total communication cost of 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) bits. □

Theorem 1 ([28]). Given a BA protocol ΠBA secure against 𝑡 < 𝑛/3 corruptions, there is a protocol
ΠℓBA achieving BA secure against 𝑡 < 𝑛/3 corruptions with communication complexity bitsℓ (ΠℓBA) =
𝑂 (ℓ𝑛 +𝜅 ·𝑛2 log𝑛) +𝑂 (1) · bits𝜅 (ΠBA), and round complexity rounds(ΠℓBA) = 𝑂 (1) · rounds(ΠBA).

Proof. We first focus on Agreement: honest parties obtain the same bit 𝑏′ in ΠBA. If 𝑏
′ = 0, all

honest parties output ⊥. Otherwise, at least one honest party has proposed 𝑏 = 1 and therefore

holds 𝑧 = 𝑧★ and Lemma 7 ensures that the honest parties output the same value.

For Validity, if all honest parties hold the same input 𝑣 , then they obtain the same encoding 𝑧,

since the algorithm computing the RS encoding and the algorithm building the MT are deterministic.

Then, ΠBA returns 𝑧★ = 𝑧. Afterwards, all honest parties join ΠBA with input 𝑏 = 1 and obtain

𝑏′ = 1. Lemma 7 ensures that the honest parties output 𝑣★ = 𝑣 . Therefore, BA is achieved.

In terms of communication complexity and round complexity, the parties run ΠBA on 𝜅-bit values,

and afterwards on a single bit, leading to a cost of bits𝜅 (ΠBA)+bits1 (ΠBA) bits and 2·rounds(ΠBA)
rounds. Afterwards, the parties join the distributing step only if some honest party holds 𝑧 = 𝑧★,

which incurs an additional cost of 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) bits and 𝑂 (1) rounds according to Lemma 7.

Therefore, the total communication complexity of ΠBA is 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) +𝑂 (1) · bits𝜅 (ΠBA),
and the round complexity is 𝑂 (1) · rounds(ΠBA). □

B.2 Additional properties

This section formally proves the Corollary 2, restated below.

Corollary 2. Given a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, there is a BA protocol

ΠℓBA+ resilient against 𝑡 < 𝑛/3 corruptions that additionally achieves No Corrupted Output and

(𝑡 +1)-Disagreement. The communication complexity of ΠℓBA+ is bitsℓ (ΠℓBA+) = 𝑂 (ℓ𝑛+𝜅 ·𝑛2 log𝑛) +
𝑂 (𝑛) · bits𝜅 (ΠBA), and the round complexity is rounds(ΠℓBA+) = 𝑂 (1) + rounds(ΠBA).

We first include the analysis of ΠBA+.

20

Communication-Optimal Convex Agreement

Lemma 8. Given a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, ΠBA+ is a BA protocol

resilient against 𝑡 < 𝑛/3 corruptions that additionally achieves No Corrupted Output and (𝑡 + 1)-
Disagreement. ΠBA+ has communication complexity bits𝜅 (ΠBA+) = 𝑂 (𝜅𝑛2) +𝑂 (𝑛) · bits𝜅 (ΠBA), and
round complexity rounds(ΠBA+) = 𝑂 (1) + rounds(ΠBA).

Proof. The parties distribute their 𝜅-bit input values through the BC protocol ΠBC+ described in

Lemma 1. Therefore, all parties receive the same values 𝑧, and afterwards obtain the same output,

which ensures Agreement. In addition, if all honest parties hold the same input value 𝑧, then the

parties receive 𝑛 − 𝑡 > 𝑡 + 1 values 𝑧, and at most 𝑡 different values. Hence, honest parties output

𝑧★ := 𝑧, which ensures that Validity holds. Consequently, ΠBA+ achieves BA.
If the output is 𝑧★ ≠ ⊥, then at least 𝑡 + 1 parties, and hence at least one honest party, have

proposed 𝑧★, which ensures that the No Corrupted Output property holds.

Finally, we show that the (𝑡 + 1)-Disagreement property holds: if the output agreed upon is ⊥,
there was no value 𝑧★ proposed by 𝑡 + 1 parties. It follows that, for any value 𝑧, at most 𝑡 honest

parties hold input 𝑧, and at least (𝑛 − 𝑡) − 𝑡 ≥ 𝑡 + 1 honest parties do not have 𝑧 as input.

For the communication complexity and round complexity, note that each party distributes a

𝜅-bit value via ΠBC+. This leads to 𝑂 (𝑛) · bits𝜅 (ΠBC+) bits, and, since the ΠBC+ invocations are

in parallel, rounds(ΠBC+) rounds. Then, by applying Lemma 1 we obtain that bits𝜅 (ΠBA+) =

𝑂 (𝜅𝑛2) +𝑂 (𝑛) · bits𝜅 (ΠBA) and rounds(ΠBA+) = 𝑂 (1) + rounds(ΠBA). □

We now focus on the BA protocol that achieves No Corrupted Output and (𝑡 + 1)-Disagreement

and that is designed for long messages. As described in Section 4.3, to achieve these additional

properties, we only need to replace the ΠBA invocations in Line 2 and Line 3 of ΠℓBA with one

invocation of ΠBA+. We include the updated code below.

Protocol 𝚷ℓBA+

Code for party 𝑷𝒊 with input 𝒗in

1: Let s1, s2, . . . , s𝑛 := RS.encode(𝑣in); 𝑧,𝑤1,𝑤2, . . . ,𝑤𝑛 := MT.Build({s1, s2, . . . s𝑛}).
2: Join ΠBA+ with input 𝑧.

3: If ΠBA+ has returned ⊥, output ⊥.
4: Otherwise, if ΠBA+ has returned 𝑧★ ≠ ⊥, run the distributing step:

5: If 𝑧★ = 𝑧: for every 1 ≤ 𝑗 ≤ 𝑛, send (𝑗, s𝑗 ,𝑤 𝑗) to 𝑃 𝑗 .
6: If you have received a tuple (𝑖, s𝑖 ,𝑤𝑖) such that MT.Verify(𝑖, 𝑧★, s𝑖 ,𝑤𝑖) = true:
7: Send (𝑖, s𝑖 ,𝑤𝑖) to all parties.

8: Discard any tuples (𝑗, s𝑗 ,𝑤 𝑗) where MT.Verify(𝑖, 𝑧★, s𝑖 ,𝑤𝑖) = false.
9: Let 𝑆 := the set of correct tuples received. Output 𝑣★ := RS.decode(𝑆).

Below we provide the analysis of ΠℓBA+. Lemma 8 and Lemma 9 directly imply Corollary 2.

Lemma 9. Assume a BA protocol ΠBA+ secure against 𝑡 < 𝑛/3 corruptions that additionally achieves

No Corrupted Output and (𝑡 + 1)-Disagreement. Then, ΠℓBA+ achieves the same guarantees, with

communication complexity bitsℓ (ΠℓBA+) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) + bits𝜅 (ΠBA+), and round complexity

rounds(ΠℓBA+) = 𝑂 (1) + rounds(ΠBA+).

Proof. We show that ΠℓBA achieves BA using a similar argument to that of Theorem 1. The

parties obtain the same output in ΠBA+: either 𝑧★ or ⊥. If the output returned by ΠBA+ is ⊥, the
parties output ⊥, hence Agreement holds in this case. Otherwise, then there is an honest party who

proposed 𝑧 = 𝑧★ since ΠBA+ achieves No Corrupted Output and Lemma 7 ensures that the parties

agree on the same value.

21

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Honest parties holding the same value 𝑣in obtain the same encoding 𝑧 since the algorithms for

computing the RS encoding and the MT are deterministic. Then, if all honest parties hold the same

input 𝑣 , then all honest parties obtain the same value 𝑧, and ΠBA+ returns 𝑧★ = 𝑧. Lemma 7 ensures

that the parties output an honest party’s output, therefore they output 𝑣 . Therefore, Validity also

holds and BA is achieved.

If the honest parties obtain a non-⊥ output, they have obtained this value via the distributing

step. Since the distributing step is only run if there is an honest party holding 𝑧 = 𝑧★, Lemma 7

ensures that the No Corrupted Output property holds.

If the parties output ⊥, the (𝑡 + 1)-Disagreement property of ΠBA+ ensures that there was no
value 𝑧 proposed by 𝑡 + 1 honest parties, and hence there is no value 𝑣 held as input by at least 𝑡 + 1

honest parties. That is, for any value 𝑣 , there are at least (𝑛 − 𝑡) − 𝑡 ≥ 𝑡 + 1 honest parties having

𝑣in ≠ 𝑣 , and therefore (𝑡 + 1)-Disagreement is maintained.

We have obtained that ΠℓBA+ indeed maintains the properties of ΠBA+. Running ΠBA+ with

inputs 𝑧 requires bits𝜅 (ΠBA+) bits and rounds(ΠBA+) rounds. If the output is ⊥, there is no further
communication. Otherwise, the parties run the distributing step, and Lemma 7 shows that this step

has an additional cost of (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) bits and 𝑂 (1) rounds. Then, the total bit complexity of

ΠℓBA+ is𝑂 (ℓ𝑛 +𝜅 ·𝑛2 log𝑛) + bits𝜅 (ΠBA+), and the round complexity is𝑂 (1) + rounds(ΠBA+). □

C PROTOCOL FOR N: MISSING PROOFS

C.1 Subprotocol Estimate

We include the missing proofs and the full analysis of the Estimate subprotocol.

Lemma 2. Let received_values denote a multiset of 𝑛 − 𝑡 + 𝑘 values, where 0 ≤ 𝑘 ≤ 𝑡 , and let

honest_values ⊆ received_values denote a multiset of 𝑛 − 𝑡 values. Then, if safe_values is a

multiset obtained by discarding the lowest 𝑘 and highest 𝑘 values in received_values, it holds that��
safe_values

�� ≥ 𝑡 + 1, and safe_values ⊆ [minhonest_values,maxhonest_values] .

Proof. We first note that

��
safe_values

�� = (𝑛 − 𝑡 + 𝑘) − 2𝑘 ≥ 𝑛 − 2𝑡 ≥ 𝑡 + 1.

We now focus on safe_values being within the range of values honest_values. Only the 𝑘 val-

ues that are in received_values but not in honest_valuesmay be lower thanmin honest_values

or higher than maxhonest_values. Then, since the multiset safe_values is obtained by discard-

ing the lowest𝑘 and the highest𝑘 values from received_values, it follows that min safe_values ≥
minhonest_values and max safe_values ≤ maxhonest_values. □

Lemma 3. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions, and let ℓmin and ℓmax

denote the lowest and resp. the highest lengths

��
bits(𝑣in)

��
of the honest inputs 𝑣in. Then, in Estimate,

honest parties agree on a value ℓest that is a multiple of 𝑛 and satisfies ℓmin ≤ ℓest ≤ ⌈ℓmax/𝑛⌉ · 𝑛.
In addition, every honest party obtains a valid ℓest-bit value 𝑣 . Estimate achieves communication

complexity bitsℓ (Estimate) = 𝑂 (ℓ𝑛 + 𝑘 · 𝑛3 log𝑛) + 𝑂 (𝑛) · bits𝜅 (ΠBA), and round complexity

rounds(Estimate) = 𝑂 (1) · rounds(ΠBA).

Proof. In the first step, every party receives 𝑛 − 𝑡 values 𝑙 from the honest parties, plus 𝑘 ≤ 𝑡

values from corrupted parties. Lemma 2 ensures that each party obtains a multiset safe_values

containing at least 𝑡 + 1 values that are within the range of values 𝑙 sent by honest parties. The

number of bits sent in this step is at most 𝑂 (log(ℓ/𝑛) · 𝑛2), hence 𝑂 (ℓ𝑛).
Afterwards, the parties send 𝑙min via ΠℓBC+, while every party joins the ΠℓBC+ invocations with

length_limit := ⌈log
2
𝑙max⌉ + 1. To ensure that the precondition of the Limited Length property

holds and therefore honest parties’ messages get delivered, it is sufficient to prove that, if 𝑃

and 𝑃 ′
are honest and obtain multisets safe_values and safe_values

′
respectively, then 𝑙min =

22

Communication-Optimal Convex Agreement

min safe_values ≤ max safe_values
′ = 𝑙 ′

max
. Note that both 𝑃 and 𝑃 ′

have received the 𝑛 − 𝑡

honest values, and obtained safe_values and safe_values
′
by discarding the at most the lowest 𝑡

and the highest 𝑡 values received. Then, they discarded at most the lowest 𝑡 and the highest 𝑡 out of

the 𝑛−𝑡 ≥ 2𝑡 +1 honest values. There is at least one honest value left, which will be included in both

safe_values and safe_values
′
. It follows that safe_values ∩ safe_values

′ ≠ ∅ and 𝑙min ≤ 𝑙 ′
max

.

Note that this step has communication cost at most 𝑂 (𝑛) · bits⌈log
2
⌈ℓmax/𝑛⌉ ⌉+1 (ΠℓBC+).

Then, honest parties receive the same values via ΠℓBC+. These will be 𝑛 − 𝑡 values 𝑙min from

honest parties, plus 𝑘 values from corrupted parties. Applying Lemma 2 once again ensures that

𝑙 := the (𝑘 + 1)-th lowest value 𝑙min received is within the range of values honest values 𝑙min, and

therefore 𝑙 satisfies ⌈ℓmin/𝑛⌉ ≤ 𝑙 ≤ ⌈ℓmax/𝑛⌉ and ℓest := 𝑙 · 𝑛 satisfies ℓmin ≤ ℓest ≤ ⌈ℓmax/𝑛⌉ · 𝑛.
We still need to show that the parties return valid ℓest-bit values 𝑣 . If a party 𝑃 holds 𝑣in < 2

ℓest
,

it sets 𝑣 := 𝑣in, and the claim follows immediately. Otherwise, if 𝑃 holds 𝑣in ≥ 2
ℓest

, we use the

guarantee that the lowest honest input 𝑣min satisfies 𝑣min < 2
ℓest

. This implies that 𝑣 := 2
ℓest − 1 is

in the interval [𝑣min, 𝑣max], hence it is a valid ℓest-bit value.

For the communication complexity, we have obtained that bitsℓ (Estimate) = 𝑂 (ℓ𝑛) +𝑂 (𝑛) ·
bits⌈log

2
⌈ℓmax/𝑛⌉ ⌉+1 (ΠℓBC+). The round complexity is rounds(Estimate) = 𝑂 (1) + rounds(ΠℓBC+)

since Estimate runs 𝑛 invocations of ΠℓBC+ in parallel after one communication round. Afterwards,

applying Corollary 1 leads to the results claimed in the lemma’s statement. □

C.2 Subprotocol BlocksLCP

We first prove the invariants of each iteration, as described in the proof sketch of Lemma 4.

Lemma 10. Assume that the following properties hold at the beginning of iteration 𝑖 .

(A) All honest parties hold the same indices 1 ≤ left ≤ right ≤ 𝑛 + 1, and the same bitstring

prefix
★
consisting of left − 1 blocks.

(B) 0 ≤ right − left ≤ 2
⌈log

2
𝑛⌉−(𝑖−1)

.

(C) Honest parties hold valid ℓest-bit values 𝑣 such that bitsℓest (𝑣) has prefix★ as a prefix.

(D) Honest parties hold valid ℓest-bit values 𝑣⊥, and, for any bitstring bits of right blocks, the

ℓest-bit representations of the values 𝑣⊥ of 𝑡 + 1 honest parties do not have prefix bits.

Then, either the condition left = right is met in iteration 𝑖 , or the properties hold at the beginning

of iteration 𝑖 + 1.

Proof. We assume that the condition left = right is not yet met in iteration 𝑖 (otherwise, the

statement trivially holds). Then, Property (B) ensures that left < right, and we may prove that the

properties hold at the beginning of iteration 𝑖 + 1 as well. The honest parties obtain the same output

in the ΠℓBA+ invocation of iteration 𝑖: either⊥ or a sequence of blocks, and we split the analysis into

these two cases. In the following, we make the iteration number explicit to differentiate between

variables’ values at the beginning of iteration 𝑖 and at the beginning of iteration 𝑖 +1 (i.e. prefix★(𝑖)
is the value held at the beginning of iteration 𝑖 , and prefix

★(𝑖 + 1) is the value computed during

iteration 𝑖 and held at the beginning of iteration 𝑖 + 1).

We first assume that ΠℓBA+ returns ⊥:

(A) Honest parties compute the right(𝑖 + 1) index identically, while all other values remain

unchanged. Note that left(𝑖) ≤ mid < right(𝑖) and therefore right(𝑖 + 1) := mid still

satisfies 1 ≤ right(𝑖 + 1) ≤ 𝑛 + 1. Therefore, iteration Property (A) holds at the beginning

of iteration 𝑖 + 1 as well.

(B) All honest parties compute right(𝑖 + 1) := mid ≥ left(𝑖), while the left index remains

unchanged: left(𝑖 + 1) := left(𝑖). We obtain the inequality below, which ensures that

23

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

Property (B) holds at the beginning of iteration 𝑖 + 1.

0 ≤ right(𝑖 + 1) − left(𝑖 + 1) = ⌊(left(𝑖) + right(𝑖))/2⌋ − left(𝑖)
≤ (left(𝑖) + right(𝑖))/2 − left(𝑖)
= (right(𝑖) − left(𝑖))/2 ≤ 2

⌈log
2
𝑛⌉−((𝑖+1)−1) .

(C) Since 𝑣 (𝑖 + 1) := 𝑣 (𝑖), left(𝑖 + 1) := left(𝑖) and prefix★(𝑖 + 1) := prefix
★(𝑖), Property (C)

holds at the beginning of iteration 𝑖 + 1.

(D) Note that 𝑣⊥ (𝑖 + 1) := 𝑣 (𝑖) is a valid ℓest-bit value according to Property (C). We also need

to show that, given an arbitrary bitstring block1 ∥ . . . ∥ blockmid of right(𝑖 + 1) = mid

blocks, there are 𝑡 + 1 honest parties holding values 𝑣 (𝑖) such that bitsℓest (𝑣 (𝑖)) does
not have bits as a prefix. This is ensured by the (𝑡 + 1)-Disagreement property of ΠℓBA+:
𝑡 + 1 honest parties hold values 𝑣 (𝑖) satisfying blockleft(𝑖) (𝑣 (𝑖)) ∥ . . . ∥ blockmid (𝑣 (𝑖)) ≠
blockleft(𝑖) ∥ . . . ∥ blockmid, which implies that the bit representations bitsℓest (𝑣 (𝑖)) do
not have prefix block1 ∥ . . . ∥ blockmid. Therefore, Property (D) holds at the beginning of

iteration 𝑖 + 1.

We now assume that ΠℓBA+ returns prefix★
left(𝑖) ∥ . . . ∥ prefix

★
mid

:

(A) The parties compute their left(𝑖 + 1) index and the sequence of blocks prefix
★(𝑖 + 1)

identically, while the right index remains unchanged (right(𝑖 + 1) := right(𝑖)). Note that
prefix

★(𝑖 + 1) is obtained by adding left(𝑖 + 1) − left(𝑖) blocks to prefix
★(𝑖), therefore

prefix
★(𝑖 + 1) consists of left(𝑖 + 1) − 1 blocks. In addition, left(𝑖) ≤ mid < right(𝑖) and

therefore left(𝑖 + 1) := mid+ 1 still satisfies 1 ≤ left(𝑖 + 1) ≤ 𝑛 + 1. Therefore, Property (A)
holds at the beginning of iteration 𝑖 + 1.

(B) Since left(𝑖 + 1) := mid + 1 ≤ right(𝑖), while right(𝑖 + 1) := right(𝑖), we obtain the

inequality below, which ensures that Property (B) holds at the beginning of iteration 𝑖 + 1

as well.

0 ≤ right(𝑖 + 1) − left(𝑖 + 1) = right(𝑖) − (⌊(left(𝑖) + right(𝑖))/2⌋ + 1)
≤ right(𝑖) − (left(𝑖) + right(𝑖))/2
≤ (right(𝑖) − left(𝑖))/2 ≤ 2

⌈log
2
𝑛⌉−((𝑖+1)−1) .

(C) Honest parties either hold values 𝑣 (𝑖) having prefix★(𝑖 + 1) as a prefix, or they set 𝑣 (𝑖 + 1)
to some ℓest-bit value having prefix prefix

★(𝑖 + 1). This implies that, at the beginning of

iteration 𝑖 + 1, all honest parties hold ℓest-bit values 𝑣 (𝑖) with prefix prefix
★(𝑖 + 1). We still

need to prove that values 𝑣 (𝑖 + 1) are valid. If 𝑣 (𝑖 + 1) = 𝑣 (𝑖), this follows from Property (C)

holding for values 𝑣 (𝑖). Otherwise, let 𝑃 denote an honest party holding 𝑣 (𝑖 + 1) ≠ 𝑣 (𝑖).
The No Corrupted Output property of ΠℓBA+ ensures that parties agree on a sequence of

blocks prefix
★
left(𝑖) ∥ . . . ∥ prefix

★
mid

that was proposed by an honest party holding value 𝑣★.

Then, Property (C) ensures that 𝑣★ is a valid ℓest-bit value such that bitsℓest (𝑣★) has prefix
prefix

★(𝑖 + 1). On the other hand, 𝑣 (𝑖) is a valid ℓest-bit value such that bitsℓest (𝑣 (𝑖)) has
prefix

★(𝑖) as a prefix, but not prefix★(𝑖 + 1). Remark 3 guarantees that 𝑃 ’s updated value

𝑣 (𝑖 + 1) is in [min(𝑣 (𝑖), 𝑣★),max(𝑣 (𝑖), 𝑣★)], and therefore it is an ℓest-bit value within the

honest inputs’ range.

(D) Since right(𝑖 + 1) := right(𝑖) and 𝑣⊥ (𝑖 + 1) := 𝑣⊥ (𝑖), Property (D) is maintained.

□

We may now focus on the proof of Lemma 4.

24

Communication-Optimal Convex Agreement

Lemma 4. Assume a BA protocol ΠBA, and that the honest parties join BlocksLCP with the same

value ℓest (that is a multiple of 𝑛) and valid ℓest-bit values 𝑣 . Then, the honest parties obtain the same

index 𝑖★, and each honest party obtains a pair of valid ℓest-bit values 𝑣 , 𝑣⊥ such that:

• the ℓest-bit representations of the values 𝑣 have a common prefix of 𝑖★ − 1 blocks;

• for any bitstring bits of 𝑖★ blocks, there are 𝑡 + 1 honest parties holding values 𝑣⊥ such that

bitsℓest (𝑣⊥) does not have prefix bits.
BlocksLCP has communication complexity bitsℓest (BlocksLCP) = 𝑂 (ℓest·𝑛+𝜅 ·𝑛2 log2 𝑛)+𝑂 (𝑛 log𝑛)·
bits𝜅 (ΠBA) and round complexity rounds(BlocksLCP) = 𝑂 (log𝑛) · rounds(ΠBA).

Proof. The properties listed in Lemma 10 hold in iteration 1 due to the variables’ initialization.

Hence, these properties hold for every iteration of the loop.

Property (A) ensures that honest parties hold the same indices left and right in every iteration

of the loop. Then, once the condition left = right is met, the honest parties set 𝑖★ identically

as 𝑖★ = left, satisfying 1 ≤ 𝑖★ ≤ 𝑛 + 1. Then, Property (C) guarantees that honest parties hold

valid ℓest-bit values 𝑣 having the bitstring prefix
★
as a common prefix. According to Property (A),

this common prefix consists of left − 1 = 𝑖★ − 1 blocks. From Property (D), it follows that the

honest parties hold valid ℓest-bit values 𝑣⊥. The same property implies that, for any bitstring bits

of right = 𝑖★ blocks, the ℓest-bit representations of 𝑡 + 1 honest parties do not have bits as a prefix.

Hence, once the stopping condition holds, honest parties hold values 𝑖★, 𝑣 , and 𝑣⊥ satisfying the

guarantees in the lemma’s statement. It remains to show that the stopping condition indeed holds

eventually.

Note that the condition left = right is met (for all honest parties simultaneously, due to

Property (A)) by iteration 𝑖 := ⌈log
2
𝑛⌉ + 2. Property (B) ensures that, at the beginning of iteration 𝑖 ,

0 ≤ right− left ≤ 2
⌈log

2
𝑛⌉−(𝑖−1)

. Then, if this condition was not met by iteration 𝑖 := ⌈log
2
𝑛⌉ + 2,

the indices left and right obtained by the honest parties in iteration 𝑖 satisfy 0 ≤ right− left ≤
2
⌈log

2
𝑛⌉−(⌈log

2
𝑛⌉+1) ≤ 2

−1
. Since the indices left and right are natural numbers, we may conclude

that right − left = 0.

We may then discuss the round complexity of BlocksLCP: since 𝑂 (log𝑛) iterations are suffi-

cient and each iteration invokes ΠℓBA+ once, we obtain that rounds(BlocksLCP) = 𝑂 (log𝑛) ·
rounds(ΠℓBA+). Then, Corollary 2 leads to the result claimed in the lemma’s statement.

For the communication complexity, Property (B) of Lemma 10 ensures that, in each iteration

𝑖 < ⌈log
2
𝑛⌉ + 2, BlocksLCP runs ΠℓBA+ on a bitstring of at most 2

⌈log
2
𝑛⌉−𝑖

blocks, hence 2
⌈log

2
𝑛⌉−𝑖 ·

ℓest/𝑛 ≤ ℓest/2𝑖−1 bits. Therefore, bitsℓest (BlocksLCP) =
∑⌈log

2
𝑛⌉+1

𝑖=1
bitsℓest/2𝑖−1 (ΠℓBA+) . Using

Corollary 2, and the fact that

∑∞
𝑖=0 1/2𝑖 ≤ 2, we obtain that bitsℓest (BlocksLCP) = 𝑂 (ℓest · 𝑛 + 𝜅 ·

𝑛2 log2 𝑛) +𝑂 (𝑛 log𝑛) · bits𝜅 (ΠBA). □

C.3 Subprotocol AddLastBlock

Lemma 5. Assume a BA protocol ΠBA, and that honest parties join AddLastBlock with the same

value ℓest (that is a multiple of 𝑛), with the same index 1 ≤ 𝑖★ ≤ 𝑛, and with valid ℓest-bit values 𝑣

that have a common prefix of 𝑖★ − 1 blocks. Then, honest parties agree on a bitstring prefix
1
of 𝑖★

blocks such that there is a valid value 𝑣1 whose ℓest-bit representation has prefix prefix
1
.

AddLastBlock has communication complexity bitsℓest (AddLastBlock) = 𝑂 (ℓest ·𝑛+𝑘 ·𝑛3 log𝑛)+
𝑂 (𝑛) · bits𝜅 (ΠBA) and round complexity rounds(AddLastBlock) = 𝑂 (1) · rounds(ΠBA).

Proof. Since parties send their blocks’ values val(block𝑖★ (𝑣)) (satisfying length_limit =

ℓest/𝑛) via ΠBC+, the honest parties receive the same 𝑛 − 𝑡 blocks from honest parties, and the

same 𝑘 ≤ 𝑡 blocks from corrupted parties. Then, since honest values 𝑣 have a common prefix of

𝑖★ − 1 blocks, the honest parties obtain the same bitstring of 𝑖★ blocks prefix
1
:= block1 (𝑣) ∥ . . . ∥

block𝑖★−1 (𝑣) ∥ bitsℓest/𝑛 (safe_block_val). In addition, Lemma 2 ensures that safe_block_val is

25

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

within the range of values val(block𝑖★ (𝑣)) of honest values 𝑣 , and therefore prefix
1
is the prefix

of a valid value’s ℓest-bit representation according to Remark 4.

For the bit complexity, note that parties run 𝑂 (𝑛) invocations of ΠℓBC+ in parallel on ℓest/𝑛-bits
inputs. Then, bitsℓest (AddLastBlock) = 𝑂 (𝑛) · bitsℓest/𝑛 (ΠℓBC+) and rounds(AddLastBlock) =
rounds(ΠℓBC+). Corollary 1 enables us to conclude that bitsℓest (AddLastBlock) = 𝑂 (ℓest · 𝑛 +𝜅 ·
𝑛3 log𝑛) +𝑂 (𝑛) · bits𝜅 (ΠBA) and rounds(AddLastBlock) = 𝑂 (1) · rounds(ΠBA). □

C.4 Subprotocol Complain

Lemma 6. Assume a BA protocol ΠBA, and that honest parties join Complain with the same value

ℓest (that is a multiple of 𝑛) and with the same bitstring of 1 ≤ 𝑖★ ≤ 𝑛 blocks prefix
1
representing the

prefix of some valid value’s ℓest-bit representation. In addition, assume that each party joins with some

valid ℓest-bit input 𝑣⊥ such that the ℓest-bit representations of 𝑡 + 1 honest parties’ values 𝑣⊥ do not

have prefix
1
as a prefix. Then, the honest parties obtain the same valid value 𝑣out.

Complain has communication complexity bitsℓest (Complain) = 𝑂 (ℓest · 𝑛 + 𝜅 · 𝑛3 log𝑛) +𝑂 (𝑛) ·
bits𝜅 (ΠBA) and round complexity rounds(Complain) = 𝑂 (1) · rounds(BA).

Proof. We first note that honest parties obtain the same multiset outputs_from_complaints

since all complaints are sent via ΠℓBC+. This implies that the parties compute 𝑣out identically. In

addition, every honest complaint satisfies the length_limit, so the honest complaints are delivered

correctly.

We show that, if a complaint (𝑖, block𝑖) is sent by an honest party holding value 𝑣⊥, then
it leads to a valid value 𝑣out?. Note that 𝑖 ≤ 𝑖★, and the binary representation of 𝑣⊥, namely

bitsℓest (𝑣⊥), has the bitstring prefix★1 ∥ . . . ∥ prefix★𝑖−1 ∥ block𝑖 as prefix. Then, Remark 2 ensures

that 𝑣out? := minℓest (common_prefix ∥ 1) ∈ [min(𝑣⊥, 𝑣1),max(𝑣⊥, 𝑣1)], and therefore 𝑣out? is valid.
At least 𝑡 + 1 honest parties hold values 𝑣⊥ that do not have prefix

1
as a prefix and send

complaints. Therefore, all parties receive 𝑡 + 1 + 𝑘 complaints, with 0 ≤ 𝑘 ≤ 𝑛 − (𝑡 + 1). Out of
these, min(𝑘, 𝑡) are sent by corrupted parties and may lead to values outside the honest inputs’

range. Note that 𝑣out is well-defined, since 𝑡 + 1 + 𝑘 ≥ min(𝑡, 𝑘) + 1. To show that 𝑣out is valid, we

need to show that 𝑣out is at least the min(𝑘, 𝑡) + 1-th lowest value in outputs_from_complaints

(which is ensured by the way 𝑣out is initialized), and at most the min(𝑘, 𝑡) + 1-th highest value in

outputs_from_complaints. This follows from the fact that outputs_from_complaints contains

min(𝑘, 𝑡) values that are at least 𝑣out, i.e.
��
outputs_from_complaints

�� ≥ 2 · min(𝑘, 𝑡) + 1. This

holds since, if 𝑘 ≤ 𝑡 ,
��
outputs_from_complaints

�� = (𝑡 + 1) + 𝑘 ≥ 2𝑘 + 1. Otherwise, if 𝑘 > 𝑡 ,��
outputs_from_complaints

�� = (𝑡 + 1) + 𝑘 ≥ 2𝑡 + 1, and therefore 𝑣out is valid.

For the communication complexity and the round complexity, note that at most 𝑛 parties send a

block and an index of ⌈log
2
𝑛⌉ +1 bits via ΠℓBC+ (in parallel). Therefore, bitsℓest (Complain) = 𝑂 (𝑛) ·

bitsℓest/𝑛+⌈log2 𝑛⌉+1bits(ΠℓBC+) and rounds(Complain) = rounds(ΠℓBC+). Applying Corollary 1

leads to the results claimed in the lemma’s statement. □

D PROTOCOL FOR Z: MISSING PROOFS

We include the proof of Corollary 3.

Corollary 3. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3 corruptions. Then, if the honest
parties hold inputs 𝑣in ∈ Z with bits(

��𝑣in��) consisting of at most ℓ bits, ΠZ is a CA protocol resilient

against 𝑡 < 𝑛/3 corruptions, with communication complexity bitsℓ (ΠZ) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛3 log𝑛) +
𝑂 (𝑛 log𝑛) · bits𝜅 (ΠBA), and round complexity rounds(ΠZ) = 𝑂 (log𝑛) · rounds(ΠBA).

Proof. We first show that ΠZ achieves CA. In ΠZ, parties first agree on their values’ sign with

the help of ΠBA. If ΠBA returns signout = 0, then there is an honest party holding a non-negative

26

Communication-Optimal Convex Agreement

input. If a party holds 𝑣in < 0, then 𝑣N
in

:= 0 is a valid value. Parties then join ΠN with valid

values 𝑣N
in
and therefore agree on a valid output according to Theorem 2. Otherwise, if ΠBA returns

signout = 1, there is an honest party holding a non-positive input. If a party holds 𝑣in > 0, then

𝑣N
in

:= 0 is a valid value. Therefore, all honest parties hold valid values (−1) ·𝑣N
in
. Parties then join ΠN

with inputs 𝑣N
in
and, according to Theorem 2, they agree on a value 𝑣N

out
such that 𝑣out := (−1) · 𝑣N

out

is valid.

ΠZ first runs ΠBA once with bits as inputs, and afterwards it runs ΠN on inputs of at most ℓ bits.

Then, we obtain that bitsℓ (ΠN) = bits1 (ΠBA) + bitsℓ (ΠN), and rounds(ΠZ) = rounds(ΠBA) +
rounds(ΠN). Theorem 2 leads to the results claimed in the corollary’s statement. □

27

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Comparison to previous works

	2 Preliminaries
	2.1 Binary representations
	2.2 Definitions

	3 Overview
	3.1 Inputs' length
	3.2 Warm-up
	3.3 From bits to blocks
	3.4 A round-efficient approach

	4 Building Blocks
	4.1 Recap: BA for long messages
	4.2 Limited Length Synchronous Broadcast
	4.3 BA with additional properties

	5 Protocol for N
	5.1 Estimating the inputs' length
	5.2 Finding some valid values' longest common prefix
	5.3 Putting it all together

	6 Protocol for Z
	7 Conclusions
	References
	A Overview: Missing Proofs
	B BA for long messages
	B.1 BA for t < n / 3, without setup
	B.2 Additional properties

	C Protocol for N: missing proofs
	C.1 Subprotocol Estimate
	C.2 Subprotocol BlocksLCP
	C.3 Subprotocol AddLastBlock
	C.4 Subprotocol Complain

	D Protocol for Z: missing proofs

