
Exploring the Advantages and Challenges of
Fermat NTT in FHE Acceleration

Andrey Kim1 †, Ahmet Can Mert2 †, Anisha Mukherjee2, Aikata Aikata2,
Maxim Deryabin1, Sunmin Kwon1, HyungChul Kang1, and Sujoy Sinha Roy2

1 Samsung Advanced Institute of Technology, Suwon, Republic of Korea
{andrey.kim,max.deriabin,sunmin7.kwon,hc1803.kang}@samsung.com

2 Graz University of Technology, Graz, Austria
{ahmet.mert,anisha.mukherjee,aikata,sujoy.sinharoy}@iaik.tugraz.at

Abstract. Recognizing the importance of a fast and resource-efficient
polynomial multiplication in homomorphic encryption, in this paper, we
introduce a novel method that enables integer multiplier-less Number
Theoretic Transform (NTT) for computing polynomial multiplication.
First, we use a Fermat number as an auxiliary modulus of NTT. How-
ever, this approach of using Fermat number scales poorly with the degree
of polynomial. Hence, we propose a transformation of a large-degree uni-
variate polynomial into small-degree multi-variable polynomials. After
that, we compute these NTTs on small-degree polynomials with Fermat
number as modulus. We design an accelerator architecture customized
for the novel multivariate NTT and use it for benchmarking practi-
cal homomorphic encryption applications. The accelerator can achieve
1,200× speed-up compared to software implementations. We further dis-
cuss the potential and limitations of the proposed polynomial multipli-
cation method in the context of homomorphic encryption.

Keywords: Fermat number· NTT · Polynomial Multiplier · FHE · Hard-
ware Accelerator

1 Introduction

Homomorphic encryption refers to a class of encryption algorithms that enable
computations to be performed directly on encrypted data, eliminating the ne-
cessity for decryption. It has emerged as a prominent cryptographic algorithm
for safeguarding sensitive data when data processing occurs within untrusted
environments. One notable example of the application of homomorphic encryp-
tion is the privacy-preserving outsourcing of computation to a cloud, where the
cloud evaluates a specific procedure (e.g., statistical analysis, machine learning,
etc.) homomorphically on the encrypted data and sends the encrypted result to
the user. Other applications where homomorphic encryption is used as a foun-
dation include privacy-preserving Distributed Learning [21], Machine Learning
as a Service (MLaaS) [25] and Private Set Intersection [10].
†Andrey Kim and Ahmet Can Mert declare equal contribution



2 A. Kim, A.C. Mert, et al.

The first Fully Homomorphic Encryption (FHE) scheme, which could perform
arbitrary operations on encrypted data, was constructed by Gentry [20] using
lattice-based cryptography. Although this construction was a breakthrough an-
swer to a decades-old open problem [36], the first FHE scheme was extremely slow
in processing ciphertexts. In the following years, several other FHE schemes [8,
9, 7, 12] were constructed relying on the hardness of solving the Learning with
Errors (LWE) or its structured variant, the Ring Learning with Errors (RLWE)
problems. In the present-day scenario, FHE schemes based on the RLWE prob-
lem are leading in computational efficiency.

RLWE-based homomorphic evaluation procedures perform computations in
a polynomial ring RQ = ZQ/⟨f(x)⟩, where Q is a ciphertext modulus and f(x)
is an irreducible polynomial of the polynomial ring. The degree of f and the size
of Q depend on the application’s security level and multiplicative complexity
that needs to be evaluated homomorphically. For example, the evaluation of lo-
gistic regression training [28, 38, 3] uses f(x) = x216 +1 and log2 Q = 1, 728. The
arithmetic of large polynomials is at the center of homomorphic evaluation, mak-
ing homomorphic evaluations four to five orders of magnitude computationally
demanding compared to simple plaintext processing.

Efficient implementations of RLWE-based homomorphic encryption schemes
in the literature generally apply two primary algorithmic optimizations. First,
they use a composite Q =

∏l−1
i=0 qi, a product of l (co)primes qi, and apply the

Residue Number System (RNS) to transform modulo Q arithmetic into modulo
qi arithmetic. Hence, polynomial arithmetic in RQ transforms into arithmetic
of residue polynomials in Rqi . This optimization improves efficiency by enabling
parallel processing of small-integer arithmetic operations. The second optimiza-
tion is the application of number theoretical transform (NTT) based polynomial
multiplication. The NTT method has the fastest asymptotic time complexity of
O(n · log n) elementary integer modular operations, where n is the degree of the
irreducible polynomial of RQ. The NTT in Rqi requires the existence of n-th
primitive root of the unity modulo qi and to satisfy this requirement, the usual
choice is qi ≡ 1 mod n with qi being a prime. When an additional condition,
qi ≡ 1 mod 2n, is satisfied, modular reduction of a polynomial multiplication
by f(x) = x2k + 1 with n = 2k becomes implicit. Any NTT primarily com-
putes the so-called “butterfly” operation, which internally performs additions,
subtractions, and multiplications respective to RNS-based moduli qi. A typi-
cal approach for designing high-performance FHE accelerators is to make the
modular multiplication fast and/or resource efficient.

In this paper, we set out to answer the question, Can we make these mod-
ular multiplications extremely inexpensive and even cost-free? In particular, we
investigate the impact of replacing the RNS moduli qi’s with Fermat numbers
during an NTT operation. NTT using Fermat numbers (FNTT) were explored
five decades ago [1] where the authors showed that FNTT is less computation-
ally demanding compared to the Fast Fourier Transform (FFT) because the
complex multiplications in case of FFT get mapped to simple shift operations
using FNTT. Furthermore, a generalized NTT using Fermat-Mersenne numbers



Title Suppressed Due to Excessive Length 3

was suggested in [16]. However, there is no work in the literature that imple-
ments FNTT in the context of homomorphic encryption. The special properties
of Fermat numbers and the existing research gap motivate us to design an FHE
hardware accelerator based on FNTT. We also discuss in detail why this ap-
proach is not so straightforward when it comes to homomorphic encryption and
list its advantages as well as certain limitations.

1.1 Our contributions

In this paper, we adopt a curiosity-driven approach to explore the potential appli-
cations of Fermat numbers in optimizing NTT-based polynomial multiplications
for hardware acceleration of fully homomorphic encryption. Our contributions
are outlined below.

– For the first time in the context of FHE, we design an NTT-based polyno-
mial multiplication method that uses a Fermat number [1, 16] of the form
FK = 2K +1 as the modulus. Specifically, by employing a suitably large FK

as an auxiliary modulus and defining corresponding ring mappings between
Rqi and RFK

, all NTTs are performed modulo FK instead of the individ-
ual moduli qi. As the roots of unity modulo FK are powers-of-2, the FNTT
method eliminates the storage of twiddle factors (roots of unity). It trans-
forms all modular multiplications during NTT into simple shift operations
leading to a multiplier-less NTT design. Furthermore, using the same mod-
ulus for computing all NTTs enables the design of a ‘somewhat’ flexible or
parameter-independent polynomial multiplier circuit on hardware platforms.

– One problem with FNTT with respect to FK is that it can utilize the power-
of-two twiddle factors only for polynomial degrees N ≤ K (i.e., it supports
upto K-point NTT), so K has to be very large to accommodate an efficient
FNTT algorithm corresponding to the large polynomial degree required in
a homomorphic encryption scheme. This in turn will result in an unsuitably
large machine word size proportional to K. We provide a simple algorithmic
solution to overcome this problem by proposing to switch from a univari-
ate polynomial structure to a multivariate one. This allows the utilization
of smaller-dimensional FNTTs instead of one inefficient large-dimensional
FNTT in the univariate case.

– In order to quantitatively assess the implementation cost of multivariate-
FNTT over other established methods, we design a hardware accelerator
tailored to the technique proposed above. The FNTT unit has no multi-
pliers and has relatively low routing and, consequently, power overhead. In
terms of area, it is 50% cheaper compared to state-of-the-art FNTT design
for FHE [3] offering the same throughput. The FNTT unit is bi-directional
and can hence support both FNTT as well as Inverse FNTT (IFNTT).



4 A. Kim, A.C. Mert, et al.

– Finally, we accomplish our goal of designing a hardware accelerator utilizing
FNTT. To this end, we propose an architecture tailored to optimize the
new FNTT-based polynomial multiplication and Key Switch routines for
the RNS CKKS [12] scheme. We observe that although the FNTT unit is
much cheaper compared to conventional NTT units in the literature, the
overall architecture consumes more space due to increased on-chip storage
requirements. Even with this added overhead, it could achieve a speed-up of
1,200× compared to CPU computation.

The paper is organized as follows. In Sec. 2, we provide the mathemati-
cal details required to present our algorithmic and architectural contributions.
Sec. 3 presents our proposed polynomial multiplication approach using a Fermat
number as an auxiliary modulus and a multivariate ring. In Sec. 4, we give a
detailed design description that we adopted to implement FNTT on hardware.
Finally, in Sec. 5, we provide an instance of a CKKS accelerator that integrates
our proposed FNTT architecture. Our implementational results and compar-
isons with other works are given in Sec. 6. Finally, Sec. 7 discusses the potentials
and limitations of our FNTT-based homomorphic encryption accelerator design
approach.

2 Preliminaries

2.1 Notation

We denote a ring of univariate polynomials by R[X] and in case of several
indeterminates X1, · · · , Xk, the multivariate ring is denoted by R[X1, · · · , Xk].
Let N ∈ N be a power of two. For a number field Q[X]/(ϕ2N (X)) we denote
R = Z[X]/(ϕ2N (X)) as its ring of integers consisting of polynomials modulo
the 2N -th cyclotomic polynomial, ϕ2N (X) = XN + 1. Also, let Rq = R/qR be
the residue ring of R modulo an integer q. An element of Rq is a polynomial of
the form, a(X) =

∑N−1
i=0 aiX

i with each of its coefficients ai in Zq. We will use
the same notation format for the multivariate case as well, replacing X by Xi’s.
For q ∈ Z and q > 1, we identify the ring Zq with [−q/2, q/2) as the represen-
tative interval, and for x ∈ Z we denote the centered remainder of x modulo q
by [x]q ∈ Zq. We extend these notations to elements of Rq by applying them
coefficient-wise. All logarithms are base 2 unless otherwise indicated.

2.2 NTT for polynomial multiplication

As discussed previously, HE schemes employ polynomials of high degrees and
large coefficients which makes multiplications between them one of the primary
implementation bottlenecks. NTT is usually chosen as the preferred algorithm
because it reduces the complexity of polynomial multiplication to O(n · log n)
compared to the naive schoolbook (O(n2)) or Karatsuba algorithms (O(nlog 3)).
The NTT is an extension of the Fourier Transform over finite fields of the form Zp



Title Suppressed Due to Excessive Length 5

that allows replacing polynomial multiplication with element-wise integer mul-
tiplication. An N -point NTT operation transforms a polynomial a(X) of degree
N−1 into a polynomial ã obtained by evaluating a over the powers of N -th root
of unity, ωN in Zp (often called ‘twiddle factors’), that is, ãk =

∑N−1
i=0 ai(ω

ik
N )

for every k = 0, · · · , N − 1. The inverse of this transformation is called the In-
verse NTT (INTT). In polynomial rings of the form Rq, an additional condition
of q ≡ 1 (mod 2N) ensures an efficient NTT-based polynomial multiplication
because of cheap modular reduction. Fig. 2 describes the commutative diagram
with respect to NTT with ⊙ representing element-wise multiplication in the
integer domain. We also provide a typical instance of an NTT algorithm imple-
mented in hardware designs in Alg. 1.

Algorithm 1 Decimation-in-time NTT with Cooley-Tukey Butterfly [30]
Input: a ∈ Rq (in normal order)
Input: ψrev (N powers of ψ in bit-reversed order)
Output: a← NTT(a) ∈ Rq (in bit-reversed order)
1: t← n
2: for (m = 1;m < n;m = 2 ·m) do
3: t← t/2
4: for (i = 0; i < m; i = i+ 1) do
5: j1 ← 2 · i · t, j2 ← j1 + t− 1
6: w ← ψrev[m+ i]
7: for (j = j1; j ≤ j2; j = j + 1) do
8: u← aj
9: v ← aj+t · w (mod q)

10: aj ← (u+ v) (mod q)
11: aj+t ← (u− v) (mod q)

12: return a

2.3 Residue Number System (RNS)

The Residue Number System (RNS) makes use of the Chinese Remainder The-
orem (CRT) to represent an integer as a vector of its residues modulo a basis
of pairwise co-prime integers. The same can also be applied to polynomials in
rings. If a is a polynomial in RQ and C = {q0, · · · , qk−1} is a basis such that
Q =

∏k−1
i=0 qi then, there is a ring isomorphism from a ∈ RQ to its representation

(a(0), a(1), · · · , a(k−1)) ∈
∏k−1

i=0 Rqi being applied coefficient-wise. RNS is often
used in conjunction with NTT for implementing HE schemes on hardware and
software platforms as it enables the parallelization of computations. Fig. 1 gives
a visual representation of the ring mappings involved.



6 A. Kim, A.C. Mert, et al.

Z[X] ZQ[X] {Zqi [X]}Li=1

Z[X] ZQ[X] {Zqi [X]}Li=1

id

× ⟲
ICRT

× ⟲ ×

id CRT

Fig. 1: RNS using CRT.

Zqi [X] Rqi {Zqi}N

Zqi [X] Rqi {Zqi}N

id

× ⟲

NTTqi

× ⟲ ⊙

id INTTqi

Fig. 2: NTT using RNS moduli qi.

2.4 General structure of RLWE-based HE schemes

In a RLWE-based homomorphic encryption scheme, a client usually generates
a secret-key sk = (1, s) ∈ R2

q and the corresponding public-key pk = (b =
−a · s + e, a) ∈ R2

q to encrypt a message m under the ciphertext ct ← (c0 =
v ·b+e0+m, c1 = v ·a+e1) ∈ R2

q. The error polynomial ei is sample from a Gaus-
sian distribution and v is polynomial sampled from another distribution often
specific to the scheme. The ciphertext ct is decryptable under sk because the op-
eration (c0 ·1+c1 ·s) (mod q) will return m (or its close approximation as in the
case of CKKS). Assume that the client sends ciphertexts ct and ct′ to the cloud
to perform computations on them. Let ct = (c0, c1) and ct′ = (c′0, c

′
1) ∈ R2

q

encrypt m and m′ respectively, then the cloud can compute a valid encryp-
tion of m+m′ by a simple component-wise addition of the ciphertexts, that is,
ctadd ← (c0 + c′0, c1 + c′1) ∈ R2

q. Note that addition is a linear operation and
hence relatively simple. Homomorphic multiplication which consists of comput-
ing encryption of m · m′, however, is more elaborate. A general intuitive idea
is that multiplying two ciphertexts involves multiplying their respective compo-
nents with each other, like, ctmult = (c0 ·c′0, c0 ·c′1+c1 ·c′0, c1 ·c′1) ∈ R3

q. Notice that
the ciphertext ctmult has three polynomial components and is actually decrypt-
able using (1, s, s2) but not using sk = (1, s), which deviates from our desired
form of ciphertext. To again enable decryption using sk, a ‘Key-Switching’ op-
eration is used to transform the three-component ciphertext ctmult back into
the usual two-component ciphertext ctrelin decryptable under (1, s). In this con-
text, key-switching is called ‘relinearization’ as it produces a ciphertext that has
a linear decryption equation with respect to sk. It requires multiplying ctmult
with a relinearization key or ‘evaluation’ key that contains a public encryption
of s2. In order to perform arbitrary number of such homomorphic operations, a
process known as ‘bootstrapping’ is applied to reduce the level of noise in the



Title Suppressed Due to Excessive Length 7

ciphertext by homomorphically evaluating the decryption circuit. This is also
often known as ‘refreshing’ the ciphertext and require some additional opera-
tions. While most ideal lattice-based homomorphic encryption schemes such as
BGV [7], CKKS and RNS-CKKS [12] share a similar underlying protocol struc-
ture, the exact algorithms for multiplication and relinearization vary across these
schemes. We describe the vital components of RNS-CKKS in the next paragraph.

RNS-CKKS: For a desired security parameter λ, RNS-CKKS sets a univari-
ate polynomial degree N , a ciphertext modulus QL such that its corresponding
RNS-basis is given by C = {q0, · · · , qL}. At a certain level 0 ≤ l ≤ L, let the
sub-basis be Cl = {q0, · · · , ql} and Ql be the product of q′is up to l. The secret
polynomial sk is sampled from a key distribution with pre-determined proper-
ties and then the public key pk is generated as an RLWE sample as mentioned
in the previous paragraph. The ciphertext in R2

QL
, is also obtained similarly

as before, but each ciphertext component c0 and c1 is now actually a tuple of
L-elements (that is, each residue polynomial is in Rqi where, 0 ≤ i ≤ L). The
relinearization key evk = (evk0, evk1) is generated such that each of evk0 and
evk1 is an L-tuple of polynomials in RpQL

(p is a special prime used only dur-
ing key-switching/relinearization operations) and sent to the cloud to be used
during relinearization. Further, each element in the L-tuple is again decomposed
into (L + 1) residue polynomials corresponding to p and the RNS basis of QL.
The important sub-routines are given below:

– CKKS.Add(ct, ct′): The addition operation between two ciphertexts ct =
(c0, c1) and ct′ = (c′0, c

′
1) in R2

Ql
computes ctadd = (d0, d1) where d0 =

c0 + c′0 ∈ RQl
and d1 = c1 + c′1 ∈ RQl

.
– CKKS.Mult(ct, ct′): Given two input ciphertexts ct = (c0, c1) ∈ R2

Ql
and

ct′ = (c′0, c
′
1) ∈ R2

Ql
, it computes d0 = c0·c′0 ∈ RQl

, d1 = c0·c′1+c1·c′0 ∈ RQl
,

and d2 = c1 · c′1 ∈ RQl
. The output is the non-linear ciphertext ctmult =

(d0, d1, d2) ∈ R3
Ql

.
– CKKS.Relinevk(ctmult): With the help of the evaluation key, evk = (evk0, evk1),

compute ct′′ = (c′′0 , c
′′
1) where c′′0 =

∑l−1
i=0 d

′
2[i] · evk0[i] ∈ RpQl

and c′′1 =∑l−1
i=0 d

′
2[i] · evk1[i] ∈ RpQl

, where the notation [i] denotes the i-th ele-
ment of the L-tuple. The final output is the relinearized ciphertext given by
ctrelin = (d0, d1) + (CKKS.ModDown(c′′0), CKKS.ModDown(c

′′
1)) (mod Ql). The

CKKS.ModDown operation is used to reduce the coefficient modulus from pQl

to Ql.

An operation known as rescaling takes a ciphertext ct = (c0, c1) ∈ R2
Ql

with level
l and produces a ciphertext ct′ = (c′0, c

′
1) at level l−1. RNS-CKKS also includes

automorphism operations which are special permutations (such as a rotation) of
ciphertext coefficients. This can be considered as another type of key-switching
operation that employs automorphism keys that encrypt the image of the secret
key under the specified automorphism (for example, the rotated secret key),
similar to key-switching or relinearization keys. Multiplication of the original
ciphertext with the automorphism key ensures that the resultant ciphertext is an



8 A. Kim, A.C. Mert, et al.

encryption of the image of the message under the automorphism. Bootstrapping
in CKKS relies on the aforementioned homomorphic subroutines [11]. We provide
the pseudo-codes for CKKS.Mult and CKKS.Relin later in Sec. 5.

3 New multiplication using Fermat number and
multivariate polynomial rings

We explain the new polynomial multiplication method in two steps, as elaborated
in the following two subsections.

3.1 Multiplication using an auxiliary modulus mapping

With the application of RNS (Sec. 2.3), a polynomial multiplication inRQ trans-
forms into polynomial multiplications between the residue polynomials in the re-
spective Rqi rings. For computing these multiplications with respect to different
moduli qi, we use a common and sufficiently large auxiliary modulus P , follow-
ing a similar approach presented in [13]. Fig. 3 illustrates the respective maps
required to transition between the residue rings modulo qi and the ring modulo
P . We first switch from Rqi to RP , perform the multiplication in RP , and switch
back to Rqi after the multiplication. For the correct computation of polynomial
multiplications, it is essential to have a sufficiently large P such that no true
modular reduction by P ever happens. This is ensured when P >

q2i
4 ·N for all

qi. With the additional condition of P ≡ 1 (mod 2N), the multiplication in the
ring RP can be performed using the usual NTT approach for modulus P . Using
a common auxiliary modulus P for polynomial multiplications in RLWE-based
FHE schemes [7, 17, 12], where many qi moduli are employed, is advantageous for
achieving flexibility on hardware platforms. The disadvantage is the increased
computation cost due to the use of a two times larger modulus.

Using Fermat number as auxiliary modulus: Choosing P = FK = 2K +1,
where K is a power-of-2, offers several benefits and improves the algorithm’s
compatibility with hardware acceleration. For instance, reduction modulo FK

can be efficiently carried out due to its simple binary structure. Another sig-
nificant advantage of using Fermat number FK is that the 2K-th root of unity

Rqi RP {ZP }N

Rqi RP {ZP }N

emb

× ⟲
NTTP

× ⟲ ⊙

(mod qi) INTTP

Fig. 3: Polynomial multiplication using auxiliary modulus



Title Suppressed Due to Excessive Length 9

modulo FK is 2, thus for N ≤ K, twiddle factors used in NTT are powers-of-2.
As a result, all the multiplications in the NTT algorithm can be replaced with
bit shifting modulo FK .

Challenge: The constraint of employing Fermat numbers FK lies in the fact
that efficient NTT is only feasible for ring dimensions N ≤ K. For instance, with
F128 = 2128 +1, the maximum attainable NTT dimension is N = 128. However,
in RLWE-based FHE schemes, the polynomial sizes are typically much larger,
often reaching N = 216, necessitating the adoption of the substantial 65,537-bit
Fermat number F216 as an auxiliary modulus for NTT. If the moduli qi are 54
bits, the above situation increases the coefficient size by 1214×.

3.2 Multivariate ring structure as a solution for the case, N > K

When N > K, it becomes essential to develop a new polynomial multiplication
method that overcomes the constraint of FNTT, as we discussed in the previ-
ous subsection. To utilize the benefits of a reasonably small FK , we introduce
multivariate residue rings.

We transform the univariate polynomial structure, RP = ZP [X]/(XN + 1)
into a multivariate polynomial structure, SP = ZP [X1, . . . Xk]/(X

N1
1 +1, . . . XNk

k +
1), where Ni|K. We perform computations in the ring SP and then revert
back to RP . For instance, we set X1 = X and introduce the new variable
X2 = X

K/2
1 so that the univariate ring, RP = ZP [X]/(XN + 1) can be em-

bedded into the bivariate ring, ZP [X1, X2]/(X
2N/K
2 +1). We then perform poly-

nomial multiplication in ZP [X1, X2]/(X
2N/K
2 + 1) and can then revert back to

ZP [X]/(XN + 1) by substituting X2 = X
K/2
1 . Note that we set X2 = X

K/2
1 in-

stead of X2 = XK
1 because this constraint (overflow condition) guarantees that

all powers of X1 post-embedding are less than K/2, that is, a univariate poly-
nomial a(X) = a0 + a1X + · · ·+ aNXN ∈ RP gets transformed into a bivariate
polynomial a′(X1, X2) = a0+a1X1+· · ·+aK/2−1X

K/2−1
1 +aK/2X2+aK/2+1X

2
2+

· · · + a2N/KX
2N/K
2 . Consequently, all powers of X1 post-multiplication are less

than K and hence, the multiplication in the ring ZP [X1, X2]/(X
2N/K
2 +1) mim-

ics the polynomial multiplication in the ring ZP [X1, X2]/(X
K
1 + 1, X

2N/K
2 + 1).

The latter can be efficiently achieved using FNTTs for dimensions K and 2N/K.
Now, if 2N/K > K, we introduce a third variable X3 = X

K/2
2 , and embed the

ring RP = ZP [X]/(XN +1) into ZP [X1, X2, X3]/(X
4N/K2

3 +1), so that again by
the same logic, multiplication in the later ring coincides with the multiplication
in the former ring and the dimensions of the FNTTs would be K and 4N/K2.
Thus by applying this technique iteratively, we substitute univariate polynomial
multiplication in the ring R = ZP [X]/(XN + 1) with multivariate polynomial
multiplication in the ring S = ZP [X1, . . . , Xk]/(X

N1
1 +1, . . . , XNk

k +1), such that
X1 = X, Xi+1 = X

Ni/2
i , and Ni|K. This process is described in Fig. 4. Note

that, from now on, we use term multivariate NTT (MV-NTT) to refer to the
NTT operation in multivariate setting. Each smaller dimension NTT performed



10 A. Kim, A.C. Mert, et al.

RP SP
{
{ZP }Ki

}ℓ

i=1

RP SP
{
{ZP }Ki

}ℓ

i=1

emb

× ⟲

NTTP

× ⟲ ⊙

revert INTTP

Fig. 4: Multivariate polynomial structure method

in MV-NTT is an NTT with Fermat number, i.e., an FNTT.

Advantages in hardware acceleration: Splitting the univariate polynomial
ring into a multivariate ring reduces the dimension of FNTTs, which enables
the use of Fermat numbers efficiently in NTT computations. These smaller di-
mensional FNTTs can be computed in parallel. Also, since each small FNTT
with the same size has the same structure, it is possible to design a unified, fast
and tailored circuit for all the small FNTTs. Further, smaller NTT dimension
reduces the size difference between the auxiliary Fermat modulus FK and the
original RNS moduli qi, hence reducing the overall area overhead introduced by
the auxiliary modulus.

Challenges: This method introduces a trade-off: while decreasing the dimension
of FNTTs, it increases the number of FNTTs to be performed with respect to
each polynomial. For example, with every new variable introduced, the total
dimension (i.e., total number of FNTTs) doubles, which increases the number
of computations, memory and bandwidth requirements. The increased number
of computations need to be addressed by leveraging the cost-efficient arithmetic
units enabled by FNTT’s shift-based modular multiplication.

3.3 The cost of the new technique in terms of bit operations

In this section, we first provide pseudocode for the implementation steps of
the MV-NTT used in the new multiplication technique. Then, we evaluate and
compare the cost of the new technique’s MV-NTT and conventional NTT in
terms of bit operations.

In Alg. 2, we present the MV-NTT operation for the new technique with
k = 3, which leads to an MV-NTT operation consisting of three steps with
sizes N1, N2 and N3, respectively. As shown in Alg. 2, a transpose operation is
required between each FNTT step. Note that M in Alg. 2 represents a three-
dimensional structure with N3 vertical planes. M [i][j][:] represents the j-th row
of i-th plane of M . Each small dimension NTT operation in Alg. 2 is performed
using FNTT with Fermat number FK = 2K +1 (FNTTN1

, FNTTN2
, FNTTN3

).



Title Suppressed Due to Excessive Length 11

Algorithm 2 Multivariate NTT with k = 3

Input: a (a polynomial of size N)
Output: M = MV-NTT(a) (a three-dimensional matrix of dimension N2 ×N1 ×N3)
1: Lift the centered coefficients of a in Zqi to ZFK

2: for (i = 0; i < N3; i = i+ 1) do ▷ Mapping to three-dimensional matrix
3: for (j = 0; j < N2/2; j = j + 1) do
4: for (z = 0; z < N1/2; z = z + 1) do
5: M [i][j][z]← a[i · (N1/2) · (N2/2) + j · (N1/2) + z]

6: for (i = 0; i < N3; i = i+ 1) do
7: for (j = 0; j < N2; j = j + 1) do
8: M [i][j][:]← FNTTN1(M [i][j][:]) ▷ Apply N1-pt FNTT
9: Transpose the first and second dim. of M ▷(N3 ×N2 ×N1)→ (N1 ×N3 ×N2)

10: for (i = 0; i < N1; i = i+ 1) do
11: for (j = 0; j < N3; j = j + 1) do
12: M [i][j][:]← FNTTN2(M [i][j][:]) ▷ Apply N2-pt FNTT
13: Transpose the second and third dim. of M ▷(N1 ×N3 ×N2)→ (N2 ×N1 ×N3)
14: for (i = 0; i < N2; i = i+ 1) do
15: for (j = 0; j < N1; j = j + 1) do
16: M [i][j][:]← FNTTN3(M [i][j][:]) ▷ Apply N3-pt FNTT
17: return M

The inverse MV-NTT operation for the new technique uses a similar routine in
the opposite order (i.e., it starts with N3-pt IFNTTs and ends with lifting the
centered coefficients in ZFK

to Zqi).

Bit operation cost: CPUs have integer multiplication units that can provide
support for different applications with various word sizes. A software designer
does not consider the number of bit operations as the size of integer multipli-
cation units in CPUs is fixed. On the other hand, the number of bit operations
in a hardware design can make a substantial difference as the operations could
be parallelized or unrolled and the resource allocation for each arithmetic unit
can be set manually. Thus, we believe that it is important to provide the cost
of bit operations to evaluate the new multiplication technique and compare it
to conventional NTT-based multiplication. To that end, we followed a similar
approach as [6] and presented the implementation cost of the new multiplication
technique in terms of the total number of bit operations, i.e., the total number
of gate evaluations in arithmetic operation implementations.

In Table 1, we present the number of arithmetic operations, modular addi-
tion (ModAdd), modular subtraction (ModSub), integer multiplication (IntMul)
and modular reduction (ModRed) for both a conventional N -pt NTT and our
proposed MV-NTT technique with three variables (i.e., with three FNTT steps
of sizes N1, N2 and N3). Both ModAdd and ModSub operations require one
adder, one subtractor and one 2-to-1 multiplexer unit. For ModRed, a generic
modular reduction method such as Barrett reduction uses two multiplications,
two subtractions and one 2-to-1 multiplexer [5]. In total, IntMul and ModRed



12 A. Kim, A.C. Mert, et al.

Table 1: The number of arithmetic operations
Operation ModAdd ModSub IntMul ModRed
Conv. NTT (N/2) · log2(N) (N/2) · log2(N) (N/2) · log2(N) (N/2) · log2(N)

MV-NTT (N1/2) · log2(N1) ·N2 ·N3+ (N1/2) · log2(N1) ·N2 ·N3+ 0 (N1/2) · log2(N1) ·N2 ·N3+

(k = 3) (N2/2) · log2(N2) ·N1 ·N3+ (N2/2) · log2(N2) ·N1 ·N3+ 0 (N2/2) · log2(N2) ·N1 ·N3+
(N3/2) · log2(N3) ·N1 ·N2 (N3/2) · log2(N3) ·N1 ·N2 0 (N3/2) · log2(N3) ·N1 ·N2

operations require three integer multiplications, two subtractions and one 2-to-1
multiplexer unit. On the other hand, IntMul for FNTT is a free-of-cost left shift
operation and modular reduction is much simpler, which can be implemented
using only one subtractor, one adder and one 2-to-1 multiplexer unit, thanks to
its reduction-friendly form.

For proof-of-concept, we set k = 3, K = 27, N1 = 27, N2 = 27 and N3 = 24

with Fermat number F128 = 2128 +1 as FNTT modulus. These parameters sup-
port polynomial multiplication in univariate ring setting with N = 216 and up to
54-bit prime modulus qi. We used a 28-nm ASIC library to synthesize and obtain
gate counts for adder, subtractor, 2-to-1 multiplexer and integer multiplier units
for 54-bit and 129-bit integers. The synthesized 54-bit adder, subtractor, 2-to-1
multiplexer and integer multiplier use 0.6K, 0.6K, 0.1K and 9.6K gate evalua-
tions (based on NAND2 gate area), respectively, while the synthesized 129-bit
adder, subtractor and 2-to-1 multiplexer use 0.8K, 0.8K and 0.2K gate evalu-
ations, respectively. We then used these numbers and Table 1 to calculate the
total gate evaluation cost of computations. While conventional NTT operation
uses ≈39.8B gate evaluations, our method uses ≈36.2B gate evaluations, which
is ≈10% less. Note that, for the selected parameters, although our MV-NTT
uses 4.5× more arithmetic operations, eliminating twiddle factor multiplications
during NTTs made the overall gate evaluation cost of MV-NTT less than the
conventional NTT.

4 The MV-NTT architecture for the proposed technique

We split the hardware description into two parts: i) The MV-NTT design and
ii) the overall architecture containing the MV-NTT for an FHE accelerator. In
this section, we first briefly discuss different NTT architectures in the literature
for univariate rings and our design rationale to implement MV-NTT efficiently.
Then, we propose an architecture tailored for the proposed MV-NTT method.

4.1 Prior works and our design rationale

Designing an efficient NTT unit is crucial for the performance of an FHE accel-
erator as NTT operation consumes more than 50% of the total resources and run
time in FHE accelerators [3]. NTT architectures in the literature are designed
for univariate rings with NTT-friendly primes. Thus, adapting prior NTT archi-
tectures for the multivariate ring setting is not straightforward. Existing NTT



Title Suppressed Due to Excessive Length 13

architectures in the literature follow either an iterative design approach such
as [31], the hierarchical (i.e., 4-step NTT) approach such as [18, 38, 28, 27, 19, 3]
or hybrid approaches [3].

In the iterative design approach [31], an N -pt NTT is performed in log2(N)
stages where each stage involves N/2 butterfly operations. The performance and
cost of an NTT implementation with an iterative design approach are scalable.
However, since the memory access pattern is different for each NTT stage, an it-
erative NTT design in hardware requires configurable connections between com-
putation and memory units, which leads to complex multiplexer structures. The
implementation complexity further increases significantly when a large number
of butterfly units is employed.

The hierarchical approach breaks a large NTT into smaller steps. It converts
an N -element polynomial into a matrix of dimension N1 ×N2, where N = N1 ·
N2, and applies N1-pt NTT to its columns. A Hadamard product with twiddle
factors follows, and the resulting matrix undergoes transposition. The final step
involves applying N2-pt NTT to the columns of the transposed matrix. Despite
its simplified control logic, this approach poses challenges in resource-constrained
environments and incurs high costs for the transpose operation, especially with
larger N values. Several ASIC-based NTT implementations [18, 38, 28, 27, 19]
employ the 4-step NTT approach with N = N1 · N2 and N1 = N2. The small
N1 or N2-pt NTTs are implemented as radix-N1 fully unrolled architectures
for improving performance. This approach lacks scalability due to the necessity
of N1 = N2. Additionally, the transpose operation is expensive to perform in
hardware. A recent work [3] combines two orthogonal NTT design methods,
removing the necessity for transpose operations in a hierarchical design, and
offering the flexibility of N1 ̸= N2 or N1 = N2.

4.2 The proposed MV-NTT architecture

The proposed FNTT in multivariate ring offers the following implementation
advantages: i) multiplication by a twiddle factor becomes simple shift, ii) mod-
ular reduction becomes very cheap thanks to sparse structure of Fermat number,
and iii) a big NTT is split into many smaller ones in the multivariate setting,
allowing for fast and optimized circuits for each small NTT.

Despite its advantages, there are two main implementation challenges: the
number of arithmetic operations increases compared to the conventional NTT
(see Sec. 3.3), and the memory and bandwidth requirements increase because
FK > q2

4 ·N and the total size of multivariate polynomial N3 ·N2 ·N1 > N .
To mitigate the aforementioned challenges, we focus on a high-performance

design strategy that capitalizes on the affordability of modular arithmetic units,
enabled by the special properties of Fermat number as detailed in Sec. 3.3.
Table 1 shows that our NTT requires many small NTTs. Nonetheless, the small
NTTs can be implemented efficiently employing many low-cost processing units.
We use multiple unrolled NTTs to realize parallel and pipeline processing.



14 A. Kim, A.C. Mert, et al.

Target parameter set: For proof-of-concept, we used the same parameter set
described in Sec. 3.3, K = 27 with N1 = 27, N2 = 27 and N3 = 24 in a three-
variate ring setting. This parameter set supports polynomial multiplication in
univariate ring for N = 216 and up to 54-bit qi modulus. Note that similar
parameter sets are used for bootstrapping in RLWE-based FHE schemes.

Data flow in MV-NTT: First, we illustrate the flow of the MV-NTT using a
toy example with N1 = 23, N2 = 23 and N3 = 2, which can compute univariate
NTT for N = 25. The coefficients for the MV-NTT are arranged in a three-
dimensional matrix M as shown in Fig. 5. The matrix has N3 vertical planes
where each plane has N1 columns and N2 rows. The transformation of a uni-
variate polynomial into the three-dimensional M is shown in lines 2-5 of Alg. 2.
As the number of elements in M is greater than N , the initial matrix contains
empty cells with zeros.

In Fig. 5, we show how the elements of M are processed. In the first step,
N1-pt FNTTs are applied to the rows of the planes of M . Then, a transpose is
performed to reshape M as N2×N3×N1, followed by N2-pt FNTTs on the rows
of the planes again. Finally, another transpose operation is performed and N3-pt
FNTTs are applied to the rows. MV-INTT performs the same steps in opposite
order. Further, it performs a final step, as shown in Fig. 5 (b), for reducing
the number of elements in M to N . Next, we explain the proposed MV-NTT
architecture tailored for multivariate ring setting and FNTT.

High-performance MV-NTT architecture: Our focus is on developing a
high-performance hardware architecture while keeping implementation complex-
ity to a minimum, with a particular emphasis on reducing the computational
overhead associated with transpose operations. The architecture depicted in
Fig. 6 illustrates our proposed design for MV-NTT tailored to a 3-variate ring
(k = 3). This design necessitates three FNTT steps. Following the data flow
diagram in the previous section, a transpose operation is required between two
FNTT stages.

To eliminate transpose operation, we employ different types of FNTT archi-
tectures for each step. Specifically, we use two N1-pt unrolled FNTT units for
the first step, N1 parallel N2-pt FNTT units for the second step, and N1 parallel
N3-pt pipelined FNTT units for the third step. In Fig. 5, the output coefficients
(N1 in total) generated by the first FNTT step serve as the input coefficients for
N1 parallel N2-point FNTT units in the second step. By using a fully unrolled
FNTT in the first step, we can directly feed all N1 parallel pipelined FNTT
units (each taking one coefficient per cycle as input) in the second step without
requiring a transpose between these two steps. The proposed MV-NTT takes
one row of a plane per cycle (N1 coefficients), performs N1-pt FNTT, and sends
resulting coefficients to the N1 parallel N2-pt pipelined FNTT units.

After the second FNTT step, another transpose operation is required. As
shown in step 2 of Fig. 5, all rows of a plane have to be processed by FNTT
before starting the third FNTT step. Thus, we use N1 parallel SRAM-based on-



Title Suppressed Due to Excessive Length 15

Fig. 5: (a) Data flow in MV-NTT in ring setting with k = 3, N = 25, N1 = 23,
N2 = 23 and N3 = 2. Gray boxes represent cells with zeros. (b) The final
reduction operation after the MV-INTT. Coefficients in red boxes are subtracted
while coefficients in yellow boxes are accumulated.

chip memory after the second FNTT step to store resulting planes. It should be
noted that these SRAMs are only used to accumulate enough coefficients so the
third FNTT step can start. They do not employ complex multiplexer or routing
configurations as transpose units. After accumulating enough coefficients to start
the third FNTT step, the coefficients are read from SRAMs accordingly to feed
the N1 parallel N3-pt pipelined FNTT units.

An N -pt pipelined FNTT architecture uses log2(N) cascaded butterfly units,
where each butterfly unit performs one stage of FNTT iteratively. There are two
pipelined FNTT architectures in the literature, SDF and MDC [22]. The SDF
architecture takes one coefficient per cycle while MDC architecture takes two
coefficients per cycle. In our design, we use MDC-based FNTT architecture.
As shown in the second step of Fig. 5, half of the coefficients in each row of a
plane are zeros. An N2-pt MDC-based FNTT architecture takes two coefficients
per cycle, where coefficient indices are separated by N2/2 (i.e., ai and ai+N2/2).
Thus, using MDC-based pipelined FNTT architecture enables eliminating the
first butterfly stage inside N2-pt MDC-based FNTT architecture as the second
butterfly input is zero. Employing an MDC-based configuration instead of an
SDF-based one improves the performance of MV-NTT.

N1-pt unrolled FNTT unit in the first step can take and generate N1 co-
efficients per cycle. On the other hand, N1 parallel MDC-based FNTT unit in
the second step can take and generate 2 · N1 coefficients per cycle. This leads
to a difference between the bandwidths of the two steps, which can hinder the



16 A. Kim, A.C. Mert, et al.

Fig. 6: Unified bi-directional MV-NTT/INTT architecture.

performance. To mitigate this problem and match the bandwidth of the first and
second steps, we employ two unrolled FNTT units in the first step. It should
be noted that the area overhead of the unrolled FNTT unit is very low thanks
to the multiplication-free structure of FNTT. The proposed NTT architecture
is scalable for different FNTT sizes and it can also be easily adapted for k = 2
setting (i.e., eliminating the second transpose and the third FNTT steps). The
proposed architecture has an average latency of 1024 cycles for MV-NTT and
MV-INTT. Details of low-level arithmetic units are presented in Appendix A.

Twiddle factor elimination: Besides removing integer multiplications, FNTT
saves logic and on-chip memory resources needed to manage twiddle factors. For
example, consider an FHE accelerator supporting 32 primes with NTT of size
N = 216 and prime size 54-bit in a univariate ring setting. The conventional
approach would necessitate ≈ 13.5MB of on-chip memory to store twiddle fac-
tors. By adopting an on-the-fly twiddle factor generation approach, the on-chip
memory can be reduced up to 98.3% [3]. However, this efficiency comes at the
cost of employing additional multiplier units for on-chip constant generation.
Our proposed technique offers a much more efficient solution by eliminating the
need for both on-chip memory and multipliers for twiddle factors.
Unifying MV-NTT and MV-INTT: Traditionally, INTT operation requires
INTT twiddle factors (i.e., ω−1, modular inverse of NTT twiddle factor ω)
and uses DIF-based NTT butterfly (while NTT uses DIT-based NTT butter-
fly). This also applies to MV-NTT and MV-INTT. Thus, it is not straightfor-
ward to support both MV-NTT and MV-INTT using the same implementa-
tion efficiently. To support MV-INTT using the MV-NTT architecture, we used
two techniques. First, we used negative-wrapped convolution with separate pre-
and post-processing steps to implement FNTT/IFNTT operations inside MV-
NTT/INTT. Normally, It is possible to merge an FNTT with pre-processing (us-
ing DIT-based butterfly) and IFNTT with post-processing (using DIF-based but-
terfly). However, this requires two different butterfly structures and complicates
implementation. Instead, we used pre-processing followed by FNTT and IFNTT
followed by post-processing [22]. As shown in Fig. 6, each FNTT unit is coupled



Title Suppressed Due to Excessive Length 17

Fig. 7: Unified unrolled FNTT/IFNTT architecture. Here, the PP block repre-
sents a unified pre-/post-processing unit, the UNR block represents a DIT-based
unrolled FNTT unit, the BR block represents a bit-reverse unit, and the RO
block represents a re-ordering unit.

with pre-/post-processing (PP) units. This enables us to use one butterfly con-
figuration (DIT-based butterfly) for both FNTT and IFNTT operations. Second,
we use a technique proposed in [15] which enables performing IFNTT operation
using the FNTT unit with FNTT twiddle factors, thus saving memory. This
technique requires re-ordering (RO) IFNTT input (a0, a1, . . . , aN−2, aN−1) as
(a0, aN−1, . . . , a2, a1). Fig. 7 depicts the unified unrolled architecture for FNTT
and IFNTT. Since we use either unrolled or pipelined architectures to imple-
ment FNTTs, bit-reverse (BR) and RO operations require only re-wiring the
input/output coefficients and, hence are implemented free of cost.

5 The MV-NTT-based FHE accelerator architecture

As an application of MV-NTT, we introduce a hardware accelerator design tai-
lored for the FHE scheme CKKS [12]. The detailed architecture is depicted
in Fig. 8. The fundamental computational building blocks of any FHE ac-
celerator [31, 3, 18, 28, 27, 38] consist of NTT/INTT, Multiply-and-Accumulate
(MAC), and Automorphism units. In previous works on FHE acceleration, the
NTT/INTT unit was solely required during the relinearization operation, leading
to its specialized optimization via architecture design. However, this paradigm
shifts when replacing the multi-modulus supporting NTT/INTT with the cost-
effective MV-NTT/INTT. Therefore, before delving into the design decisions of
the hardware accelerator, it is crucial to discuss the distinctions arising from the
use of MV-NTT/INTT.

The aim of leveraging the MV-NTT/INTT is to analyze its cost-effectiveness
and routing-friendly nature, as it eliminates the need for expensive modular mul-
tipliers. However, a challenge in realizing this objective is associated with the
storage domain of polynomials. Typically, to minimize NTT to INTT conver-
sions, ciphertexts and keys are consistently stored in NTT form. Consequently,
MAC operations do not necessitate any additional NTT/INTT transformations.
Given that the polynomial before and after the NTT/INTT operation is modulo
the same prime, the size of the polynomial remains constant in this scenario.

The first naive option is to use the same technique and store all the keys and
ciphertexts in the MV-NTT domain. This will imply that MV-NTT/INTT is



18 A. Kim, A.C. Mert, et al.

Fig. 8: The high-level architecture of MV-NTT based FHE accelerator.

again only required during the Relinearization operation. This naive approach
is uncomplicated but costly in terms of storage and communication. This is
primarily due to the expansion in polynomial size after MV-NTT, with the
number of coefficients increasing by 4× and the coefficient size growing by 129

w ×
for the target parameter set (Sec. 4), where w is the size of RNS moduli. When
applied to prior acceleration works, where w typically falls within the range
of 28 − 54, this results in an overall polynomial size increase of 9 − 18×. This
polynomial expansion results in increased overhead on both communication and
on-chip storage, particularly given that communication bottleneck is the major
problem faced by the FHE accelerators in literature [38, 27, 28, 3, 2].

In order to avoid the challenges associated with off-chip to on-chip commu-
nication of larger polynomials and to ensure its short-term storage on-chip, we
assert the continuous maintenance of data in coefficient form (non MV-NTT)
off-chip. However, this necessitates transforming data to and from the MV-NTT
domain for polynomial multiplication, as shown in Alg. 4. Relinearization, as
showcased in the prior works, also requires NTT/INTT, although in a slightly
different order due to ciphertexts being present in the coefficient form. However,
the automorphism and additions/subtractions can be directly applied to data in
coefficient form. Hence, the only operations that are affected by the use of MV-
NTT/INTT are the ciphertext multiplication and Relinearization. Therefore,
next, we will detail these two operations and see how the proposed accelerator
(Fig. 8) is designed to optimize performance for both.

5.1 The ciphertext multiplication-oriented optimizations

An FHE ciphertext ct consists of two residue polynomials (c̃0, c̃1). In order
to multiply two such ciphertexts, each of the two sets is multiplied with each
other residue-wise. To provide a more intuitive understanding of how ciphertext
multiplication has changed, we present the previous and updated algorithms-
Alg. 3 and Alg. 4, respectively. Only slot-wise multiplication was required in the
former Alg. 3, where polynomials were already in NTT form. However, in our
approach, aimed at minimizing communication and on-chip storage overhead, the
polynomial must be transformed back and forth to the MV-NTT domain for slot-
wise multiplications. Note that the MV-INTT step ensures that the polynomial,



Title Suppressed Due to Excessive Length 19

post-multiplication, is in coefficient format and consequently smaller. As a result,
the polynomials, after the MV-NTT transformation, have only a brief lifespan
in on-chip memory consumption.

Algorithm 3 CKKS.Mult [12]

In: ct = (c̃0, c̃1), ct′ = (c̃′0, c̃
′
1) ∈

R2
Ql

Out: d = (d̃0, d̃1, d̃2) ∈ R3
Ql

1: for j = 0 to l − 1 do
2: d̃0[j]← c̃0[j] ⋆ c̃

′
0[j]

3: d̃2[j]← c̃1[j] ⋆ c̃
′
1[j]

4: d̃1[j]← c̃0[j]⋆c̃
′
1[j]+ c̃1[j]⋆

c̃′0[j]

Algorithm 4 Fermat.CKKS.Mult

Input: ct = (c0, c1), ct′ = (c′0, c
′
1) ∈ R2

Ql

Out: d = (d0, d1, d2) ∈ R3
Ql

1: for j = 0 to l − 1 do
2: c̃0[j], c̃1[j]← MV-NTT(c0[j], c1[j])
3: c̃′0[j], c̃

′
1[j]← MV-NTT(c′0[j], c′1[j])

4: d0[j]← MV-INTT(c̃0[j] ⋆ c̃′0[j])
5: d2[j]← MV-INTT(c̃1[j] ⋆ c̃′1[j])
6: d1[j]← MV-INTT(c̃0[j]⋆c̃′1[j]+c̃1[j]⋆c̃′0[j])

For designing an accelerator, we observe that we now require seven MV-
NTT/INTT operations per residue polynomial multiplication. A recent work in
the literature [3] engineered all the building blocks to provide uniform through-
put, enabling them to function both in a pipeline and in parallel. This approach
assists in masking the overhead arising from extra NTT/INTT operations by
placing all the NTTs and MACs in the pipeline. However, this choice comes
with the cost of additional MV-NTTs in our design. Given that our MV-NTT
is more cost-effective than NTT/INTT in [3], this additional cost is acceptable.
Therefore, our architecture incorporates four MV-NTT units followed by two
MAC units (refer to Fig. 8). These units exhibit the same throughput and write
the output to memory. This configuration enables the simultaneous processing
of two polynomial multiplications, requiring a total of two runs to process each
residue polynomial set.

Our MV-NTT/INTT unit works in a pipelined manner and yields optimal
results when processing data in a continuous flow. However, if this continuity
is disrupted, the runtime increases due to the unit’s latency being twice its
throughput. Given that the same unit is utilized for MV-NTT/INTT for pro-
cessing the first set of residue polynomials, we can only send two polynomials
in a pipeline for MV-NTT, perform multiplication, and then must process them
via MV-INTT before sending the data back. Following this, we proceed with the
next residue polynomial set and perform MV-NTT.

In this scheduling, we reduce on-chip storage to just three polynomials. How-
ever, this comes with increased runtime as we do not fully utilize the throughput
and incur latency costs. An alternative is to store all the MV-NTT results in
on-chip and then, once all data is processed, send it for MV-INTT, storing the
results in off-chip memory. This ensures that MV-NTT operates on a continu-
ous data flow, allowing the runtime to be dominated by throughput rather than
latency. However, for parameters with l = 31, this would necessitate 372MB of
on-chip storage, which is both substantial and expensive.



20 A. Kim, A.C. Mert, et al.

Algorithm 5 CKKS.Relin [12]

In: d = (d̃0, d̃1, d̃2) ∈ R3
Ql

, ˜evk0 ∈ Rl
pQl

, ˜evk1 ∈ Rl
pQl

Out: d′ = (d̃′0, d̃
′
1) ∈ R2

Ql

1: for j = 0 to l − 1 do
2: d2[j]← INTT(d̃2[j]) ▷ in Zqj

3: for j = 0 to l do ▷ Here ql is used to represent special prime p
4: (c̃′′0 [j], c̃

′′
1 [j])← 0

5: for i = 0 to l − 1 do
6: r̃ ← NTT([d2[i]]qj ) ▷ in Zqj

7: c̃′′0 [j]← [c̃′′0 [j] + ˜evk0[i][j] ⋆ r̃]qj , c̃
′′
1 [j]← [c̃′′1 [j] + ˜evk1[i][j] ⋆ r̃]qj

8: d̃′0 ← d̃0 + CKKS.ModDown(c̃′′0 ), d̃′1 ← d̃1 + CKKS.ModDown(c̃′′1 )

Algorithm 6 Fermat.CKKS.Relin

In: d = (d0, d1, d2) ∈ R3
Ql

, evk0 ∈ Rl
pQl

, evk1 ∈ Rl
pQl

Out: d′ = (d′0, d
′
1) ∈ R2

Ql

1: for j = 0 to l do ▷ Here ql is used to represent special prime p
2: (c̃′′0 [j], c̃

′′
1 [j])← 0

3: for i = 0 to l − 1 do
4: r̃ ← MV-NTT([d2[i]]qj ) ▷ in Zfp

5: ˜evk0[i][j], ˜evk1[i][j]← MV-NTT(evk0[i][j], evk1[i][j]) ▷ in Zfp

6: c̃′′0 [j]← [c̃′′0 [j] + ˜evk0[i][j] ⋆ r̃]qj , c̃
′′
1 [j]← [c̃′′1 [j] + ˜evk1[i][j] ⋆ r̃]qj

7: for j = 0 to l do
8: c0[j], c1[j]← MV-INTT(c̃0[j], c̃1[j]) ▷ in Zqj

9: d′0 ← d0 + CKKS.ModDown(c′′0 ), d′1 ← d1 + CKKS.ModDown(c′′1 )

We adopt a middle-ground approach to strike a balance by dividing the
computation in half. Instead of processing all l residue polynomial sets simul-
taneously, we first operate on l/2 sets of residue polynomials and then proceed
to the second set. This allows us to halve the on-chip memory requirement to
186MB and incur the latency cost only twice instead of l times. It is worth
noting that the division of computation can be adjusted based on the available
on-chip memory, providing flexibility in managing the trade-off between storage
requirements and runtime. We further note that the required on-chip memory
can be reduced by using an extra MV-INTT unit that can work in parallel to
send the result back to HBM. Given that the cost of MV-NTT/INTT is less
than the on-chip storage required for multiple polynomials, this trade-off gives
us a reduced chip area. Hence, our architecture features four MV-NTT/INTT
units and much less on-chip storage.

5.2 The relinearization-oriented optimizations

The Relinearization operation is used to transform the ciphertext consisting of
three residue polynomials after multiplication (Alg. 3 and Alg. 4) back to two



Title Suppressed Due to Excessive Length 21

Table 2: Resource consumption breakdown of the FHE accelerator.
Building Block Area (mm2)
MV-NTT/INTT 4×21.5
MV-NTT/INTT (mem.) 4×17.4
MAC (for FK) 2×1.3
MAC (for qi) 2×1.5
Liftqi↔FK 4×0.88
Automorphism 2×0.14
PRNG 0.14
On-chip memory 52
HBM3 PHY+NoC 33.8
Total 250.94

residue polynomial sets. Similar to the scenario of ciphertext multiplications,
in Relinearization, we deviate slightly from the previous technique outlined in
Alg. 5. Given that the data is not in NTT form, there is no need for an INTT
operation for the mod-switch (Steps 1-2 Alg. 5). Instead, we can directly proceed
with MV-NTT, as demonstrated in Steps 4 and 5 of Alg. 6. However, it is
important to note that we have to transform not only the ciphertext but also the
keys to MV-NTT for polynomial multiplications. Finally, after the computation,
we must again transform the result to coefficient form using MV-INTT (Steps
7-8).

In the preceding subsection, we explored how the accelerator architecture in
Fig. 8 is optimized for Polynomial Multiplication. Now, let us delve into this
optimization in the context of Relinearization. Examining the second nested
for loop (Steps 3-6), we observe that exactly three MV-NTT operations and
two MAC operations are required. With the proposed architecture featuring
four parallel MV-NTT units feeding two MAC units, these operations can be
efficiently executed in a pipeline, and the results are then stored in memory. If
there is a need to store all the results, a storage capacity of 256MB would be
needed (2×32×4MB). Given we have two idle MV-INTTs during relinearization,
we use them to process the result and send it back to the memory. Hence, requires
very low on-chip storage (4× 4MB).

With this, we conclude our discussion on the optimized accelerator design.
Next, we will discuss the area and performance results of the proposed MV-
NTT-based FHE accelerator.

6 Results and comparisons

We synthesize building blocks of our proposed architecture with the TSMC 28nm
library using Cadence Genus 2023. Our clock frequency is set to 1 GHz, and the
cell libraries for low leakage power are utilized. Two HBM3 memories [35, 23, 34,
29] are utilized for off-chip storage, offering a bandwidth of ≈ 2TB/s. For load-
ing data onto the HBM3, 32 lanes PCIe5 [39] offering a bandwidth of 128 GB/s



22 A. Kim, A.C. Mert, et al.

Table 3: Performance micro-benchmarks for FHE accelerator running at 1.2GHz.
Operation Level Time (ms)
ADD/MULT (pt) 31 0.025
MULT (ct) 31 0.025
MAC (ct) 31 0.05
Automorphism 31 0.025
Relinearization 31→30 1.05
Fully packed Bootstrapping 1→31→16 71

Table 4: Comparison with the existing works. All the results are normalized to
7nm technology [33]. w represents RNS moduli size.

Workω Area (mm2) Avg. Power (W ) TA.S. (ns) Area×Time/ω
F132 [18] 71.02 28.5 470 56.3
BTS64 [28] 373.06 163.2 45.3 14.3
ARK64 [27] 418.3 135 14.3 5.05
CraterLake28 [38] 222.7 124 17.6 7.56
SH64 [26] 325.4 187 11.7 3.2
Our54 60.3 50.1 144.45 8.71

can be utilized. Table 2 presents the area consumption of the proposed acceler-
ator design as well as its respective building blocks. We have sufficient on-chip
memory for storing 12 polynomials (in MV-NTT) other than the ones required
for MV-NTT/INTT intermediate storage. This memory is realized solely using
SRAMs instead of register files to reduce the area as well as power consumption.

Benchmarking: For performance modelling, we use cycle-accurate simulation
technique as employed by the previous works in literature [27, 38]. We have the
cycle-accurate results of our building blocks (MV-NTT/MACs/Automorphism),
using which we estimate the runtime of operations such as Relinearization. This
is then further utilized in estimating the runtime of higher-level operations such
as bootstrapping. Note that the schedule for these operations is static and de-
coupled. Application benchmarking utilizes all these static routines; therefore,
for estimating its runtime, we use the schedule followed by OpenFHE [4].

Table 3 displays the performance results of our accelerator (in ms) for various
CKKS operations, and comparisons with previous FHE acceleration works can
be found in Table 4. In terms of average power and area, our design outperforms
other works. However, it comes with a higher computation time; this trade-off is
expressed via the Area-Time product metric, placing our value between those of
prior works. Despite the relatively low area of our MV-NTT/INTT unit, it does
not offer the optimal trade-off due to the substantial on-chip memory require-
ment, which is more expensive than the compute logic within the unit. To address
this, our design incorporates four MV-NTT/INTT units. This approach allows
prompt processing of the results in the MV-NTT domain and transmitting them
back to memory. Simultaneously, the MV-NTT/INTT unit can focus on handling



Title Suppressed Due to Excessive Length 23

other polynomials without the need for prolonged on-chip storage. Nevertheless,
the requirement of on-chip storage for the polynomials cannot be completely
eliminated and MV-NTT-processed larger polynomials necessitate more on-chip
memory compared to accelerators employing conventional NTT/INTT units.

Logistic regression training and inference on the iDASH model [25] takes
9.5ms and 1.15ms, respectively. On the CPU (using OpenFHE [4] on a 24-core,
2× Intel XEON CPU @3.47GHZ with 192GB DDR3 RAM), the same appli-
cations consume 11.18s and 1.27s. Hence, our design achieves ≈ 1, 200× the
speedup compared to plain software implementation.

7 Discussions and conclusions

Starting with the initial curiosity of designing a cheap polynomial multiplica-
tion circuit for RLWE-based homomorphic encryption schemes, we explored the
non-conventional method of performing NTTs with Fermat numbers (FNTT)
as auxiliary modulus instead of different RNS-based moduli. Although FNTTs
were discussed in prior works several decades ago, this technique was not read-
ily usable in HE schemes because of very large polynomial degrees N . Thus,
we focused on the second question, can FNTT be used to design an FHE ac-
celerator? To tackle the problem of an increased coefficient-size proportional
to the size of Fermat number (which in turn limits the dimension of the poly-
nomial that the FNTT can process), we proposed to switch from a univariate
ring structure Rq[X] with large N to an intermediate multivariate structure
R′

q[X1, · · · , Xk]. We proposed the multivariate NTT of MV-NTT, which uses
polynomials of small-degrees Ni’s with Ni|N , enabling efficient FNTT. Further-
more, we presented an MV-NTT architecture and assessed its effectiveness within
an FHE accelerator. The designed FHE accelerator achieves a speed-up of 1,200×
compared to CPU computations for applications requiring deep multiplicative
depths. In the following part of this section, we highlight the potentials and
limitations of our approach to serve as a guiding reference for any future works
willing to explore alternative polynomial multiplication methods in the context
of RLWE-based homomorphic encryption.

7.1 Limitations

The main limitations of the proposed technique are caused by the increase in
polynomial size when MV-NTT operation is performed due to multivariate ring
setting (e.g., N3 · N2 · N1 ≈ 4N for three variables) and the use of a compar-
atively larger Fermat number as an auxiliary modulus instead of smaller RNS
modulus (FK > q2i ). In Sec. 3.3, we show that the proposed MV-NTT reduces
the total gate evaluations compared to conventional NTT, even though it uses
a larger modulus compared to conventional NTT. However, this analysis only
focuses on the absolute computation in MV-NTT and excludes on-chip memory
requirements, which becomes prominent when the proposed MV-NTT is utilized
in a higher-level application, such as hardware acceleration of FHE. Thus, the



24 A. Kim, A.C. Mert, et al.

huge on-chip memory and bandwidth requirements of the proposed MV-NTT
hinder its effective utilization in accelerator systems. In our proposed FHE ac-
celerator, we use extra MV-NTT/INTT units to overcome the bandwidth bottle-
neck. An intriguing avenue for future research would be to explore more efficient
univariate-to-multivariate transformations that maintain

∏
Ni ≈ N .

7.2 Potentials of MV-NTT in emerging PIM architectures

Processing-in-Memory (PIM) is a new way of computing that uses advanced
memory technologies like Resistive-RAM (ReRAM) or Phase-Change Memory
(PCM) to handle data processing right within the memory. PIM platforms have
shown potential to make energy use more efficient, especially in applications in-
volving a lot of data, like Machine Learning. However, PIM platforms have very
limited computational capabilities [40], and implementing modular multiplica-
tion becomes expensive as it must be computed using bit-level operations.

The proposed approach, utilizing FNTT-based MV-NTT, presents a poten-
tial avenue for implementing FHE within PIM environments. Firstly, the con-
siderable data bandwidth requirements associated with MV-NTT are resolved
within PIM, where data movements occur internally within the memory. No-
tably, to align with the off-chip bandwidth requirement, the ASIC-based FHE
accelerator in Sec. 5 maintained the ciphertexts in the polynomial domain rather
than transitioning them to the MV-NTT domain. This introduced a performance
bottleneck by increasing the number of MV-NTTs and MV-INTTs. However, in
a PIM context, where bandwidth constraints are less pronounced, storing cipher-
texts in the NTT domain while employing MV-NTT could alleviate the bottle-
neck, reducing the required number of NTT units from four to one. Secondly,
MV-NTT does not require expensive multipliers as it replaces them with simple
shifts. This property of MV-NTT aligns very well with PIM, where expensive
multiplier circuits are unavailable.

8 Acknowledgements

This work was supported in part by Samsung Electronics co. ltd., Samsung
Advanced Institute of Technology and the State Government of Styria, Austria
– Department Zukunftsfonds Steiermark.

References

1. Agarwal, R.C., Burrus, C.S.: Number theoretic transforms to implement fast digital
convolution. Proceedings of the IEEE 63(4), 550–560 (1975)

2. Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R.T., Chan-
drakasan, A.P., Vaikuntanathan, V., Joshi, A.: FAB: an fpga-based accelera-
tor for bootstrappable fully homomorphic encryption. In: IEEE International
Symposium on High-Performance Computer Architecture, HPCA 2023, Mon-
treal, QC, Canada, February 25 - March 1, 2023. pp. 882–895. IEEE (2023).



Title Suppressed Due to Excessive Length 25

https://doi.org/10.1109/HPCA56546.2023.10070953, https://doi.org/10.1109/
HPCA56546.2023.10070953

3. Aikata, A., Mert, A.C., Kwon, S., Deryabin, M., Roy, S.S.: Reed: Chiplet-based
scalable hardware accelerator for fully homomorphic encryption. arXiv preprint
arXiv:2308.02885 (2023)

4. Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
In: Proceedings of the 10th Workshop on Encrypted Computing & Applied Ho-
momorphic Cryptography. pp. 53–63. WAHC’22, Association for Computing Ma-
chinery, New York, NY, USA (2022). https://doi.org/10.1145/3560827.3563379,
https://doi.org/10.1145/3560827.3563379

5. Barrett, P.: Implementing the rivest shamir and adleman public key encryp-
tion algorithm on a standard digital signal processor. In: Advances in Cryptol-
ogy—CRYPTO’86: Proceedings. pp. 311–323. Springer (2000)

6. Bernstein, D.J., Chou, T.: Faster binary-field multiplication and faster binary-field
macs. In: International Conference on Selected Areas in Cryptography. pp. 92–111.
Springer (2014)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Electron. Colloquium Comput. Complex. p. 111 (2011),
https://eccc.weizmann.ac.il/report/2011/111

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science. pp. 97–106 (2011). https://doi.org/10.1109/FOCS.2011.12

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryp-
tology – CRYPTO 2011. pp. 505–524. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011)

10. Chen, H., Laine, K., Rindal, P.: Fast Private Set Intersection from Homomorphic
Encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. p. 1243–1255. CCS ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134061,
https://doi.org/10.1145/3133956.3134061

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptol-
ogy – EUROCRYPT 2018. pp. 360–384. Springer International Publishing, Cham
(2018)

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approx-
imate homomorphic encryption. In: Selected Areas in Cryptography–SAC 2018:
25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised
Selected Papers 25. pp. 347–368. Springer (2019)

13. Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J.,
Yang, B.Y.: NTT Multiplication for NTT-unfriendly Rings: New Speed
Records for Saber and NTRU on Cortex-M4 and AVX2. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2021(2), 159–188
(Feb 2021). https://doi.org/10.46586/tches.v2021.i2.159-188, https://tches.
iacr.org/index.php/TCHES/article/view/8791

14. Cook, S.A., Aanderaa, S.O.: On the minimum computation time of functions.
Transactions of the American Mathematical Society 142, 291–314 (1969)



26 A. Kim, A.C. Mert, et al.

15. Dai, W., Sunar, B.: cuhe: A homomorphic encryption accelerator library. In: In-
ternational Conference on Cryptography and Information Security in the Balkans.
pp. 169–186. Springer (2015)

16. Dimitrov, V., Cooklev, T., Donevsky, B.: Generalized fermat-mersenne number
theoretic transform. Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on 41, 133 – 139 (03 1994). https://doi.org/10.1109/82.281844

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/
144, https://eprint.iacr.org/2012/144

18. Feldmann, A., Samardzic, N., Krastev, A., Devadas, S., Dreslinski, R., Eldefrawy,
K., Genise, N., Peikert, C., Sanchez, D.: F1: A fast and programmable accelerator
for fully homomorphic encryption (extended version) (2021)

19. Geelen, R., Van Beirendonck, M., Pereira, H.V.L., Huffman, B., McAuley, T.,
Selfridge, B., Wagner, D., Dimou, G., Verbauwhede, I., Vercauteren, F., Archer,
D.W.: BASALISC: Flexible Asynchronous Hardware Accelerator for Fully Homo-
morphic Encryption (2022). https://doi.org/10.48550/ARXIV.2205.14017, https:
//arxiv.org/abs/2205.14017

20. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford, CA,
USA (2009)

21. Gil, Y., Jiang, X., Kim, M., Lee, J.: Secure and differentially private bayesian learn-
ing on distributed data. CoRR abs/2005.11007 (2020), https://arxiv.org/abs/
2005.11007

22. Hirner, F., Mert, A.C., Roy, S.S.: Proteus: A tool to generate pipelined number
theoretic transform architectures for fhe and zkp applications. Cryptology ePrint
Archive (2023)

23. JEDEC: High Bandwidth Memory DRAM (HBM3). Tech. Rep. JESD238 (2022)
24. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by au-

tomatic computers. In: Doklady Akademii Nauk. vol. 145, pp. 293–294. Russian
Academy of Sciences (1962)

25. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.: Logistic regression model training
based on the approximate homomorphic encryption. BMC Medical Genomics 11
(10 2018). https://doi.org/10.1186/s12920-018-0401-7

26. Kim, J., Kim, S., Choi, J., Park, J., Kim, D., Ahn, J.H.: SHARP: A short-word
hierarchical accelerator for robust and practical fully homomorphic encryption. In:
Solihin, Y., Heinrich, M.A. (eds.) Proceedings of the 50th Annual International
Symposium on Computer Architecture, ISCA 2023, Orlando, FL, USA, June 17-
21, 2023. pp. 18:1–18:15. ACM (2023). https://doi.org/10.1145/3579371.3589053,
https://doi.org/10.1145/3579371.3589053

27. Kim, J., Lee, G., Kim, S., Sohn, G., Kim, J., Rhu, M., Ahn, J.H.: ARK:
Fully Homomorphic Encryption Accelerator with Runtime Data Generation and
Inter-Operation Key Reuse (2022). https://doi.org/10.48550/ARXIV.2205.00922,
https://arxiv.org/abs/2205.00922

28. Kim, S., Kim, J., Kim, M.J., Jung, W., Kim, J., Rhu, M., Ahn, J.H.: BTS:
An Accelerator for Bootstrappable Fully Homomorphic Encryption. In: Pro-
ceedings of the 49th Annual International Symposium on Computer Architec-
ture. p. 711–725. ISCA ’22, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3470496.3527415, https://doi.org/
10.1145/3470496.3527415

29. Lee, D., Lee, K.S., Lee, Y., Kim, K.W., Kang, J., Lee, J., Chun, J.H.:
Design considerations of HBM stacked DRAM and the memory archi-
tecture extension. In: 2015 IEEE Custom Integrated Circuits Conference,



Title Suppressed Due to Excessive Length 27

CICC 2015, San Jose, CA, USA, September 28-30, 2015. pp. 1–8. IEEE
(2015). https://doi.org/10.1109/CICC.2015.7338357, https://doi.org/10.1109/
CICC.2015.7338357

30. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Cryptology and Network Security: 15th Inter-
national Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings
15. pp. 124–139. Springer (2016)

31. Mert, A.C., Kwon, S., Shin, Y., Yoo, D., Lee, Y., Roy, S.S., et al.: Medha: Mi-
crocoded hardware accelerator for computing on encrypted data. arXiv preprint
arXiv:2210.05476 (2022)

32. Mert, A.C., Ozturk, E., Savas, E.: Design and implementation of encryp-
tion/decryption architectures for bfv homomorphic encryption scheme. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 28(2), 353–362
(2020). https://doi.org/10.1109/TVLSI.2019.2943127

33. Narasimha, S., Jagannathan, B., Ogino, A., Jaeger, D., Greene, B., Sheraw, C.,
Zhao, K., Haran, B., Kwon, U., Mahalingam, A.K.M., Kannan, B., Morganfeld, B.,
Dechene, J., Radens, C., Tessier, A., Hassan, A., Narisetty, H., Ahsan, I., Amin-
pur, M., An, C., Aquilino, M., Arya, A., Augur, R., Baliga, N., Bhelkar, R., Biery,
G., Blauberg, A., Borjemscaia, N., Bryant, A., Cao, L., Chauhan, V., Chen, M.,
Cheng, L., Choo, J., Christiansen, C., Chu, T., Cohen, B., Coleman, R., Conklin,
D., Crown, S., da Silva, A., Dechene, D., Derderian, G., Deshpande, S., Dilli-
way, G., Donegan, K., Eller, M., Fan, Y., Fang, Q., Gassaria, A., Gauthier, R.,
Ghosh, S., Gifford, G., Gordon, T., Gribelyuk, M., Han, G., Han, J., Han, K.,
Hasan, M., Higman, J., Holt, J., Hu, L., Huang, L., Huang, C., Hung, T., Jin,
Y., Johnson, J., Johnson, S., Joshi, V., Joshi, M., Justison, P., Kalaga, S., Kim,
T., Kim, W., Krishnan, R., Krishnan, B., Anil, K., Kumar, M., Lee, J., Lee, R.,
Lemon, J., Liew, S., Lindo, P., Lingalugari, M., Lipinski, M., Liu, P., Liu, J.,
Lucarini, S., Ma, W., Maciejewski, E., Madisetti, S., Malinowski, A., Mehta, J.,
Meng, C., Mitra, S., Montgomery, C., Nayfeh, H., Nigam, T., Northrop, G., Onishi,
K., Ordonio, C., Ozbek, M., Pal, R., Parihar, S., Patterson, O., Ramanathan, E.,
Ramirez, I., Ranjan, R., Sarad, J., Sardesai, V., Saudari, S., Schiller, C., Senap-
ati, B., Serrau, C., Shah, N., Shen, T., Sheng, H., Shepard, J., Shi, Y., Silvestre,
M., Singh, D., Song, Z., Sporre, J., Srinivasan, P., Sun, Z., Sutton, A., Sweeney,
R., Tabakman, K., Tan, M., Wang, X., Woodard, E., Xu, G., Xu, D., Xuan, T.,
Yan, Y., Yang, J., Yeap, K., Yu, M., Zainuddin, A., Zeng, J., Zhang, K., Zhao,
M., Zhong, Y., Carter, R., Lin, C.H., Grunow, S., Child, C., Lagus, M., Fox, R.,
Kaste, E., Gomba, G., Samavedam, S., Agnello, P., Sohn, D.K.: A 7nm cmos tech-
nology platform for mobile and high performance compute application. In: 2017
IEEE International Electron Devices Meeting (IEDM). pp. 29.5.1–29.5.4 (2017).
https://doi.org/10.1109/IEDM.2017.8268476

34. Park, M., Lee, J., Cho, K., Park, J.H., Moon, J., Lee, S., Kim, T., Oh, S.,
Choi, S., Choi, Y., Cho, H.S., Yun, T., Koo, Y.J., Lee, J., Yoon, B.K., Park,
Y.J., Oh, S., Lee, C.K., Lee, S., Kim, H., Ju, Y., Lim, S., Lee, K.Y., Lee, S.,
We, W.S., Kim, S., Yang, S.M., Lee, K., Kim, I., Jeon, Y., Park, J., Yun, J.C.,
Kim, S., Lee, D., Oh, S., Shin, J., Lee, Y., Jang, J., Cho, J.: A 192-Gb 12-High
896-GB/s HBM3 DRAM With a TSV Auto-Calibration Scheme and Machine-
Learning-Based Layout Optimization. IEEE J. Solid State Circuits 58(1), 256–269
(2023). https://doi.org/10.1109/JSSC.2022.3193354, https://doi.org/10.1109/
JSSC.2022.3193354



28 A. Kim, A.C. Mert, et al.

35. Rambus: HBM3 Memory: Break Through to Greater Bandwidth, https://go.
rambus.com/hbm3-memory-break-through-to-greater-bandwidth

36. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of Secure Computation, Academia Press pp. 169–179 (1978)

37. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplication:
An efficient strategy to optimize dsp multiplier for accelerating prime field ecc
for nist curves. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). pp. 1–6 (2014). https://doi.org/10.1145/2593069.2593234

38. Samardzic, N., Feldmann, A., Krastev, A., Manohar, N., Genise, N., De-
vadas, S., Eldefrawy, K., Peikert, C., Sanchez, D.: CraterLake: A hardware
accelerator for efficient unbounded computation on encrypted data. In: Pro-
ceedings of the 49th Annual International Symposium on Computer Architec-
ture. p. 173–187. ISCA’22, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3470496.3527393, https://doi.org/
10.1145/3470496.3527393

39. Sun, Y., Yuan, Y., Yu, Z., Kuper, R., Jeong, I., Wang, R., Kim, N.S.: Demystifying
CXL memory with genuine cxl-ready systems and devices. CoRR abs/2303.15375
(2023). https://doi.org/10.48550/arXiv.2303.15375, https://doi.org/10.48550/
arXiv.2303.15375

40. Wan, W., Kubendran, R., Schaefer, C.J.S., Eryilmaz, S.B., Zhang, W., Wu, D.,
Deiss, S.R., Raina, P., Qian, H., Gao, B., Joshi, S., Wu, H., Wong, H.P., Cauwen-
berghs, G.: A compute-in-memory chip based on resistive random-access mem-
ory. Nat. 608(7923), 504–512 (2022). https://doi.org/10.1038/s41586-022-04992-8,
https://doi.org/10.1038/s41586-022-04992-8

A Field Arithmetic Units

Integer multiplier: Although our technique eliminates integer multiplications
during MV-NTT/INTT operation by transforming them into a cost-effective
left-shift operation, coefficient-wise multiplication or MAC operations after NTT
(i.e., line 6 of Algorithm 6) necessitates the use of large (K +1)-bit integer mul-
tiplier. Our target parameter set mandates a 129-bit integer multiplier which
can be implemented using various methods including tiling [37], Karatsuba [24],
and Toom-Cook [14]. Although Toom-Cook offers better time complexity, it is
unsuitable for hardware realization due to its reliance on division operations.
Consequently, we opted for a two-level Karatsuba method that implements a
large 129-bit multiplication using multiple smaller multiplier units. Specifically,
the proposed multiplier implementation uses five 32-bit multipliers, three 33-bit
multipliers and one 34-bit multiplier.

Modular reduction unit for modulo Fermat number: After integer mul-
tiplication, a modular reduction operation is necessary to bring the multiplica-
tion result back to ZFK

. The modular reduction algorithm for FK = 2K + 1 is
shown in Algorithm 7. The proposed reduction algorithm uses relation 2K ≡ −1
(mod FK) to perform the reduction operation. For two integers x, y ∈ [0, FK−1],
the multiplication x·y could be at most xmax ·ymax = 2K ·2K = 22·K . Similarly, a
K-pt FNTT/IFNTT operation will require an integer x ∈ [0, FK−1] to be shifted



Title Suppressed Due to Excessive Length 29

Algorithm 7 Modular Reduction Algorithm for FK = 2K + 1

In: a ≤ 22·K , a (2 ·K + 1)-bit integer
Out: b = a (mod 2K + 1) ∈ [0, 2K ], a (K + 1) bit integer
1: al = a (mod 2K)
2: ah = a≫ K
3: t = al − ah ▷ ah is at most 2K , so tmin is −2K
4: s = t+ FK

5: b = (tsign == 1) ? s : t ▷ tsign is the sign bit of t
6: return b

Algorithm 8 Tailored Word-level Montgomery Modular Reduction
Input: d ∈ ZF , q =M · 223 + 1
Out: c = d · 2−23·4 (mod q)

1: T ← d
2: for (i = 0; i < 3; i = i+ 1) do
3: TH , TL ← T ≫ 23, T (mod 223)
4: T2← −TL (mod 223), cin← T2[23− 1] ∨ TL[23]
5: T ← (M · T2) + TH + cin

6: return c← (T ≥ q) ? T − q : T

to the left by at most K, which can yield an integer at most xmax ≪ K = 22·K .
Thus, the proposed modular reduction algorithm assumes that the input integer
will be in the range [0, 22·K ]. This also shows that only one addition with FK is
required after the reduction operation to guarantee a positive integer result (see
line 4 of Algorithm 7). The proposed modular reduction unit for FK is imple-
mented using one subtractor, one adder and one 2-to-1 multiplexer.

Lifting unit: As shown in line 1 of Algorithm 2, MV-NTT operation requires
centered input coefficients in Zqi to be lifted to ZFK

. Similarly, MV-INTT op-
eration requires output coefficients to be lifted from ZFK

to Zqi . The former
is very easy to implement as FK > qi while the latter will require reducing a
(K + 1)-bit integer (i.e., in ZFK

) to Zqi . The size of integers in ZFK
is more

than 2 times larger compared to the integers in Zqi , which complicates the re-
duction operation. For our target parameter set, the size of FK is 129-bit and
the size of RNS modulus qi is 54-bit. We adopted the word-level Montgomery
reduction algorithm [32] and tailored it for primes in form M · 223 + 1, where
M is at most a 31-bit integer. We set the number of reduction step as L = 4 so
the reduction circuit can support any prime size, log2(qi), between 37-bit and
59-bit (i.e., ⌈(129− 37)/23⌋ = 4 and ⌈(129− 59)/23⌋ = 4). This method simpli-
fies the modular reduction unit as it avoids large multiplier units. The tailored
word-level Montgomery algorithm is shown in Algorithm 8. We implemented a
unified lifting unit that can perform lifting operations for both MV-NTT and
MV-INTT as shown in Fig. 9.



30 A. Kim, A.C. Mert, et al.

Fig. 9: Unified lifting unit. The input a is lifted from centered Zqi to ZFK
before

FNTT while it is lifted from centered ZFK
to Zqi before IFNTT.


