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Abstract. In this paper, we present a new type of algebraic attack that
applies to many recent arithmetization-oriented families of permutations,
such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose se-
curity relies on the hardness of the constrained-input constrained-output
(CICO) problem. We introduce the FreeLunch approach: the monomial
ordering is chosen so that the natural polynomial system encoding the
CICO problem already is a Grobner basis. In addition, we present a
new dedicated resolution algorithm for FreeLunch systems of complexity
lower than applicable state-of-the-art FGLM algorithms.

We show that the FreeLunch approach challenges the security of full-
round instances of Anemoi, Arion and Griffin. We confirm these theo-
retical results with experimental results on those three permutations. In
particular, using the FreeLunch attack combined with a new technique
to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of
10 rounds of Griffin in less than four hours on one core of AMD EPYC
7352 (2.3GHz).
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1 Introduction

Recent years have seen the emergence of new directions in symmetric cryptogra-
phy. The aim of symmetric primitives has always been to provide strong security
guarantees along with stringent performance requirements. For instance, mod-
ern AES [1] implementations are able to process gigabytes of data in seconds.
This has not changed, but the nature of the performance constraints considered
is evolving. While the focus has traditionally been on software and hardware
footprints, new use cases bring an entirely different set of relevant metrics.



Numerous such new settings exist, such as Homomorphic Encryption-friendly
ciphers [16,17,39,19,8,34], ciphers designed to run efficiently in Multi Party Com-
putation protocols [4,3,22], block ciphers defined over modular rings enabling
more efficient masking [38]|, and Arithmetization-Oriented [5] Permutations
(AOP) operating on vectors over large field elements to better integrate with
modern Zero-Knowledge proof systems. Despite their differences, there are gen-
eral trends in these designs, which we will group under a broad umbrella: Sym-
metric Techniques for Advanced Protocols (STAP).

One noticeable change the STAPs have brought about is the underlying al-
phabet on which these primitives operate. Until recently, the overwhelming ma-
jority of symmetric primitives were designed based on operations either on the
vector space (F3)", or using arithmetic over small binary fields of size 2™, for
3 <m < 9. For STAP, the mathematical structures used can be fields of charac-
teristic 2, but with a much larger size (typically m > 128), large fields of prime
characteristic (say, p > 2'?%), or possibly not even a field (like Elisabeth [19] or
Rubato [34]).

Moreover, the performance metrics now primarily involve the number of mul-
tiplications in the underlying structure. Some schemes are designed to have a low
multiplicative depth, that is, few multiplications in sequence on any data path
from input to output, while others are designed to merely have a low number of
multiplications in total. These performance metrics have led designers to pro-
pose schemes that are light on multiplications but compensate by defining the
multiplication operations over large fields. The hope is that schemes constructed
this way may still be secure.

Resurgence of Algebraic Attacks. Despite its functionality, the constraints on
multiplications significantly impact the security analysis of STAP constructions.
Key-recovery attacks can often be simplified to the resolution of a (system of)
non-linear equation(s). While this general approach has been applied successfully
to Fa-based stream ciphers, traditional block ciphers and hash functions have
mostly been resistant to algebraic attacks.

However, since the constraints that STAP primitives must meet often affect
their algebraic structure, attacks leveraging these algebraic properties become
much more threatening compared to classical symmetric attacks, such as dif-
ferential of linear attacks. For example, algebraic attacks are one of the main
threats to AOPs — after their initial security analysis, most designers end up
setting the number of rounds specifically so as to prevent these attacks. Unfortu-
nately, this is not always sufficient: to attack Jarvis [5], Albrecht et al. managed
to re-write the equations considered by the designers in a simpler way, which
made the resolution step much more efficient than initially thought [2]. When
considering FHE or MPC-oriented stream ciphers, FLIP [39] and its descen-
dant Elisabeth [19] both fell [23,29] to linearization-based attacks: the system of
equations to be solved ended up being simple enough that linear algebra-based
approaches could be used. The attackers did not so much re-write the equations
considered; rather, they identified previously overlooked simplifications.



However, despite their crucial impact (particularly on setting the number of
rounds), algebraic attacks against symmetric primitives are not nearly as well
understood as classical attacks, e.g. differential attacks. In particular, there is no
consensus among designers on how to provide solid and convincing arguments
for the security of primitives against algebraic attacks.

Principles of an Algebraic Attack. Let us describe the main phases involved in
the setup of an algebraic attack against a symmetric cipher. We purposefully
stay at a high level here and provide a more thorough presentation in Section 2.

First, the problem of interest to the cryptanalyst is modelled as a system of
polynomial equations: state variables are chosen, and equations linking them in a
way that captures the round function constraints are defined. While it may seem
at first glance that this encoding step does not offer a lot of freedom, it turns
out that Griffin [32] and Anemoi [13] both have some specifically interesting
algebraic modelizations.

Second, this system of equations is solved, using one of a few existing strate-
gies. If the system can be represented as a unique univariate equation, an efficient
FFT-based algorithm can be used to retrieve its roots, as performed in [10,9].
If, on the other hand, the system consists of several non-linear equations, one
may need to convert the system into a form that can be solved efficiently. An
example of this approach is “linearization”, whereby the attacker introduces a
new variable for each non-linear term. The resulting system becomes linear in
the introduced variables and can then be solved using linear algebra, assuming
that there are enough equations, as was done for example in [29].

However, in most cases, the cryptanalyst may need to rely on more sophisti-
cated techniques. A common strategy, adopted in this paper, consists in deriv-
ing a univariate polynomial equation that shares its solution with the original
system, and in efficiently solving it afterwards. This is typically done via the
computation a Grébner basis [20] for the system, using an algorithm such as
Fy [27], or its follow-up F5 [28]. The Grobner basis is then modified using a
change of order algorithm, such as FGLM [26] or its variants [24,25,11], yielding
a univariate polynomial equation sharing its solutions with the original system.

In the past, cipher designers have adopted different approaches to prevent
such an attack: the authors of Griffin bounded the complexity of an algebraic
attack with an estimate of the theoretical cost of F5, but the authors of Arion [41]
chose instead to bound the complexity of the change of order step®.

Our Contributions. In this paper, we present a new type of algebraic attack
that, when applicable, significantly outperforms all known methods. It requires
a complete overhaul of the general approach outlined above: the encoding, the
Grobner basis computation and the change of order steps are different. In fact,
the Grobner basis comes for free, and the “reordering” step is performed using
a novel and more efficient algorithm of our own design®. Unfortunately, the

® This seems to be a choice of pragmatism, as it seems easier to get tight bounds;
nothing in their experiments suggests that Fs is faster.
5 If the solving steps were meals of the day, the lunch would be free, hence FreeLunch.



precise complexity analysis of one of the steps has remained beyond our reach.
Nevertheless, we performed thorough experiments, implementing the full attack
against several round-reduced primitives—we provide code to verify their results
in Appendix C. Extrapolating these results, we can confidently claim e.g. to shave
off tens of bits of security from some full-round Griffin instances.

Outline of this Paper. We recall the necessary background on algebraic attacks
based on Grobner bases in Section 2. Our main contribution, the FreeLunch
method, is introduced in a generic fashion in Section 3, and we show how it can
be successfully applied to various primitives in Section 4. While it is a priori not
possible to obtain a Grébner basis for free in some cases, we show in Section 5
that it may still be possible to derive one at a negligible cost and apply this
finding to the AOP Anemoi. We conclude in Section 6 with a discussion on the
impact of the FreeLunch approach in terms e.g. of design.

2 Algebraic Background

We consider the case of an algebraic attack against a permutation intended for
sponge use. In this section, we will walk through the detailed inner workings
of such an attack: it will allow us to introduce all the necessary mathematical
background and state-of-the-art methods and to set the stage for our attacks
by both providing all the theoretical tools we need and allowing to highlight
the advantages of our method. Throughout the paper, we denote the base field
by F. Depending on context, this notion includes both F, for a prime p and/or
Fan. We will also use the notions of polynomials and polynomial mappings in-
terchangeably.

2.1 From an Attack to a System of Equations

We first present the constrained-input constrained-output (CICO) problem, that
we will focus on solving. It was initially proposed by the designers of Keccak [33]
as a crucial problem for estimating the security of permutations used in sponge
constructions. It can also be seen as a variant of the limited birthday prob-
lem [30]. A natural instance in the context of algebraic cryptanalysis may be
stated in the following form.

Problem 1 (CICO problem). Let F :F' — F* be a permutation and 1 < ¢ <t
an integer. The goal is to find 2 € {0}* x F*~* such that F(z) € {0} x F'~*.

In this paper we will focus on the case £ = 1. An attacker able to solve the
CICO problem has control over both the input and output of the permutation,
which is precisely what a good permutation is supposed to prevent. Furthermore,
in our case, the value 0 in the output could be replaced e.g., by a digest d to
immediately obtain a preimage attack.



Encoding. To solve a CICO instance, we need to model or encode the problem
into a system of polynomial equations. In symmetric cryptography, this is usu-
ally done iteratively by modelling one round after another, possibly adding new
variables to keep the degree of the initial system low. The main challenge is
encoding the cipher’s non-linear operations in a form that may be amenable for
cryptanalysis. For STAP ciphers, the existence of low-degree models is usually
possible by design: while such systems can be leveraged for cryptanalysis, they
are also required for a fast verification in many ZK protocols.

Consider a non-linear function S : F* — F’, and let Sy, ..., S;_1 be its coor-
dinate functions. A trivial model of such a function would consist of ¢ equations
of the form y; = S;(xo,...,x¢—1). In this case, a tuple (zg, ..., Tt—1, Yo, ---s Yt—1) is
a solution of the system if and only if we indeed have y = S(x).

This situation corresponds to the simplest case, where the model is simply
the evaluation of the function. However, more sophisticated models can exist,
as first pointed out by the authors of Rescue [5,42]. Indeed, the non-linear layer
of this permutation involves both z — z® and z — z'/®, where « is a small
integer. In this case, even though a non-linear function has a very high degree
(1/a being a dense integer of Z/(p — 1)Z), it is possible to design a low-degree
model by using the equation z = y® rather than y = /e

More generally, all that is needed from a model is that it describes the graph
of S, ie., theset I's = {(z,y) | (z,y) € (F")*,y = S(z)}. In what follows, we
focus on models corresponding to a system of multivariate polynomials P =
{po,.--yPn-1} C Flxo,...,x,_1], which is associated with the following system
of polynomial equations:

pi(xo, ..., Tp—1) =0 1<i<n-1. (1)

The polynomial systems we consider have a finite number of solutions in the
algebraic closure of F, and are such that there exists a solution of P which
directly leads to a solution of an associated CICO problem (or to a preimage of
a given hash). In the remainder of this paper, we call sysGen the procedure used
to generate a system of equation.

If n = 1, then P contains a unique equation of degree D in one variable, and
we can use univariate techniques to solve the problem. In practice, such an at-
tack needs a number of operations given by O ((D(log(D) + log(p)) log(log(D)))
(see [10] for more details). We call the function returning the root(s) of a uni-
variate polynomial uniSol.

2.2 Finding Structures in a System of Equations

Once our attack is represented by a system of equations, we need to solve it. To
this end, we need to better understand the structures implied by a system of
polynomial equations. Indeed, in order to solve the system, we need to somehow
derive equations sharing the solutions of the original system, and whose solu-
tions can be computed in practice. We thus need to formally describe the set of
multivariate polynomials that have the roots we are interested in.



This set of polynomials is in fact an ideal I = (P), contained in the ring
R =TF[zg,...,2n—1]. We denote d; the degree of equation p;, and D; the ideal
degree of I, i.e. the number of solutions of P in the algebraic closure of F",
counted with multiplicity. In order to study this ideal, we need the notion of
monomial order.

Definition 1. A monomial order < is a total order on the set of monomials
of R such that i) for any monomial m € R we have 1 < m; and ii) for any three
monomials my, ma,t € R we have

m; <mo — t-my <t-mg .

The typical monomial orders used in computations are the lexicographical
(lex) order and the graded reverse lexicographical (grevlex) order. We now define
a particular weighted order which we will use throughout the paper.

Definition 2. Consider a weight vector w = (woq,...,wy,—1) € R", where
wg # 0. We say that w is associated with the monomial order <, defined

by:

n—1 n—1
Z Wi < Z w; B

n—1 n—1 =0 i=0

H < H xz’Bl <— or

=0 =0

n—1 n—1

3k, > wiei =Y wifi, Vi >k,a; = B; and ax < B
=0

=0

Technically speaking, this defines a weighted lex order with xg < z1 < ... < z,,.
The particularities of this choice will be needed in Section 5.

Definition 3. The leading monomial of a nonzero polynomial f € R, relative
to a monomial order <, is the largest monomial contained in f according to <.
It is denoted LM(f). The leading coefficient of f, LC(f), is the coefficient
associated with LM(f). Finally, the leading term of f, LT(f), is the product
of its leading monomial and coefficient.

If S ={f1,f2,...} € R, then we can extend the above definitions to the set
S, eg.,, LT(S) = {LT(f1),LT(f2),...}. We may now define the notion of a
Grdébner basis of an ideal of R.

Definition 4 (Grdbner basis [14]). Let I be an ideal of R. A finite set of
polynomials G C I is a Grébner basis with respect to < if the leading monomial
of every polynomial in I is a multiple of the leading monomial of some polynomial

in G. A Grobner basis G is said to be reduced if for all g € G, no monomial in
g 1s divisible by an element of LT(G) \ {LT(g9)} and LC(G) = {1}.

An ideal I always contains a Grobner basis. For a fixed < there are usually many
Grobner bases, but only one reduced Grébner bases. We will crucially rely on
the following results throughout this paper.



Proposition 1 ([20, Chapter 2,89, Prop 4 and Thm 3|). Let G be a set
of polynomials of R, G = {g1, ..., gm }. If the leading monomials of g; and g; are
relatively prime for all 1 <i# j <m, then G is a Grébner basis for (G).

Proposition 2 ([20, Chapter 2 §6 Prop 1]). Let I be an ideal, < a mono-
mial order, G a Gribner basis of I w.r.t. <, and f € R. There exists a unique
r € R such that:

— LT(r) is not divisible by any element of LT(G).
— dgel, such that f=g+r.

The polynomial v is called the remainder or normal form of f w.r.t. I and
<.

2.3 Exploiting a Grébner Basis

The characteristics of a Grobner basis can vary greatly depending on the under-
lying monomial order. For our goal, that is finding solutions of P, one typically
wants to compute a Grobner basis of (P) in the lex order. However, computing
a Grobner basis directly in this order tends to be computationally expensive. In-
stead, it is common to first compute a Grébner basis in the greviexr order — which
tends to be significantly faster — and then apply a dedicated order-changing al-
gorithm, such as FGLM or its variants [24,25,26], to finally recover a basis in
lex order. While we do not give a complete description of these algorithms, we
nevertheless hightlight some of the principles underpinning them, as they will
be needed later for our own resolution algorithm.

The Quotient Ring. Thanks to Proposition 2, we can define the quotient ring
R/I, where each class has a unique representative r such that LT(r) is not
divisible by any element of a Grébner basis G. The monomial order < does not
affect the quotient ring R/I, but determines the representative of each class.

Definition 5. Let I be an ideal of R. We say that I is zero-dimensional if
dimp(R/I) is finite. In this case, its ideal degree Dy is dimp(R/I).

The quotient ring R/I has a canonical basis with respect to < denoted
B~ (R/I), where the basis elements are given by all the monomials in R that are
not in the ideal (LM(G)), for G a Grobner basis for I. If I is zero-dimensional,
we have |BL(R/I)| = D;. Each element r of R/I can then be written as a vector
in the basis B2 (R/I), which we will call NormalForm(r). This allows us to define
the linear matrix 7} : R/I — R/I corresponding to the multiplication by z;.

Definition 6 (Multiplication matrix of z;). The multiplication matriz
T; of x; relative to a zero-dimensional ideal I, a monomial order <, and the
basis B<(R/I) = (€1,...,ep,) is defined as the square matriz which has each
column defined as C; = €; X x; represented in the basis B4 (R/I).



Said differently, Ty is the D; x Dy matrix mapping the basis elements ¢; —
NormalForm(zg¢;). The following result is well-known in the literature, but we
have not been able to find a reference that holds for finite fields (e.g., it is derived
as Corollary 4.6 in [21] over C). For completeness, we provide a short proof that
works over any field.

Proposition 3. Let I be a zero-dimensional ideal of R, < a monomial order,
and Ty the multiplication matriz of the variable xo with respect to <. We have
det(zol — Ty) € I, where I is the identity matriz.

D A
Proof. Let C(z) = det(xI—Tp) = Z‘_IO c;z" be the characteristic polynomial of

D .
To. By the Cayley-Hamilton Theorem we have C(Tp) = Z 10 ¢ Ty = 0, where
1=
0 is the Dy x Dy zero-matrix. Letting € denote the column vector representing
the constant polynomial 1 in R/I, we then have C(Tp)e = 0. As Tge is the

representation of NormalForm(x{), this implies that NormalForm(C(z)) = 0,
hence C(xg) € I. O

The next definition is a very standard and common hypothesis for an ideal when
implementing Grébner basis polynomial solving algorithms.

Definition 7 ([24], Definition 3.1). An ideal I of R is in shape position
if its reduced Grébner basis in the lexicographical order has the following form

G= {fO(xO)a Tyl — fl(xO)a coey Tp—1 — fn,—l(a:O)}'

In this case, it follows straightforwardly that D; = deg(fp), and the cost of
finding solutions for I, given its lexicographic Grobner basis, reduces to the
problem of finding the roots of fj.

3 The Algebraic FreeLunch

In this section, we present our own custom approach to algebraic attacks, which
is applicable to solve CICO instances for some arithmetization-oriented permuta-
tions (see Section 4). As with the algebraic attacks we presented in the previous
section, we first need to describe our problem using a system of polynomial
equations. We start with a description of the general form of system for which a
Grobner basis can be obtained for free (see Section 3.1). Then, we show how to
deduce a univariate polynomial from this system in Section 3.2. Means to cre-
ate these polynomial systems for various primitives are discussed in Sections 3.3
and 3.4, where we reuse and generalize an encoding technique introduced by the
authors of Griffin in way that can be applied to iterated functions. The entire
solving strategy is summarized in Section 3.5.

3.1 FreeLunch Systems

We saw in Proposition 1 that there is a class of polynomial systems that admits
a simple Grobner basis. This is the motivation for the following definition.



Definition 8 (FreeLunch System). Let R be the ring Flzg,...,2n—1] and
P = {po,...,pn-1} be a sequence of polynomials of R. We say that P is a
FreeLunch system if there exists a monomial order < and integers
(g, ..., an_1) such that for all i € {0,...,n — 1}, LM< (p;) = 2. Any mono-
mial order < that verifies this property is said to be a FreeLunch order.

Note that this is not the first time Proposition 1 has been used in cryptography.
In [15], the authors describe a polynomial modeling for AES that can be said
to be a FreeLunch system in a graded lex order. However, the ensuing change of
order computation to a lex order is too costly to threaten the security of AES.
The following properties are now easy to verify, and were also used in [15].

Proposition 4. A FreeLunch system P is a Grébner basis for the ideal I = (P)
with respect to any of its FreeLunch orders. Moreover, I is zero-dimensional and

n—1
of ideal degree Dy = H Q;.
i=0

Proof. The first statement follows directly from Proposition 1. For the latter
statement, note that the canonical basis of R/I (w.r.t. a FreeLunch order <) is

BL(R/I) ={zlo - 2"} |0<ij <ay, for 0<j<n—1}.

n—1
Counting all these basis elements yields Dy. ad

We conceived a dedicated algorithm for the resolution of FreeLunch systems,
which has a competitive time complexity. The following result will be proven in
Section 3.2, where 2 < w < 3 denotes the linear algebra exponent.

Theorem 1. Given a FreeLunch system P, a FreeLunch order <, and the as-
sociated multiplication matriz Ty of the variable xq, there exists an algorithm to
compute a solution for xo with time complexity

() )

3.2 Extracting a Univariate Equation from a FreeLunch System

We now turn to the problem of solving a FreeLunch system, with the aim of
showing Theorem 1. While a FreeLunch system is already a Grobner basis, it is
typically only so under specially crafted monomial orders, as we will see in later
sections. To easily retrieve the solutions of a FreeLunch system, we look for a
univariate polynomial belonging to the ideal spawned by the system. To do so,
a common approach is to compute a Grobner basis in the lez order. Given an
initial Grobner basis, computing a lex Grobner basis can be performed using a
change of order algorithm



Ezisiting change of order algorithms. The FGLM-algorithm [26] provides an
efficient method for changing the monomial orders of Grobner bases of zero-
dimensional ideals, running in O(D?) operations. Later variants, such as [24,25]
focused on the particular case of changing between the greviexr and lex order for
ideals in shape position. They improve the complexity to respectively O(DY)
and O(TD?) for the fast FGLM and the sparse FGLM algorithms, where T is
the sparsity indicator of the multiplication matrix Tj. Recently, Berthomieu et
al. designed a new change of order algorithm from grevlez to lex based on Her-
mite Normal Forms [11], running in O(T“~D;), which requires the stability
property [11, Definition 2.1] and the shape position. The stability property is
unfortunately not verified by FreeLunch systems, so this algorithm is not appli-
cable directly. Moreover, in the case of [11], we note that the FreeLunch systems
does not generally satisfy the stability property. We note that the authors of [11]
state that when the base field is large enough, and the ideal under consideration
is radical, the stability property can be ensured through a generic linear change
of coordinates. The issue is that doing so might transform the FreeLunch system
into a different type of system that is not a Grébner basis.

A new approach. These reasons led us to design a new dedicated algorithm
for finding a univariate polynomial fy(zg) belonging to the ideal, exploiting the
sparsity of the multiplication matrix Tj.

Let I be a zero-dimensional ideal of R = F[zg,...,Z,—1], < a monomial
order giving a FreeLunch system, Bs = (e1,...,€p,) the canonical basis of R/I,
and Ty the multiplication matrix corresponding to the variable xy. Let H be the
subspace of R/I containing the classes h of R/I where the unique representative
of h with respect to < does not contain the variable xy. Let D; be the dimension
of H and Bf = [¢1,...,dp,] be a canonical basis for the subspace H. It is clear
that Bf exactly consists of the monomials m of B such that z¢ t m. Thus, it

n—1
holds that Dy = H a; = Dy/ag. We order the basis B« specifically as
i=1

2 2 —1 —1
[¢17"'7¢D1a $0¢1,...,I0¢D17 xo(blw")xo(bDl) ey xgo ¢17~-~>33go ¢D1] 5

and identify any polynomial f € R/I with its coefficient vector vy of length Dy.
The coefficient vector for the polynomial zof € R/I can then be computed as a
matrix/vector multiplication Tov}r for a fixed matrix Ty. The following lemma
gives the structure of Tj.

Lemma 1. Under the basis B<, the matriz Ty is of the following form, repre-
sented as a block matriz with block sizes Dy x Dy :

0 0 0 —Mo

I 0 0 M
Ty = ) .

0 ... 0 I —Myy

10



The block matrices My, ..., My,—1 are a representation of the reduction of
xy° Bf modulo I. The exact entries in the M; matrices depend on the particular
polynomials making up the Groébner basis for the FreeLunch system. We call
matGen the procedure which, given a basis B, returns Tj.

From Proposition 3 it follows that det(xgI p, —Tp) is a univariate polynomial
belonging to the ideal I. Computing this determinant and using a root-finding
algorithm to solve for det(xolp, — Tp) = 0 will finally give us a value for z
that solves the CICO problem. The following lemma shows that computing this
determinant of this particularly structured matrix 7y can be done with much
lower complexity than for a generic matrix of dimension Dj.

Lemma 2. Let My,..., My,—1 be the matrices defined in Lemma 1. We have

ap—1
det(onDI — T‘()) = +det (.’ESOIDI + Z $6M1>

=0
Proof.
CL‘QI 0 e 0 M()
—TI 3;‘01 e 0 M1
det(onDI —To) = det . 0 .

0 0 —I l‘oI Maofg
0 0 0 —I xol+ Muyy-1

The rows of this matrix can be split into a set of «g blocks of D; rows each.
Denote these blocks as Lo, . .., Lo,—1 from top to bottom. We now do elementary
row operations block-wise, from bottom to the top, with L; = L; + z¢L; 1, for
1= qag — 2,...,0. This does not change the value of the determinant and after
these row operations the resulting determinant to compute is:

apg—1
0 0 ... 0 2o T+ Y apM;
=
-I 0 ... 0 2+ wMip
det | . l;:o
1 .
0 ... =TI 0 2I+> x4Mijae o
=0
0 0 —TI on-i-MaU,l

In this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign (—1)®0*+!, d

Complexity Analysis. We call polyDet the procedure returning the polynomial

det(zoIp, — Tp) using Lemma 2. This step has a complexity O(D; DY) wwith
the algorithm of Labahn et al. [37]. Note that this is precisely the complexity

11



that was obtained with the algorithm of Berthomieu et al. for systems satisfy-
ing the stability and shape position properties. In order to estimate the loga-
rithmic factors in the complexity formula, we bound the complexity with [31,
Theorem 4.4], using a polynomial matrix multiplication algorithm of complexity
O(D¥ log(ag) + D3 log(ap) log(log(avy))) [18]. This way, we bound the number
of operations of polyDet with (when D; is large):

O (aplog(ao)* DY + ag log(ag)? log(log(ag)) DY) = O(aglog(ag)*DY) . (2)

The remaining task to show for Theorem 1 is to recover the roots of a univari-
ate polynomial of degree Dj, a step we refer to as uniSol. This costs @(DI)
operations and is thus negligible in comparison with the polyDet step.

We want to highlight that the complexity of the matGen step is hard to
estimate precisely (recall that Ty is assumed known in Theorem 1). As we will
see in later experiments, this step can be costlier than polyDet.

3.3 Ordering a FreeLunch

Having seen how to efficiently find solutions for FreeLunch systems, we will focus
in the next two subsections on the problem of actually finding them. Recall that
FreeLunch systems rely on the existence of specific monomial orders. How can
we figure out if such an order exists (and thus, if a system is a FreeLunch)? In
general, answering this question is not trivial. However, the systems we will be
concerned with in Sections 4 and 5 naturally have a deeper structural property
that allows for a procedural approach to this problem.

Definition 9 (Triangular System). Let P = (p1,...,pn-1,9) be a poly-
nomial system in Flxg,z1,...,2,—1]. We say that P is a triangular sys-
tem if there exists polynomials qo,q1,---,qn—1, integers ag,q,...,Qn_1, and
€y -y Cn—1 € F\ {0} such that

{Pi = cxy 4+ qi(xo, .. Tio1) for 1<i<n-—1,

g = ot + oo, Tu) -

A triangular system P can be assigned the following monomial order that is
naturally motivated by the FreeLunch definition.

Construction 1 For a triangular system P, we define its triangular order, <,
as the monomial order from Def. 2 associated with the weight vector defined
recursively by:

{Wt(mo) =1,

wt(z;) = wt (LM<, (¢i(zo, 21, .., 2i—1))) [y for 1<i<n-—1.

The recursion is well-defined since the leading monomial of ¢; and its associated
weight are only dependent on the weights of x; for j < i. The definition ensures
that LM, (p;) = )" for 1 < ¢ < n — 1. Hence, a triangular system P is a
FreeLunch system with respect to <p if the leading monomial of g is univariate
in z¢, which gives the following Proposition:
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Proposition 5 (Ordering a FreeLunch). Let P be a triangular system, and
<7 be its triangular order. If ag > wt(LM<, (go(xo,-..,Tn-1))) then P is a
FreeLunch system and <7 is one of its FreeLunch orders.

As we will see below, such systems naturally occur when investigating some
cryptographic permutations.

3.4 FreeLunch Systems From Iterated Functions

The permutations we target share the same structure: a composition of a num-
ber of round functions. The input and output of every round is a state of ¢
elements” from F and the round functions typically consist of a limited number
of multiplications and a-th roots in F. Writing them out directly as polynomial
functions yields polynomials of high degree, owing to the a-th root operations.
A natural modeling strategy introduces a new variable for each of them to keep
the degree growth manageable, as = y is of much lower degree than y = zt/e
when a € {3,5,...,257} and |F| is large. In this section, we take inspiration from
an encoding suggested by the authors of Griffin [32] and show how to model
this class of primitives as polynomials that form a low degree FreeLunch system.

o[y Xy + - N )d Xy + o C xs;(zxixl,xz)=
0%+ oo, Xp5 X2)
A A A
Xo— ﬂ(.)lm A aoe ) (Va2 |
1o, xp) = X = g(%p) oo X1 X2) = X5 — gy, %)

Fig. 1: Triangular system for a simple SPN with two branches and two rounds.

Toy Example. Let us start with a toy SPN of two rounds, where the round
function F is given by F = S o A : F? — F?, for an invertible affine layer A
and a non-linear layer S. Moreover, we write S = (S1,S3) where S;(y) = 3¢,
for a small integer d, and Sa(y) = y'/*. This simple construction is shown in
Figure 1, where we also label the branches with variables and polynomials at
different points. We consider a CICO problem with input (0, zg).

As we assume d < p, we note that the round function F' can only achieve
a high degree as a polynomial function F? — F? due to the map S,. Thus, we
introduce new variables x; and x5 for the output of Sy in the first and second
rounds, respectively. The polynomials pq, p2 relate the symbolic input and output

" We say that the permutation has t branches, or as we like to think of them, brunches.
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of the two Ss-functions, where ¢; is an affine polynomial in zy that is input to
S in the first round, and gs2(xg,x1) is the input to Ss in the second round and
has degree d in the xzg-variable and degree 1 in the x;-variable. Finally, we let
g(z0, 1, x2) represent the first output of the construction that is required to be
0 by the CICO-problem. We can now write g as

2
g(xo, 1, x2) = Cofl?g + qo(zo, 21, 22),

for a suitable constant ¢y € F, and where qo(zo, 21, z2) has degree < d? in o,
degree d in x; and degree 1 in x9. If ¢g # 0 we observe that P = {p1, po, g}
forms a triangular system (Definition 9), whose solutions yield a solution to
the specified CICO-problem. The weight vector of <p from Construction 1 is
(1,1/a,d/a), and it is straightforward to verify that P satisfies the condition of
Proposition 5. Hence, P is a FreeLunch system.

General Case. The above example shows the core idea for how a FreeLunch
system can be made from a round function that relies on the functional inverse
of low degree function to achieve a high degree. Let us generalize this insight.
Let F, : F! — Ft, z;_1 +— z;, denote the i-th round of a primitive, where
Zi—1 = (2i-1,0,---,%i—1,—1) is the state after i — 1 rounds. Recall that F; may
itself have a high degree (in z;_1), but suppose there exists a set of variables
x; = {%i0,...,Ti—1} satisfying

LUz;J = Ci’j(Zifl), for 0 < 7 < éh (3)
where o ; is an integer and £; ; an affine function. Moreover, suppose that there
exists a polynomial function G; : F**% — F* of low degree d;, satisfying

Fi(zi—l) = {Gi(zi,hxi) ‘ X; satisfies (3)} (4)

In other words, while F; and G; are different as polynomial functions, they yield
the same output when x; is restricted by (3). For instance, in the toy example
above, we used

Gl(Z0,$1) = ((A1(Z0))d,$1) , GQ(Z1,$2) =4 ((Al (Zl))d ,ﬂ?2> >

where A; denotes the first output of A.

Polynomial Modeling. We now have an iterated function of ¢ branches where
each round can be described using the functions G = {Gy,...,G,} satisfying
(3) and (4), and where G; is of degree d;. We introduce the shorthand d<; =
dids - - - d;, and we require that the exponents d; are small enough to ensure that
their composition will not exceed the maximal degree determined by the finite
field, i.e. d<, < |F| — 1.

With this in place, we give the following blueprint for constructing a poly-
nomial system. Recall that we focus on the variant of the CICO-problem where
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a single input in F is unknown, which we will symbolically denote by zq, and
the output of the first branch should be 0. The initial state is written as zg (o),
which consists of ¢ affine polynomials in xy. The proceeding state is defined
as z1(xo,x1) = G1(zo,%x1), where we note that z; is now ¢ polynomials of
at most degree dy in the variables zg,x;. Furthermore, we create functions
p1 = {P1,0,---,P1,6,—1} to encode the relations (3) that we encounter in this
step. That is, for x; = {z1,0,...,%1,¢,—1}, We construct the polynomials
P1,j = .Z‘ilj’j — £1)j(Z0), for0<j<¥;.

This process of updating the state z; and constructing polynomials8 pi is re-
peated for all rounds up to » — 1. In the last round, we generate polynomials p,
as before, but instead of updating the state, we compute the final polynomial

g((EO7X17 cee uxr) = [GT(erlax’r’)]17

where []; means the first polynomial of G, (z,_1,x,). This construction yields
the polynomial system Pg = {p1,...,DPr, g} over the ring F[zg, x1,...,%;].

Pg as a FreeLunch system. It is easy to verify that Py is a triangular system
if g contains a univariate monomial in xg. In fact, this is a stronger case than
the generic triangular systems considered in Section 3.3, since we are also able
to bound the degrees of the polynomials in Pg by round degrees d,...,d,.
This allows us to give an analogous variant of Proposition 5 for Pg. Instead of
a condition on the entire system that could be computationally expensive to
verify, we reduce the assumption to the condition of a single monomial in g.

Proposition 6. Let Pg be a polynomial system as constructed above, where all
a; ; from (3) are at least 2, and the functions G = {G1,...,Gr} are of degrees

diy...,d. > 2. Then Pg is a FreeLunch system if g contains the monomial :Ugg.

Before proving the proposition, we start by defining <g, which is the monomial
order from Definition 2 whose weight vector is given by

{Wt(l‘o) =1,

Wt(xm-) = dgi_l/am for 1 S 7 S r and 1 S] S El s

where we define d<g = 1. Recall that z; denotes the i-th state represented by ¢
polynomials in xg, X1, ...,%;. We will write wt(LM(z;)) for the maximal weight
among the monomials of these ¢ polynomials.

Lemma 3. Let z; be the i-th state associated with a system G that satisfies the
conditions of Proposition 6. Then the following inequality holds for <g

8Ifa single variable is introduced in a round, we will ease notation by writing x; = z;,
pi = pi and «;.
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Proof. We proceed by induction. The base case of ¢ = 0 is immediate since zg
is affine in ¢, and d<¢o = 1 by definition. For the induction step, we recall that
z; = G;(z;—1,%;), where G; has degree d;. Thus we have

wt(LM(z;)) < d; - max{wt(LM(z;_1)), wt(z;1),..., wt(zis)} .

Now we have wt(z; ;) < d<;j—1, and wt(LM(z,_1)) < d<;,—1 by the induction
hypothesis. Hence

wt(LM(z;)) < did<i—1 =d<; . O

The proof of this lemma also implies that <g coincides with <7 from Construc-
tion 1 if all functions £; j(z,—1) achieve their maximal weight d<;,_;. We now
have all we need to show Proposition 6.

Proof. (Proposition 6). From Lemma 3 we observe

X, j

0i7) = i gwh (2 ) = d<ia

> wh(LM(2;-1)) > wh(LM(L, ; (zi-1)).

wt (x

Hence LM (f; ;) = xlaj] Moreover, Lemma 3 also guarantees that

wt (LM(g)) < wt(LM(z,)) < d<,.

Due to the fact that «; ; > 2, the factor 1/a; ; that appears in the weight of all
variables x;, ¢ > 1, the above equality can only be achieved by the monomial
xgsr. It then follows from the assumption that LM(g) = xgsr, which makes Pg
a FreeLunch system. a

Computing a reduced Griébner Basis for (Pg) (sysGen). We have just
seen that computing a Grobner basis for a given FreeLunch system Py is — as
the name suggests — free. There are, however, two practical concerns worth ad-
dressing. Firstly, while Py is itself a Grobner basis, it is generally not the unique
reduced Grobner basis w.r.t. any of its FreeLunch orders. Secondly, generating
the polynomials in Pg may itself be hard.

In practice we do not generate the polynomials in Pg in the direct manner
outlined earlier. Rather, we will use the fact that p; and g are constructed by
composing certain round functions. This allows us to reduce by the polynomials
P1i,...,Pi—1 introduced earlier in the process in order to suppress the growth
of the number of monomials. This is detailed in Appendix A, where we show
that when Pg satisfies the conditions of Proposition 6, the polynomial system
generated in this manner is also a FreeLunch system that is the unique reduced
Grobuer basis for (Pg) w.r.t. <g. Appendix A also provides a complexity esti-
mate for generating this latter polynomial system, under the assumption that
reductions following every multiplication of multivariate polynomials can be done
efficiently.
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3.5 Summary of the FreeLunch Attack

The strategy of the attack presented in this section is summarized in Algorithm
1. The initial condition is that there exists a FreeLunch system associated with

1. sysGen: Generate a FreeLunch system (Section 3.4).

2. matGen: Compute the multiplication matrix Ty (Section 3.2).

ap—1

3. polyDet: Compute f(zo) = det <x8‘°ID1 + Z x6M2> (Section 3.2).
i=0

4. uniSol: Solve f(zo) = 0.

Algorithm 1: Overview of the FreeLunch Attack.

the target primitives. Methods for constructing this FreeLunch system were pre-
sented in Section 3.3 and 3.4, and the complexities for sysGen using these meth-
ods are discussed in Appendix A. A different way of generating a FreeLunch
system will also be shown in Section 5. We will estimate the complexity of
polyDet by (2), but we do not have a clear estimate for matGen. The final step
uniSol recovers the roots of a univariate polynomial of degree D;. This costs
@(D 1) operations and is thus negligible in comparison with the earlier steps.
We expect the complexity of the attack as a whole to be dominated by either
matGen or polyDet for the primitives we have investigated. This is in line with
our experiments (see Section 6.1), where matGen seems to be the dominating
step for larger instances.

The numbers for the complexity of the polyDet step in our attacks against
several AO permutations are shown are in? Table 1. Details of how we obtained
them will be provided further in the paper.

4 Using FreeLunch Systems Directly

Experimental Verification In this section and in Section 5, we support theo-
retical attacks with practical experiments on reduced-round versions. All exper-
iments are performed on 1 core of AMD EPYC 7352 (2.3GHz) with 250 GB of
memory, and on [F), with p = 0x64ec6dd0392073. The sysGen step is performed
with SageMath [44], MAGMA [12] or the NTL [45] and Flint [35] libraries, the
matGen step is performed with Flint, and the polyDet step is perfomed with the
Polynomial Matrix Library [43,36].

9 The complexities correspond to the number of basic F, operations; writing them as
number of calls to the primitive would yield lower but hard to compute numbers.
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Number of branches

Name afe
2 3 4 5 6 8 > 12

Griffin 3 0 120 (16) 112 (15) 0 0 76 (11) 64 (10)

5 0 141 (14) 110 (11) 0 0 81 (9) 74 (9)
Arion 3 0 128 (6) 134 (6) 114 (5) 119 (5) 98 (4) 0

5 0 132 (6) 113 (5) 118 (5) 122 (5) 101 (4) 0
oArion 3 0 104 (5) 84 (4) 88 (4) 92 (4) 98 (4) 0

5 0 83 (4) 87 (4) 91 (4) 94 (4) 101 (4) 0

3 118 (21) [} - 0 - R R
Anomos 5 156 (21) (] - 0 - - -

7 174 (20) 0 - 0 - - -

11 198 (19) 0 - 0 -

Table 1: Time complexity (log,) of polyDet in FreeLunch-based attacks against
some full-round algorithms (aiming at 128-bit security). Number of rounds in
parentheses, () corresponds to undefined algorithms. The «/e column reports «
for Griffin and Anemoi; and e for the Arion variants.

4.1 A Detailed Example: Griffin

Specification of Griffin. Griffin [32] is a family of sponge hash and com-
pression functions proposed by Grassi et al. at Crypto 2023 designed to be used
in Zero-Knowledge applications. As such, it makes use of the internal permuta-
tion Griffin-m, which is defined over the finite field F.

Each round function of Griffin-m is composed of a non-linear layer, the
addition of a round constant, and a linear layer defined by multiplication by an
MDS matrix.The specific features of Griffin impose that the primitive is only
suitable for F! where t = 3 or ¢ is a multiple of four.

Definition 10 (Non-linear layer of Griffin-m). Leta € {3,5,7,11} be the
smallest integer such that ged(a,p—1) =1, p > 253 and let t be the number of
branches. For 0 <i <t —1, let (6;,p1;) € F2\ {(0,0)} be pairwise distinct such
that 62 — 4p; is a quadratic nonresidue modulo p. Then, the non-linear layer of
Griffin-m is S(xo,...,xe—1) = (Yo,...,Yt—1), where each y; is defined by the
equations:

zt/® ifi=0
Ui = iy ifi=1
" )22 (L2 (Yo, 91, 0) + 82 - La(yo, y1,0) + p2) if i =2

2+ (Li(Yo, v, wi—1)® + 8 - Li(Yo, y1,wi—1) + i) otherwise,
for Li(z0,21,22) = (i — 1) - 20 + 21 + 22.

Definition 11 (Griffin-m). Let v be the number of rounds, and for 1 < i <
r—1 let ¢V e F be a constant vector (we assume ™) = 0). Then Griffin-t
G™ . F! > T s defined as

gﬁ() = ]:Ton-o]:go]:l(MX -),
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where for 1 < i <r, the i-th round function F; is defined as
Fi() =P+ M x S(),
for M € F** o matriz, and S the non-linear layer of Griffin-m.

The first round function of Griffin-m for ¢ = 4 is depicted in Fig. 2 where,
to simplify the construction, we denote by F; the last two equations of Defini-
tion 10. The authors proposed various instances with a 128-bit security claim.
The number of branches varies from 3 to 24 (though not all values are possible),
and the number of rounds is computed for different degrees a based on the com-
plexity of finding a Grobner basis using the basic encoding as it was the most
efficient attack they could find.

Round 1

s ——X

M x z) +c®

Fig. 2: First round function of Griffin-m with ¢ = 4.

FreeLunch system for Griffin. We observe that the round function of
Griffin readily lends itself to a naive construction of the system Pg, as described
in Section 3.4. Indeed, for each round i we can simply define z; = G;(z;—1, ;) by
z; = ¢V + M xz, where z} , = 2; and 2/ ; given as y;, for 1 < j < ¢, in Definition
10 of the i-th round. Note that G; will be of degree at most d; = 2a.+ 1. Under
the assumption that the polynomial g in Py satisfies the monomial property of
Proposition 6, we get an associated ideal degree of (o (2c + 1))".

Remark 1. Note that the naive modeling Pg given above for Griffin is not new;
in fact, it was invented by the authors of this algorithm for their initial security
analysis [32, Section 6.2]. However, the authors did not attempt to compute a
Grobner basis for (Pg) in a FreeLunch order, but rather in the usual grevlex
order. They estimate that computing a Grobner basis in this latter monomial
order will well exceed the security level for the suggested number of rounds.
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Bypassing Several Rounds. A further improvement is constructing an affine
input in xg for the CICO problem that is tailored to bypass the inversion oper-
ation for a few initial rounds. This effectively means that fewer variables x; are
necessary, which in turn has a significant impact on the resulting ideal degree.
Observe that bypassing inversions fits seamlessly with the machinery introduced
in Section 3.4. The only difference is that we choose a different sequence of poly-
nomial functions G*, where G7 effectively spans several rounds but only depends
on zg. The ensuing functions G}, i > 2, can still be constructed as described
for the naive method above (though there will now be fewer of them). The ex-
act number of initial rounds we can bypass will depend on ¢, where a larger ¢
generally allows us to bypass more rounds'’. All underlying details are given in
Appendix B.

For t = 3,4, we can bypass one round with linear functions in zy. For ¢t = §,
we are able to bypass two rounds with cubic functions in zg, and three rounds
can be bypassed with deg(zg) = 6+ 3 for ¢ > 12. Assuming all systems satisfy
Proposition 6, we get the following ideal degrees.

(@ (20 + 1)1, for t = 3,4,
Dri=1<3(aa+1))"2, fort =8, (5)
(6 +3) (a0 (2 +1))"7%, for t > 12.

Complexity Analysis and Experimental Results. We can now use the
machinery learned in Section 3.2 to solve the above-described FreeLunch system
for Griffin. As noted in Section 3.2, it is hard to theoretically estimate the
complexity of matGen where one computes the multiplication matrix 7. On the
other hand, based on previous analysis, we estimate the complexity of polyDet
by computing DlytD‘l"’t_l = DLt(DI,t/aO)“’*l for the different values of Dy ;. As
a consequence, the running time for polyDet becomes

O((e® (2a+1))"1), for t = 3,4,
O(D14DY7Y) =K O3 (a® (2a +1))"7?), for t =8, (6)
O((6a + 3) (o (2a+ 1)) %), for t > 12 .

The resulting estimated time complexities of running polyDet for the proposed
instances of Griffin are listed in Table 2. Experimental results are presented
in Table 3 and discussed in Section 6.1.

4.2 Applicability Beyond Griffin: the Example of ArionHash

Specification of ArionHash. ArionHash [41] is an arithmetization-oriented
hash function proposed by Roy et al. that, much like Griffin, uses a permutation

Y9 A similar observation of bypassing rounds was already considered in [32, Section
6.2]. However, the authors only describe a method for bypassing a single round for
t = 3 and do not consider the effect of having a larger .
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Table 2: Estimated time complexities of polyDet for the different proposed in-
stances of full-round Griffin, where w = 2.81. Number of rounds in parenthesis.

Branches Complexity (log,)
a=3 a=5

3 120 (16) 141 (14)

4 112 (15) 110 (11)
8 76 (11) 81 (9)
12,16,20,24 | 64 (10) 74 (9)

Table 3: Experimental results on Griffin with (¢, @) = (12, 3). sysGen uses Flint
and NTL with the fast multivariate multiplication algorithm of Appendix A.

Number of Complexity Time (s) Memory
rounds of polyDet | sysGen matGen polyDet (MB)
5 26 0.17 0.02 0.53 14

6 34 4.0 6.67 50.78 471

7 41 2,558 3,361 5,727 27,600

as its core primitive. Called Arion-7, this permutation utilizes in each round a
polynomial of very high degree in one branch and low degree polynomials in the
remaining branches to significantly decrease the number of necessary rounds to
achieve the desired security.

Definition 12 (Non-linear layer of Arion-7). Letp > 5 be a prime, t the
number of branches, e the smallest positive integer be such that ged(e,p—1) =1,
and 121 < oo < 257 an integer such that ged(a,p — 1) = 1.

For 0<i<t—2,let 0;1,0;2, 1 €F be such that g;(x) = 22 +0i1-x+ ;0
is a quadratic function without zeroes in F and define h;(x) = 22 + pi; - x. Then
the non-linear layer of Arion-m is S = {fo,..., fi—1}, where each f; is defined
“from-right-to-left” by the equations:

ft—l(fﬂo, cee ’ﬂct—1) = CE:KOL
fi(aio, L. ,$t_1) = J?f . gz‘(O'iﬂg) + hi(o'i,t)a t—2>1:>0

where o, ; represents the sum of all previously computed inputs and outputs

t—1

Oit = Z xj +fj(l‘0,...,.’[:t,1) .

j=it1

Definition 13 (Arion-w). Let r be the number of rounds, and for 1 < i <
r let ¢; € F' be a constant vector. Then Arion-m is defined as the following
composition over Ft:

Arion-m : (xq,...,o4—1) — (Lo, 0Sp) 0 -0 (Le 081) 0 Lo(zoy ..y xp—1),
where L., is the affine map of [41, Definition 3] and S; is the non-linear layer
of Arion-m, for 1 <i<r.
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We illustrate the construction of the first round of Arion-7 in Fig. 3 for
t = 4 where, for the sake of clarity, we only represent the function f; of the
GTDS without the details of g; and h;.

200 201 20,2 203
% % 3 %
M x zg
;'( Round 1 : S \
| i e
fi T
fo H {
M x 2} +¢;
v v v v

Fig. 3: First round function of Arion-m with ¢ = 4.

We provide the parameters for Arion-m and ArionHash as well as for their
additionally proposed aggressive versions a-Arion and a-ArionHash with e =
3,5 and a = 121 in Table 4 (number of rounds are in parenthesis). The authors
claim 128-bit security for each parameter set.

FreeLunch system for ArionHash. Due to the similarities in construction be-
tween Arion-m and Griffin-m, it comes as no surprise that the round function
of Arion-m also fits the naive construction of the system Pg described in Sec-
tion 3.4. In this case, for each round i we define z; = G;(z;_1, ;) by z; = L, (2}),
where z;’H = x; and z;J = fj(zi—1) for 0 < j < t—2. Note that each component
of 2z} (and thus of z;) will have degree at most d; = (2'"!(e+ 1) —e)’. Assuming
that the polynomial g in Pg satisfies the monomial property of Proposition 6,
we get an associated ideal degree of (a (2t_1(e +1) - e))r.

In addition, one can further improve this technique by generating a set of
input states constructed so that the inversion operation for the first round is
bypassed, reducing the number of necessary variables and, consequently, the
associated ideal degree. This is done analogously to Griffin, and all underlying
details can be found in Appendix D. For Arion we are only able to bypass a
single round with deg(zg) = 3e, independent of ¢. Assuming all systems satisfy
Proposition 6, we get the ideal degree

Dr=3e(a(2 (e+1)— e))r_l

Complexity Analysis and Experimental Results. We can now apply the
new methods introduced in Section 3.2 to solve the FreeLunch system for
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Arion-m & ArionHash a-Arion& «a-ArionHash

Branches Complexity (logs) Complexity (logs)
e=3 e=9 e=3 e=5

3 128 (6) 132 (6) 104 (5) 83 (4)

4 134 (6) 113 (5) 84 (4) 87 (4)

5 114 (5) 118 (5) 88 (4) 91 (4)

6 119 (5) 122 (5) 92 (4) 94 (4)

8 98 (4) 101 (4) 98 (4) 101 (4)

Table 4: Estimated time complexity (log,) of polyDet for the different full-
round instances of ArionHash, where o = 121 and w = 2.81. Number of rounds
in parenthesis.

Number of Complexity Time (s) Memory
branches of polyDet sysGen matGen polyDet (MB)
3 32 1.31 < 0.01 6.8 3,387

4 33 1.46 0.07 18.7 7,551

5 35 9.54 0.08 64.5 15,903

[§ 36 247 0.31 215 32,626

8 39 24,872 4.86 2,545 134,165

Table 5: Experimental results on 2-round Arion, with (e, ) = (3,121). sysGen is
performed using SageMath. polyDet uses an evaluation/interpolation algorithm
of pml [43] since the algorithm of [37] implemented in pml does not work for the
non-generic polynomial matrix in input of polyDet.

ArionHash. Based on the general complexity analysis of the attack, we list the
estimated time complexities of polyDet for the different proposed ArionHash
parameters in Table 4. Note that here D1 = D;/ag = "1 so that the running
time for polyDet becomes

0,07 = 0 (3¢ (o (2 e+ 1)~ €)) ") |

Experimental results are presented in Table 5 and discussed in Section 6.1.

4.3 Last Example: XHash8

XHash8 is a permutation proposed by Ashur, Kindi and Mahzoun in [6]. Along
with XHash12, it is a follow-up of RPO [7], itself a follow-up of Rescue-Prime [42].
XHash8 features a layer with inversion operations in eight out of twelve branches.
Thus we need to introduce polynomials p; = (pio,...,pi,7) and variables
x; = (®i0,...,%;7) in these layers. We can, by adjusting for this minor dif-
ference, directly define a FreeLunch system as we have seen in the previous two
subsections. Since this is very similar to what we saw for Griffin and Arion,
we will give the details for this analysis in Appendix F, and only limit ourselves
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to a short discussion of the highlights in the immediate following. We note that
the related constructions XHash12, RPO and Rescue-Prime all contain a layer
of inversion operations in all branches, and hence we cannot directly obtain a
FreeLunch from them.

Complexity and Impact on Security Analysis. In contrast to the flexible
constructions of Griffin-7m and Arion-m, XHash8 is only defined for a fixed prime
p ~ 2% and a fixed sponge setting with state size ¢ = 12, where the rate is 8
and capacity 4. Although this does not directly lend itself to a CICO problem
with a single zero in input and output, we applied the FreeLunch approach to
this setting. We generate a FreeLunch system with ag = 7% and D; = 7,
whose time complexity of polyDet is approximately 224° for w = 2.81. As this is
significantly higher than brute force for the chosen p, we conclude that XHash8
seems very secure against the techniques presented in this paper.

That said, we note that the current security estimates for XHash8 are (con-
servatively) extrapolated from scaled-down experiments with ¢ = 3 using a single
unknown input [6, Appendix B]. While the FreeLunch framework cannot cur-
rently be extrapolated in a similar manner for the full construction, we still hope
it could provide a basis for future insights into the security of XHash8.

5 Forcing the Presence of a FreeLunch for Anemoi

We have just seen three examples where the FreeLunch machinery of Section 3.4
could be readily applied. Anemoi is another class of permutations that rely on the
inverse of low degree monomials in a finite field to achieve a high degree and so it
would, a-priori, seem like another candidate where we can apply the FreeLunch
techniques. However, we will see that this is not as straightforward as it may
appear because a direct application of the technique creates a polynomial system
Pg where g does not satisfy the assumption of Proposition 6. Instead, we will
show how to compute a modified polynomial system FPg- that retains the valid
solution to the CICO problem, which will turn out to be a FreeLunch system.
This comes at the cost of a somewhat larger, yet still comparable, ideal degree
than what was given in Conjecture 2 of [13]. We start by describing Anemoi.

Description of Anemoi. The Anemoi permutations [13] operate on ]ng for £ > 1,
and either ¢ = 2™ with n odd, or ¢ = p for any prime p > 3. There are differences
between the operations for the odd and even characteristic cases that will impact
our later modeling. Thus, we focus on the setting of / = 1 and p prime, leaving
the even case as future work. In odd characteristic, Anemoi takes a parameter «
such that x — x® is a permutation of F, usually o = 3, 5, 7 or 11. The original
paper gives two specific hash function instances based on Anemoi with ¢ = 1:
AnemoiSponge-BN-254, with a 254-bit prime p, AnemoiSponge-BLS12-381, with
a 381-bit prime p. 127 bits of security are claimed for both of these.
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Definition 14 (Odd Anemoi with ¢ = 1). For a given p, a and number of
rounds r, Anemoi is a permutation of F? defined as

Anemoip o r(x,y) = MoR,0---0Ri(z,y).
For 1 <i <, the i-th round function R; is defined as
Ri(z,y) =HoM(z+ci,y+di) and  M(z,y) =2z +y,z+y),

for constants c;,d; € F. H is the nonlinear operation over F? that is described
in Figure 4b for a non-zero constant a € F.

2i—1,0 Zi—1,1 P Qi1
ci ——H Be——a()? +a te—r
d; &
T 1/ Ti
— () ——H
M
Pi*ll JQifl He—— a()® «—
H
l J zi0 = —2ax;Qi—1 zi1=Qi—1 —x;
Zi,0 Zi1 taz? + P —at
(a) Anemoi round function. (b) H in odd characteristic.

Fig. 4: Description of Anemoi over prime fields with £ = 1.

Failure of the Direct FreeLunch Approach. As a starting point, we consider
the following slight modification'! of the polynomial system Pg for Anemoi, for
1< <r.

pi(xo, . ,J),’) = l‘? + aQi_1(ZIZ0, S ,Ii_1)2 — Pi_l(.ro, e ,$i_1) + (1717 (7)
g(xoy ...y 2p) = Pr(xo,...,2y) . (8)

A first observation is that z; o must have a larger leading term than z; ; under any
monomial order. Since this leading term gets distributed to both branches under
M (without the possibility of cancelling the leading term), we have LM(Q;) =
LM(P;). Now note from the output shown in Figure 4b that in the computation
of 20, the terms aQ?_; and —aQ?_; will both occur and cancel each other.
Hence, the leading monomial of g must be either ,LM(Q,_1) or 22, so there is

" The only difference from the description in Section 3.4 is that we allow £; ; from (3)
to be quadratic, due to the term Q7 _;.
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no possible choice of monomial order where g will have a leading monomial in
only zg.

In order to circumvent this issue, we will multiply g by suitable monomials in
x1,...,%, that leads to a reduction by the polynomials p1, ..., p,. This process
will ultimately lead to a new polynomial ¢*, whose leading monomial will be
univariate in xg. To briefly illustrate the idea, we consider the first step of this
procedure. Writing out g in terms of P._1,Q,_1 and z,, we have

g(P'r‘fla Qrflyxr) = (1 - 4a$7’)Qr71 + (2a$r - l)xr + 2(P7‘71 - a_l) )
taking into account the final M-transformation. In order to cancel out the prod-
uct x,Q,_1 using p,., we construct the following polynomial:
g =29+ (4aQ,_1 — 2az, + 1)p,
= 4a2Q§71 + GQ$71 + 4Qr71(1 - aPrfl) - Prfl + a_1+
2 NQp_1 +2P,_1 — 2a7) = 22,.(a®*Q? |, —aP,_1 +1) .

Hence, we have successfully eliminated z,. from the leading monomial of ¢’ under
any monomial order that satisfies

wt (LM (Q2_1)) > wt (LM (227 (Qr—1 + Pro1) + 2.(Q2_; — Pro1)))
which, since o > 3, can be simplified further to

wt (LM (Q2_,)) > wt (2271) = (a — D)wt(z,) .

Constructing FreeLunch Systems From Anemoi. We now turn our atten-
tion to the general construction of g* that will allow us to apply the FreeLunch
machinery for solving the CICO problem for Anemoi. Here, we will not only be
interested in the leading monomials of the intermediate states and p;, but also in
the second and third monomials. To this end, we define <4 to be the monomial
order associated with the weight vector defined recursively by

wt(zg) =1,
2

wt(z;) = —wt(zg -+ x4-1), for 1 <i<r.
o

Indeed, this choice of monomial order allows us to prove the following two lem-
mas. For a polynomial h, we let Mon;(h) denote the j-th monomial of h accord-
ing to <4. As usual, we write LM(h) = Mon; (h). To avoid pathological cases,
we always consider an affine input in zg for the CICO-problem such that x is
not eliminated after the initial linear operation M. Finally, remember that two
monomials may have equal weight, and only get sorted by their lexicographic
order.

Lemma 4. Let Q;(xo,...,z;) be as defined in Figure 4a and ordered according
to <a. Then the following holds for a > 3.

LM(Q;) = o - - x4, and  wt(LM(Q;)) > wt(Mon(Q;)) -
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Proof. We proceed by induction. The statements are clearly true for ¢ = 0, as
Qo is an affine polynomial in zy by our CICO setting. Now assume it holds for
1 — 1. As mentioned above, leading terms cannot be canceled under M. Thus,
we can restrict ourselves to the two largest monomials in the first output from
‘H, that is —ax;Q;—1 + ax? — P,_; —a~'. From the induction hypothesis we have
LM(2;Q;—1) = xg - - - x;, and it follows from the definition of <4 that this has a
strictly higher weight than 27 when a > 3. O

Lemma 5. Let p;(x,...,z;) be as defined in (7) and ordered according to <4,
and let o > 3. Then for all 1 < i <r the following holds.

1. LM(p;) = .
2. Mong(pz) = (Z’O ce Ii_1)2.
3. wt(LM(p;)) = wt(Mona(p;)) > wt(Mons(p;)) -

Proof. We see from the definition of p; that LM(p;) must be either z$ or LM(Q?).
From Lemma 4, we have wt(LM(Q?)) = 2wt (2o - - - 2;_1), so these two monomi-
als have the same weight by definition of <4. LM(p;) = z§' then follows from
Definition 2. Finally, Mons(p;) = Mony(Q?) and thus has a strictly smaller
weight than the initial two monomials (Lemma 4). O

Before we can define ¢g*, we also need a way to predict the powers of z; we
will use in the multiplication of g prior to the reductions by pi,...,p,. This is
handled by the following integer sequences.

Definition 15. We define two integer sequences {u;}o<i<r and {k;}i<j<r,
where u, = 1, and the remaining sequences are recursively defined as follows:

k; is the unique integer 0 < k; < a such that k; = —u; mod «;
Uil = U; + 2(u7 4+ kl)/OL

In the following, we will denote u = ug.

Note that in the above definition, u; + k; is always a multiple of «; hence u;_1
is indeed an integer.

For a polynomial i and sequence of polynomials H, we write Red(h, H) to
denote the reduction of h by H w.r.t. <4.More specifically, Red(h, H) is the
remainder after performing multivariate division of A by H (see [20, Ch. 2, §3]).
We are now in a position to define g*. Let g|. = g, and recursively define

gi_q1 = Red(zfigg,{pi,pi+1, cespr}), fori=rr—1,...,1.

We set g* = g, and 14 = (Pg+), where Pg« = {p1,...,pr,g"}. It is clear from
the construction that I4 is a subideal of (Pg). The following result guarantees
that Pg- is a FreeLunch system generating this subideal.

Proposition 7. The polynomial system Pg+ is a FreeLunch system, where
LM<, (g%) = af. Moreover, the variety of the associated ideal I4 contains all
valid solutions of the underlying instance of Anemo<.
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Proof. By Lemma 5 we have LM(p;) = x{', so we need only show that LM(g*)
is a univariate monomial in z(y to guarantee that Pg- is a FreeLunch system. To
this end, we will show by induction on descending i that LM(g;) = (zo - - ;)"
and wt(LM(g;)) > LM(Mona(gs)).

For ¢ = r, we have ¢g. = g = Q,, and the statement holds by Lemma 4.
Suppose the hypothesis holds for a given ¢ and consider ¢ — 1. If we denote
si = (ui + k;)/a, we have LM(z¥g}) = (¢ - - - 2;_1)" 2% . We now reduce this
monomial by p;. Write ¢ for the leading coefficient of a:fg; From Lemma 5, we
have that the first two monomials in p; have the same weight, while all other
monomials have smaller weights. Moreover, the induction hypothesis assures that
Mon, (¥ g!) will a have smaller weight than LM(z¥g}) for j > 2. Hence,

LM (xfygé B c(xo . xi_l)uix?(sqz—l)pi) _ (xo L Jﬂi—l)uiJrzx?(si_l);

following from the fact that wt((xq - --xi,l)“i+2x?(si71)) = wt(LM(zF g})) =
wt (LM ((zo - - - 24—1)"*p;)), and the weight of all other monomials are guaranteed
to be strictly smaller. Repeating this process s; — 1 times, we get LM(g}) =
(zo---x;)“ 2% which proves the induction statement. Since this implies that
LM(g*) = LM(g,) = z§, it also concludes the proof of the first part of the
proposition. The second part holds since I4 is a subideal of (Pg), where the
variety of the latter ideal will contain all solutions of Anemoi. a

Ideal Degree. Based on experiments, the authors of Anemoi conjectured a tight
upper bound on the ideal degree of one modeling of the CICO-problem to be
(o + 2)" [13, Conjecture 2]. As I is a FreeLunch system, we have Dy, = a"u,
where we recall that u is an integer depending on r and «. As I4 is a subideal of
(Pg), we generally expect Dy, to be strictly larger than (a4 2)". The following
result proved in Appendix E, guarantees that D; can at most differ by a factor
close to a, which in practical instances will be a small constant.

Proposition 8. Let u be as defined in Definition 15 for integers r,a > 1. Then

(O‘Iz)r <u< (a+1)(°‘;‘2>T—a.

From experiments for & = 3 and large r, we find u ~ 2.1 (5/3)

T

Complexity Analysis and Experimental Results. The FreeLunch system
Pg- consists of r polynomials of degree o and one polynomial of degree u. The
algorithm of Section 3.2 has a complexity of @(a”"u). We plugged in the numbers
for odd Anemoi (¢ = 1), see Table 6. We also ran experiments for Anemoi with
(4,a) = (1,3) and different number of rounds to verify the theory presented
above. The results are presented in Table 7.
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Security claim a=3 a=5 a="1T a=11
128 118 (21) 156 (21) 174 (20) 198 (19)
256 203 (37) 270 (37) 307 (36) 358 (35)
Table 6: Expected complexity of polyDet. of the FreeLunch attack against full
Anemoi instances over I, and ¢ = 1. Number of rounds in parentheses.

Number of Complexity Time (s) Memory
rounds of polyDet sysGen matGen polyDet (MB)
3 20 < 0.01 < 0.01 0.02 < 400

4 26 < 0.01 0.34 0.24 < 400

5 32 0.07 23.3 7.6 < 400

6 37 2.52 2,127 292 2,863

7 43 128 156, 348 10,725 42,337

Table 7: Experimental results on Anemoi with (¢, ) = (1, 3). sysGen is performed
with MAGMA and refers to the generation of the polynomial system FPg- from
scratch, including the computation of Pg.

6 Conclusions

We have presented the FreeLunch approach, an algebraic attack particularly
efficient against arithmetization-oriented permutations. We conclude this paper
with some comments regarding our experiments as well the consequences of our
results, in particular regarding the areas we believe worth investigating further.

6.1 Discussion on Experimental Results

Figure 5 depicts the runtimes of each step of our attack that we obtained ex-
perimentally when targeting Griffin and Anemoi. A first observation is that
the running time of a full FreeLunch-based attack is hard to predict: there are
three steps (sysGen, matGen, and polyDet), and we experimentally found situ-
ations where each of them was the slowest. The case of sysGen is a bit pecu-
liar: using SageMath, MAGMA or Flint/NTL yields very different results and a
deeper understanding seems out of our grasp. We nevertheless would argue (see
Appendix A) that, should their implementations use similar tools, sysGen will
always be of lower complexity than that of the rest of the attack.

Assuming that the dominating step is either matGen or polyDet, it then
seems easy to extrapolate: as we can see in Figure 5, their logarithm increases
linearly with the number of rounds. Even better: for Griffin, Equation (6)
predicts that adding a round multiplies the complexity of polyDet by o (2« +
1) ~ 109.5, which closely matches our observations as 5727/50.79 ~ 112.7. For
matGen, we see that adding a round multiplies the time complexity by about
500. Extrapolating from this, an attack against full-round Griffin should take
about 4.2 - 10''s on a single CPU (around 13,000 years), or around 27° clock
cycles at 2.3 GHz. Similarly, for Anemoi with F, and (I,«) = (1,3), adding
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a round multiplies the time complexity of matGen by about 75. Extrapolating
gives respectively 214 seconds (or 2!3° clock cycles) and 22°4 seconds (223° clock
cycles) for full-round Anemoi with 128 and 256 bits of security.

4 p
0% sysGen 10 o sysGen
—=— matGen = —=— matGen
— 10 polyDet . polyDet
(Rl o
[ v
£ £
F =
10°
5 6 7 3 4 5 6 7
Number of rounds Number of rounds
(a) Griffin complexity (from table 3). (b) Anemoi complexity (from table 7).

Fig. 5: Experimental time complexity of our attacks on Griffin and Anemoi.

6.2 Preventing the FreeLunch Attack

Our attack breaks full-round instances of symmetric primitives built using state-
of-the-art security arguments, which consequently must be revisited: one must
learn how to prevent the relevant applicability of the FreeLunch approach.

At the Primitive Level. An obvious but perhaps costly countermeasure consists
of simply adding more rounds. This is particularly tempting as we are able to
tightly estimate the complexity of polyDet, a step which we have found to often
be the most expensive in practice. Choosing a number of rounds high enough to
prevent it would be a simple yet convincing argument. Primitive designers must
also be mindful of “classical” tricks, i.e., symmetric cryptanalysis techniques (a
priori) unrelated to root finding that can be used to enhance its efficiency. In
the case of 12-branch Griffin, the fact that we can bypass 3 out of 10 rounds
using some kind of subspace trail is a problem we deem worth studying.

At the Mode of Operation Level. The FreeLunch systems are multivariate, but
a single variable (zg) plays an inherently different role, meaning that they have
a univariate flair. This makes them particularly well suited to CICO instances
whereby a single output word has to be set to 0, but they will not work if more 0
are needed in the output. Thus, a simple countermeasure against the FreeLunch
approach (and univariate ones) consists of forcing the capacity of the sponge to
have at least two words set to 0, even if one word would a priori be enough.

6.3 Open Problems for Future Work

Time Taken by Polynomial Reductions. A roadblock in our complexity estimates
is the number of operations needed to perform certain reductions of a polynomial
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modulo an ideal. This is crucial for understanding the complexity of the matGen
step and, to a lesser degree, sysGen (c.f. Appendix A). A tighter estimate for
these computations would greatly benefit our analysis: we would be able to
figure out which step of our attack is the actual bottleneck without the need
for experiments or assumptions, and designers could then be able to use fewer
rounds to achieve a given security level against FreeLunch-based attacks. For
instance, estimating the complexity of a reduction by a FreeLunch triangular
system (Definition 9) would be a big step forward.

Other Custom Approaches. The FreeLunch approach is, to the best of our knowl-
edge, the first “custom” root finding method designed specifically for use in sym-
metric cryptanalysis. There is, of course, no reason to believe that it is the only
one possible, and we consider it a direction worth pursuing. As a first step, a
multivariate variant of FreeLunch where several variables play the role of xg,
and where several words need to be set to 0, would be an interesting target.
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A Computing a Reduced Grébner Basis for (Pg)

As noted at the end of Section 3.4, we do not generate the polynomial system Pg
directly in practice. Rather, we construct a related polynomial system iteratively
while reducing as many monomials as possible along the way. More formally, for
a polynomial h and an ordered sequence of polynomials H, we let Red(h, H)
denote the operation of reducing h by H (according to a specified monomial
order). That is, Red(h, H) is the remainder after performing multivariate division
of h by H (see [20, Ch. 2, §3]). For a tuple of polynomials h = (hy,...,h:), we
write Red(h, H) = (Red(hi, H),...,Red(hs, H)). Now fix a monomial order,
and define z, = z9. We generate p; = (p}1,...,p;;,) and the reduced states z;
recursively as follows for 1 <i<rand 1 <75 <I,.

pi; = Red (277 — Lij(zi_1),{p1 -, Pi_1})
z; = Red (Gi(z;_1,%x;),{P,-- ., Pi}) .

where £; ; is the polynomial from (3). Finally, we define

g =Red ([Gr(z1_1,%)]1,{P1,---,Pr})

and write P = {p},...,p},¢'}. Since the construction of Pg only differs from
that of Pg by reductions with generators in the ideal Ig = (Pg) their ideals
should, intuitively speaking, be identical. This intuition is confirmed by the
following lemma.

Lemma 6. For any fized monomial order we have

Ig = (Pg) = (P;) -

Proof. For any polynomial h and polynomial sequence H, we can write the
reduction operation as Red(h, H) = h + W, for some polynomial W € (H).
Since the G;’s used in the construction of p; and z, are polynomial functions,
one can show by induction that

!

Pi;=pij+{P1-- Pic1}), zi ;= zij+{P1,--.,Pi}) 9)
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holds for all 1 < ¢ < r and 1 < j < l;. In particular, we have ¢’ = g +
({p1,---,pr}). Thus it is clear that Py and Pj generate the same polynomial
ideal. O

The following result relates Pé and Pg when Proposition 6 holds. Recall that we
write d<; = dj - - - d;, where d; = deg(G;).

Proposition 9. Let Pg satisfy the condition of Proposition 6. Then constructing
P5 w.r.t. <g is also a FreeLunch system. Moreover, replacing g’ in P} with
g /LC(g") yields the unique reduced Grébner basis for Ig w.r.t. <g.

Proof. By definition of polynomial division, we have wt(LM(Red(h,H))) <
wt(LM(h)). Since LM(p; ;)" cannot be reduced by {p}...,p;_;} under <g, it
follows from (9) and the prior discussion that LM(p; ;) = LM(p; ;). For the sim-

<r

ilar statement on LM(g'), we note that the condition LM(g) = ch can only

hold if for every ¢ there exist a j; such that LM(z; ;,) = xggi. By construction of
=g, this monomial will not be reduced by {p} ..., p}_;}. Again, it follows from
(9) that LM(z] ;) = xggj. In particular, LM(¢') = LM(g), hence P} is also a
FreeLunch system.

For the last assertion, one observes from the way p; ; only depends on the

variables Loy X1yewy Xi—1,T4,5 that

Red(p; ;, PG\ {pi ;}) = Red(p; j,{p1-..,Pi-1}) ,

holds for <g. Hence P} is already fully reduced, and replacing ¢" with ¢'/LC(g’)
makes all polynomials monic. ad

Remark 2. Recall from Proposition 2 that if H is a Grébner basis for (H), then
Red(h, H) does not depend on the order of the sequence H. It follows from
Proposition 9 that if Pg satisfies the condition of Proposition 6, then the reduc-
tions in the construction of p;j, z; and ¢’ are independent of the order of the
sequence {p1,...p;}, w.I.t. <g.

Complexity of computing Pé. We are left with bounding the complexity of
computing Pé, which will yield our estimate for the sysGen step. In the setting
we will be interested in, this is expected to be dominated by the cost of applying
the last round function G, to compute ¢, and its reduction by {p] ..., p.}. Our
insight is that the reductions involved in the sysGen process are cheaper than the
reductions required in matGen, since the reductions are performed on a smaller
Grobner basis; but we do not have a proof for such a statement. However, it is
possible to bound the cost of the multiplications performed on the state z,._;
when applying G,.. Let m denote the number of these multiplication, where
we recall that m is typically small by design. We reduce by {pj...,p..} after
each multiplication, and will assume that this reduction is negligible compared
to the cost of the multiplications themselves. Thus we have m multiplications
of multivariate polynomials of maximal degree d<, in o and ao;; — 1 in x; 5,
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for 1 <i¢<r, 1<j <I[;. We can then use the Kronecker trick presented by
Moenck [40, Section 3.4] to perform these multiplications in an efficient manner.
In short, the Kronecker trick starts by transforming the multivariate polynomials
to univariate polynomials. This allows us to perform the multiplication using an
efficient univariate multiplication algorithm, before converting the result back
to a multivariate polynomial. Moenck describes the algorithm and proves its
correctness for any bound on the degree of each variable in both polynomials
in the input of multiplication, but only gives a complexity estimate when all
bounds are equal. It is, however, easy to verify that the complexity formula for
the multivariate multiplication algorithm in our setting will be:

O(d<r [] 204y),
1<ilr
1<

when applying either the Fast Fourier Transform, or Schénhage & Strassen’s
algorithm to perform the univariate multiplication [46, Chapter 8]. Repeating
this m times yields our estimate for cost of multiplications in the sysGen step:

O(mdgr H 20[,0‘).
1<i<lr
1555l

In comparison, recall that the polyDet step of our analysis is expected by
Theorem 1 to require
O(d<r( [] i)
1<i<r
1<5<l;
operations in F. Thus, when m remains small, we do not expect the multiplica-
tions in sysGen to be the bottleneck of the overall attack.

Use in Experiments. We implemented the Kronecker trick for the experiments
we ran with the Flint library [35], using the NTL library [45] for the univariate
multiplication; the mapping between flint and NTL polynomial representations
was performed by hand. The multivariate multiplications performed for experi-
ments with MAGMA and SageMath used their own built-in functionalities.

B Bypassing the first rounds of Griffin

The number of rounds that can be bypassed before we need to introduce x
depends on the number of branches. For ¢ > 12 branches we can find an easily
computable set of input states that allows to bypass the first three rounds of
Griffin, so x; only appears in the fourth round. We explain in detail how this
can be done for ¢t = 12. After that it will become clear that three rounds can
also be bypassed for t € {16,20,24}, and how to determine how many rounds
can be bypassed for ¢ < 12.
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Denote the input state to Griffin as
(aoxo + bo, arwo + b1, azxo + ba, ..., a10zo + b1o, 0).

The a; and b; are constants in F that we now proceed to determine. Once the
a; and b; are fixed the variable zy can be varied freely over F, generating a set
of input states for the CICO problem that all have constant input to the 2!/
function in the three first rounds. Figure 6 illustrates the evolution of one of the
chosen input states up to the start of round 3.

axg+by  axg+b  axg+b, axg+by  axy+by  asxo+bs agxg+bs  axg+b;  agxg+by agg+by  axg+by 0

‘ Linear transformation |

IETTIT [N Foveeins foooos [ T I foooo, I T Foooeis T, J....

I@xy+ o) h@xg+h(b) L@+ Lb) L@y +hb) L@xg+Ib) L@xg+lb) @, +lgb) L@xg+Lb) l@xg+ kM) @xg+lb) L@+ hob) l”(a)xq+l”(l;)'.

* Round 1

0 0 La@)xg + by(b) 0 L3(@)xg + Iy3(b) 0 Lg(@)xg + La(b) 0

Affine transformation

0 0 Lg(@)xg + Lyy(b) ho(xg) hy(xg) hy(xg) ha(xg) hy(xg) hs(xg) he(xo) ha(xg) hg(xg)

| | | | l | L | L l

| Affine transformation |

Fig. 6: Evolution of chosen set of input states to Griffin with 12 branches. Red
values give conditions on the a; and b; such that the input of 2 in the third
round becomes a known constant independent of xg.

The values of a; and b; in Figure 6 can be determined as follows. After the
initial linear transformation before the first round, all branches can be expressed
as lj(a)xo + l;(b) for 0 < ¢ < 11, where [;(-) is a known linear combination. To
get 0 on the branches indicated in Figure 6, the a;’s and b;’s need to satisfy the
following linear equations
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lo(a) =0 lo(b) =0
l(a) =0 l(b) = 0
l3(a) =0 lg(b) =0
ls(a) =0 Is(b) =0
I7(a) =0 lz(b) =0
lo(a) =0 lyg(b) =0
llo(a) =0 llo(b) =0.

With 0 on any two adjacent branches, the input to F' will either be all 0,
with F'(0,0,0) being equal to a constant, or the output of F will be multiplied
with 0, making sure the value on the branch remains 0. This ensures that the
algebraic expressions on the branches stay linear in zg,a and b after the affine
transformation at the start of the second round. The need to have input 0 to
2'/* and z® in the second round gives four more linear constraints

liz(a) =0 liz(b) = M7
lig(a) =0 lig(b) = 718,

where the v; are known constants.

Before the affine transformation in the second round, most branches will have
cubic polynomials in xg as their values (the h;(zg) in Figure 6). These are again
linearly mixed in the affine transformation at the end of round two, producing
the cubic polynomial

ho(z0) = c3(a,b)xy 4 ca(a, b)z? + ci(a, b)zo + co(a, b)

on the first branch. We want to enforce that cs(a,b) = c2(a,b) = ¢1(a,b) =0
such that the input to the z'/® function in round three becomes a known constant
independent from xy. The expressions for the coefficients are cubic in the a; and
b;, but note that all the polynomials h;(z¢) for 0 < i < 8 are made as products
of linear factors as

(li(a)xo + 1;(b))(lj(a)zo + 1;(b))(Ix(a)zo + Ix(b)),

and that hg(xg) is a sum of these. By calculating the coefficients for the xg, acg,
and xg terms, we see that cz(a,b) is cubic in a, but does not contain b at all.
Similarly, co(a, b) is quadratic in a and linear in b and ¢4 (a, b) is linear in a and
quadratic in b.

We can now use the 9 linear equations in a introduced above to eliminate

as,...,a1p from cz(a). This leaves c3 as c3(ag, a1), a cubic expression in ag and
a1. Next we fix a1 to an arbitrary non-zero value (to avoid the trivial solution
ag = ... = ajp = 0) and solve for ¢3(ag) = 0 using a root-finding algorithm for

univariate polynomials. With ag and ay fixed, all the other a; gets fixed as well
from the linear constraints from rounds 1 and 2.

Once all a; have been found, ca(a,b) = 0 just becomes a linear equation in
b. Using this linear equation together with the 9 from above, we can eliminate
b1,...,b1o from the last coefficient c¢1(a,b). With all the a; fixed, ¢; then just
becomes ¢1(bg), a quadratic expression in by and we easily solve ¢;(by) = 0. This
determines all the values for the b;.

With the a; and b; now fixed, we known that the input state from our chosen
set will generate polynomials in x( of degree 6cx 4+ 3 on the branches at the start
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of round 4. We can then start the basic attack from there, adapting the weighted
order of the variables accordingly. When the number of xz;-variables is reduced
by 3 and with the degree of zy bounded to 6 4+ 3 until the fourth round, the
dimension of the Grébner basis ideal becomes much smaller, which again reduces
the overall attack complexity significantly.

When there are more than 12 branches we can do the exact same trick as
explained above. The only difference is that there will be more values of a; and b;
that can be chosen arbitrarily when solving for c3(a, b) = ca(a, b) = ¢1(a, b) = 0.
When there are less than 12 branches, there is not enough degrees of freedom to
make it through the third round. For t = 8 we can bypass the two first rounds,
so x1 only needs to be introduced in round 3, and for ¢ = 3,4 it is possible to
bypass the first round and introduce x; in round 2.

C Solutions to the CICO problem with respect to Griffin

In this section we give explicit solutions to the CICO problem related to a
Griffin permutation whose characteristics are specified below. Everything dis-
cussed here can be checked by the reviewers using the supplementary material
provided in verify.zip.

Parameters of Griffin instances

e Prime number: p = 28407454060060787 (55 bits);

e Exponent: a = 3;

e Number of rounds: r € {5,6,7};

e Number of branches: ¢t = 12 (corresponds to 10 rounds in the real version);

e Parameters of the quadratic functions: §; = 4(i + 1), w; = 7(i +1)?, i =
0,....,7m—1;

e Round constants'? (up to 7 rounds):

12 Our Griffin with r» < 7 rounds will use constants (co,-..,Cr_2,cC6).

40



co = (24948861045225956, 21203603017242449, 5137804740880040,
17203989140901077, 15884693750499599, 202426034695061
21925627314327927, 14915791625715646, 2270637844838412,
19287066862534400, 23053628619630528, 20205234482325465)

c1 = (1953994697959081, 13694436956212586, 2244645965787647,
20803493439220167, 13296675195272853, 18206898451764242,
20376008308269607, 10239947264048958, 1116873941458788,
19425600591729552, 20854422412323996, 10085561279368253)

¢y = (16905640598099854, 25230133406843513, 8957962046730991,
14294289436907403, 10949906559535418, 28179662462119909,
20848600834284278, 5962920227944130, 15120107418293752,
6002695762195648, 6114627516150292, 22521669951514122)

¢ = (13008050022403386, 28091350245684079, 23189230572909585,
8101795236077784, 3593606052472638, 11330866710107896,
9840541134611106, 13915746912957553, 19822110644988410,
24750875280653592, 25496607366081073, 2269647499797729)

¢4 = (15770582149454036, 4472996328290429, 8197094411507273,
14151116175893923, 19977244056516294, 22071066831282832,
10912395968228633, 28293903648852908, 15600461636809584,
16248565278833955, 23850742575902012, 12384888390231181)

cs = (24731271392756981, 4234794164011219, 5709721189329773,
23115678305163655, 11185048660199721, 21406367947811616,
14929808901464726, 14209993563715217, 19373914823111461
12307896526346864, 16319890415782340, 10440350754040851)

6 = (0,0,0,0,0,0,0,0,0,0,0,0)

The round constants listed above were generated randomly using the following
code in SageMath:

p = 28407454060060787

Fp = FiniteField (p)

R=26

b = 12

set random seed(int.from bytes(b"Griffin" ,"little"))
RC = [random vector(Fp, b) for _ in range(R)]
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Solutions to the CICO problem

Solutions of the CICO problem for r € {5,6,7} are presented here. Griffin,
denotes r-round Griffin.

Griffins(0,3490692521816093, 23601145558450866,
12269607430774150, 9967688977125539, 6082447726448232,
5654276540748670, 3202643372242143, 14009612926527540,
18297056060918841, 3219981769736554, 1403954519004962)

= (0, 5621630451433068, 19970363721022544,
26741918912648639, 19340983417234439, 703450676999922,
28208520610521445, 25436703150515389, 27364572020087999,
24554342355067488, 12423823785589327, 9583319713824981)

Griffins(0,20508905520120247,23936168820965785,
23455122418677455, 17553236564762600, 3639182016432478,
17868020430519088, 3713757452078792, 5123533774106823,
15978370877576178, 18526890154199809, 7146019784219766)

= (0, 398957666284762, 14158444455164092,
23271855932022231, 21234778660794826, 2564005063154066,
20580021469733731, 20943402370356289, 5582293336098692,
4611071270038675, 18302255515509522, 26476200309584297)

Griffing(0,15940424764849354, 15734551202904841,
2252716448242183, 24464738475171520, 22965208929786740,
9160692692879124, 10856186368261439, 8227155735266026,
27520010287112407, 2695459349798501, 26535488466949249)

= (0, 28084819548111304, 27440009447766981
18719426192325148, 15867588640423583, 21846560125606713,
6096085299560336, 3230042720230543, 8933226700213982,
16946922076875842, 4787108825372316, 24658818061833687)

Griffing(0, 13453267118668680, 16821847582014700,
16088365946216368, 5399506335051336, 27388226484505332,
23347730487451583,17984517745797377, 8860239602618916,
21421104166559501, 2200106791585633, 4277034158946419)

= (0, 15056970863769267, 16790578228924700,
8672008243997393, 19887571512638539, 26391726423500753,
20727079056917053, 20813391870109600, 20843251064205404,
18441611384455618, 7490737291933204, 20355381094708976)

42



Griffinz(0,471901030567494, 19368389705049758,
6207658171606065, 13611402711597287, 12429039749894833,
22884233714242756, 18540641300363820, 25230426657954964,
17547513396056919, 15871260254068404, 5181585218256522)
= (0,24311659110177349, 24245222836079936,
1360999973748497, 25535756342488541, 10834064085568113,
2487598456547217,22567275155120838, 2042666706826108,
694695024982032, 10782435475712749, 20264250160050251)

D Bypassing the first round of Arion-7

We can use a trick similar to that used for Griffin to bypass the first round of
Arion-m such that the variable x; is only first introduced in the second round.
Unlike Griffin, this method can be applied to any number of branches in Arion-
7. However, we can only bypass a single round.

Denote the input state to Arion as

(apzo + bo, ar1xo + b1, asxo + ba, ..., as—2x0 + by—2,0).

The a; and b; are constants in [ that will be determined. Once the a; and b;
are fixed, the variable xy can be varied freely over F, generating a set of input
states for the CICO problem that all have input 0 to the z'/® function in the
first round. Figure 7 illustrates the evolution of one of the chosen input states
up to the start of round 2.

The values of a; and b; can, in general, be determined as follows. After the
initial matrix multiplication, all branches can be expressed as [;(a)zg + 1;(b) for
0 <4 <t—1, where [;(a) and [;(b) are known linear combinations. To get 0
on the last ¢ — 2 branches, the a;’s and b;’s need to satisfy the following linear
equations

l2(a) = 0 l2(b) = 0

lt,l(a) =0 ltfl(b) =0.

With 2t — 4 equations on 2¢ — 2 variables, these constraints leave two degrees
of freedom for the variables in a and b. Naively, one could think of additionally
imposing the constraints /;(a) = 0 and /;(b) = 0 such that only the first branch
is nonzero and the degree on xq is further reduced. However, the unique solution
to this system is the trivial solution (a, b) = (0, 0), which is not of interest. Thus,
we avoid this by instead imposing arbitrary conditions for two variables a; and
b; (as long as ay, is set to be a non-zero value to avoid the trivial solution). With
ar and b; fixed, all the other variables get fixed, too, from the previous linear
constraints. For simplicity, one could fix the values ag = 1 and by = 0, leading

to an input state of the form (zg, a1z, asxo,. .., a—220,0), where all a;’s are
fixed.
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Fig. 7: Evolution of chosen set of input states to Arion-m with 4 branches. Red
values give conditions on the a; and b;.

With 0 on the last ¢ — 2 input branches, the output of the non-linear layer
of Arion-m will be of the form (A(xz¢), B(xo),0,...,0), where A and B are poly-
nomials in xg of degree 3e and e, respectively. Thus, the input state from our
chosen set will generate polynomials in z( of degree 3de on the branches after the
affine transformation in round 1. We can then start the basic attack from there,
adapting the weighted order of the variables accordingly. When the number of
x;-variables is reduced by 1 and with the degree of o bounded to 3e until the
second round, the dimension of the Grébner basis ideal becomes smaller, which
again reduces the overall attack complexity.

E Proof of Proposition 8

Proof. Recall from Definition 15 that v is defined as u = ug through the sequence
{u; }o<i<r. To simplify the exposition, we will work with the sequence {v; }o<i<r
defined by vy = 1, and

vi+1zvi+2[%], for 0 <i<r.
«

Note that v; = u,_; and, in particular, v,, = u. Define two more integer sequences
{ai}o<i<r and {b; }o<i<, defined by ag =bgp=1and for 0 <i <r

o+ 2 o+ 2
Qq, bi+1:

Ai+1 = bz + 2.

@
As a first step, we will prove a; < v; < b;. This is clearly true for ¢ = 0. Supposing
it holds up to some %, then using the identity = < [z] < z + 1, we have

a+2

i 2
g—‘ < @t Ui+2,

’I)ZSU,L—FQ’V
(67

(%
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Thus, using the induction hypothesis and the definitions of {a;} and {b;},

air1 < Vig1 < biga.

9\
Observe that a; = (a + , which proves the left-hand side of the inequality
a
in the proposition. For the right-hand side we note that {b;} can be written as
2 K3
bi =(a+1) at > — «a, when ¢ > 1. Indeed, this can be verified for i = 1.
Supposing it holds up to some ¢, then
2
b1 = > ha bi +2
e
a+2\""" ala+2
o (222) " el
e
9\ it
= (a+1) (O‘+ ) —a,
o
and the bounds on u stated in Proposition 8 follows. a

F FreeLunch Systems for XHash8

Description of XHash8. XHash8 is an SPN with nonlinear S-boxes, multiplica-
tion by a fixed MDS matrix M, and addition by round constants C;. Its state
contains ¢t = 12 elements in [F, where p = 204 _ 932 1 1. The rate is fixed to 8
and capacity 4. There are 3 rounds in total, and each round consists of 3 steps,
for a total of 9 steps (plus the initial affine layer (I)). With the cipher state de-
noted as z = (zq, ..., 211), one round of XHash8 is constructed from the following
functions (excluding (P3)*) which is specified below):

(I):zw M x (Co +2),
(F)® 2 Cap + M x (25,...,27),

1 1 1 1 1 1 1
(k) . 3 3 3 % 7
(B)( ) 22 Capgr + (20,21, 29, 29 , 24, 20 1 28 5 27, 29 4 28 5 2105 711 )-

=

The last step of a round, (P3)(k), consists of naturally mapping z to a state
of four elements in a cubic expansion s, denoted (So,1,2,53,4,5, 96,7,8, 59,10,11),
and then computing Si7,i+1,i+2 and mapping the result back to F,,. After that,
like with (F )(k), an MDS layer is applied, and the round constant Cspyo is
added. Effectively, (PS)(k) is equivalent to mapping each 2344, to a multivariate
polynomial of degree 7 in 234, 23441, 23q+2 (see also the detailed description in
[6, Appendix A]), which is the way we modelize it.
The steps are applied in the following order, from left to right:

(1) (F)W(BHW(P3)V(F)EN(B") 2 (P3) () (B) ) (P3)1®).
One round preceded by (I) is shown in figure 8, taken from [6].
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Fig. 8: Round i of XHash8 preceded by an (I) step: (I)(F)® (B (P3)®.

FreeLunch System for XHash8 Our resolution allows us to solve the CICO
problem on one branch. However, since the size of one branch is roughly 64
bits, this CICO problem could simply be solved by making 254 queries to the
permutation, for which our solving algorithm does not give us an advantage. On
top of that, the real capacity of XHash8 is ¢ = 4 for a security claim of 128 bits.
Rather than claiming a full attack on XHash8, we show a special case where a
FreeLunch system can be easily extracted. However, the later solving steps, in
particular the polyDet step, will still have a very high complexity.

Following the construction of FreeLunch systems from Section 3 we define the
initial state as zg = (0,0, ...,0) and add a new variable z; ; for 0 <i < 2 and
j € {0,2,3,5,6,8,9,11} after every (~)1/7. All other nonlinear operations can
be represented as polynomials of degree 7, fixing the weights of the introduced
variables to

Wt(.%‘()) = 1, Wt(xi,j) = 7% +1.
7
i,j
as leading monomials and the last polynomial has mgﬁ as a leading monomial.

We end up with 25 polynomials in 25 variables; 24 of these polynomials have x

The coeflicient of the xgs—term in the last polynomial will be non-zero with a

very high probability, ensuring we get a FreeLunch system, with D; = 7** and
6

ag = 7.

Complexity of solving the system. We can solve the system using the al-
gorithm described in Section 3. The complexity of matGen is hard to estimate
precisely. The complexity of the polyDet step is:

O(D¥ o log(ag)?) ~ 2240

when w = 2.81. Note that this is significantly higher than 24, the brute force
complexity for solving this CICO problem.
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