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Abstract. The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed
computing. Very recently, Das et al. (2024) developed a new ACS protocol with several desirable
properties: (i) it provides optimal resilience, tolerating up to t < n/3 corrupt parties out of n parties
in total, (ii) it does not rely on a trusted set up, (iii) it utilizes only “lighweight” cryptography, which
can be instantiated using just a hash function, and (iv) it has expected round complexity O(1) and
expected communication complexity O(κn3), where κ is the output-length of the hash function. The
purpose of this paper is to give a detailed, self-contained exposition and analysis of this protocol from
the point of view of modern theoretcal cryptography, fleshing out a number of details of the definitions
and proofs, providing a complete security analysis based on concrete security assumptions on the hash
function (i.e., without relying on random oracles), and developing all of the underlying theory in the
universal composability framework.

1 Introduction

The Asynchronous Common Subset (ACS) problem is a fundamental problem in distributed
computing. Roughly speaking, an ACS protocol allows n parties — up to t of which may be corrupt
(Byzantine), and communicating asynchronously (with no timing assumptions) over secure point-
to-point channels — to agree on a set X of n − t parties, where each party in X satisfies some
validity predicate. For example, each party in X may be a sender that has successfully sent a
message via a reliable broadcast protocol, or a dealer that has successfully shared a secret via a
verifiable secret sharing protocol.

Very recently, [DDL+24] developed a new ACS protocol with several desirable properties:

(i) it provides optimal resilience, tolerating up to t < n/3 corrupt parties,

(ii) it does not rely on a trusted set up (apart from secure point-to-point channels),

(iii) it utilizes only “lightweight” cryptography, which can be instantiated using just a hash func-
tion, and

(iv) it has expected round complexity O(1) and expected communication complexity O(κn3),
where κ is the output-length of the hash function.

This is, in fact, the first ACS protocol in the literature with all of these properties. For example,
[AJM+21,GLL+21] satisfy all but (iii), as their protocols rely on pairing-based elliptic-curve cryp-
tography. Relying only on lightweight cryptography means that the protocol in [DDL+24] is very
efficient computationally and post-quantum secure.

The purpose of this paper is to give a detailed, self-contained exposition and analysis of this
new protocol from the point of view of modern theoretical cryptography, fleshing out a number of
details of the definitions and proofs, and developing all of the underlying theory in the universal
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composability framework. Also, while the analysis in [DDL+24] was mainly done in the random or-
acle model, we provide a complete analysis strictly in the standard (uniform) computational model,
where we make specific, concrete assumptions on hash functions; specifically, we need collision re-
sistance and linear hiding, the latter being an assumption introduced in [SS23], which essentially
says that a keyed version of the hash function acts a pseudorandom function under a specific type
of related-key attack. We also need a standard pseudorandom function (which can, if desired, also
be instantiated using a hash function).

We stress that the purpose of this paper is purely exposition and analysis — although our
description of the protocol is slightly different than in [DDL+24], all of the novel protocol techniques
are already in [DDL+24], and we do not make any improvements to that protocol here. We do,
however, provide a probabilistic analysis of the number of iterations of the main loop of the protocol,
estimating expectation and tail bounds, based on reductions to the above-mentioned cryptographic
assumptions. This analysis is new and may be of independent interest as it may be easily adapted
to other protocols with a similar probabilistic, iterative structure.

We refer the reader to [DDL+24] for more motivation, a comparison to other work in the
literature, as well as a report on the results of an experimental evaluation of the protocol. We also
stress that while our point of view in this paper is somewhat theoretical, the protocol itself is quite
practical.

The rest of the paper. Section 2 reviews basic definitions as well as building blocks from the
literature (or minor variations thereof). This section also reviews the related problem of VABA
(validated asynchronous Byzantine agreement) and the well-known reduction from ACS to VABA,
which is also the approach to ACS taken here. So the main innovation of the new ACS protocol
is actually a new VABA protocol. Section 3 introduces the new subprotocols that are the key
ingredients in the new VABA protocol: a Gather protocol with a new binding property and a
secret sharing protocol with security properties tailored specifically to our needs. Both of these
subprotocols may be of independent interest and likely have other applications. Section 4 describes
and analyzes the new VABA protocol. Section 5 discusses how such an ACS protocol would likely
be used in practice — namely, as a way of bootstrapping an asynchronous distributed system by
generating a number of “random beacon” instances, thus providing the infrastructure needed to
run other protocols (including even more efficient ACS or VABA protocols, as well as distributed
key generation protocols).

2 Preliminaries

2.1 System model

We have n parties P1, . . . , Pn, of which at most t < n/3 may be corrupt. We assume static corrup-
tions. Let H denote the indices of the honest parties, and let C denote the indices of the corrupt
parties. The restriction to static corruptions is mainly for simplicity of presentation — all of the
protocols presented here should be secure in the adaptive corruption model, but we do not explore
that here.

We assume the parties are connected by secure point-to-point channels, which provide both
privacy and authentication. As we are working exclusively in the asynchronous communication
model, there is no bound on the time required to deliver messages between honest parties.

We use the following fairly standard notation for intervals of integers: for integer k, we write
[k] for the set {1, . . . , k}.
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2.2 Uniformly bounded communication and computational complexity

As usual, the communication complexity of a protocol is the sum over all honest parties P of
the number of bits that P sends to any other party, and the message complexity is the sum over
all honest parties P of the number of messages that P sends to any other party.

All of the protocols we discuss in this paper must satisfy a uniformly bounded communi-
cation complexity property. This property says that the communication complexity is bounded
by a fixed polynomial (that is, not depending on the adversary) in the security parameter and the
number of parties, at least with all but negligible probability for any computationally bounded
adversary.

We can define an analogous notion of uniformly bounded message complexity, where we
simply replace communication complexity by message complexity. Of course, if the communication
complexity is uniformly bounded, then so it the message complexity.

All of the protocols we discuss must also satisfy a uniformly bounded computational com-
plexity property. This property says that the computational complexity (that is, the total
amount of computation performed by all honest parties) is bounded by a fixed polynomial (that is,
not depending on the adversary) in the total number of bits received by all honest parties, at least
with all but negligible probability for any computationally bounded adversary.

Such notions were introduced in [CKPS01] as a way to properly analyze protocols in a cryp-
tographic setting where we need to consider computationally bounded adversaries. In this paper,
we shall combine these two properties and say that a protocol has uniformly bounded commu-
nication and computational complexity if it satisfies both properties. One nice aspect of this
notion is that it is closed under protocol composition. Another is that it guarantees that with over-
whelming probability, the amount of computation performed in any attack by all parties, including
honest parties and the adversary, is polynomially bounded (with all but negligible probability).
This ensures that we can make use of cryptographic assumptions in the analysis of such protocols.

Note that in the above definitions are defined in terms of a game played between a computa-
tionally bounded adversary and the protocol. In the UC framework [Can00], this game would take
place in the secure-channels hybrid model, and this adversary would actually comprise

– the environment, which supplies inputs to and receives outputs from protocol machines belong
to honest parties, and

– the so-called “dummy adversary”, which acts as a simple relay between protocol machines
and the environment (so the environment itself ultimately controls the protocol messages sent
between parties).

Our definitions here are generally compatible with the definitions of polynomial runtime in
[HUMQ09,HS11], and as such, we can be sure that composability properties are maintained in
a way that is largely independent of which particular variant of the UC framework is used.

2.3 Reliable broadcast

A reliable broadcast (RBC) protocol allows a sender S to broadcast a single message m to
P1, . . . , Pn in such a way that all parties are guaranteed to receive the same message. More pre-
cisely, in addition to having uniformly bounded communication and computational complexity (see
Section 2.2), an RBC protocol should satisfy a security property and a completeness property. The
security property is captured by the ideal functionality FRBC in Fig. 1.
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FRBC

Input(m): this operation is invoked once by the sender S, who inputs a message m. In response, FRBC sends
the message NotifyInput(m) to the ideal-world adversary.

RequestOutput(i): after the input has been received, this operation may be invoked by the ideal-world
adversary, who specifies i ∈ [n]. In response, FRBC sends to Pi the message Output(m).

Fig. 1. The Reliable Broadcast ideal functionality (parameterized by S)

The completeness property says that: if one honest party generates an output, or if S is honest
and supplies an input, then every honest party eventually generates an output. Here, eventually
means if and when all messages sent from one honest party to another have been delivered.

Note that without uniformly bounded message complexity, the completeness property would
be trivially satisfied by any protocol in which there are always more messages that need to be
delivered.

Note that this notion of completeness is a specific property of a concrete protocol. We do not
attempt to capture this via an ideal functionality in the UC framework. This approach to modeling
completeness, and the related notion of liveness, adheres to the approach introduced in [CKPS01]
and used more recently, for example, in [SS23,GS23]. In particular, we do not attempt to use the
formal notion of time in the UC framework introduced in [KMTZ11] to model completeness or
liveness. Our view is that this extra (and, in our opinion, somewhat complicated) machinery is
unnecessary and that these notions are more simply and quite adequately modeled as properties of
concrete protocols (as we have done so here).

A well-known Reliable Broadcast protocol is due to Bracha [Bra87]. While Bracha’s protocol is
simple and only requires a small constant number of rounds of communication, its communication
complexity is O(|m|n2), which for large messages is far from optimal. There are many other RBC
protocols in the literature that have better communication complexity, while still needing only a
constant number of rounds of communication. One such protocol is that from [CT05], which has
a communication complexity of O(|m|n + κn2 log n), where κ is the output length of a collision-
resistant hash function. Another such protocol is from [DXR21], which has a communication com-
plexity of O(|m|n + κn2). The protocol from [CT05] is simpler and a bit more computationally
efficient, and so may be preferable to that in [DXR21] when |m| ≫ κn log n. However, in all of
our applications in this paper, we will have |m| = O(κn), and so the construction in [DXR21] is
preferable.

Note: as a technical aside, in order for these protocols to satisfy our definition of uniformly
bounded communication complexity in Section 2.2, we will require that messages m are of some
length bounded by a fixed polynomial (determined by the protocol, not by the adversary) in the
security parameter. This will be the case for all of the applications of RBC in this paper.

2.3.1 One-sided voting. A degenerate version of Bracha broadcast can be used as a simple one-
sided voting protocol, and is given in Fig. 2. This is a well-known technique — see, for example,
[SS23], which is the basis for our presentation here. In this protocol, each party may provide support
by supplying a support input to the protocol, and may accept by generating a accept output. The
key security property of this protocol is as follows:
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If any honest party accepts, then at least n−t−t′ honest parties must have provided support,
where t′ ≤ t is the number of corrupt parties.

This protocol also satisfies the following completeness property: if all honest parties provide
support or some honest party accepts, then eventually, all honest parties accept. As usual, eventually
means if and when all messages sent between honest parties have been delivered.

This protocol obviously has communication complexity O(n2).

ΠOneSidedVote

// Party Pi

acquired ← false, voted ← false, done ← false

while not done do
wait until either:

not acquired and received input support ⇒
acquired ← true
send (echo) to P1, . . . , Pn

not voted and received (echo) from n− t distinct parties ⇒
send (vote) to P1, . . . , Pn

voted ← true

not voted and received (vote) from t+ 1 distinct parties ⇒
send (vote) to P1, . . . , Pn

voted ← true

voted and received (vote) from n− t distinct parties ⇒
// output stage
output accept
done ← true

Fig. 2. Degenerate version of Bracha’s protocol for one-sided voting

2.4 Asynchronous Common Subset

In an Asynchronous Common Subset (ACS) protocol, the parties P1, . . . , Pn agree in a set
X ⊆ [n] of party indices of size (at least) n − t. The indices in X must each satisfy a validity
predicate. This validity predicate is essentially an “asynchronous validity predicate” as in [AAPS23].
However, to make our definitions compatible with the UC framework [Can00], we need to adjust
the mechanics slightly.

As the protocol proceeds, each party Pi may invoke the operation Input(validate, j) for j ∈ [n]
— party Pi may do this several times, for various indices j. In this case, we say Pi validates Pj ,
and intuitively, it means that party Pi sees that the index j satisfies the validity predicate. We say
that a party Pj has been locally validated if it has been validated by some honest party, and we
say that Pj has been globally validated if it has been validated by all honest parties.

The connection to the notion of an “asynchronous validity predicate” validatedi in [AAPS23]
is that when “Pi validates Pj” in our framework is equivalent to “validatedi(j) returns 1” in
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[AAPS23]. The main difference is that in our framework, we explicitly outsource the validation
to the environment, and instead of having some kind of “asynchronous callback mechanism”, as
in [AAPS23], we simply have the environment supply an input signal when the validation occurs.
Also, in our applications, we essentially only require that validatedi(j) returns 1 or returns nothing
at all.

In addition to having uniformly bounded communication and computational complexity (see
Section 2.2), an ACS protocol should satisfy a security property and a liveness property. The
security property is captured by the ideal functionality FACS in Fig. 3.

FACS

Input(validate, j): this operation may be invoked by each party Pi, where j ∈ [n]. In response, Facs sends the
message NotifyInput(validate, i, j) to the ideal-world adversary.

RequestOutput(i,X): this operation may be invoked by the ideal-world adversary, one per i ∈ [n]. In response,
Facs sends to Pi the message Output(X). The value X must be a subset of [n] of size (at least) n − t
where Pi has already validated Pj for all j ∈ X. Moreover, all invocations of this operation must specify
the same set X.

Fig. 3. The Asynchronous Common Subset ideal functionality

The liveness property says that if at some point in time the set of locally validated parties has
size at least n− t, then eventually all honest parties produce an output. Here, eventually means if
and when all messages sent from one honest party to another have been delivered and all parties
that have been locally validated have also been globally validated.

Again, we note that without the uniformly bounded message complexity property, the liveness
property would be trivially satisfied by any protocol in which there are always more messages that
need to be delivered.

Our definition of liveness works well together with other notions of completeness and liveness.
For example, an ACS protocol may be “driven” by a reliable broadcast (RBC) protocol (see Sec-
tion 2.3), where we run n instances of RBC, and each party plays the role of sender in exactly one
of them. We can then run ACS where Pi validates Pj means that Pi has reliably received a message
mj from Pj — that is, has obtained an output message mj from the RBC instance in which Pj

is the sender. The completeness property for RBC guarantees that in the combined protocol, if
all honest parties broadcast a value, then if and when all messages sent from one honest party to
another have been delivered, then all parties will have output a value in the ACS protocol. The
same holds true if we replace RBC by another protocol with a similar completeness property, such
as (complete) verifiable secret sharing.

2.5 Gather

A Gather protocol has the same API as an ACS protocol, but with weaker guarantees. Each party
Pi outputs a set Xi of size at least n − t, but these sets need not be the same. However, these
sets must all contain a common “core set” X of size (at least) n− t. Moreover, this core set must
already be determined by the time the first honest party generates an output — this is sometimes
called Gather with binding core.
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In addition to having uniformly bounded communication and computational complexity (see
Section 2.2), a Gather protocol should satisfy a security property and a liveness property. The
security property is captured by the ideal functionality FGather in Fig. 4. The liveness property is
identical to that for ACS.

FGather

Input(validate, j): this operation may be invoked by each party Pi, where j ∈ [n]. In response, Facs sends the
message NotifyInput(validate, i, j) to the ideal-world adversary.

RequestOutput(i,Xi, X): this operation may be invoked by the ideal-world adversary, one per i ∈ [n]. In
response, Facs sends to Pi the message Output(Xi). The value Xi must be a subset of [n] such that Pi

has already validated Pj for all j ∈ Xi. The “core set” X must be a subset of Xi of size at least n − t.
Moreover, all invocations of this operation must specify the same “core set” X.

Fig. 4. The Gather (with binding core) functionality

2.5.1 A Gather protocol. Here is a basic (core-binding) Gather protocol, included here mainly
for completeness (and which is adapted from a related protocol in [DWZ23]).

We let Validi denote the set of indices of parties that party Pi has validated (this set grows over
time).

1. Each party Pi waits until |Validi| ≥ n− t, and then broadcasts (first, Si), where Si := Validi.
2. Each party Pi waits until it receives an “ack” message from n − t distinct parties, and then

broadcasts (second, Ti), where Ti := Validi. (See below for how “ack” messages are generated.)
3. Each party Pi waits to receive messages (second, Tj) with Tj ⊆ Validi from a collection {Pj}j∈Ji

of n− t distinct parties, and then outputs Xi :=
⋃

j∈Ji Tj .

Concurrently to the above, each party Pi sends an “ack” message to party Pj whenever the following
condition holds:

– Pi has not already sent an “ack” message to Pj ,
– Pi has received a unique message of the form (first, Sj) from Pj , and
– Sj ⊆ Validi.

Let us call this protocol ΠBasicGather. It is clear that ΠBasicGather has message complexity O(n2),
communication complexity O(n3). As for security and liveness, we have the following:

Theorem 2.1. ΠBasicGather securely emulates FGather and satisfies the Gather liveness property.

Proof. The main thing to check is that the sets output by each party contain a core of size n − t
that is determined by the time the first party produces an output. Consider the first point in time
at which an honest party, say Pi, finishes Step 2. At this time, Pi has received “ack” messages from
n − t parties, and at least n − 2t of those are honest, call them {Pj}j∈J∗ . For each j ∈ J∗, party
Pj will include Si in its second set Tj . Moreover, since t < n/3, for any honest party Pk in Step 3,
we must have Jk ∩ J∗ ̸= ∅, and so all honest parties will include Si in their output. So this set Si

is the required core.
To show that ΠBasicGather securely emulates FGather, the simulator in the ideal world just runs

the actual protocol and computes the core set as described above.
The proof of liveness is straightforward and is omitted. ⊓⊔
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2.6 Validated Asynchronous Byzantine Agreement

We can generalize the notion of an ACS protocol (see Section 2.4) so that the output set X is
only required to be of size k, where 1 ≤ k ≤ n − t is a parameter. In this generalization, the
ideal functionality FACS in Fig. 3 is modified so that the set X is required to be of size at least k
(instead of n− t), and the liveness definition is modified so that the precondition is that at least k
(instead of n − t) parties have been locally validated. If we set k := 1, this is called a Validated
Asynchronous Byzantine Agreement (VABA) protocol. Since such a protocol is selecting a
single party from among all validated parties, it may also be called a leader election protocol.

ACS and VABA are equivalent, in the sense that we can build one from the other. One direction
is entirely trivial: given an ACS protocol, we can build a VABA protocol by simply running ACS to
get X and then output (say) the smallest index in X. In the other direction, following [CKPS01],
we can build an ACS protocol from a VABA protocol and an RBC protocol (see Section 2.3) as
follows. We assume (without loss of generality) that the VABA protocol always outputs a set of
size exactly equal to 1. As a notational convenience, we let Validi denote the set of indices of parties
that party Pi has validated (this set grows over time).

1. Each party Pi waits until |Validi| ≥ n− t, and then reliably broadcasts Si := Validi.
2. The parties engage in a VABA protocol, in which party Pi validates Pj when

– Pi reliably receives Sj from Pj , and
– Sj ⊆ Validi.

3. When party Pi obtains the singleton set {j∗} as output from the VABA protocol, it outputs
Sj∗ .

Using the reliable broadcast protocol from [DXR21], the communication complexity of this ACS
protocol is O(κn3) plus that of the VABA protocol. Alternatively, for n ≪ κ, Bracha’s reliable
broadcast protocol [Bra87] gives a better communication complexity of O(n4). As already men-
tioned, the new ACS protocol presented in this paper is actually obtained via this reduction from
a new VABA protocol.

3 Subprotocols

In this section we present the core subprotocols used in the new VABA protocol.

3.1 Gather with binding cover

In Section 2.5 we discussed the notion of a Gather protocol. The new VABA protocol will require a
stronger type of Gather protocol that provides a certain binding cover property. Essentially, this
property says that any index included in the output of any honest party must be that of a party
that was already locally validated at the time the first honest party generated an output.

The security property is captured by the ideal functionality FGatherCov in Fig. 5.
Consider again the example where we “drive” the protocol with an RBC protocol, where Pi

validates Pj means that Pi has obtained an output message mj from the RBC instance in which Pj

is the sender, and that Pi has found that mj satisfies a particular asynchronous validity predicate
V . The basic Gather security property says that when any honest party Pi generates a Gather
output Xi, we know that Xi ⊇ X, and that for each j ∈ Xi, party Pi has reliably received and
verified a message from Pj . The binding cover property says that, in addition, for each j ∈ Xi,
some honest party had already reliably received and verified a message from Pj at the time the
first honest party generated a Gather output.
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FGatherCov

Input(validate, j): this operation may be invoked by each party Pi, where j ∈ [n]. In response, Facs sends the
message NotifyInput(validate, i, j) to the ideal-world adversary.

RequestOutput(i,Xi, X): this operation may be invoked by the ideal-world adversary, one per i ∈ [n]. In
response, Facs sends to Pi the message Output(Xi). If this is the first time this operation is invoked,
define the “cover set” Y := {j ∈ [n] : Pj has already been locally validated}. The value Xi must be a
subset of the “cover set” Y such that Pi has already validated Pj for all j ∈ Xi. The “core set” X must
be a subset of Xi of size at least n− t. Moreover, all invocations of this operation must specify the same
“core set” X.

Fig. 5. The Gather with binding cover ideal functionality

3.1.1 Cover-binding Gather from basic Gather. Here is a generic construction of a cover-
binding Gather protocol from any basic (core-binding) Gather protocol. We make use of n instances
of the one-sided voting protocol ΠOneSidedVote from Section 2.3.1, call them Vote1, . . . ,Voten.

Each party Pi maintains a boolean variable withdraw i, initially set to false (but which will
eventually be set to true), and a set Validi of party indices, initially empty. Whenever party Pi

validates Pj , party Pi supplies a support input to Votej , unless withdraw i. Whenever, Pi obtains an
accept output from some Votej , it adds the index j to the set Validi.

All parties participate in an instance of the basic gather protocol, in which each party Pi

validates Pj when j ∈ Validi. Concurrently, when the size of Validi reaches n − t, party Pi sets
withdraw i ← true and broadcasts the message “withdrawn”.

Each party Pi waits for

– the basic Gather protocol to complete, obtaining a set Xi ⊆ [n], and
– to receive a “withdrawn” message from n− t distinct parties.

Only then does Pi output the result Xi.
Let us call this protocol ΠGenericGatherCov. It is clear that ΠGenericGatherCov has message and

communication complexity O(n3) plus that of the underlying basic Gather protocol. As for security
and liveness, we have the following:

Theorem 3.1. If the underlying basic Gather protocol securely emulates FGather, then
ΠGenericGatherCov securely emulates FGatherCov. If the underlying basic Gather protocol satisfies the
Gather liveness property, then so does ΠGenericGatherCov.

Proof. The main thing to check the following: any index included in the output of any honest
party must be that of a party that was already locally validated at the time the first honest party
generated an output. This follows from a standard “quorum intersection” argument. Consider the
point in time where the first honest party produces an output. At this point in time, at least n−t−t′
honest parties must have already withdrawn their support in the one-sided voting protocols, where
t′ ≤ t is the number of corrupt parties. Thus, if Pj has not been locally validated as yet, it can only
obtain support in Votej from at most (n− t′)− (n− t− t′) = t honest parties, which is insufficient
to make any honest part output accept in Votej . This means that j will never appear in Validi for
any honest party Pi, and hence will never appear in the output set of any honest party.

To show that ΠGenericGatherCov securely emulates FGatherCov, the simulator in the ideal world
just runs the one-sided voting protocols and the simulator for the basic gather protocol.

The proof of liveness is straightforward and is omitted. ⊓⊔
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We note that we can add the binding cover property to the basic Gather protocol presented in
Section 2.5.1 protocol in a way that slightly simplifies the generic construction given above. Just
as above, we preface the protocol with one-sided voting with logic for “support withdrawal” (so
that the sets Validi contain those indices j for which Pi has obtained output accept from Votej).
In addition, a party withdraws support for voting as soon is finishes Step 1 of the protocol. We
do not need to add the “withdrawn” messages as in Section 3.1.1 — the “ack” messages can play
that role. However, we need to modify the logic for sending “ack” messages, adding to the list of
preconditions for party Pi the requirement that Pi has already completed Step 1 (and, in particular,
has withdrawn support in the one-sided voting protocol instances).

Let us call the resulting protocol ΠBasicGatherCov. It is clear that ΠBasicGatherCov has message
and communication complexity O(n3). The following is easily proved by combining the proofs of
Theorems 2.1 and 3.1.

Theorem 3.2. ΠBasicGatherCov securely emulates FGatherCov and satisfies the Gather liveness prop-
erty.

3.2 Asynchronous Secret Key Sharing

We introduce a type of secret sharing protocol with security properties tailored very specifically to
our needs. An asynchronous secret key sharing (ASKS) protocol works as follows. There is a
designated dealer D and a secret space S. The protocol has two stages, a dealing phase and
a reconstruction phase.

In the dealing phase, the dealer shares a secret s ∈ S among all parties. If the dealer is honest, all
honest parties will eventually terminate the dealing phase; moreover, s is random and the adversary
(who controls all of the corrupt parties) learns nothing about s during this phase. If the dealer is
corrupt, the dealing phase may or may not terminate, but if it does terminate for one honest party,
then it will eventually terminate for all honest parties; moreover, the secret s may be an arbitrary
element of S, and the adversary must commit to s by the time the first honest party finishes the
dealing phase.

After an honest party finishes the dealing phase, it may start the reconstruction phase. If all
honest parties start the reconstruction phase, then all honest parties will eventually output the
secret s from the dealing phase. If D is honest, the adversary only learns s when the first honest
party starts the reconstruction phase.

More precisely, in addition to having uniformly bounded communication and computational
complexity (see Section 2.2), an ASKS protocol should satisfy a security property and a completeness
property. The security property is captured by the ideal functionality FASKS in Fig. 6.

The completeness property says two things:

– If one honest party generates a done-deal output, or if D is honest and supplies a deal input,
then every honest party eventually generates a done-deal output.

– If all honest parties input recon then every honest party eventually generates a done-recon
output.

As usual, eventually means if and when all messages sent from one honest party to another have
been delivered.

We shall give a secure ASKS protocol that is simple and efficient; however, its analysis relies
on modeling a certain hash function as a random oracle. We can also prove that the same protocol
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FASKS

Input(deal, [s]): this operation is invoked once by the dealer D. If D is corrupt, the optional argument
s ∈ S must be supplied; otherwise, the optional argument should not be supplied and FASKS chooses
s ∈ S at random. In either case, we say the secret has been input. In response, FASKS sends the message
NotifyInput(deal) to the ideal-world adversary.

RequestOutput(done-deal, i): after the secret has been input, this operation may be invoked by the ideal-world
adversary, who specifies i ∈ [n]. In response, FASKS sends to Pi the message Output(done-deal).

Input(recon): This operation may be invoked once by each party Pi. If this is the first time this is invoked by
any honest party, FASKS sends NotifyInput(recon, i, s) to the ideal-world adversary, and we say the secret
has been revealed; otherwise, FASKS sends NotifyInput(recon, i) to the ideal-world adversary.

RequestOutput(done-recon, i): after the secret has been revealed, this operation may be invoked by the ideal-
world adversary, who specifies i ∈ [n]. In response, FASKS sends to Pi the message Output(done-recon, s).

Fig. 6. The ASKS ideal functionality (parameterized by D and S)

satisfies a somewhat weaker notion of security without modeling the hash function as a random
oracle, but rather, just under a specific (and reasonable) cryptographic assumption on the hash
function (but which itself can be justified in the random oracle model). Moreover, this notion of
security is sufficient for our applications in the paper, allowing us to prove all of our main results
without relying on the random oracle model.

We call this weaker notion of security ASKS with leakage, and it is parameterized by a secret
generating function G, which takes as input the set C of indices of corrupt parties and outputs
a triple (s, d, r). Here, s is the secret as before, and d represents the information leaked during the
dealing phase, and r is additional information leaked during the reconstruction phase.

The corresponding ideal functionality, denoted FASKS[G], is given in Fig. 7 (changes are high-
lighted).

FASKS[G]

Input(deal, [s]): this operation is invoked once by the dealer D. If D is corrupt, the optional argument s ∈ S
must be supplied, and FASKS[G] sets d← r ← ⊥; otherwise, the optional argument should not be supplied

and FASKS[G] computes (s, d, r)
$← G(C). In either case, we say the secret has been input. In response,

FASKS[G] sends the message NotifyInput(deal, d) to the ideal-world adversary.
RequestOutput(done-deal, i): after the secret has been input, this operation may be invoked by the ideal-world

adversary, who specifies i ∈ [n]. In response, FASKS[G] sends to Pi the message Output(done-deal).
Input(recon): This operation may be invoked once by each party Pi. If this is the first time this is invoked by

any honest party, FASKS[G] sends NotifyInput(recon, i, s, r) to the ideal-world adversary, and we say the
secret has been revealed; otherwise, FASKS[G] sends NotifyInput(recon, i) to the ideal-world adversary.

RequestOutput(done-recon, i): after the secret has been revealed, this operation may be invoked by
the ideal-world adversary, who specifies i ∈ [n]. In response, FASKS[G] sends to Pi the message
Output(done-recon, s).

Fig. 7. The ASKS with leakage ideal functionality (parameterized by D, S, and secret generating function G)
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We call G securely hiding if no efficient adversary can effectively distinguish between the two
distributions

{(s, d) : (s, d, r) $← G(C)}

and
{(s∗, d) : (s, d, r) $← G(C), s∗ $← S}.

While this property is not, strictly speaking, a part of the ASKS with leakage definition, it is needed
in applications. Intuitively, if an ASKS protocol is a secure ASKS protocol with leakage defined by
secret generating function G, and G is securely hiding, then the secret s generated by an honest
dealer is indistinguishable from random until such time that it is revealed in the reconstruction
stage.

It is easy to see that any secure ASKS protocol is also secure with leakage defined by the secret

generating function G(C) := (s,⊥,⊥), where s
$← S.

3.2.1 A simple construction. We sketch a simple construction, which is closely related to one
in [SS23] for a somewhat different purpose, namely, “secure key distribution”.

In the dealing phase, the dealer D chooses a random polynomial f ∈ Zq[x] of degree at most
t. Here, q is a large prime. For j ∈ [n], D computes yj = f(j) ∈ Zq and hj ← H(j, yj) ∈ S.
Here, H : [0 . . n] × Zq → S is a cryptographic hash function. Note that the secret to be shared is
s := H(0, f(0)). Next, the dealer uses an RBC protocol (see Section 2.3) to reliably broadcast the
vector (h1, . . . , hn), and also sends party Pj the value yj for each j ∈ [n] (over a secure point-to-point
channel).

After reliably receiving (h1, . . . , hn) via RBC, and after receiving the value yi ∈ Zq directly
from D, party Pi checks if hi = H(i, yi). If so, Pi inputs support to a one-sided voting protocol
(see Section 2.3.1). In any case, Pi waits for the one-sided voting protocol to output accept (which
may occur even if Pi did not provide support to the one-sided voting protocol) — if and when that
happens, Pi outputs done-deal to indicate the it has completed the dealing phase.

In the reconstruction phase, each Pi that input support to the one-sided voting protocol in the
dealing phase sends the value yi to all parties. Each party Pi waits to reliably receive (h1, . . . , hn)
as well as a collection {yj}j∈J of values from t+1 distinct parties which satisfy hj = H(j, yj) for all
j ∈ J . When this happens, Pi interpolates through the points {(j, yj)}j∈J to obtain a polynomial
f ∈ Zq[x] of degree at most t, and checks that H(j, f(j)) = hj for all j ∈ [n]. If so, Pi outputs
s := H(0, f(0)); otherwise, Pi outputs some default value. (Note that we could have the protocol
instead output a special “error” value that effectively proves the dealer was corrupt.)

Let us call this protocol ΠASKS. Assuming that H has output-length κ and that log2 q = O(κ),
the message complexity of ΠASKS is O(n2) and the communication complexity of ΠASKS is O(κn2)
— these bounds hold in both the dealing and reconstruction phases, but do not include the cost
of the underlying RBC protocol. Assuming we implement RBC using the protocol from [DXR21],
these same bounds hold for the protocol as a whole (assuming the hash functions used in this RBC
protocol also have output-length κ).

As for security and completeness, we have the following:

Theorem 3.3. If we model H as a random oracle, and if 1/q and 1/2κ are negligible, and if
the underlying RBC protocol securely emulates FRBC, then ΠASKS securely emulates FASKS. If the
underlying RBC protocol satisfies the RBC completeness property, then ΠASKS satisfies the ASKS
completeness property.

12



Proof. For security, we have to give a simulator. We work in a hybrid model, where in addition to
modeling H as a random oracle, we also model the RBC subprotocol as an ideal functionality. We
consider two cases.

The first case is where the dealer D is corrupt. In this case, although we are modeling H as a
random oracle, the only property we really require of H is that it is hard for the adversary to find
collisions in H, which is ensured by the assumption that 1/2κ. The simulator runs the logic of the
honest parties. Consider the point in time where the first honest party is about to output done-deal.
The goal of the simulator is to “extract” the dealer’s secret s ∈ S so that it can input this secret
to FASKS as the deal input on behalf of D. Now, at this point in time, at least n − 2t ≥ t + 1
honest parties must have input support to the one-sided voting protocol, which means that these
t+1 honest parties received shares consistent with the commitment vector (h1, . . . , hn). Therefore,
the simulator can process these t+ 1 shares exactly as in the reconstruction phase of the protocol
to obtain s ∈ S. The collision resistance of H guarantees that this is the secret that each honest
party would eventually output in the reconstruction phase of the protocol, which ensures that the
simulation is faithful to the real execution.

The second case is where the dealer D is honest. Here, the simulator needs to program the
random oracle. The simulator just runs the protocol, choosing the polynomial f at random just as
in the protocol. When the random secret s is revealed to the simulator by the ideal functionality,
since 1/q is negligible, the adversary has queried H at (0, f(0)) with only negligible probability,
and so the simulator may at that time “program” H so that H(0, f(0)) := s. We also rely on the
collision resistance of H here as well, to ensure that the shares supplied by corrupt parties in the
reconstruction phase are correct.

That proves security. The proof of liveness is straightforward and is omitted. ⊓⊔

We can also analyze ΠASKS without relying on a random oracle, and instead show that it
satisfies an appropriate notion of ASKS with leakage with respect to the secret generating function
G defined as follows: G(C) := (s, d, r), where

s := H(0, f(0)),

d :=
(
{f(j)}j∈C , {H(j, f(j))}j∈[n]\C

)
,

r :=
(
{f(j)}j∈[n]\C

)
,

and f ∈ Zq[x] is a random polynomial of degree at most t.
Then we have:

Theorem 3.4. If H is collision resistant, and if the underlying RBC protocol securely emulates
FRBC, then ΠASKS securely emulates FASKS[G], where G is the secret generating function defined
above.

Proof. As in the proof of Theorem 3.3, we design a simulator that works in a hybrid model where
the RBC subprotocol is modeled as an ideal functionality.

The case where the dealer is corrupt is handled identically as in that proof — we only relied on
collision resistance in that case.

In the case where the dealer is honest, the secret generating function G was designed in such a
way as to give the simulator precisely the information leaked during the dealing and reconstruction
phases. We also rely on the collision resistance of H here as well, to ensure that the shares supplied
by corrupt parties in the reconstruction phase are correct. ⊓⊔
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For applications, we also want to show that the secret generating function G is securely hiding.
This follows from an assumption that H satisfies a certain kind of indistinguishability assumption
under a “related key attack” introduced in [SS23], called the linear hiding assumption.

This assumption is defined by a game in which the adversary first chooses a collection of pairs
{(ai, bi)}i∈I , where I ⊆ [0 . . n] and (ai, bi) ∈ Z∗

q ×Zq for each i ∈ I. The task of the adversary is to
distinguish the distribution {

H(i, air + bi)
}
i∈I ,

where r ∈ Zq is randomly chosen, from the uniform distribution on SI . The assumption states that
no computationally bounded adversary can effectively distinguish these two distributions.

The following theorem is easily proved following the arguments in [SS23]:

Theorem 3.5. The secret generating function G defined above is securely hiding assuming H sat-
isfies the linear hiding assumption.

As discussed in [SS23], the linear hiding assumption can be justified by modeling H as a ran-
dom oracle. However, it is a reasonable concrete assumption in its own right, and the analysis of
the security properties of ΠASKS under this concrete assumption is much more meaningful than
modeling H as a (programmable) random oracle as in Theorem 3.3. In particular, the linear hiding
assumption is a simple, natural, and falsifiable assumption (see [Nao03]).

3.2.2 Relation to other work. What we call ASKS is not to be confused with the notion of
“weak VSS” that goes back to [RB89] and has been studied in a number of papers — see [KKK07]
for a more modern definition and treatment. One difference between ASKS and “weak VSS” is
that ASKS works in the asynchronous model while “weak VSS” works only in the synchronous
model. A second difference is that in “weak AVSS”, when the dealer is corrupt, some honest parties
may output a special error symbol ⊥, while others may output the common secret s ∈ S. A third
difference is that in ASKS, for an honest dealer, the secret is chosen at random by the protocol,
and is not an input to the protocol.

Confusingly, in [DW20], a notion of “asynchronous weak VSS” is defined; however, in their
definition, when the dealer is corrupt, all honest parties must output the same value from the set
S ∪{⊥}. This is really not much different from our notion of ASKS, as the protocol can always just
replace ⊥ by some default value in S. We also note that in [DW20], no notion of preserving the
secrecy of an honest dealer’s secret is ever discussed (in any definitions or proofs). A construction
that has similarities to that presented here is given in [DW20].

In a follow-up paper [DGNW20], a very informal definition of such a secrecy property is given
but the security proof of the scheme (the same one as in [DW20]) does not mention this secrecy
property at all (it does not suggest how or under what assumptions it might be proved). The
paper [BBB+23] gives somewhat different scheme (based loosely on a construction in [BKP11]) and
claims that it provides some sort of statistical hiding property of the secret based on a corresponding
statistical hiding assumption on the hash function. While this assumption on the hash function may
be reasonable, the reasoning here is fundamentally flawed. The problem is that the adversary sees
the output of many hashes with correlated inputs (as in our linear hiding assumption above). There
is simply not enough entropy in these inputs to justify any statistical hiding property.

None of the papers [DW20,DGNW20,BBB+23] give a satisfying definition of security, let alone
anything like a rigorous proof of security. We mention again that our construction and its analysis
is based on ideas from [SS23], although the context there was a bit different.
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4 The new VABA protocol

We now present and analyze our new VABA, or leader election, protocol.

4.1 Description of the protocol

The new protocol ΠVABA makes use of:

– an RBC protocol (see Section 2.3);
– a cover-binding Gather protocol (see Section 3.1);
– an ASKS protocol with a secret space S (see Section 3.2) with leakage corresponding to a

securely hiding secret generating function G.

In addition to these protocols, we need a specialized cryptographic function called a rank
derivation function. This is a function Rank(·, ·) that takes two inputs:

– an index j ∈ [n],
– a collection of values {sk}k∈K , indexed by some set K ⊆ [n], with sk ∈ S for all k ∈ K,

and outputs a value in a finite set R. We write such an invocation of Rank as

r ← Rank(j, {sk}k∈K).

In addition, we require that the output space R is large (i.e., 1/|R| is negligible), and should be
equipped with a linear order (for example, if R is the set of all bit strings of some fixed length,
we can order elements of R according to the value of the integers they represent in binary). We
discuss below in Section 4.3 the precise security property a rank derivation function must satisfy,
as well as a simple construction.

Recall that in a VABA protocol, each party Pi validates other parties Pj incrementally over
time. We let ValidLeadersi denote the set of indices of parties that Pi has validated (this set grows
over time).

Protocol ΠVABA proceeds in rounds (or “views”) v = 1, 2, . . . . In each round v, each party Pi

will “vote” for a one party — we let vote
(v)
i denote the index of the party that Pi votes for in

round v. A party Pi will only vote for a party that it has already validated, that is, we will have

vote
(v)
i ∈ ValidLeadersi at the time Pi chooses vote

(v)
i . In round v = 1, party Pi is free to choose

vote
(v)
i any way it wishes, subject to this constraint. In some applications, we can guarantee that

i ∈ ValidLeadersi at the time Pi chooses its initial vote (for example, if the ACS protocol is “driven”
by a reliable broadcast or verifiable secret sharing protocol), in which case Pi can choose its own
index i as its initial vote. While we do not require this in general, when it does hold, it can provide

certain additional benefits (see Section 4.5). In rounds v > 1, party Pi will compute vote
(v)
i at the

end of round v − 1.
The logic for round v is as follows:

A. Secret sharing stage

1. Start n instances ASKS
(v)
1 , . . . ,ASKS

(v)
n of the ASKS protocol, where in each ASKS

(v)
i party

Pi acts as dealer to share a secret s
(v)
i ∈ S.

We denote by ValidDealers(v)i the set of indices j for which Pi has finished the dealing phase

(i.e., has output done-deal) of ASKS
(v)
j (this set grows over time).
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2. Each party Pi waits for |ValidDealers(v)i | ≥ t+ 1 and sets Dealers
(v)
i ← ValidDealers(v)i .

B. Voting stage

1. Start n instances vRBC
(v)
1 , . . . , vRBC

(v)
n of the RBC protocol, where in each vRBC

(v)
i party

Pi reliably broadcasts (vote
(v)
i ,Dealers

(v)
i ).

2. Start an instance of the Gather protocol, in which each party Pi validates Pj when all of the
following hold:

(a) Pi has reliably received an output (vote
(v)
j ,Dealers

(v)
j ) from Pj via vRBC

(v)
j ;

(b) vote
(v)
j ∈ ValidLeadersi;

(c) |Dealers
(v)
j | ≥ t+ 1 and Dealers

(v)
j ⊆ ValidDealers(v)i ;

(d) if v > 1, then it must also be the case that vote
(v)
j is justified, meaning that it is a mode

of {
prevote

(v−1)
k

}
k∈Prevoters

for some subset Prevoters ⊆ ValidPrevoters(v−1)
i of size at least n− t.

As usual, a mode of a finite collection of values is a value that appears at least as often

as any other. Note that the values ValidPrevoters(v−1)
i ⊆ [n] and prevote

(v−1)
k ∈ [n] are

defined in Step D.1 of the previous round (see below). We give an algorithm below in
Section 4.2 for determining if a given vote is justified.

We let ValidVoters(v)i denote the set of indices of parties that Pi has validated (as above) for
this instance of the Gather subprotocol (this set grows over time).

3. Each party Pi waits for the Gather protocol to complete, obtaining a set Voters
(v)
i ⊆ [n].

C. Ranking stage

1. Each party Pi initiates the reconstruction phase of all ASKS protocol instances ASKS
(v)
j with

j ∈ ValidDealers(v)i (and will continue to do so for other ASKS protocol instances ASKS
(v)
j as

the set ValidDealers(v)i continues to grow).

2. Each party Pi waits to obtain the secret s
(v)
k for all

k ∈
⋃

j∈Voters(v)i

Dealers
(v)
j ,

and then computes

rank
(v)
j ← Rank

(
j, {s(v)k }k∈Dealers

(v)
j

)
for all j ∈ Voters

(v)
i ,

and also computes prevote
(v)
i to be vote

(v)
ℓ for an index ℓ ∈ Voters

(v)
i that maximizes rank

(v)
ℓ .

D. Prevoting stage

1. Start n instances pvRBC
(v)
1 , . . . ,pvRBC

(v)
n of the RBC protocol, where in each pvRBC

(v)
i

party Pi reliably broadcasts prevote
(v)
i .

We denote by ValidPrevoters(v)i the set the set of indices j for which Pi has reliably received

a value prevote
(v)
j ∈

{
vote

(v)
k : k ∈ ValidVoters(v)i

}
from Pj via pvRBC

(v)
j (this set grows over

time).
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2. Each party Pi waits for |ValidPrevoters(v)i | ≥ n − t and sets Prevoters
(v)
i ← ValidPrevoters(v)i

and sets vote
(v+1)
i to a mode of {

prevote
(v)
j

}
j∈Prevoters(v)i

. (1)

In addition, if all prevotes appearing in (1) are the same value prevote, Pi outputs its decision
{prevote} for the VABA protocol, and participates in just one more round of the protocol.

Adding a termination gadget. That completes our description of the protocol. Note that the protocol
as given in [DDL+24] includes a simple device known as a “termination gadget”. This is an extra
step that can be added to any consensus protocol (like VABA or ACS), and that allows parties that
have decided to eventually safely delete all state information associated with the protocol instance
(except insofar that they need to maintain enough state information that allows them to broadcast
one final message with an “eventual delivery” guarantee).

4.2 Determining which votes are justified

We give here a simple and efficient algorithm that allows party Pi to determine which votes are
justified in round v > 1, as required in Step B.2(d) of ΠVABA. A vote is justified if it is a mode of{

prevote
(v−1)
k

}
k∈Prevoters

for some subset Prevoters ⊆ ValidPrevoters(v−1)
i of size at least n− t. We use two arrays:

– an array F indexed by x = 1 . . n, where F [x] counts the number of indices j ∈ ValidPrevoters(v−1)
i

such that prevote
(v−1)
j = x;

– an array S indexed by c = 0 . . n, where

S[c] =

n∑
x=1

min(c, F [x]).

A vote w is justified iff S[F [w]] ≥ n− t. Party Pi initializes the arrays F and S to zero. Whenever

an index j is added to ValidPrevoters(v−1)
i , if prevote

(v−1)
j = x, party Pi increments F [x] and then

also increments S[c] for c = F [x] . . n.

Thus, whenever party Pi adds an index to ValidPrevoters(v−1)
i , it needs to perform just O(n)

work to update the set of justified votes for round v. We note that the mechansim used here for
justifying votes is a bit different than the mechanism used in [DDL+24], which requires additional
information to be reliably broadcast in Step B.1.

4.3 Rank derivation functions: a security property and a construction

Recall the syntax of a rank derivation function as given above. We state here the security property
we need for such a function in order to analyze protocol ΠVABA. This property is defined by a game
in which the adversary first chooses

– a disjoint decomposition (C,H) of the set [n],
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– values sk ∈ S for each k ∈ C,
– a set Y ⊆ [n],

– a collection of sets {Kj}j∈Y , where Kj ⊆ [n] and Kj ∩H ≠ ∅ for each j ∈ Y .

The task of the adversary is to distinguish between the distribution{
Rank(j, {sk}k∈Kj

)
}
j∈Y , (2)

where sk ∈ S is chosen at random for each k ∈ H, and the uniform distribution on RY . The security
property states that no computationally bounded adversary can effectively distinguish these two
distributions. If this property holds we say that Rank is a pseudorandom rank derivation
function.

4.3.1 Combining rank derivation with a secret generating function. In our application,
the secrets sk for k ∈ H in the game defining the pseudorandomness property for Rank are them-

selves pseudorandom. Specifically, each such sk is generated as (sk, dk, rk)
$← G(C), where G is a

secret generating function as in Section 3.2.

To model this, we can modify the game defining the pseudorandomness property for Rank
as follows. First, the adversary chooses the disjoint decomposition (C,H) and gives this to the

challenger. In response, the challenger computes (sk, dk, rk)
$← G(C) for each k ∈ H and sends

{dk}k∈H to the adversary. The rest of the game proceeds as before, except that the challenger uses
the values sk for k ∈ H as computed above to compute the ranks (2). It is important to give the
adversary the values {dk}k∈H before it chooses the values {sk}k∈C , Y , and {Kj}j∈Y , in order to
model the situation where the adversary’s choice of the latter values may depend on the former.

We call an adversary playing this game a rank distinguishing adversary. We say that it
is hard to distinguish real ranks from random ranks if every efficient rank distinguishing
adversary has a negligible advantage in distinguishing real ranks from random ranks in this game.
It is straightforward to argue (using a standard hybrid argument) that it is hard to distinguish real
ranks from random ranks assuming G is securely hiding and Rank is pseudorandom.

4.3.2 Using the rank derivation function. Roughly speaking, the way we will use the fact
that it is hard to distinguish real ranks from random ranks as follows. Consider the point in time in
a given round v of protocol ΠVABA that the first honest party finishes the Gather subprotocol. By
the binding core property of the subprotocol, there is a core set CoreVoters(v) that is determined

at this time such that |CoreVoters(v)| ≥ n − t and every honest party Pi will output Voters
(v)
i ⊇

CoreVoters(v). Moreover, by the binding cover property of the subprotocol, if we define

CoverVoters(v) :=
⋃
i∈H

ValidVoters(v)i ,

where we use the values of ValidVoters(v)i at this point in time, then every honest party Pi will

output Voters
(v)
i ⊆ CoverVoters(v). Thus, the only ranks computed by the honest parties are

rank
(v)
j for j ∈ CoverVoters(v). This means that the sets Dealers

(v)
j that will used by the honest

parties in computing these ranks have already been determined, as have the corresponding secrets

sk for k ∈ Dealers
(v)
j contributed by any corrupt parties Pk. Using the fact that it is hard to

18



distinguish real ranks from random ranks, as discussed in Section 4.3.1, all of the ranks rank
(v)
j for

j ∈ CoverVoters(v) are “effectively as good as random”. More precisely, in the distinguishing game
described in Section 4.3.1, C is the set of corrupt parties, H is the set of honest parties, and the
rank distinguishing adversary sets

Y := CoverVoters(v) and Kj := Dealers
(v)
j for j ∈ Y .

As we will see, the key to proving that ΠVABA reaches consensus quickly is based on the simple
fact:

Lemma 4.1. Assume that the ranks rank
(v)
j for j ∈ CoverVoters(v) are random elements of R,

and that |R| ≥ 3
2n

3. Let γ be the probability that there is a unique maximum rank and that its index

lies in the core set CoreVoters(v). Then γ ≥ 2/3.

Proof. Let us write CoreVoters in place of CoreVoters(v) and CoverVoters in place of
CoverVoters(v). We may assume that CoverVoters is as large as possible, so CoverVoters = [n].
and that CoreVoters is as small as possible, so |CoreVoters| = n − t. Let us assume that
R = {0, . . . , B − 1}. So we view the ranks as a collection {rj}n−1

j=0 of random numbers rj ∈ R.
We claim that for any fixed i ∈ [n], the probability of the event Mi that ri > rj for all j ̸= i is

at most 1/n. Indeed, we have

Pr[Mi] =
∑
r∈R

Pr[ri = r] Pr[Mi | ri = r]

=
1

B

∑
r∈R

(r/B)n−1 =
1

Bn

∑
r∈R

rn−1

≤ 1

Bn

∫ B

0
zn−1dz (estimating the sum by an integral)

=
1

Bn
· B

n

n
=

1

n
.

Let C be the event that there is a collision, that is, ri = rj for some i ̸= j. Then by the union
bound we have

1− γ ≤ Pr[C] +
∑

i∈[n]\CoreVoters

Pr[Mi]

≤ n2

2B
+

t

n
≤ 1/3 (since n ≥ 3t+ 1 and B ≥ 3

2n
3).

⊓⊔

4.3.3 A simple construction based on a PRF. Let F : S × [n] → R be a pseudo-random
function (PRF), where the first argument is the key input and the second argument is the data
input. We also assume that R is a finite abelian group, for which we use additive notation (for
example, the set of all bit strings of a given length, so that addition is bit-wise exclusive-or). For a
given j ∈ [n] and collection of keys {sk}k∈K , where K ⊆ [n] and sk ∈ S for each k ∈ K, we define

Rank(j, {sk}k∈K) :=
∑
k∈K

F (sk, j).
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Theorem 4.1. If F is a secure PRF, then Rank as defined above is a pseudorandom rank deriva-
tion function.

The proof is an easy exercise that we leave to the reader.

Other constructions. One might also consider the construction:

Rank(j, {sk}k∈K) := F
( ∑

k∈K
sk, j

)
.

This assumes that S forms an abelian group. While this construction may well be secure, it cannot
be proved under the assumption that F is a PRF. One would need to assume that F is a PRF
under a “related key attack”. It can also be proven secure if we model F as a random oracle.

4.4 Analysis of the VABA protocol

We now carry out an analysis of the security and liveness properties of protocol ΠVABA. To prove
certain properties, it suffices to consider a hybrid version ofΠVABA, in which all of the RBC, Gather,
and ASKS subprotocol instances are replaced by corresponding ideal functionalities.

The key property is the following:

Theorem 4.2. Consider a finite run of the hybrid version of ΠVABA in which some honest party
P completes round v+ 1 but did not decide as of round v. Further suppose that in round v there is

a value prevote, such that no more than t protocol instances pvRBC
(v)
k (where each corresponding

sender Pk may be corrupt or honest) receive inputs other than prevote. Then P decides the value
prevote in round v + 1.

Proof. We first argue that any justified vote in round v+1 must be a vote for the value prevote. This

is a simple counting argument. A vote vote
(v+1)
j in round v + 1 must be justified by the existence

of a set Prevoters ⊆ [n] of size at least n− t such that for each k ∈ Prevoters, a prevote prevote
(v)
k

was input to pvRBC
(v)
k and vote

(v+1)
j is a mode of the collection of values

{
prevote

(v)
k

}
k∈Prevoters .

Since at most t of the values prevote
(v)
k are different from prevote, it follows that the mode of this

collection must be prevote.

Since the only justified vote in round v + 1 is a vote for prevote, and since any valid prevote
must be a justified vote, it follows that P must decide the value prevote in round v + 1. ⊓⊔

We can use Theorem 4.2 to establish the security and liveness properties of ΠVABA, which follow
from the following theorem, assuming all subprotocols securely emulate their corresponding ideal
functionalities and satisfy their corresponding liveness/completeness properties.

Theorem 4.3. Consider a finite run of the hybrid version of ΠVABA in which at least one honest
party decides, and let v be the lowest-numbered round in which that occurrs. Then all honest parties
that decide a value must decide the same value and do so by round v + 1 at the latest.
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Proof. Suppose some party Pi decides a value in round v. By definition, Pi sees n − t prevotes in
that round for this value. Clearly, any other honest party Pj that also decides in the same round
must also decide the same value. By Theorem 4.2, any other honest parties will decide the same
value by round v + 1. ⊓⊔

To use this theorem to prove liveness, we need to also prove the following: if all honest parties
start a given round, they will eventually all finish that round. This is straightforward and is left to
the reader. Note that liveness only says that all honest parties must decide if and when all messages
sent from one honest party to another have been delivered and all parties that have been locally
validated have also been globally validated. This notion of liveness is meaningless unless we also
establish uniformly bounded message complexity. To do that, we want to show that the protocol
reaches consensus quickly with overwhelming probability.

We can also use Theorem 4.2 to establish that the protocol reaches consensus quickly, using
the reasoning in Section 4.3.2. Consider a run of the hybrid version of ΠVABA and a round v
in which some honest party has completed the Gather subprotocol, and let CoreVoters(v) be the
corresponding core set of size at least n− t. Define

CoverVoters(v) :=
⋃
i∈H

ValidVoters(v)i ,

where we use the values of ValidVoters(v)i at the point in time at which the first honest party

completed the Gather subprotocol in round v. At this same point in time, the rank values rank
(v)
j

for j ∈ CoverVoters(v) are completely determined, even though their values are not yet known to
the adversary and are in fact computationally indistinguishable from random elements of R— here
we use the hiding property of the secret generating function G associated with the ASKS protocol,
and the pseudorandomness property of the rank derivation function. We say the adversary “loses
the rank ordering game in round v” if these pseudorandom rank values are distinct and the index
of the maximum rank value lies in the core set CoreVoters(v). Otherwise, we say the adversary
“wins the rank ordering game in round v”. If these rank values were truly random, Lemma 4.1
says that the adversary loses the rank ordering game with probability at least 2/3. Moreover, when

this happens all honest parties will cast a prevote in round v for vote
(v)
ℓ . When that happens, then

Theorem 4.2 implies that all honest parties will decide by round v + 1.
Although it is rather tedious, one can turn the above intuitive argument into a rigorously

provable statement on the rate at whichΠVABA reaches consensus. For a given adversary A, consider
a complete run of protocol ΠVABA as driven by A — we assume that A drives the protocol for at
most N rounds, where N is bounded by a polynomial pA(λ), which depends on A, in the security
parameter λ. Now, A may halt the protocol at any step, and in particular, it may halt before any
honest party decides. We denote by RA the random variable that represents be the largest number
of rounds that any one party finishes during this run without making a decision.

Theorem 4.4. Assume that |R| ≥ 3
2n

3, all subprotocols securely emulate their corresponding ideal
functionalities, the secret generating function is securely hiding, and the rank derivation function
is pseudorandom. Then we have:

(i) For every adversary A, there exists a negligible function ϵA(λ) such that

E[RA] ≤ 3/2 + ϵA(λ).
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(ii) For every adversary A and every function L = L(λ) that is polynomially bounded in λ and
efficiently computable, there exists a negligible function ϵ′A(λ) such that

Pr[RA ≥ L+ 1] ≤ 3−L + ϵ′A(λ).

(iii) For every adversary A, there exists a negligible function ϵ′′A(λ) such that and for all v ≥ 1

Pr[RA ≥ v + 1] ≤ 3−v + ϵ′′A(λ).

Proof. The assumption that the secret generating function is securely hiding and the rank derivation
function is pseudorandom imply that it is hard to distinguish real ranks from random ranks (as in
Section 4.3.1) and the assumption that |R| ≥ 3

2n
3 allows us to use Lemma 4.1.

Note that (iii) implies both (i) and (ii). However, the proofs and (i) and (ii) are much more
straightforward with much tighter reductions, yielding functions ϵA(λ) and ϵ′A(λ) that are much
more realistic.

So we begin with a proof of (i). To that end, we first consider the same game defining RA but
with respect to the hybrid version of ΠVABA. Let us denote the corresponding random variable SA.

Let us define a related random variable WA as follows. Suppose that in the execution of the
hybrid version of ΠVABA, for each round v = 1, 2, . . . , we consider the first point in time where an
honest party finishes the Gather subprotocol. We say that the adversary plays the rank ordering
game in round v, and we can determine whether or not the adversary wins the rank ordering game
in round v by looking at the relevant ranks, which are already determined by this time. We define
WA to be the number of successive rounds in which in the adversary plays and wins the rank
ordering game. Then we have SA ≤WA + 1.

For each round number v, we define α
(v)
A to be the probability that the adversary plays and

wins the rank ordering game in rounds 1, . . . , v, which is the same as the probability that WA ≥ v.
So by the “tail sum formula” for expectation, we have

E[WA] =
∑
v≥1

Pr[WA ≥ v] =
N∑
v=1

α
(v)
A .

We then define β
(v)
A to be the probability that the adversary plays and wins the rank ordering game

in rounds 1, . . . , v, except that in round v, the rank ordering game is played (if it is played at all)
with random ranks instead of real ranks. Note that by Lemma 4.1, we have

β
(1)
A ≤ 1/3 and β

(v)
A ≤ α

(v−1)
A /3 for v = 2, . . . , N. (3)

To prove (i), we design a rank distinguishing adversary B as follows. B chooses v ∈ [N ] at
random and outputs 1 iff the adversary plays and wins the rank ordering game in rounds 1, . . . , v,
where for round v, we use ranks supplied by a challenger in the rank distinguishing game. It is
easily seen that B has a distinguishing advantage of

ηA(λ) :=
∣∣∣ 1
N

N∑
v=1

α
(v)
A −

1

N

N∑
v=1

β
(v)
A

∣∣∣,
which, by assumption, is negligible. Therefore, by (3), we have

N∑
v=1

α
(v)
A ≤ N · ηA(λ) +

N∑
v=1

β
(v)
A
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≤ N · ηA(λ) +
1

3
+

1

3

N∑
v=1

α
(v)
A ,

and so
N∑
v=1

α
(v)
A ≤

1

2
+

3N

2
ηA(λ).

That shows that the expected value of WA is at most 1/2 plus negligible, and since SA ≤WA + 1,
the expected value of SA is at most 3/2 plus negligible.

That gives the result we want for the hybrid version of ΠVABA. To get the result for ΠVABA

itself, we note that the distributions of RA and SA are computationally indistinguishable, and
the result follows from the general fact that two random variables that take values in {0, . . . , N}
for polynomially bounded N have expectations that differ by a negligible amount (this can be
proven by designing a distinguishing adversary based on the “tail sum formula” for expectation
that distinguishes between the real and ideal subprotocols). That proves (i).

Now consider (ii). For v = 1, . . . , N , define δ
(v)
A := α

(v)
A − β

(v)
A . By (3), we have

α
(v)
A ≤ (1/3)v +

ω
(v)
A

:=︷ ︸︸ ︷
(1/3)v−1δ

(1)
A + · · ·+ (1/3)δ

(v−1)
A + δ

(v)
A . (4)

So to prove (ii), it suffices to show that ω
(L)
A is negligible. We stress that here, L is a fixed, polyno-

mially bounded function in λ. To do this, we design a rank distinguishing adversary B′. Just like
B, adversary B′ embeds a given challenge instance of the rank distinguishing game into a round,
but instead of choosing a round number uniformly at random, B′ chooses round number L− r+1,
where r is chosen from {1, . . . , L+1} according to a truncated geometric distribution with success
parameter 2/3 — that is, for r = 1, . . . , L, it chooses r with probability (1/3)r−1(2/3), and chooses
r = L+1 with probability (1/3)L. If round 0 (that is, r = L+1) is chosen, B′ just outputs 0. It is

easily seen that B′ has a distinguishing advantage of η′A(λ) := |
2
3ω

(L)
A |. By assumption, η′A(λ) is neg-

ligible, which proves (ii). We are assuming here that B′ can perfectly sample r from the truncated
geometric distribution; however, we can implement B′ so that it samples r from a distribution that
is statistically close to the truncated geometric distribution.

Now to prove (iii). Consider the hybrid version of ΠVABA. We want to show that there exists a
negligible function ζ ′′A(λ), which depends on A, such that

Pr[WA ≥ v] ≤ 3−v + ζ ′′A(λ).

for all v ≥ 1. We stress that ζ ′′A(λ) depends only on A and not on v.

To this end, note that

|ω(v)
A | ≤

3
2∆A,

where ω
(v)
A is defined as in (4) and ∆A := maxNv=1|δ

(v)
A |. It suffices to show that ∆A is negligible.

To do this, we can proceed by contradiction. Suppose that ∆A is not negligible. This means that
there exists an adversary A and a polynomial qA(λ) such that for infinitely many settings of the
security parameter λ, we have ∆A ≥ 1/qA(λ). So this means that for infinitely many settings of
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the security parameter λ, for some v = 1, . . . , N , we have |δ(v)A | ≥ 1/qA(λ). So we can design a rank
distinguishing adversary B′′ that for each such λ embeds a challenge for the rank distinguishing
game at this round v. It is tempting to think we can just “hardwire” v into B′′. However, if we
restrict ourselves to a uniform computation model (i.e., programs, not circuits), this is not possible,
unless N is a constant. Instead, we can — using an enormous (though still polynomially bounded)
amount of sampling and a Chernoff bound — determine with high probability a single best round
number v to use in B′′.

In slightly more detail, we design a distinguishing adversary B′′ that plays the rank distinguish-

ing game as follows. First, B′′ will estimate α
(v)
A and β

(v)
A for all v = 1, . . . , N by sampling from each

corresponding distribution a polynomial number of times (depending on qA(λ)). Using a Chernoff

bound, this can be done so that B′′ will find a v such that |δ(v)A | ≥ 1/(2qA(λ)) with all but negligible
probability. B′′ will then use this v to embed a challenge for the rank distinguishing game. The
running time of B′′ is bounded by a polynomial in λ (which depends on qA(λ) and pA(λ)). The
distinguishing advantage of B′′ is negligibly close to 1/(2qA(λ)) (for all sufficiently large settings of
the security parameter λ for which ∆A ≥ 1/qA(λ)).

Note that the reduction here is not entirely “black box”, as B′′ will have to explicitly make use
of the polynomials qA(λ) and pA(λ).

We also note that a similar sampling technique needs to be used to move from the hybrid version
of ΠVABA to ΠVABA itself. ⊓⊔

As for complexity bounds, we see that in each round v of the protocol, the message complexity
is O(n3), the communication complexity is O(κn3), and the round complexity is O(1). By part (i)
of Theorem 4.4, in expectation, these same bounds hold for the protocol as a whole. We may also
apply part (ii) of the theorem with, say, L(λ) := λ to establish that the communication complexity
is uniformly bounded (as in Section 2.2).

4.5 A quality property

Our VABA protocol enjoys a certain quality property. As we mentioned, in some applications, Pi

can choose its own index i as its initial vote. In this case, it is easy to see with probability at least
≈ 1/3, the output of ΠVABA will be the index of an honest party. Indeed, this will happen if in
round v = 1, the maximum rank value lies in the set CoreVoters(v) ∩H, which has size at least
n− 2t.

4.6 Using a random beacon

We sketch here an alternative version of ΠVABA that replaces the ASKS/rank-derivation mechanism
(see Section 4.3) for assigning ranks by a “random beacon”.

A random beacon is a standard tool used in the design of many protocols related to asynchronous
consensus [CKS00,CKPS01]. In each round v, we shall require a random beacon that reveals a vector

of ranks (rank
(v)
1 , . . . , rank

(v)
n ) ∈ Rn, with the following properties:

– this vector will eventually be revealed to all honest parties if all honest parties initiate the reveal
protocol for the random beacon,

– this vector is computationally indistinguishable from a random vector of ranks at any point in
time before at least one honest party has initiated the reveal protocol.
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Such a random beacon may be implemented using a random beacon that outputs a short seed
which is then stretched using a pseudorandom generator.

Using such a beacon, we may modify ΠVABA as follows:

– we do not need an ASKS protocol;

– we may use a Gather protocol that does not have the cover-binding property (but it must still
be core binding);

– the logic for round v is as follows (differences from ΠVABA are highlighted):

A. Secret sharing stage [deleted]

B. Voting stage

1. Start n instances vRBC
(v)
1 , . . . , vRBC

(v)
n of the RBC protocol, where in each vRBC

(v)
i party

Pi reliably broadcasts vote
(v)
i .

2. Start an instance of the Gather protocol, in which each party Pi validates Pj when all of the
following hold:

(a) Pi has reliably received an output vote
(v)
j from Pj via vRBC

(v)
j ;

(b) vote
(v)
j ∈ ValidLeadersi;

(c) [deleted]

(d) if v > 1, then it must also be the case that vote
(v)
j is justified, meaning that it is a mode

of {
prevote

(v−1)
k

}
k∈Prevoters

for some subset Prevoters ⊆ ValidPrevoters(v−1)
i of size at least n− t.

We let ValidVoters(v)i denote the set of indices of parties that Pi has validated (as above) for
this instance of the Gather subprotocol (this set grows over time).

3. Each party Pi waits for the Gather protocol to complete, obtaining a set Voters
(v)
i ⊆ [n].

C. Ranking stage

1. Each party Pi initiates the reveal protocol for the random beacon in round v.

2. Each party Pi waits for the random beacon in round v to reveal the vector

(rank
(v)
1 , . . . , rank

(v)
n ) and then computes prevote

(v)
i to be vote

(v)
ℓ for an index ℓ ∈ Voters

(v)
i

that maximizes rank
(v)
ℓ .

D. Prevoting stage [same as in ΠVABA]

With these changes, all of the analysis in Section 4.4 goes through essentially unchanged, except
that in Theorem 4.4, we use the pseudorandomness property of the random beacon in place of
the hiding property of the secret generating function associated with the ASKS protocol and the
pseudorandomness property of the rank derivation function.

We also mention that in the typical case where all parties vote for themselves in the first round,
we can optimize the protocol even further by completely eliminating the reliable broadcast of the

initial votes. In this case ValidVoters(v)i for v = 1 is just ValidLeadersi.
While this variant is simpler that ΠVABA, it suffers from the obvious drawback of requiring a

setup assumption that provides the random beacon. Nevertheless, we think this variant (which is
also presented in [DDL+24]) is interesting for at least two reasons:
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– It gives a remarkably simple and efficient reduction from VABA to a random beacon. For
example, in [DWZ23], an efficient reduction from VABA to a random beacon is given, but
that reduction also goes through asynchronous binary agreement (ABA). The above variant of
ΠVABA gives a direct reduction to a random beacon without the need for an ABA subprotocol.

– As discussed below in Section 5, in a setting where we already have “bootstrapped” a random
beacon, the above variant may be attractive. We expect this variant is competitive with other
VABA protocols, especially in terms of latency.

5 A note on bootstrapping an asynchronous distributed system

There are certainly more efficient ACS protocols than the one presented here, but they generally
rely on some kind of setup assumption, such as access to a “random beacon”. One such protocol
is the FIN protocol [DWZ23], which relies on “lightweight” cryptography as well as a random
beacon and a subprotocol for asynchronous binary agreement (ABA, which itself can be efficiently
implemented using a random beacon). Another such protocol is the variant of our protocol discussed
in Section 4.6.

Therefore, the most likely application of the ACS protocol presented here is as a critical com-
ponent in a “bootstrapping” protocol that would generate many random beacon instances, which
could then be used in a more efficient ACS protocol or other applications. Because our ACS proto-
col does not need a trusted setup, it could be run once in combination with a batch asynchronous
secret sharing protocol, such as the one in [SS23], which also uses only lightweight cryptography
and provides optimal resilience with no setup assumptions. For this application, one would want
to use the random-oracle version of the protocol in [SS23], so as to avoid the need for a random
beacon.

In more detail, this would work as follows. Every party would act as a dealer in an instance of
the secret sharing protocol, disseminating a batch of L dealings, and the ACS protocol would then
be used to agree a set of n− t such batches. These shared secrets could be combined using “batch
randomness extraction” techniques [HN06] so that we end up with a total of Ω(Ln) shared random
secrets.

Suppose we use the secret sharing protocol in [SS23]. To estimate the communication complexity,
we assume that the field over which the secret sharing is done has elements whose bit length
is ≈ κ, and that L = Ω(n log n) and κ = Ω(n/ log n). With these parameters, we obtain an
amortized communication complexity of O(κn) per shared random secret. Note that this amortized
communication complexity holds on an “optimistic path” in which no dealer provably misbehaves.
In particular, if t∗ dealers provably misbehave, the communication complexity may increase by
a factor of t∗ but the identities of these t∗ misbehaving dealers will become known to all of the
honest parties (who may then take action to punish these dealers, or at least remove them from the
committee). We note that the expected round complexity of generating all these shared random
secrets (including the ACS step) is constant in expectation.

We can use one shared random secret to instantiate one random beacon instance. The communi-
cation complexity of opening one such secret is O(κn2). Using well-known techniques (see [CP17]),
one can also achieve an amortized communication complexity for opening secrets of O(κn) per
secret if we open secrets in batches of size Ω(n) — while this is possible in some applications, such
as general multi-party computation, it is not always possible in others. In any case, once we have
“bootstrapped” many random beacon instances, we can use these in any applications that need
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a random beacon, including another, more efficient ACS protocol that relies on a random beacon
(and we can use this other ACS protocol to generate more random beacon instances as needed,
using the same technique as above).

Note that this approach to building a random beacon with no setup and only lightweight
cryptography is much more efficient than the one in [BBB+23]. Their protocol has a bootstrapping
phase that has a round complexity of Ω(κ log n) and a communication complexity of Ω(κ2n3 log n).
After that, the amortized communication complexity to both create a beacon and to open a beacon
is Ω(κn2 log n), which is worse than that of the approach sketched above, even if the secret sharing
scheme falls off the optimistic path, and even more so in the optimistic case.

We can also use an ACS protocol to “bootstrap” other setup assumptions, such as a BLS
threshold signature scheme [BLS01,Bol03], a KZG common reference string [KZG10], or the like.
Such a setup may then enable the use of other, possibly even more efficient ACS protocols.
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