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Abstract. This paper presents a generalization of the Learning With
Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and
Rosen, by applying the perspective of vector quantization. In LWR, noise
is induced by scalar quantization. By considering a new variant termed
Learning With Quantization (LWQ), we explore large-dimensional fast-
decodable lattices with superior quantization properties, aiming to en-
hance the compression performance over scalar quantization. We identify
polar lattices as exemplary structures, effectively transforming LWQ into
a problem akin to Learning With Errors (LWE), whose distribution of
quantization error is statistically close to discrete Gaussian. We present
two applications of LWQ: Lily, a smaller ciphertext public key encryp-
tion (PKE) scheme, and quancryption, a privacy-preserving secret-key
encryption scheme. Lily achieves smaller ciphertext sizes without sac-
rificing security, while quancryption achieves a source-ciphertext ratio
larger than 1.

Keywords: Lattice-Based Cryptography · Learning with Quantization
· Polar Lattice · Ciphertext Compression.

1 Introduction

The Learning With Errors (LWE) problem [41] has been a versatile and foun-
dational element in cryptography, providing strong security assurances and en-
abling a wide range of applications from basic encryption to cutting-edge privacy-
preserving technologies [14, 40, 3, 42, 36]. At its core, LWE involves solving linear
equations perturbed by small random errors, is provably as hard as certain worst-
case lattice problems. One of the primary drawbacks of LWE-based applications
is their inefficiency in terms of key and ciphertext sizes. Standard LWE-based
schemes require large matrices and vectors to represent public keys and cipher-
texts. This results in significant storage and bandwidth requirements, making
conventional LWE less competitive.

A popular approach to addressing the inefficiency of LWE-based applications
is to develop algebraic variants of LWE, including Ring-LWE [35], Module-LWE
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[26], Middle-Product-LWE [8], and Cyclic-LWE [22]. These variants offer more
compact representations and faster arithmetic operations, making them more
suitable for practical implementations. However, the computational hardness of
these algebraic variants is frequently challenged. A common method to attack
these variants is by transforming them into worst-case lattice problems, such as
the algebraic shortest vector problem (SVP) [2]. Over the past decade, signifi-
cant advancements have been made in this area, including the development of
algebraic LLL/BKZ algorithms [23, 27, 37, 24]. It is reasonable to conjecture that
any algebraic simplification may lead to a certain reduction in the security level.

For long-term security considerations, a potentially fruitful avenue is to ma-
nipulate the error terms within the framework of LWE. One approach is to
directly quantize the vector As in LWE, resulting in an observation term ex-
pressed as As + eQ, where eQ represents the error induced by quantization.
This approach offers a dual benefit: firstly, it eliminates the conventional dis-
crete Gaussian error e, and secondly, it reduces the size of As. Furthermore, a
higher degree of quantization correlates with a heightened level of security. It’s
important to note that quantization entails reducing the information content
of data, such as truncating a 32-bit datum to 8 bits. Quantization represents a
narrower concept compared to compression, which involves reducing data size,
either in a lossless manner (by entropy coding, the original data can be perfectly
reconstructed from the compressed data) or in a lossy manner (by quantiza-
tion, perfect reconstruction is not possible). An outstanding challenge remains
in enhancing the efficiency of quantization, as well as investigating whether the
associated problem is computationally as hard as LWE.

1.1 Our Results

This work formalize the above concept by defining the Learning With Quanti-
zation (LWQ) problem. The problem is based on an efficient lattice quantizer
QΛ. By properly choosing a pair of nested lattices, the compression ratio can
be flexibly designed, and the properties of the quantization errors can be eas-
ily analyzed. LWQ is a broader concept than Learning With Rounding (LWR)
[9]: the quantization can be based on a higher dimensional lattice, rather than
one-dimensional lattice/scalar quantization in LWR.

We prove that LWQ is as hard as LWE, if the quantization lattice Λ is a polar
lattice. In a high level, it says that the statistical distance between A, QΛ(As)
and A,As+ e is vanishing with respect to the dimension m of quantization. We
present an information-theoretic proof based on the properties of polar codes.
This line of proof differs greatly from the hardness proof of LWR: they prove
that the quantization of As and As+ e are the same with high probability. The
takeaway of our proof is that, the quantization error of LWQ is close to a discrete
Gaussian distribution, while that of LWR is close to a uniform distribution over
a hypercube.

LWQ can be applied to replace LWE or LWR in many cryptography sce-
narios, either to reduce the size of ciphertext or to achieve a higher security
level. We present two applications in this work. i) A PKE scheme called Lily.
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It employs LWE in the key generation stage and LWQ in the encryption stage.
Without compromising the security level, Lily has about 20% ∼ 30% smaller
ciphertext size than Frodo-PKE. ii) A secret key encryption scheme referred to
as quancryption. Its message space is designed by the quantization. As such, the
source-ciphertext ratio of the scheme is larger than 1.

1.2 Related Work

Scalar quantization has been adapted to define LWR, a variant of LWE. Specifi-
cally, Banerjee, Peikert, and Rosen [9] introduced the LWR problem, serving as
a derandomized version of LWE. By replacing Gaussian sampling in LWE with
deterministic rounding, LWR samples can be generated faster and with less ran-
domness. The hardness of LWR has been established only for restricted settings.
Reference [9] demonstrated that if one can distinguish the LWR distribution
from uniform distribution with advantage δ, then one can also distinguish LWE
with advantage δ−O(mBp/q), where m defines the number of LWR samples, B
defines a symmetric bounded interval, and q, p denote the original and reduced
modulus, respectively. The size of q was reduced by assuming it is a prime in
[5], while [11] showed that q can be polynomial when the given number of LWR
samples is bounded. Restrictions on the number of samples were removed in [38],
and a lower bound for proving the hardness of LWR with polynomial modulus
was provided.

Ciphertext compression in lattice based cryptography is closely tied to lattice-
aided quantization. Unlike computationally-hard random lattices for security,
here the quantization lattice should be fast-decodable. A prevalent compres-
sion technique is scalar quantization, also known as modulus switching/modulus
reduction. For instance, CKKS homomorphic encryption [14] employs simple
modulus reduction to a smaller modulus before computation on ciphertexts at
different levels, while CRYSTALS-Kyber [42] utilizes it for ciphertext compres-
sion. By increasing the dimension of quantization, vector quantization can be
expected to outperform scalar quantization [46]. Certain performance benefits
of vector quantization have been justified in the secret-key ecnryption framework
[36], and to reduce the ciphertext rate of CRYSTALS-Kyber [33].

The inquiry into optimal lattices for quantization, aiming for the smallest av-
erage distortion, is different from sphere packing [44, 16]. The theoretical proof of
optimal lattice quantizers has been limited to dimensions up to 3 (i.e., Z, A2, A

∗
3)

[10], although efforts to identify good lattice quantizers have resulted in periodic
updates of tables for small-dimensional lattices n ≤ 24 [4, 1]. Closely related re-
search focuses on the pursuit of optimal quantization lattices in the information
theory community, aiming to achieve the optimal rate-distortion bound [47]. In
this context, dithered quantization has been under development for decades [21,
48], where a (pseudo-)random signal, known as a dither, is introduced to the in-
put signal before quantization. This regulated perturbation has the potential to
enhance the statistical characteristics of the quantization error. While obtaining
the rate-distortion bound with random lattices seems feasible [46], decoding a
high-dimensional random lattice poses challenges, albeit mitigated by the law
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of large numbers. For a continuous Gaussian source, an explicit construction of
polar lattices to achieve the rate-distortion bound has been presented in [31],
where the computational complexity of the quantizer is O(m logm).

The polar lattices investigated in this work originate from polar codes. These
lattices are derived using Construction D, which means combining multiple bi-
nary codes to construct lattices. Polar codes represent a significant breakthrough
in coding theory, as they are the first class of codes that are efficiently encod-
able and decodable while achieving both channel capacity and Shannon’s data
compression limit [6]. The effectiveness of polar codes lies in the polarization
phenomenon: through Arıkan’s polar transform, the information measures of
synthesized sources or channels converge to either 0 or 1, simplifying the cod-
ing process. Additionally, the state-of-the-art decoding algorithm operates with
O(m log logm) complexity for blocklength m [45]. Due to their outstanding per-
formance, polar codes have been widely adopted in various practical applications,
including fifth-generation (5G) wireless communication networks [19].

2 Preliminaries

Table 1 summarizes a few important notations in this paper for easy reference.
We let λ denote the security parameter throughout the paper. All known valid
attacks against the cryptographic scheme under consideration should take Ω(2λ)
bit operations. A function negl : N → R+ is negligible if for every positive
polynomial p(λ), there exists λ0 ∈ N such that negl(λ) < 1

p(λ) for all λ > λ0.

Symbol Definition

x a boldface lower case for vectors

X a boldface capital for matrices

x ∼ U (random variable) x admits a uniform distribution on U

x← χ (sample) x is drawn according to distribution χ

Zq set {0, 1, ..., q − 1}
Zn∗
q set of integer vectors in Zn

q with gcd(s1, ..., sn, q) = 1

Xℓ binary representation random variable of X at level ℓ

xi
ℓ i-th realization of Xℓ

xi:j
ℓ shorthand for (xi

ℓ, ..., x
j
ℓ)

xi
ℓ:ȷ realization of i-th random variable from level ℓ to level ȷ

[m] set of all integers from 1 to m

XI subvector of X [m] with indices limited in I ⊆ [m]
Table 1. Notations
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2.1 Lattices and Quantization

A lattice is a discrete subgroup Λ ⊆ Rn. The rank of a lattice is the dimension
of the subspace of Rn that it spans. A lattice is called full-rank if its rank equals
its dimension.

Definition 1 (Fundamental Cell). A fundamental cell of the lattice Λ is a
bounded set PΛ that satisfies the following properties:

1. Covering Property: The union of translates of PΛ by lattice points covers the
entire space Rn, i.e., ∪v∈Λ(v + PΛ) = Rn.

2. Partitioning Property: For any pair of distinct lattice points v and w in Λ, if
their corresponding translated fundamental cells intersect, then v must equal
w.

For instance, the half-open Voronoi cell VΛ is a fundamental cell. This cell encom-
passes the set of points in Rn that are closer to a specific lattice point (referred
to as the generating lattice point) within Λ than to any other lattice point. Es-
sentially, it defines the region surrounding each generating lattice point where it
is the closest lattice point.

By referring to a quantizer QΛ, it refers to a function that maps a vector
y ∈ Rn to the nearest lattice point in Λ. This is formulated as:

QΛ(y) = argmin
λ∈Λ

∥y − λ∥. (1)

This problem is in the form of solving a closest vector problem (CVP). But a
few special features of a quantizer should be bear in mind: i) The lattice Λ is
not random, but rather fast decodable (e.g., the hypercube lattice: Λ = Zn,
or the tensor produce of E8: Λ = Zn/8 ⊗ E8). ii) The implicit selection of a
half-open Voronoi cell is crucial, as it allows QΛ to consistently choose a single
representative when multiple lattice points are equidistant from y. iii) It can be
think of as the decoding step of error correction. The duality of error correction
codes and quantizers is presented in Appendix A.

Definition 2 (Dithered quantizer). A dithered quantizer over lattice Λ is
defined by sampling g← VΛ and outputting

QΛ+g(y) = g +QΛ(y − g). (2)

Definition 3 (Second moment). The second moment of a lattice is defined
as the second moment per dimension of a random variable u which is uniformly
distributed over the fundamental Voronoi cell V:

σ̃2(Λ) =
1

n
E∥u∥2 =

1

n

1

det(Λ)

∫
V
∥x∥2 dx

where E denotes expectation, and det(Λ) is the volume of a Voronoi cell.
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For a dithered quantizer, y − QΛ+g(y) is uniformly distributed over VΛ, so
the averaged quantization error of the dithered quantizer can be quantified by
σ̃2(Λ): for any distribution of y, with g← VΛ, then

1

n
E ∥y −QΛ+g(y)∥2 = σ̃2(Λ). (3)

The normalized second moment (NSM), i.e., the second-moment to volume
ratio, is defined as

G(Λ) =
σ̃2(Λ)

det2/n(Λ)
. (4)

The minimum possible value of G(Λ) over all lattices in Rn is denoted by Gn.

Definition 4 (Quantization-good). A sequence of lattices Λ(n) with growing
dimension is called good for mean squared error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
. (5)

The integer lattice Z, checker-board lattice D4, Gosset lattice E8, and Leech
lattice Λ24 have the best reported NSMs in their respective dimensions [1]:

0.08333, 0.07660, 0.07168, 0.06577.

2.2 Statistics and Privacy

To demonstrate that the distribution of the quantization errors closely resembles
discrete Gaussians, we introduce the following statistical measures.

Definition 5 (Statistical Distance). The statistical distance between two prob-
ability distributions P and Q over the same sample space X is defined as:

∆(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

We will also make use of the Rényi divergence as an alternative to the sta-
tistical distance to measure the similarity between two distributions.

Definition 6 (Rényi Divergence). Rényi divergence of order α between two
distributions P and Q over the same sample space X is defined as:

Dα(P∥Q) =
1

α− 1
log
∑
x∈X

P (x)

(
P (x)

Q(x)

)α−1

. (6)

The limit as α→ 1 amounts to KL Divergence.

Definition 7 (KL Divergence). The Kullback-Leibler (KL) divergence be-
tween two probability distributions P and Q over the same sample space X is
defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
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One of our applications is related to showing the quantization error can
induce differential privacy. A generalized notion of differential privacy is given
as follows.

Definition 8 (KL Differential Privacy, [29]). For t ∈ R≥0, letMt : B → C
be a family of randomized algorithms, where B is a normed space with norm
∥ · ∥ : B → R≥0. Let ρ ∈ R be a privacy bound. We say that the family Mt is
ρ-differentially private (ρ-DP) if, for all x,x′ ∈ B with ∥x− x′∥ ≤ t,

DKL(Mt(x)||Mt(x
′)) ≤ ρ.

3 LWQ

3.1 Definition and Representation

This section reviews the definitions of LWE [41] and LWR [9], and presents our
generalization called LWQ.

Definition 9 (LWE/LWR/LWQ distributions). Let n,m, q ∈ N, p | q and
p ≥ 2, and Λ be an m-dimensional integer lattice satisfying qZm ⊂ Λ ⊂ Zm.
For a “secret” s ∈ Zn

q , and an error distribution De over Zm, samples for the
LWE/LWR/LWQ distributions are respectively generated by

– LWE distribution LDe
(s): A ← Zm×n

q , e ← De, and output (A,As+ e) ∈
Zm×n
q × Zm

q .
– LWR distribution Lq/pZm(s): A ← Zm×n

q , and output (A, Q q
pZm(As)) ∈

Zm×n
q × (Zm

q ∩
q
pZ

m) 4.

– LWQ distribution LΛ(s): A ← Zm×n
q , and output (A, QΛ(As)) ∈ Zm×n

q ×
Zm
q .

Definition 10 (Decision LWE/LWR/LWQ problems). It challenges an
adversary to distinguish between

– LWE: LDe
(s) where s← Ds, and a uniform distribution over Zm×n

q × Zm
q .

– LWR: Lq/pZm(s) where s ← Ds, and a uniform distribution over Zm×n
q ×

(Zm
q ∩

q
pZ

m).

– LWQ: LΛ(s) where s← Ds, and a uniform distribution over Zm×n
q × Zm

q .

This paper only investigate the decision LWE/LWR/LWQ problems. The
search problems are defined in the conventional manner: Given arbitrarily many
samples of the LWE/LWR/LWQ distribution where s← Ds, the search problem
of LWE/LWR/LWQ asks to recover s.

When the quantizer QΛ is deterministic, we have b = QΛ(As) ∈ Zm
q ∩ Λ. In

the more general case of a randomized quantizer (can be think of as dithered
quantizer), we have b = QΛ(As) ∈ Zm

q , but the number of bits required for
storage remains log2(q

m/ det(Λ)).

4 p
q
(Zm

q ∩ q
p
Zm) = Zm

p , so this definition is the same as the conventional LWR definition.
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We require a method to convert between lattice cosets (the output of a lattice
quantizer) and bit streams. For the sake of notational simplicity, we will omit
the explicit steps of converting lattice cosets to bit streams during transmission
and the reverse process from bit streams to lattice cosets during reception.

Theorem 1. With Qm ⊂ Λ ⊂ qZm, g ∈ Zm
q , there exist a bijection between

Λ+ g ∩ Zm
q and {0, 1}qm/ det(Λ).

Proof. Denote the full-rank lattice basis of Λ as B∗ ∈ Qm×m, and the least
common multiplier of denominators in the entries of B∗ as sLCM . Via the Smith
Normal Form (SNF) factorization, we have

B∗ = USV, (7)

where S = s−1LCMdiag(π1, . . . , πm) = diag(s1, . . . , sm), U and V are unimodular
matrices. Thus lattice Λ can be generated by basis B = B∗V−1 = US, which is
referred to as a rectangular form in [34].

The bit-decomposition function BD of v ∈ Λ = L(B) + g is given by

BDB,S,q(v) = (u1, . . . ,um) ∈ {0, 1}q
m/ det(Λ) (8)

where

(B−1(v − g))i/si mod q/si =

log 2(q/si)∑
k=1

2kui,k. (9)

It can be verified that BD is a bijection function. ⊓⊔

In summary, both LWR and LWQ sidestep Gaussian sampling by discarding
the e term of LWE. Thanks to the advantage of vector quantization over scalar
quantization, the statistics of the LWQ quantization error is more favarable over
LWR: it has a smaller second moment with the same information rate, and it
can be Gaussian-like.

3.2 Asymptotic Results of Hardness

We prove the asymptotic hardness of LWQ by showing the distributions of LWQ
and LWE are information theoretically indistinguishable, for carefully designed
polar lattice quantizers. Our main result is to derive the following bound on the
statistical distance between the LWQ and LWE distributions. We rewrite the
following distributions given earlier in this subsection to serve our purpose.

– Consider the LWE distribution LDm
Z,σ

(s): PA,b where b = X [m] = Y [m] + e

mod qZ where Y [m] = As and ei ∼ DZ,σ.

– Consider the LWQ distribution LΛ(s): QA,b where b = X [m] = QΛ(Y
[m])

where Y [m] = As, produced by a polar lattice quantizer.
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Theorem 2. There exist a sequence of efficient quantizers QΛm , such that the
statistical distance between the LWE distribution PA,b and the LWQ distribution
QA,b is negligible:

∆ (PA,b,QA,b) = negl(λ) (10)

where λ is the security parameter.

Proof. Given the secret s, the LWE distribution satisfies

PA,b =
∑
As

PA,As,b =
∑
As

PA · PAs|A · Pb|As,

which is due to the Markov chain A → As → b. Notice that for given s and
samples Y [m], PAs|A is indeed an indicator function 1{As = Y [m]}. Therefore,
recalling that b = X [m],

PA,b = PAPX[m]|Y [m] .

Analogously, the LWQ distribution satisfies

QA,b = PAQX[m]|Y [m]

because A and Y [m] are the same as those in the LWE distribution.
Now we have

∆ (PA,b,QA,b)

=
1

2

∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

PAs|A(·)
∑
A

PA(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
As

∑
A

PAs,A(·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

=
1

2

∑
Y [m]

PY [m](·)
∑
X[m]

∣∣PX[m]|Y [m](·)− QX[m]|Y [m](·)
∣∣

= ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)

(11)

where the second equality of (11) holds since PAs|A is an indicator function
when s is fixed. Proof is completed by using the first part of Theorem 6 with an
appropriate dimension m set according to λ. ⊓⊔

Theorem 3. Let m = m(λ), n = n(λ), q = q(λ) with λ being the security
parameter. There exist a sequence of efficient quantizers QΛm , such that the LWQ
distribution is computationally indistinguishable from a uniform distribution over
Zm×n
q × Zm

q .

Proof. We consider adversaries interacting as part of probabilistic experiments
called games.
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– G0: The challenge flips a coin b ∈ {0, 1}, based on which either c ← LΛ or
c← Zm×n

q × Zm
q is sent to the adversary A. The adversary outputs a guess

b′ ∈ {0, 1}.
– G1: The challenge flips a coin b ∈ {0, 1}, based on which either c← LDm

Z,σ
or

c← Zm×n
q × Zm

q is sent to the adversary A. The adversary outputs a guess
b′ ∈ {0, 1}.

G0 and G1 are computationally indistinguishable as

AdvG0,G1
(A) =

∣∣∣Pr(A(LΛ) = 1)− Pr(A(LDm
Z,σ

= 1)
∣∣∣ (12)

≤ ∆(LΛ, LDm
Z,σ

) (13)

= negl(λ). (14)

where the inequality is due to the data processing inequality of distributions,
and the last equality is due to Theorem 2.

As the advantage of winning G1 is also negligible due to the hardness of
LWE, we have

AdvG0
(A) ≤ AdvG0,G1

(A) + AdvG1
(A) = negl(λ). (15)

⊓⊔

Hardness Proof for General Quantizers The asymptotic approach given
above requires the lattice dimension m to grow, thus cannot be applied to quan-
tization lattices of small dimension (e.g., E8). In this case, one may use the
following result for a given dimension m:

Theorem 4 (Divergence from white Gaussianity, Thm 7.3.3, [46]). If
the dither U is uniform over the fundamental Voronoi cell VΛ of a lattice Λ ∈ Zm,
then its (continuous) KL divergence from white Gaussianity is given by

1

m
DKL(U ||W ) =

1

2
log(2πeG(Λ)),

where W is the corresponding white-Gaussian noise N (0, G(Λ)det2/m(Λ))m with
the same variance.

For discrete uniform distributions over VΛ, denoted as PX[m]|Y [m] , and dis-
crete Gaussian distribution DZ,σ, denoted as QX[m]|Y [m] , one can show that for
some small constant ε,

1

m
DKL(PX[m]|Y [m] ||QX[m]|Y [m]) ≤

1

2
log(2πeG(Λ)) + ε. (16)

Together with the data processing inequality and similar techniqes in the
proof of Theorem 2, we can show that the KL divergence between LWE and
LWQ distortions is bounded.
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It is therefore desirable to adopt a quantizer with G(Λ) as small as possible.
The following lemma shows that we cannot obtain a quantization-good lattice
by stacking low-dimensional quantizers, i.e., G(Λ′) = G(Zm/k ⊗Λ′). Its proof is
trivial and omitted.

Lemma 1. Assume that k | m, k ≥ 2. If Λ is constructed from the m/k-fold
Cartesian product of Λ′, i.e., Λ = Zm/k ⊗ Λ′ ⊂ Rm, then the lattices Λ′ and Λ
have the same NSM, i.e., G(Λ) = G(Λ′).

3.3 Alternative Hardness Proof

Here, we quantify the loss of security of LWQ by computing the Rényi divergence
between two distributions of finite dimension. This method has its upside and
downside. On one hand, Rényi divergence can be more useful than the aforegoing
statistical distance in cryptography. On the other hand, the following analysis
has the disadvantage in that it only compares with a quantized version of LWE
samples, not with LWE samples themselves.

For the sake of theoretical analysis, this section considers s ∈ Zn∗
q such that

As admits a uniform distribution in Zm
q . This adaption is minor as the proba-

bility of s ∈ Zn∗
q is at least 1 − O(1/2n) for s ∈ Zn

q . We set α = 2 in the Rényi
divergence in the following analysis.

Lemma 2. Let A← Zm×n
q , s← Zn∗

q , qZm ⊂ Λ ⊂ Zm. For any s ∈ Zn∗
q , let Xs

be the distribution of m LWQ samples (A, QΛ(As)), and Ys be the distribution
of m quantized LWE samples (A, QΛ(As+ e)). For a small noise in the form
of e ∼ V 1

pΛ
, p > 2, p ∈ Z, we have

eD2(Xs||Ys) ≤ (p− 1)m

pm
+

2m

pm
. (17)

Proof. Since s ∈ Zn∗, As admits a uniform distribution in Zm
q . Using the defi-

nition of Rényi divergence, we have

eD2(Xs||Ys) = EXs

Pr(Xs = (A, QΛ(As)))

Pr(Ys = (A, QΛ(As))
(18)

= EA←Zm×n
q

1

Pre(QΛ(As) = QΛ(As+ e) mod qZm)
(19)

= Eu←Zm
q

1

Pre(QΛ(u) = QΛ(u+ e) mod qZm)
(20)

= Eu←VΛ
1

Pre(QΛ(u+ e) = 0 mod qZm)
(21)

≤ Eu∼VΛ
1

Pre(QΛ(u+ e) = 0)
(22)

If e ∼ V 1
pΛ

, this Voronoi region can be partitioned into two parts, U1 and

U2: the first part that corresponds to Pre∼U1
(QΛ(e) = 0) = 1 has probability
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p−1
p

)m
over u, while the second part that corresponds to Pre∼U2

(QΛ(u+ e) =

0) ≥ 1
2m has probability 1

pm over u. Summarizing the above, we have

Eu∼VΛ
1

Pre(QΛ(u+ e) = 0)
≤ (p− 1)m

pm
+

2m

pm
. (23)

⊓⊔

Remark 1. Our proof works onm dimensional inputs directly, rather than bound-
ing one dimensional distributions and getting their products. E.g., with Λ =
q
pZ

m, and e admitting i.i.d. symmetric bounded noise in {−B, ..., B}, with

1 ≤ B ≤ q
2p , [11, Lemma 1] yields a divergent bound:

eD2(Xs||Ys) ≤
(
1 +

2Bp

q

)m

. (24)

This is in sharp contrast to our convergent bound in Lemma 2.

Lemma 3 ([11]). For any two distributions X and Y, for any event E,

Pr(Y ∈ E) ≥ Pr(X ∈ E)2/eD2(X||Y). (25)

Combining the above lemmas, we arrive at the following theorem. The proof
is straightforward and omitted. It says that, for small noises of LWE in the form
of the Voronoi region of the quantizer, LWQ is as hard as LWE.

Theorem 5. Let A← Zm×n
q , s← Zn∗

q , Zm
q ⊂ Λ ⊂ Zm. For every adversary A,

if e ∼ V 1
pΛ

, p ≥ 2, p ∈ Z, we have

PrA,s,e (A(A, QΛ(As+ e)) = s)

≥ pm

(p− 1)m + 2m
PrA,s,e (A(A, QΛ(As)) = s)

2
. (26)

4 Polar Lattice for Quantization

In this section, we will adopt polar lattices to compress the discrete sources.
The technical novelty is to prove the quantization noise converges to a discrete
Gaussian distribution. This is key to prove the closeness of the LWQ and LWE
distributions, therefore justifying the hardness of LWQ.

Polar lattices are an instance of the well-known “Construction D” [17, p.232]
which uses a set of nested polar codes as component codes. Thanks to the nice
structure of “Construction D”, both the encoding and decoding complexity of
polar lattices are quasilinear in the block length (i.e., dimension of the lattice).
A construction of polar lattices achieving the Shannon capacity of the Gaussian
noise channel was presented in [32]. A follow-up work [31] gave a construction
of polar lattices to achieve the rate-distortion bound of source coding for Gaus-
sian sources. Note that the two types of polar lattices constructed in [32, 31] are
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related but not the same (i.e., one for channel coding and the other for source
coding). The multilevel structure of polar lattices enables not only efficient en-
coding and decoding algorithms, but also a layer-by-layer implementation. To
help readers understand polar quantizers, an overview of polar codes is provided
in Appendix A.

4.1 Duality Between Quantization and Error Correction

Quantization and error correction are duals in the sense that: i) Error correction
involves finding the closest lattice point to a noisy codeword, leveraging redun-
dancy to correct errors. ii) Quantization involves mapping a continuous signal
to the nearest lattice point, effectively reducing data resolution and removing
redundancy. Consider error correction using Λ, generated by a basis matrix B:

Λ = {Bz | z ∈ Zn} .

Error correction consists of two phases:

– Encoding : c = Bm for message m.
– Decoding : Given an additive noise channel r = c + e, find c ∈ Λ such that
∥r− c∥ is minimized.

Quantization also consists of two phases:

– Quantizing : Given x ∈ Rn, find q ∈ Λ such that ∥x− q∥ is minimized.
– Indexing : m = B−1q. In this work, the uniquess of indexing is guaranteed

by Theorem 1.

The test channel is a hypothetical communication channel used to model the
quantization process, analogous to how error correction is typically framed.

Definition 11 (Test Channel). The test channel is formulated as x = q+eQ,
where eQ = x − QΛ(x). Here, q ∈ Λ is referred to as the codeword, and eQ is
referred to as the noise.

4.2 Polar Quantizer: Construction

In this subsection, we present an explicit construction of polar lattices for the
quantization of random integers, which produces Gaussian-like quantization er-
rors. In a nutshell, the quantizer consists of a series of decoders for binary polar
codes according to the multilevel structure of “Construction D”. We begin by
some preliminaries on the lattice structure based on multi-level codes [20].

For those unfamiliar with polar codes or polar lattices, it could be useful to
treat the polar lattice quantizer as a black box, as shown in the dashed box in
Fig. 1, whose task is to mimic a reversed version of the test channel between
X and Y in Fig. 2. From the perspective of lossy compression, the test channel
for the source Y ∼ PY is defined by the transition probability PY |X , where X
is referred to as the reconstruction of the source. As can be seen in Fig. 2, the
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statistic of the test channel is described by the relationship Y = X+E mod qZ,
where E is an additive discrete Gaussian noise. Note that for this test channel,
defined from the information theory, is purely based on the statistic of E, which
is not necessarily generated by the lattice quantization operation as in Definition
11. However, Theorem 6 illustrates that the difference between these two test
channels can be negligible, which confirms the motivation of introducing lattice
quantization in our LWQ scheme. Moreover, the relationship between the lattice
quantization from Y [m] to X [m] and the lattice construction based on the test
channel from X [m] to Y [m] will be explained in Remark 4.

𝑌[𝑚] Polar Decoder 𝑋1
[𝑚]

1

+

−

mod 2

⋯

Polar Decoder 𝑋𝑟
[𝑚]mod 2𝑟−1

2𝑟−2

1

⋯

2𝑟−1

mod 2𝑟 𝑋[𝑚]

−

+
Polar Decoder 𝑋𝑟−1

[𝑚]mod 2𝑟−2

⋯
2𝑟−2

⋯

Fig. 1. The internal structure of a polar lattice quantizer.

Definition 12 (Partition Chain). A sublattice Λ′ ⊂ Λ induces a partition
(denoted by Λ/Λ′) of Λ into equivalence groups modulo Λ′. The order of the
partition is denoted by |Λ/Λ′|, which is equal to the number of cosets. If |Λ/Λ′| =
2, this is called a binary partition. A lattice partition chain, which is denoted by
Λ(Λ0)/Λ1/ · · · /Λr−1/Λ

′(Λr) for r ≥ 1, is an n-dimensional sequence of nested
lattices.

If only one level is used (r = 1), the construction is called ”Construction A”. If
multiple levels are used, it is called ”Construction D”. For each partition Λℓ−1/Λℓ

(1 ≤ ℓ ≤ r), a code Cℓ over Λℓ−1/Λℓ selects a sequence of coset representatives
aℓ in a set Aℓ of representatives for the cosets of Λℓ. This construction requires
a set of nested linear binary codes Cℓ with block length m and dimension kℓ,
represented as [m, kℓ] codes for 1 ≤ ℓ ≤ r, with C1 ⊆ C2 ⊆ · · · ⊆ Cr.

Definition 13 (Construction D). Let ψ be the natural embedding of Fm
2 into

Zm, where F2 is the binary field. Consider g1,g2, · · · ,gm as a basis of Fm
2 such

that g1, · · · ,gkℓ
span Cℓ. With n = 1, the binary lattice L of Construction D
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Algorithm 1 Polar Lattice Quantization Algorithm

Require: Source Y uniformly random on [−2r−1, 2r−1)
Ensure: Quantized output X [m]

1: Build test channel Y = X + E mod qZ, where q = 2r and E ∼ DZ,σ
2: Assume X uniformly random on [−2r−1, 2r−1)
3: Construct polar lattice quantizer on test channel using binary partition chain

Z/2Z/ · · · /2rZ
4: Assume r is large enough such that the modulo 2rZ operation is insignificant on E
5: Represent X as bit sequence X1, X2, . . . , Xr, where Xℓ specifies coset 2ℓ−1Z/2ℓZ
6: X1, . . . , Xr uniquely describe cosets of Z/2rZ
7: for ℓ = 1 to r do
8: if ℓ = 1 then
9: Execute SC decoding to obtain X

[m]
1 from Y [m] using statistic of partition

channel PY |X1

10: else
11: Decode X

[m]
ℓ from Y [m] and X

[m]
1 , . . . , X

[m]
ℓ−1 using PY,X1,...,Xℓ−1|Xℓ

12: end if
13: end for
14: Return X [m] = X

[m]
1 + 2X

[m]
2 + · · ·+ 2r−1X

[m]
r mod 2rZ

consists of all vectors of the form

r∑
ℓ=1

2ℓ−1
kℓ∑
j=1

ujℓψ(gj) + 2rz, (27)

where ujℓ ∈ {0, 1}, z ∈ Zm, and ψ denotes the embedding into Rm.

Pseudo-codes of the polar lattice quantization algorithm are given in Algo-
rithm 1. For the samples Y [m], the decoder at each level tries to find the best
binary representative of the lattice point X [m] close to Y [m], using the results of
all previous levels. The multilevel structure of polar lattices not only provides
us a feasible complexity of the quantization operation for very high dimensional
lattices, e.g. m = 220, but also paves for us a path to the rich theory of binary
polar codes.

The next subsection will show that the distribution of Y [m]−X [m] is close to
that of m i.i.d. discrete Gaussian random variables. Fig. 2 shows a comparison
between the distribution of quantization noise Y −X achieved by the polar lattice
quantizer and the genuine discrete Gaussian distribution DZ,σ with parameters
σ = 3, r = 8 and m = 220.

4.3 Polar Quantizer: Performance Analysis

Because the quantization noise is represented by q = 2r integers in [−2r−1, 2r−1)
but not exactly in Z, the following lemma shows that a discrete Gaussian distri-
bution after the modulo qZ operation behaves similarly to the standard one.
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Fig. 2. A comparison between the distribution of quantization noise Y−X andDZ,σs=3.

Lemma 4. Let E ∼ DZ,σ be a discrete Gaussian random variable, and let E′ =
E mod qZ be the residue in [−2r−1, 2r−1). The statistical distance ∆(PE ,PE′)
between PE and PE′ is upper-bounded as follows:

∆(PE ,PE′) ≜
1

2

∑
e∈Z
|PE(e)− PE′(e)| ≤M · exp

(
− (2r−1 − 1)2

2σ2

)
, (28)

where M = 2/
(

1√
2πσ2

∑
λ∈Z exp

(
− λ2

2σ2

))
.

Proof.

∆(PE ,PE′) = min
∑

L⊂Z/qZ

Pr(E ∈ L)− Pr(E = coset leader of L) (29)

=
∑

λ={−2r−1,...,2r−1−1}

PE(λ+ qZ)− PE(λ) (30)

=

−∞∑
λ=−2r−1−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))
+

∞∑
λ=2r−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))

(31)

≤ 2

∞∑
λ=2r−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))
(32)

≤ 2

∫∞
2r−1−1 exp(−

t2

2σ2 )dt∑
λ′∈Z(exp(−

λ′2

2σ2 ))
(33)

=M ·Q
(
2r−1 − 1

σ

)
(34)

≤M · exp
(
− (2r−1 − 1)2

2σ2

)
, (35)
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where Q(x) = 1−Φ(x) is the Q-function of a standard normal distribution, and

we use Q(x) ≤ exp(−x2

2 ) in the last inequality. ⊓⊔

We now analyze the distribution of quantization noise. Let Y [m] denote m
samples drawn from As. The quantization result or the so-called reconstruction
of Y [m] is denoted by X [m], which is also in Zm

q .

– Consider the first case in which the correlation between Y [m] and X [m] is
due to an i.i.d. discrete Gaussian random vector E[m], i.e., Y i = Xi + Ei

mod qZ for each i ∈ [m], and Ei ∼ DZ,σ. The joint distribution between
X [m] and Y [m] in this case is denoted by PX[m],Y [m] .

– Consider the second case in which the correlation between Y [m] and X [m]

is generated by the polar lattice quantizer, i.e., X [m] = QΛ(Y
[m]). The joint

distribution between X [m] and Y [m] in this case is denoted by QX[m],Y [m] .

We will show the statistical distance ∆(PX[m],Y [m] ,QX[m],Y [m]) vanishes sub-
exponentially in m in a layer-by-layer manner, corresponding to the multi-level
quantization process of polar lattices. Notice that each Xi ∈ Zq, i ∈ [m] can be
uniquely represented by a binary sequence Xi

1, ..., X
i
ℓ, ..., X

i
r, and X

i
ℓ determines

the coset of the binary partition 2ℓ−1Z/2ℓZ for 1 ≤ ℓ ≤ r. Given a source vector
Y [m], the (m-dimensional) polar lattice quantizer tries to find the coset leader

X
[m]
1 at the first level; then it decides the coset leader X

[m]
2 at the second level

using both X
[m]
1 and Y [m]; the process keeps going at level ℓ, where X

[m]
ℓ is

decoded from Y [m] and X
[m]
1:ℓ−1; the process ends at the final r-th level, where

X
[m]
r is decoded from Y [m] and X

[m]
1:r−1.

From the perspective of lossy compression in information theory, PY |X is
called the test channel with input (reconstruction) X and output (source) Y . As
can be seen in Fig. 2, since Y = X + E mod qZ, the test channel is a discrete
additive white Gaussian noise channel with a modulo qZ operation at the end.
Following the step of Forney et al. [20], the test channel can be partitioned into
r 2ℓ−1Z/2ℓZ binary-input channels with 1 ≤ ℓ ≤ r, which are called binary
partition channels.

In fact, the polar lattice consists of the component polar codes designed
for these r partition channels. More explicitly, the first level Z/2Z partition
channel completely determines the joint distribution PX1,Y of X1 and Y , and Y
mod 2Z is a sufficient statistic of Y with respect to X1. The polar code C1 at the
first level is constructed according to the Z/2Z channel, which is equivalently

described by W1 : X1 −→
PY |X1

Y . Let U
[m]
1 = X

[m]
1 Gm be the bits after channel

polarization at level 1. The information set of C1 is defined as I1 ≜ {i ∈ [m] :

Z(U i
1|U1:i−1

1 , Y [m]) ≤ 1 − 2−m
β} for any 0 < β < 0.5, and the frozen set of C1

is the complement set F1 ≜ Ic1. By this definition, the correlation between UF1
1

and Y [m] is negligible. The polar quantizer assigns uniformly random bits that
are independent of Y [m] to UF1

1 , and then determines UI11 from Y [m] and UF1
1

using the SC encoding algorithm. The reconstruction at level 1 is obtained from

the inverse polarization transform X
[m]
1 = U

[m]
1 G−1m = U

[m]
1 Gm.
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Lemma 5. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U

[m]
1 and Y [m]

according to the encoding rules (36) and (37) at the first partition level.

U i
1 =

0 w. p. PUi
1|U

1:i−1
1 ,Y [m]

(
0|u1:i−11 , y[m]

)
1 w. p. PUi

1|U
1:i−1
1 ,Y [m]

(
1|u1:i−11 , y[m]

) if i ∈ I1 (36)

U i
1 =


0 w. p.

1

2

1 w. p.
1

2
.
if i ∈ F1 (37)

Let P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e.,

U i
1 is generated according to the encoding rule (36) for all i ∈ [m]. The statistical

distance between P
U

[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
≤ m

√
ln 2 · 2−mβ . (38)

Proof. See Appendix B.

Remark 2. It seems that the encoding rules (36) and (37) are not deterministic.
We note that the randomized forms in (36) and (37) are just for convenience of
proof. By the symmetry of the Z/2Z channel, it can be shown that any fixed
realization UF1

1 = uF1
1 causes the same statistical distance [25], meaning that one

can safely choose all-zero frozen bits in practice. Similarly, by the polarization
effect, the bit U i

1 for i ∈ I1 has conditional entropy H(U i
1|U1:i−1

1 , Y [m]) → 0
almost surely as m → ∞. The rule (36) can be replaced with a deterministic
MAP rule.

After finishing the encoding at level 1, the polar lattice quantizer proceeds to
level 2 in a similar manner. The 2Z/4Z partition channel completely determines
the joint distribution PX2,Y |X1

of X2 and Y given the previous quantization
result X1, and Y −X1 mod 4Z is a sufficient statistic of Y with respect to X2.
The polar code C2 at the second level is constructed according to the 2Z/4Z
channel, which is equivalently described byW2 : X2 −→

PY,X1|X2

(Y,X1). Let U
[m]
2 =

X
[m]
2 Gm be the bits after channel polarization at level 2. The information set of

C2 is defined as I2 ≜ {i ∈ [m] : Z(U i
2|U1:i−1

2 , X
[m]
1 , Y [m]) ≤ 1− 2−m

β}, and the
frozen set is defined as F2 ≜ Ic2.

Lemma 6. Let Q
U

[m]
1 ,U

[m]
2 ,Y [m] denote the resulted joint distribution of U

[m]
1 ,

U
[m]
2 and Y [m] according to the encoding rules (36) and (37) at the first partition

level, and then rules (39) and (40) at the second partition level.

U i
1 =

0 w. p. P
Ui

2|U
1:i−1
2 ,X

[m]
1 ,Y [m]

(
0|u1:i−12 , x

[m]
1 , y[m]

)
1 w. p. P

Ui
2|U

1:i−1
2 ,X

[m]
1 ,Y [m]

(
1|u1:i−12 , x

[m]
1 , y[m]

) if i ∈ I2 (39)
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U i
2 =


0 w. p.

1

2

1 w. p.
1

2
.
if i ∈ F2 (40)

Let P
U

[m]
1 ,U

[m]
2 ,Y [m] denote the joint distribution directly generated from PX1,X2,Y ,

i.e., U i
1 and U i

2 are generated according to the encoding rule (36) and rule (39)
for all i ∈ [m], respectively. The statistical distance between P

U
[m]
1 ,U

[m]
2 ,Y [m] and

Q
U

[m]
1 ,U

[m]
2 ,Y [m] is upper-bounded as follows:

∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ 2m

√
ln 2 · 2−mβ . (41)

Proof. Assume an auxiliary joint distribution Q′
U

[m]
1 ,U

[m]
2 ,Y [m] resulted from using

the encoding rule (36) for all U i
1 with i ∈ [m] at the first partition level, and

rules (39) and (40) at the second partition. Clearly, Q′
U

[m]
1 ,Y [m] = P

U
[m]
1 ,Y [m] and

Q′
U

[m]
2 |U [m]

1 ,Y [m] = Q
U

[m]
2 |U [m]

1 ,Y [m] . By the triangle inequality,

∆
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ ∆

(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,Q

′
U

[m]
1 ,U

[m]
2 ,Y [m]

)
+∆

(
Q′

U
[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
,

(42)

where the first term on the right hand side can be upper bounded bym
√
ln 2 · 2−mβ

using the same method as in the proof of Lemma 5, and the second term is equal

to ∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
. ⊓⊔

After the lattice quantization process with r sequential levels, the joint dis-
tribution produced by the lattice quantizer is denoted by Q

U
[m]
1:r ,Y [m] , and the

joint distribution directly generated from m i.i.d. test channels is denoted by

P
U

[m]
1:r ,Y [m] . By induction, we obtain∆

(
P
U

[m]
1:r ,Y [m] ,QU

[m]
1:r ,Y [m]

)
≤ rm

√
ln 2 · 2−mβ .

Combining this result with Lemma 4, we arrive at the following theorem on the
distribution of quantization noise, which shows the quantization noise closely
resemble an i.i.d. discrete Gaussian distribution.

For completeness, we also need the notation X ′, which is a reconstruction
random variable defined over Z for the source Y , with the conditional proba-
bility PX′|Y defined by the relationship X ′ = Y − E, i.e., X ′ − Y is a discrete
Gaussian random variable independent of Y . The comparison between the two
test channels based on PX,Y and PX′,Y , respectively, is demonstrated in Fig.
3. As will be seen, the difference between the two channels, which is due to the
modulo qZ operation, becomes negligible for large q. We remind the readers that
the design target of our quantization lattice is to realize a quantization noise,
whose distribution is indistinguishable from the lattice Gaussian distribution, as
has been employed in LWE.



20 S. Lyu, L. Liu, C. Ling

 

 

!

"#$%&'

!(

"#$%&'

 !"#)%

Fig. 3. A comparison between the two test channels based on PX,Y and PX′,Y , which
are marked in red and blue, respectively.

Theorem 6. The statistical distance between the joint distribution induced by
the polar lattice and that by an i.i.d. qZ-aliased discrete Gaussian distribution,
i.e., the distribution of a discrete Gaussian after the modulo qZ operation, is
bounded by

∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ . (43)

Moreover, when compared with the joint distribution induced by an i.i.d. discrete
Gaussian distribution over Z,

∆
(
PX′[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ +M ·m · exp

(
− (2r−1 − 1)2

2σ2

)
.

(44)

Proof. By the inverse polarization transformX
[m]
ℓ = U

[m]
ℓ Gm from ℓ = 1 to r, we

immediately have ∆
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ , by induction.

Recall that the test channel X −→
PY |X

Y is given by Y = X + E mod qZ,

where E ∼ DZ,σ. Suppose now PY is fixed, and PX|Y is replaced with PX′|Y by
removing the modulo qZ operation, i.e., X ′ = Y − E. The statistical distance
∆(PX′[m],Y [m] ,PX[m],Y [m]) is equal to ∆(PE′[m] ,PE[m]) as shown in Lemma 4,
where E′ = E mod qZ. By using the telescoping expansion (58) and the triangle
inequality again, the proof is completed. ⊓⊔

Remark 3. Theorem 6 indicates that the performance of our lattice quantizer
is determined by two parts. First, we need to ensure that q = 2r is large such
that the modulo qZ operation has a little influence on the lattice Gaussian
distribution, which is described by the second term on the right hand side of
(44). Second, the dimension m of the lattice quantizer is required to be large to
guarantee a sufficient polarization effect such that the quantization noise is close
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to the qZ-aliased lattice Gaussian distribution, as described by the first term
on the right hand side of (44). For completeness, since the two parts are both
measured in the statistical distance, we also provide the counterparts of Lemma
4 and Lemma 5 with the measurement of the Kullback-Leibler divergence in
Appendix C.

Remark 4. Observant readers may wonder why our polar lattice quantizer is
constructed based on the forward test channel X −→

PY |X
Y , with additive noise E

mod qZ, whereas the quantization performance shown above is analyzed from
the reversed direction Y −→

PX|Y
X. The reason is that when X and Y are both

uniform in Zq, we have PX|Y = PY |X , and the additive noise E is pairwisely
independent of bothX and Y . To see this, letting PX(x) = 1/q, we have PY (y) =∑

x PX,Y (x, y) = 1
q

∑
x PE(y − x) = 1/q. Therefore, PX = PY = 1/q, and

hence PY |X = PX|Y . The symmetry of the test channel, which is termed as the
mod Λ/Λ′ channel, is discussed in more detail by Forney et al. in [20].

Remark 5. We note that the validity of polar lattice structure can be easily
guaranteed. Taking the above simulation as an example, when constructing mul-
tilevel polar codes along the binary partition chain Z/2Z/ · · · /2rZ for the ad-
ditive discrete Gaussian test channel (σ = 3), the capacities of the partition
channels from ℓ = 1 to r are given by 0, 3.2732×10−10, 0.0056, 0.3933, 0.9690,
1.0000 and 1.0000, respectively. The size of the information set is chosen as
|Iℓ| = ⌈m · C(Wℓ)⌉, where C(Wℓ) denotes the capacity of the ℓ-th partition
channel. As a result, the component polar codes are consecutively nested by
ensuring Iℓ ⊆ Iℓ+1 for 1 ≤ ℓ ≤ r − 1, and we have an ascertained polar lat-
tice quantizer. Moreover, the constructed polar lattice is roughly sphere-bound
achieving, by the capacity-achieving property of polar codes for all partition
levels.

5 Application 1: PKE

Following the PKE structure outlined by Lindner and Peikert [30], we can de-
velop PKE schemes via LWQ. This section presents a PKE scheme named Lily,
which is based on both the plain (non-algebraic) Learning with Errors (LWE)
and LWQ problems. Compared to existing PKE schemes, such as Frodo (based
on LWE) and Lizard (based on LWE+LWQ), Lily offers the advantages of re-
duced ciphertext size and enhanced security.

5.1 Lily: PKE via LWQ

The public key consists of a number m of n-dimensional LWE samples, and
encryptions of zero form (n+ ℓ) samples of m-dimensional LWQ where ℓ is the
dimension of plaintext vectors. The scheme is described as follows:
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– Lily.Setup(1λ): Choose positive integers n, q, ℓ and p0, p1, p2. Choose private
key distribution Ds over Zn, ephemeral secret distribution Dr over Zn, and
parameter σ for discrete Gaussian distribution DGσ. Select a lattice encoder

ecΛ0 : {0, 1}ℓ
2B → Λ0 ∩Zm

q , s.t. qZℓ2 ⊂ Λ0 ⊂ Zℓ2 , and two lattice quantizers

QΛ1
and QΛ2

, s.t. qZℓn ⊂ Λ1 ⊂ Zℓn, qZℓ2 ⊂ Λ2 ⊂ Zℓ2 . Output

params← (n, ℓ, q,Ds,Dr, σ, p0, p1, p2, Λ0, Λ1, Λ2). (45)

– Lily.KeyGen(params): Generate a random matrix A ← Zn×n
q . Choose a

secret matrix S = (s1 | · · · | sℓ) by sampling column vectors si ∈ Zn indepen-
dently from the distribution Ds. Generate an error matrix E = (e1 | · · · | eℓ)
from DGn×ℓ

σ and let B = AS + E ∈ Zn×ℓ
q where the operations are held

modulo q. Output the public key pk = (A | B) ∈ Zn×(n+ℓ)
q and the secret

key sk = S ∈ Zn×ℓ
q .

– Lily.Encpk(m): For a plaintext µ ∈ M = {0, 1}ℓ
2B ∼= Zℓ2

p0
, choose an

ephemeral key matrix R = (r1 | · · · | rℓ) from DGn×ℓ
r . Output

c = (QΛ1
(RTA), QΛ2

(RTB+ ecΛ0
(µ))) ∼= (Zℓ×n

p1
,Zℓ×ℓ

p2
). (46)

– Lily.Decsk(c): For a ciphertext c = (C1,C2), compute and output the esti-
mated message

µ̂ = ec−1Λ0
(C2 −C1S), (47)

where ec−1Λ0
standards for the lattice decoding function.

5.2 Correctness

To ensure the correctness of our PKE scheme, the following lemma establishes
a necessary condition for the parameter setup.

Lemma 7 (Correctness). The PKE scheme Lily is correct if the following
inequality holds for the security parameter λ:

Pr
[
QΛ0

(vec(RTE+ F2 − FT
1 S)) ̸= qZℓ2

]
< negl(λ),

where the randomness is taken over E,R,S.

Proof. In decryption, we have

C2 −C1S = RTE+ F2 − FT
1 S+ ecΛ0(µ). (48)

In the modulo lattice additive noise model of [34], we have y = x+n mod qZℓ2 ,

where n = vec(RTE + F2 − FT
1 S) ∈ Zℓ2 . The find lattice for error correction

is Λ0, and the coarse lattice for shaping is qZℓ2 . Thus the decryption failure
probability can be analyzed through Pr(QΛ0

(n) ̸= qZℓ2). ⊓⊔

Explicit formulas for the decryption error rate can be evaluated through
sub-Gaussian.
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Definition 14. A random variable X is sub-Gaussian with parameter σ > 0
if for all t ∈ R, the tails of X are dominated by a Gaussian of parameter σ,
i.e., the moment-generating function satisfies E[etX ] ≤ eσ

2t2/2. Thus, P(|X| ≥
t) ≤ 2e−t

2/(2σ2) for all t ≥ 0. More generally, we say that a random vector x is
sub-Gaussian (of parameter σ) if all its one-dimensional marginals u⊤x for a
unit vector u are sub-Gaussian (of parameter σ).

It can be verified that f1 = vec(RTA mod Λ1), f2 = vec(RTB mod Λ2) are
sub-Gaussians of parameter

σ2
f1 = G(Λ1) det(Λ1)

2/ℓn, (49)

σ2
f2 = G(Λ2) det(Λ2)

2/ℓ2 . (50)

Thus the effective noise n = vec(RTE+ F2 − FT
1 S) is of parameter

σ̄2 = n(σ2
rσ

2 + σ2
f1σ

2
s) + σ2

f2 . (51)

The decryption failure probability is then upper bounded by e−ℓ
2λ2

1/(8σ̄
2), where

λ1 is the length of the shortest vector of Λ0.

5.3 Cryptographic Properties

A PKE scheme is IND-CPA (Indistinguishability under Chosen Plaintext At-
tack) secure if for all probabilistic polynomial-time adversaries A, the probabil-
ity that A correctly guesses b is at most negligibly better than random guessing.
Mathematically, this can be expressed as:∣∣∣∣Pr[A(pk, c∗) = b]− 1

2

∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random choices of the key generation
algorithm, the encryption algorithm, and the adversary’s internal randomness,
and negl(λ) denotes a negligible function in the security parameter λ.

We demonstrate that the proposed encryption scheme is IND-CPA secure
under the hardness assumptions of the LWE problem and the LWQ problem.
The following theorem provides an explicit proof of our security argument.

Theorem 7. The PKE scheme Lily is IND-CPA secure under the hardness as-
sumption of ℓ-secret LWEn,n,q,DGσ

(Ds), LWQn,n,q,p1
(Dr) and LWQn,ℓ,q,p2

(Dr).

Proof. It suffices to show that the pair of public information pk = (A | B) ←
Lily.KeyGen(params) and encryption of zero c← Lily.Encpk(0) is computation-

ally indistinguishable from the uniform distribution over Zm×(n+ℓ)
q × (Zℓ×n

p1
×

Zℓ×ℓ
p2

) for a parameter set params ← Lily.Setup(1λ). We construct three distri-
butions as follows:

– D0 = {(pk, c) : pk← Lily.KeyGen(params), c← Lily.Encpk(0)}.
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– D1 = {(pk, c) : pk← Zn×(n+ℓ)
q , c← Lily.Encpk(0)}.

– D2 = {(pk, c) : pk← Zn×(n+ℓ)
q , c← (Zℓ×n

p1
,Zℓ×ℓ

p2
)}.

The public key pk = (A | B) ← Lily.KeyGen(params) is generated by
sampling n instances of the LWE problem with ℓ independent secret vectors
s1, . . . , sℓ ← Ds. In addition, the multi-secret LWE problem is no easier than
the ordinary LWE problem. Therefore, distributions D0 and D1 are computa-
tionally indistinguishable under the ℓ-secret LWEn,n,q,DGσ

(Ds) assumption.

Now assume that pk is uniformly random over Zn×(n+ℓ)
q . Then pk and c ←

Lily.Encpk(0) together form two ℓ-secret LWQ problems over quantization lat-
tices Λ1 and Λ2. Therefore, distributions D1 and D2 are computationally in-
distinguishable under the assumptions of ℓ-secret LWQn,n,q,p1

(Dr) and ℓ-secret
LWQn,ℓ,q,p2

(Dr). As a result, distributions D0 and D2 are computationally in-
distinguishable under the hardness assumptions of ℓ-secret LWEn,n,q,DGσ

(Ds),
LWQℓ,n,q,p1

(Dr) and LWQℓ,ℓ,q,p2
(Dr), which demonstrates the IND-CPA secu-

rity of the PKE scheme. ⊓⊔

5.4 Reduced size of ciphertext

The main difference of Lily against Frodo is the replacement of Gaussian errors
with quantization errors in the phase of encryption. Targeting Frodo-640, 976,
1344, without compromising security level or decryption error rate, as well as
excluding the gains of better error correction due to Λ0, we show the reduce
size of Lily in the Table 2. The Lily scheme demonstrates significant savings in
ciphertext size compared to the Frodo schemes across various parameter sets.
Specifically, Lily-640 achieves a reduction of approximately 26.66%, Lily-976
saves about 18.91%, and Lily-1344 reduces the ciphertext size by around 18.73%.

Scheme n ℓ σ q |c| (bytes) quantizer of C1 quantizer of C2

Frodo-640 640 8 2.75 215 9720 - -

Frodo-976 976 8 2.3 216 15744 - -

Frodo-1344 1344 8 1.4 216 21632 - -

Lily-640 640 8 2.75 215 7128 24Z640 ⊗ E8 24Z8 ⊗ E8

Lily-976 976 8 2.3 216 12792 23Z976 ⊗ E8 23Z8 ⊗ E8

Lily-1344 1344 8 1.4 216 17576 23Z1344 ⊗ E8 24Z8 ⊗ E8

Table 2. Summary of Frodo and Lily parameters

6 Application 2: Privacy-Preserving Secret Key
Encryption

Differential privacy has been quite important in many fields, such as securing
CKKS [29]. In this section, we design a secret-key encryption scheme that simul-
taneously supports differential privacy.
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The quancryption scheme is parameterized by the source dimensionm, secret
dimension n, modulus q, and a quantization lattice Λ, where qZm ⊂ Λ ⊂ Zm.
It consists of three components: key generation (KGen), encryption (Enc), and
decryption (Dec). The space of plaintext is extrmely large: m ∈ Zm

q .
In the encryption process, let A ← Zm×n

q and s ← Ds. The ciphertext is
generated as follows:

Encs(m) = (A,b = QΛ(As+m)) ∈ Zm×n
q × (Zm

q ∩ Λ). (52)

Denote the ciphertext as c, the decryption function is given by:

m̂ = Decs(c) = c ·
[
−sT , 1

]T ∈ Zm
q . (53)

Denote −eq = As+m−QΛ(As+m). Then we have m̂ = m+eq. The decrypted
message has been enabled with differential privacy thanks to the perturbation
of eq.

Some features of quancryption are:

– Source to ciphertext ratio: This parameter is defined as

rSC =
log qm

log qm − log detΛ
. (54)

Obviously, rSC > 1 for quancryption. It surpasses those in existing encryp-
tion schemes [36, Table 1] that excludes privacy. The interesting feature of
quancryption is that, higher security level of LWQ also leads to higher se-
crecy level.

– Correctness: Quancryption is an approximate encryption scheme, where
the decrypted message is not identical to the plaintext, but is rather a func-
tion of the plaintext. An adversary is said to obtain the privacy level of the
legitimate receiver if a high-quality m̂ can be guessed:

QΛ+m(m̂) = 0, (55)

which implies that m− m̂ ∈ VΛ.

6.1 Cryptographic Properties

We use the security notion of RND-CPA, which is better suited to lattice-based
primitives, as RND-CPA security implies IND-CPA security [36].

Definition 15 (RND-CPA). An encryption scheme (KGen,Enc,Dec) is said
to be pseudorandom under chosen plaintext attack if any efficient (probabilistic
polynomial-time) adversary A can only achieve at most negligible advantage in
the following game, parameterized by a bit b ∈ {0, 1}:

1. sk← KGen(1n),
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2. b′ ← AOb(·) where Ob(m) returns either an encryption Encsk(m) of the mes-
sage m under the key sk if b = 0, or a sample from a distribution that has
support {Encsk(m) | sk ∈ supp(KGen(1n)),m ∈M} if b = 1.

The adversary’s advantage is defined as Adv(A) = |Pr(b′ = 1|b = 1) − Pr(b′ =
0|b = 1)|.

Theorem 8. The quancryption scheme LWQm,n,q
Λ is RND-CPA secure if the

LWQ problem is hard.

Proof. In the RND-CPA game of quancryption, the support of is Zm×n
q × (Zm

q ∩
Λ). The hardness of LWQ implies that AOb(m=0) is negligible. For the set of
vectors v0, ...,vi ∈ VΛ ∩ Zm, there is a bijection to

v0 +m mod Λ, ...,vi +m mod Λ ∈ VΛ ∩ Zm (56)

for m ∈ Zm
q . Then computationally QΛ(As) and QΛ(As + m) are indistin-

guishable. Thus AOb(m) = AOb(0) for m ∈ Zm
q , and the RND-CPA security of

quancryption can be built upon decisional-LWQ. ⊓⊔

It is noteworthy that the proposed quancryption scheme is not IND-CPAD

secure. Specifically, recently Li and Micciancio [28] introduced a model for the
passive security of incorrect encryption schemes (IND-CPAD). In effect, it allows
an adversary to decrypt honestly generated ciphertexts, so that a scheme that
somehow leaks sensitive information during honest decryption is not seen as
secure. If needed, a simple solution to enable IND-CPAD security is to add
discrete Gaussian noises to m before encryption.

6.2 Differential Privacy

Proposition 1 (Prop. 5, [13]). Let σ ∈ R≥0, and let µ, ν ∈ Zm. Then:

DKL(D
m
Z,µ,σ∥Dm

Z,ν,σ) = (ν − µ)2.

Regarding the term m+ eq at the receiver, the privacy level is controlled by eq,
which is a discre Gaussian moodulo q. Together to the data processing inequality,
we have

DKL(D
m
Z,µ,σ mod q∥Dm

Z,ν,σ mod q) ≤ (ν − µ)2.

The above proposition provides a bound on KL divergence, showing our quan-
cryption scheme is ρ-differentially private.

7 Conclusions and Future Works

The paper has explored a novel hardness assumption termed LWQ, similar to
the LWR assumption, but is parameterized by an arbitrary lattice Λ (where
setting Λ = q

pZ
m recovers LWR). By choosing Λ to be a near optimal lattice
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quantizer, one obtains a variant of LWR where the noise is Gaussian-like, rather
than bounded over an ℓ∞ ball (which is typical for LWR).

The LWQ assumption, by leveraging the hardness of LWE and the efficiency
of vector quantization, enables the creation of cryptographic primitives that
are not only secure but also more efficient and practical. Future works may
explore using LWQ for private stream aggregation, pseudorandom functions,
pseudorandom number generators, homomorphic encryption, etc.
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A Polar Codes

Polar coding [6] presents arguably the first explicit construction of codes that are
capacity-achieving for any binary-input memoryless symmetric channels (BM-
SCs). Let us break down the concept:

– BMSC and Polar Code: A BMSC is a type of communication channel
characterized by binary input and output without memory of previous in-
puts. A polar code is designed specifically for such channels and achieves
their capacity.

– Block Length and Generator Matrix: For a given BMSC, we construct
a polar code with block lengthm = 2t, where t is a non-negative integer. The
polar code employs a generator matrix Gm, derived by iteratively applying
the Kronecker product to the base matrix [ 1 0

1 1 ].
– Information Set and Frozen Set: Among the rows of the generator matrix
Gm, we select K specific rows to form the information set I. The remaining
rows constitute the frozen set F . The information set comprises positions
used for encoding actual data, whereas the frozen set includes positions pre-
determined to facilitate decoding.

– Channel Combination and Polarization Transform: We consider N
identical copies of the BMSC, denoted Wm, which process input vectors
X [m] to yield output vectors Y [m]. By applying the generator matrix Gm to
the input, we obtain U [m] = X [m]Gm. This transformation decomposes the
channel into m simpler subchannels.

– Subchannels and Polarization: Each subchannel W
(i)
m processes part of

the transformed input U i and produces output based on the entire output
vector Y [m] and previous parts of the transformed input U1:i−1. As m (the
block length) increases indefinitely, these subchannels polarize into either
very reliable (almost error-free) or very unreliable (ineffective for communi-
cation).

– Good Subchannels and Capacity: Through channel polarization, we
can identify the good subchannels. The proportion of good subchannels ap-
proaches the channel’s capacity C as the block length m becomes large.
Hence, to achieve capacity, the K rows selected for encoding should corre-
spond to these good subchannels.

The quality of a subchannel is generally identified based on its associated
Bhattacharyya parameter.

Definition 16. Given a BMSC W with transition probability PY |X , the Bhat-
tacharyya parameter Z ∈ [0, 1] is defined as

Z(W ) = Z(X|Y ) ≜
∑
y

√
PY |X(y|0)PY |X(y|1). (57)

E.g., in [7], the rate of channel polarization is characterized in terms of the
Bhattacharyya parameter as

lim
m→∞

Pr
(
Z(W (i)

m ) < 2−m
β
)
= C, for any 0 < β < 0.5.
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This means that as the block length m becomes very large, the probability that

the Bhattacharyya parameter Z(W
(i)
m ) of a subchannel W

(i)
m is less than 2−m

β

approaches the channel capacity C. For efficient construction of polar codes,

Z(W
(i)
m ) can be evaluated using the methods introduced in [43, 39].

The channel splitting process also leads to a simple decoding algorithm called
Successive Cancellation (SC) decoding [6], which executes maximum a posteriori
(MAP) decoding for each subchannel sequentially from i = 1 to m. By the union
bound, the block error probability of SC decoding can be upper-bounded by∑

i∈I
Z(W (i)

m ).

In the context of lossy compression, polar codes can achieve the rate-distortion
bound for binary symmetric sources [25]. To achieve a target distortion:

– A test channel W : X → Y is constructed for the source Y and the recon-
struction X.

– Polar codes for compression are constructed according to the test channel

W , with the information set defined as I ≜ {i ∈ [m] : Z(W
(i)
m ) < 1− 2−m

β}.

By the duality between channel coding and source coding, the SC decoding
algorithm for polar channel coding transforms into the SC encoding algorithm
for polar source coding. Given m i.i.d. sources Y [m]:

– The polarized bits UF are almost independent of Y [m] since Z(W
(i)
m ) ≥

1− 2−m
β

by definition.
– Compression of Y [m] is achieved by replacing UF with random bits and

saving the relevant bits UI , which are determined from Y [m] and UF using
the SC encoder.

The concept of duality between source coding and channel coding allows us
to interpret quantization polar lattices as analogous to a channel coding lat-
tice constructed on the test channel. In the scenario of a Gaussian source with
variance σ2

s and an average distortion ∆, the test channel effectively becomes
an AWGN channel with a noise variance of ∆. Consequently, the SNR of this

test channel equals
σ2
s−∆
∆ , while its capacity is 1

2 log
(

σ2
s

∆

)
. This insight suggests

that the rate of the polar lattice quantizer can be finely adjusted to approach
1
2 log

(
σ2
s

∆

)
. Consequently, polar lattices demonstrate the capability to achieve

the rate-distortion bound of Gaussian sources by employing discrete Gaussian
distribution instead of continuous, offering a notable advancement in compres-
sion techniques.

B Proof of Lemma 4

Proof. Using the telescoping expansion

B1:n −A1:n =

n∑
i=1

(Bi −Ai)A1:i−1Bi+1:n, (58)
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∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
can be decomposed as

2∆
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
=

∑
u
[m]
1 ,y[m]

∣∣∣Q(u[m]
1 , y[m])− P(u

[m]
1 , y[m])

∣∣∣
=

∑
u
[m]
1 ,y[m]

∣∣∣∣∣∑
i

(
Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])

)

·

i−1∏
j=1

P(uj1|u
1:j−1
1 , y[m])

 m∏
j=i+1

Q(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)∣∣∣∣∣

(59)

(a)

≤
∑
i∈F1

∑
u
[m]
1 ,y[m]

∣∣∣Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])
∣∣∣
i−1∏

j=1

P(uj1|u
1:j−1
1 , y[m])


·

 m∏
j=i+1

Q(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)

=
∑
i∈F1

∑
u1:i
1 ,y[m]

∣∣∣Q(ui1|u1:i−11 , y[m])− P(ui1|u1:i−11 , y[m])
∣∣∣
i−1∏

j=1

P(uj1|u
1:j−1
1 , y[m])

P
(
y[m]

)
=
∑
i∈F1

∑
u1:i−1
1 ,y[m]

2P
(
u1:i−11 , y[m]

)
∆
(
QUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ,PUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)
(b)

≤
∑
i∈F1

∑
u1:i−1
1 ,y[m]

P
(
u1:i−11 , y[m]

)√
2 ln 2DKL

(
PUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ||QUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)

(60)

(c)

≤
∑
i∈F1

√√√√2 ln 2
∑

u1:i−1
1 ,y[m]

P
(
u1:i−11 , y[m]

)
DKL

(
PUi

1|U
1:i−1
1 =u1:i−1

1 ,Y [m]=y[m] ||QUi
1|U

1:i−1
1 =u1:i−1

1 ,Y [m]=y[m]

)

=
∑
i∈F1

√
2 ln 2DKL

(
PUi

1
||QUi

1
|U1:i−1

1 , Y [m]
)

(d)
=
∑
i∈F1

√
2 ln 2

(
1−H(U i

1|U
1:i−1
1 , Y [m])

)
(e)

≤
∑
i∈F1

√
2 ln 2

(
1− Z(U i

1|U
1:i−1
1 , Y [m])2

)
(f)

≤ m
√
4 ln 2 · 2−mβ

(61)



34 S. Lyu, L. Liu, C. Ling

where DKL(·||·) is the Kullback-Leibler divergence, and the equalities and the
inequalities follow from

(a) Q
(
ui1|u1:i−11 , y[m]

)
= P

(
ui1|u1:i−11 , y[m]

)
for i ∈ I1.

(b) Pinsker’s inequality.
(c) Jensen’s inequality.
(d) Q

(
ui1|u1:i−11

)
= 1

2 for i ∈ F1.
(e) Z(X|Y )2 ≤ H(X|Y ).
(f) Definition of F1.

⊓⊔

C KL Divergence

Lemma 8. Let E ∼ DZ,σ be a discrete Gaussian random variable, and let
E′ = E mod qZ be the residue in [−2r−1, 2r−1). The Kullback-Leibler diver-
gence DKL(PE′ ||PE) between PE′ and PE is upper-bounded as follows:

DKL(PE′ ||PE) ≜
∑
λ∈Z

PE′(λ) ln
PE′(λ)

PE(λ)
≤ 20√

2πσ2
q · exp

(
− q2

8σ2

)
, (62)

where q = 2r.

Proof. By the definition of DZ,σ2 ,

PE′(λ) =
∑
z∈Z

1√
2πσ2

e−
(λ+zq)2

2σ2 (63)

=
1√
2πσ2

(
e−

λ2

2σ2 +
∑
z∈Z+

e−
(λ+zq)2

2σ2 +
∑
z∈Z+

e−
(λ−zq)2

2σ2

)
(64)

≤ 1√
2πσ2

(
e−

λ2

2σ2 + 2
∑
z∈Z+

e−
(|λ|−zq)2

2σ2

)
, (65)

where Z+ denotes the set of positive integers.

Observe that e−
(|λ|−(i+1)q)2

2σ2 /e−
(|λ|−iq)2

2σ2 = e
(2|λ|−(2i+1)q)q

2σ2 ≤ e−
q2

σ2 for |λ| ≤ q
2

and i ≥ 1. Therefore,

PE′(λ) ≤ 1√
2πσ2

(
e−

λ2

2σ2 + 2
∑
z∈Z+

e−
(|λ|−zq)2

2σ2

)
(66)

≤ 1√
2πσ2

(
e−

λ2

2σ2 + 2 · e−
(|λ|−q)2

2σ2 · 1

1− e−
q2

σ2

)
(67)

≤ 1√
2πσ2

(
e−

λ2

2σ2 + 4 · e−
(|λ|−q)2

2σ2

)
, (68)
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for large q such that e−
q2

σ2 ≤ 1
2 .

For the Kullback-Leibler divergence DKL(PE′ ||PE),

DKL(PE′ ||PE) =
∑
λ∈Z

PE′(λ) ln
PE′(λ)

PE(λ)
(69)

≤
∑
λ∈Z

1√
2πσ2

(
e−

λ2

2σ2 + 4 · e−
(|λ|−q)2

2σ2

)
ln

(
1 + 4e

λ2−(|λ|−q)2

2σ2

)
(70)

≤ 4 ·
∑
λ∈Z

1√
2πσ2

(
e−

λ2

2σ2 + 4 · e−
(|λ|−q)2

2σ2

)
e

2q|λ|−q2

2σ2 (71)

= 4 ·
∑
λ∈Z

1√
2πσ2

e−
(|λ|−q)2

2σ2 + 16 ·
∑
λ∈Z

1√
2πσ2

e−
(|λ|−2q)2

2σ2 e
q2

σ2 (72)

≤ 4 ·
∑
λ∈Z

1√
2πσ2

e−
q2

8σ2 + 16 ·
∑
λ∈Z

1√
2πσ2

e−
q2

8σ2 (73)

=
20√
2πσ2

q · exp
(
− q2

8σ2

)
, (74)

where we use the inequality ln(1 + x) ≤ x and the relationship |λ| ≤ q
2 in the

third and fifth steps, respectively.

Lemma 9. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U

[m]
1 and Y [m]

according to the encoding rules (36) and (37) at the first partition level. Let
P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e., U

i
1 is

generated according to the encoding rule (36) for all i ∈ [m]. The Kullback-Leibler
divergence between P

U
[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows:

DKL

(
P
U

[m]
1 ,Y [m] ||QU

[m]
1 ,Y [m]

)
≤ 2 ln 2 ·m2−m

β

. (75)

By induction, after the lattice quantization process with r sequential levels,

DKL

(
PX[m],Y [m] ||QX[m],Y [m]

)
= DKL

(
P
U

[m]
1:r ,Y [m] ||QU

[m]
1:r ,Y [m]

)
(76)

≤ 2 ln 2 · rm2−m
β

. (77)
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Proof. For the 1st level,

DKL

(
P
U

[m]
1 ,Y [m] ||QU

[m]
1 ,Y [m]

)
= ln 2 ·

∑
u
[m]
1 ,y[m]

P
(
u
[m]
1 , y[m]

)
log

P
(
u
[m]
1 , y[m]

)
Q
(
u
[m]
1 , y[m]

)
= ln 2 ·

∑
u
[m]
1 ,y[m]

P
(
u
[m]
1 , y[m]

)
log

P
(
u
[m]
1 |y[m]

)
Q
(
u
[m]
1 |y[m]

)
= ln 2 ·

∑
u
[m]
1 ,y[m]

P
(
u
[m]
1 , y[m]

)
log

∏m
i=1 P(u

i
1|u1:i−11 , y[m])∏m

i=1 Q(u
i
1|u

1:i−1
1 , y[m])

= ln 2 ·
∑

u
[m]
1 ,y[m]

P
(
u
[m]
1 , y[m]

) ∑
i∈F1

log
P(ui1|u1:i−11 , y[m])

Q(ui1|u
1:i−1
1 , y[m])

= ln 2 ·
∑
i∈F1

(1−H(U i
1|U1:i−1

1 , Y [m]))

≤ ln 2 ·
∑
i∈F1

(1− Z(U i
1|U1:i−1

1 , Y [m])2)

≤ 2 ln 2 ·m2−m
β

,

(78)

where the second equality holds because PY = QY , and the first inequality holds
because Z(X|Y )2 ≤ H(X|Y ). The proof of the first part is completed.

For the second level, by the chain rule of the Kullback-Leibler divergence,

DKL

(
P
U

[m]
1:2 ,Y [m] ||QU

[m]
1:2 ,Y [m]

)
= DKL

(
P
U

[m]
1 ,Y [m] ||QU

[m]
1 ,Y [m]

)
+ E

U
[m]
1 ,Y [m]

[
DKL

(
P
U

[m]
2 |U [m]

1 ,Y [m] ||QU
[m]
2 |U [m]

1 ,Y [m]

)]
≤ 2 ln 2 ·m2−m

β

+ 2 ln 2 ·m2−m
β

,

where the first term holds because of the result for the 1st level, and the second
term can be obtained by following the steps in (78) exactly, since it can be
written as

E
U

[m]
1 ,Y [m]

[
DKL

(
P
U

[m]
2 |U [m]

1 ,Y [m] ||QU
[m]
2 |U [m]

1 ,Y [m]

)]
= ln 2 ·

∑
u
[m]
1:2 ,y[m]

P
(
u
[m]
1:2 , y

[m]
)
log

P
(
u
[m]
2 |u

[m]
1 , y[m]

)
Q
(
u
[m]
2 |u

[m]
1 , y[m]

) . (79)

The proof of the second part of this lemma can be completed by induction.


