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A Bayesian Approach to Estimating the Prehepatic
Insulin Secretion Rate

Kim E. Andersen and Malene Højbjerre, Aalborg University, Denmark

Motivation
Insulin resistance and failure of insulin secretion from the pancreas are character-
istics of type II diabetes, whereby estimation of the prehepatic insulin secretion
rate is vital. However, the insulin secretion rate is not directly measurable, since
part of the secreted insulin is absorbed by the liver prior to entering the blood
stream. Fortunately, the hormone C-peptide is co-secreted equimolarly and not
absorbed by the liver, allowing for estimation of the insulin secretion rate.

Data and Model
The insulin secretion rate can be estimated from an IntraVenous Glucose Tol-
erance Test (IVGTT), where a bolus of glucose is administered intravenously to
an individual for the purpose of recording the responding glucose, insulin and
C-peptide concentrations in plasma.

IVGTT data for a normal glucose tolerant individual are depicted below.

IntraVenous Glucose Tolerance Test (IVGTT)
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The extended combined model proposed in Watanabe et al. (1998) describes the
kinetics of insulin and C-peptide during an IVGTT study.

Extended Combined Model for Insulin and C-peptide Kinetics
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The system can be described by the following set of inhomogeneous linearly cou-
pled differential equations

İ(t) = fr(t) − KII(t), I(0) = Ib,

Ċ1(t) = r(t) − (K12 + KC)C1(t) + K21/V12C2(t), C1(0) = Cb
1 ,

Ċ2(t) = K12V12C1(t) − K21C2(t), C2(0) = Cb
2 ,

where
I(t): insulin concentration in plasma at time t.

C1(t): C-peptide concentration in plasma at time t.

C2(t): extravascular C-peptide concentration at time t.

r(t): equimolar insulin and C-peptide secretion rate.

f: constant fraction of insulin surviving liver extraction.

V12: ratio of plasma C-peptide and plasma insulin distribution volumes.

K12, K21: transfer rates between C-peptide compartments.

KI, KC: elimination rates from insulin and C-peptide compartments.

Ib, Cb
1 , Cb

2 : constant base levels prior to the bolus.

By considering the model in steady state it can be derived that

rb = KCCb
1 , f =

KII
b

KCCb
1

and Cb
2 =

K12

K21
V12C

b
1 ,

where rb ≥ 0 denotes the basal insulin secretion rate, reducing the number of
parameters to be estimated.

Current Approach
Watanabe et al. (1998) use an approach where

• kinetics parameters estimated iteratively factoring the insulin secretion rate out
and succesively considering the insulin and C-peptide as known constant.

• insulin secretion rate estimated by deconvolution based on kinetics estimates
and a piece-wise constant secretion rate.

Problems
• consider the secretion rate unrealistically as piece-wise constant.

• purely data-driven without error terms on observations.

• does not simultaneously consider all three differential equations.

• consider the differential equations as deterministics.

• does not consider the ill-posedness - very dependent on good initial estimates.

Our approach
A unified model with error terms on process increments and observations rep-
resented as a directed graphical model, where the ill-posed estimation problem
is regularized by Bayesian inference using Markov chain Monte Carlo (MCMC)
methods.

Directed Graphical Model
Using Brownian motions to model potential physiological variation and approxi-
mating the model by discretisation we obtain the following stochastic model

Itk
|Itk−1

,rtk−1
,τI∼ N (hI(Itk−1

,rtk−1
),τ−1

I
(tk−tk−1)),

C1tk
|C1tk−1

,C2tk−1
,rtk−1

,τC1
∼ N (hC1(C1tk−1

,C2tk−1
,rtk−1

),τ−1
C1

(tk−tk−1)),(1)

C2tk
|C1tk−1

,C2tk−1
,τC2

∼ N (hC2(C1tk−1
,C2tk−1

),τ−1
C2

(tk−tk−1)),

where t is used as subscript and the mean structures are given as

hI(Itk−1
,rtk−1

)=Itk−1
+(tk−tk−1)

(

frtk−1
−KIItk−1

)

,

hC1(C1tk−1
,C2tk−1

,rtk−1
)=C1tk−1

+(tk−tk−1)
(

rtk−1
−(K12+KC)C1tk−1

+
K21

V12
C2tk−1

)

,

hC2(C1tk−1
,C2tk−1

)=C2tk−1
+(tk−tk−1)

(

K12V12C1tk−1
−K21C2tk−1

)

,

Note that the variances depend on the length of discretization intervals.

Concerning the secretion rate rtk
we model deviation from the basal level, rb, as

a scaled sum of weighted gamma densities, i.e. the rate mean structure is

hr(tk) = rb + κ

K∑

k=1

wk
(mk/vk)

m2
k/vk

Γ
(

m2
k
/vk

) t
m2

k/vk−1

k
e−mk/vktk,

where the gamma densities are parametrized by their mean mk > 0 and variances

vk > 0. Besides κ > 0, wk ∈ R and
∑K

k=1 wk = 1. The weights are not strictly
positive, allowing the insulin secretion rate to fall beneath base level.

The model for the secretion process rtk
is

rtk
| hr(tk), τr ∼ N (hr(tk), τ

−1
r ). (2)

Let Iotk
and Co

1tk

be the insulin and C-peptide plasma concentrations for specific

time points tk, which we model as

log Iotk
| Itk

, τIo ∼ N (log Itk
, τ−1

Io ),

log Co
1tk

| C1tk
, τCo

1
∼ N (log C1tk

, τ−1
Co

1
).

(3)

The conditional distributions in (1), (2) and (3) can be interpreted as parent-child
distributions in a directed graphical (Lauritzen, 1996) as depicted below.

Directed Acyclic Graph Illustrating Statistical Dependencies
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Bayesian Inference
Represent the parameters, the latent processes and the observations as

Ω = (Υ, KI, KC, K12, K21, V12, I
b, Cb

1 , τI, τC1
, τC2

, τr, τIo, τCo
1
),

Ψ = {Itk
, C1tk

, C2tk
, rtk

}tk∈Λ,

Φ = {Iotk
, Co

1tk
}tk∈T ,

where Υ = (κ, m1, . . . , mK, v1, . . . , vK, w1, . . . , wK), Λ are the discretization
time points (not necessarily equidistant) and T ⊆ Λ are actual observation time
points.

The posterior distribution is proportional to

p(Ω, Ψ | Φ) ∝ p(Φ | Ω, Ψ)p(Ψ | Ω)p(Ω), (4)

where p(Ω) is the prior and p(Ψ | Ω) and p(Φ | Ω, Ψ) form the likelihood.

The Likelihood is easily derived from the normal distributions specified in (1), (2)
and (3) and recursive factorization inherited by the directed graphical model.

We will assume a priori that the parameters are independent nor-
mally distributed (KI, KC, K12, K21, V12, I

b, Cb
1) or Gamma distributed

(τI, τC1
, τC2

, τr, τIo, τCo
1
). However, regarding Υ we will assume

p(Υ) ∝ p1(1 − p1)
K−1p(κ)1l(Υ ∈ Ξ)

K∏

k=1

p(wk)p(mk)p(vk)

where Ξ is the set of allowable secretion parameters, p1 is the probability that
K = 1 (corresponding to a geometric prior on K). Furthermore p(κ),p(wk),
p(mk) and p(vk) are uniform priors. Hereby the prior is the product of p(Υ),
normal and gamma densities.

MCMC Methods
By use of MCMC methods we construct an irreducible Markov
chain {(Ω1, Ψ1), (Ω2, Ψ2), . . .} with the posterior p(Ω, Ψ | Φ) as station-
ary distribution.

Within model moves: K fixed

Blocked Metropolis–Hastings (Metropolis et al, 1953) random walk updates.

1. Propose Ω ′
j from a symmetric proposal distribution q(Ωj; Ω

′
j).

2. Propose Ψ ′
j from p(Ψj | Ω

′
j).

3. Accept the joint proposal (Ω ′
j, Ψ

′
j) with probability

α(Ωj, Ψj; Ω
′
j, Ψ

′
j) = min

{

1,
p(Φ | Ω ′

j, Ψ
′
j)p(Ψ ′

j | Ω ′
j)p(Ω ′

j)

p(Φ | Ωj, Ψj)p(Ψj | Ωj)p(Ωj)

}

.

Between model moves: K alters

Trans Dimensional MCMC Methods (Green, 1995).
Split model:

1. Pick (wk, mk, vk) uniformly from K existing contributions with probability
1/K.

2. Split (wk, mk, vk) into two contributions according to the injective map

g : (wk, mk, vk) 7−→

{
(wk − wK+1, mk − mK+1, vk − vK+1)

(wK+1, mK+1, vK+1),

where (wK+1, mK+1, vK+1) is picked uniformly on the product space

[−lw, lw] × [0, lm] × [0, lv] with probability 1/(l2wlmlv).

The probability for performing the reverse move is 2/(K(K+1)) and Jacobian
is one. Hence the acceptance probability for a split is

αsplit(Ωj, Ψj; Ω
′
j, Ψ

′
j) = min

{

1,
p(Φ | Ω ′

j, Ψ
′
j)p(Ψ ′

j | Ω ′
j)p(Ω ′

j)

p(Φ | Ωj, Ψj)p(Ψj | Ωj)p(Ωj)

2l2wlmlv

K + 1

}

.

Merge model:

1. Pick (wk, mk, vk) and (wj, mj, vj) uniformly from K existing contributions
with probability 2/(K(K − 1)).

2. Merge (wk, mk, vk) and (wj, mj, vj) into one contribution according to

g : (wk, mk, vk, wj, mj, vj) 7−→ (wk + wj, mk + mj, vk + vj)

The probability for performing the reverse move is 1/(K − 1) and Jacobian is
one. Hence the acceptance probability for a merge is

αmerge(Ωj, Ψj; Ω
′
j, Ψ

′
j) = min

{

1,
p(Φ | Ω ′

j, Ψ
′
j)p(Ψ ′

j | Ω ′
j)p(Ω ′

j)

p(Φ | Ωj, Ψj)p(Ψj | Ωj)p(Ωj)

K

2

}

.

Results
We perform the following steps:

1. fine tune such that acceptance probabilities are within (0.2; 0.4).

2. run a final Markov chain for 200 000 iterations after burn-in.

3. convergence is inspected by spectral method of Geweke.

4. trace plots are inspected for good mixing properties.

5. method of Heidelberg and Welch is used to ensure long enough chains.

6. prior sensitivity analysis is performed by considering marginal likelihoods.

Trace of the insulin secretion rate r(t) at time t = 10
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Posterior mean with 95 per cent credible interval for the insulin secretion rate
r(t) for any t ∈ Λ is given below, where also posterior mean with 95 per cent
credible intervals for the latent processes I(t) and C(t) are provided.

Posterior mean and 95 per cent credible intervals

I(t) (pmol/ml) r(t) (pmol/(L min)) C1(t) (pmol/ml)
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Discussion
We have developed a Bayesian approach to estimate the prehepatic insulin secre-
tion rate, where

• a superposition of gamma densities is used to realistically model the time-
continuous insulin secretion rate.

• the ill-posed estimation problem is regularized using prior information.

• the extended combined model is considered as a unified model.

• both physiological and observational variations are included.

For further details and references see:
Andersen, K.E. & Højbjerre, M. (2005). A Bayesian approach to estimating the
prehepatic insulin secretion rate, Technical Report R-2005-35, Aalborg University.
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