

Aalborg Universitet

Bayesian reconstruction of the insulin secretion rate

Andersen, Kim Emil; Eriksen, Poul Svante; Højbjerre, Malene

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Andersen, K. E., Eriksen, P. S., & Højbjerre, M. (2007). Bayesian reconstruction of the insulin secretion rate. Poster session presented at COBAL 2, San José del Cabo, Mexico.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

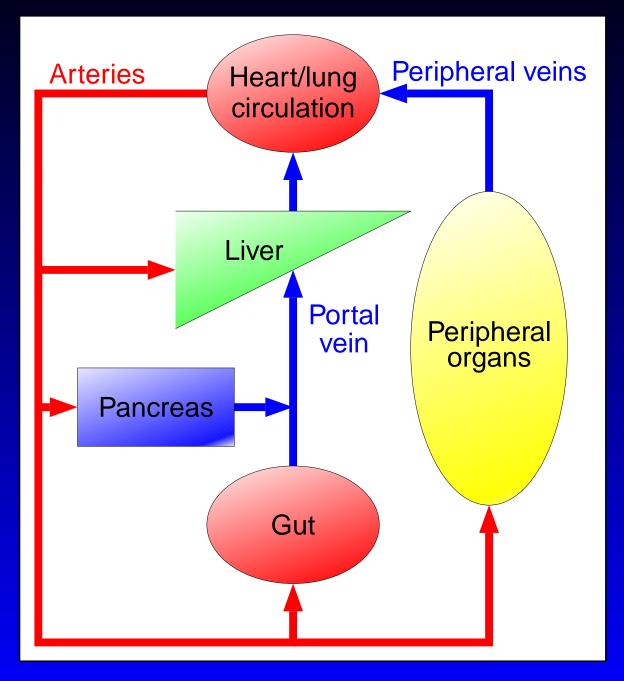
Bayesian Reconstruction of the Insulin Secretion Rate

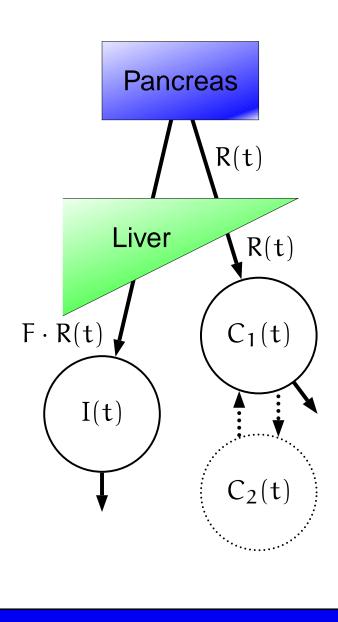
Cobal 2 February 2005

Kim E. Andersen, P. Svante Eriksen and Malene Højbjerre

Department of Mathematical Sciences Aalborg University, Denmark

Physiological Circulation





Aim

Determine the Insulin Secretion Rate (ISR) allowing for

- > a quantitative understanding of the glucose regulating system
- an evaluation of the therapeutic effect of e.g. a new diabetic agent

Problem

Endogenous insulin undergoes a large and variable liver extraction

Fortunately

C-peptide is co-secreted on a equimolar basis and is (almost) NOT extracted by the liver

Solution

Base assessment of ISR upon C-peptide

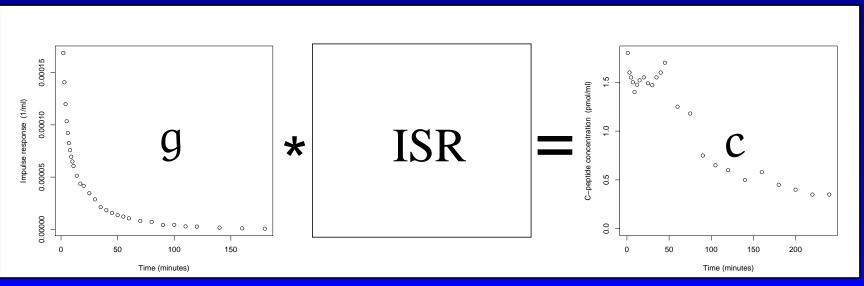
Mathematical Convolution Model vs Data

Let

- ISR(t) denote the insulin secretion rate [pmol/min]
- \succ c(t) denote the C-peptide concentration [pmol/ml]
- g(t) denote the C-peptide impulse response [ml⁻¹]

then it is possible to relate the unmeasurable $\mbox{ISR}(t)$ with c(t) by the convolution integral

$$c(t) = \int_{-\infty}^{t} g(t - \tau) \operatorname{ISR}(\tau) \, d\tau$$



IVGTTC-peptide bolus

Cobal 2, February 2005 – p.4/17

Current Two Stage Approaches

Main assumptions:

Stage 1

► Imposing a sum of exponentially decaying functions $g(t) = \sum_{i=1}^{N} A_i e^{-\alpha_i t}$ on the C-peptide impulse response – treated as known

Stage 2

Assuming ISR to be piecewise constant

Consequence:

Leads to an ill-posed inversion problem, which can be solved through proper regularisation

$$\underset{c \in \mathcal{C}}{\operatorname{arg\,min}} \|c_{obs} - c\|^2 + \alpha \|c\|^2$$

In a stochastic setup this may be done by the use of the variance of c

Our Approach

Main idea:

- Consider both set of data simultaneously
 - unified approach
 - allowing for random deviations in e.g. the C-peptide impulse response

Solution strategy:

- > Obtain flexible class of representations of c(t) and ISR(t)
- Determine their convolution properties
- Recast the problem in a Bayesian setting

In practice:

Rescaled phasetype densities

Phasetype Distributions

Definition:

Let T denote the convergence time for a Markov chain, then T has density

$$g(t) = \alpha e^{\mathbf{T}t} t$$

where

► $\alpha = (\alpha_1, ..., \alpha_n)$ is an n-dimensional row-vector with $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i = 1$

▶ T is an $n \times n$ intensity matrix with $T_{ii} \le 0$ and $T_{ij} \ge 0$ subject to $\sum_{j=1}^{n} T_{ij} \le 0$

$$\blacktriangleright$$
 t = -Te

Examples:

- > Exponential
- ► Erlang
- ➤ Gaussian

Fundamental properties:

Dense in the space of distributions

Scaled phasetype densities

Closed Form Convolution Models

Assumptions:

Assume that both g(t) and ISR(t) are of scaled phasetype, i.e.

- $\succ g(t) = \kappa_g \alpha_g e^{\mathbf{T}_g t} \mathbf{t}_g$
- > $ISR(t) = \kappa_{ISR} \alpha_{ISR} e^{\mathsf{T}_{ISR} t} t_{ISR}$

then the convolution g * ISR is also of scaled phasetype

>
$$c(t) = (g * ISR)(t) = \kappa_c \alpha_c e^{\mathsf{T}_c t} \mathsf{t}_c$$

where

$$\mathbf{k}_{c} = \kappa_{g} \kappa_{ISR}$$

$$\mathbf{\lambda}_{c} = (\boldsymbol{\alpha}_{g}, \mathbf{0})$$

$$\mathbf{T}_{c} = \begin{bmatrix} \mathbf{T}_{g} & \mathbf{T}_{g} e \boldsymbol{\alpha}_{ISR} \\ \mathbf{0} & \mathbf{T}_{ISR} \end{bmatrix}$$

Solving the *direct* problem is **well-posed**

Statistical Model and Algorithm

Model:

Let

- t^c₁,...,t^c_n denote the time points used for sampling the C-peptide
- t^g₁,...,t^g_m denote the time points used for sampling the impulse response
- Gaussian IID distributed with variance σ_c^2 and σ_g^2

Thus

 $\begin{array}{ll} c^{o}(t) \ \sim \ \mathcal{N}(c(t),\sigma_{c}^{2}), & t=t_{1}^{c},\ldots,t_{n}^{c} \\ g^{o}(t) \ \sim \ \mathcal{N}(g(t),\sigma_{g}^{2}), & t=t_{1}^{g},\ldots,t_{m}^{g} \end{array}$

Naïve algorithm:

- Simulate g(t) and c(t) for initial $B_g = (\kappa_g, \alpha_g, T_g, \sigma_g^2)$ and $B_{ISR} = (\kappa_{ISR}, \alpha_{ISR}, T_{ISR}, \sigma_c^2)$
- Propose new candidates
 B'_g and B'_{ISR}
- 8 Evaluate new candidates according to some object function π
- Accept or reject new candidates according to simple rule
- Goto 2

Likelihood Construction

Data:

Let $\Phi_c=(c^o(t_1^c),\ldots,c^o(t_n^c))$ and $\Phi_g=(g^o(t_1^g),\ldots,g^o(t_m^g))$ denote the observed data

Likelihood:

The likelihood function is given by

$$L(\mathbf{B}_{\rm ISR}, \mathbf{B}_{\rm g} | \boldsymbol{\Phi}_{\rm c}, \boldsymbol{\Phi}_{\rm g}) \propto \frac{\exp\{-V(\mathbf{B}_{\rm ISR}, \mathbf{B}_{\rm g}) - W(\mathbf{B}_{\rm g})\}}{\sigma_{\rm c}^{\mathfrak{n}} \sigma_{\rm g}^{\mathfrak{m}}}$$

where the potentials are given by

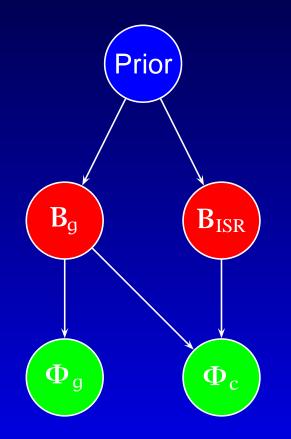
$$V(\mathbf{B}_{ISR}, \mathbf{B}_{g}) = \sum_{i=1}^{n} [c^{o}(t_{i}^{c}) - c(t_{i}^{c})]^{2} / 2\sigma_{c}^{2}$$

and

$$W(\mathbf{B}_g) = \sum_{i=1}^m [g^{\mathbf{o}}(\mathbf{t}_i^g) - g(\mathbf{t}_i^g)]^2 / 2\sigma_g^2$$

Graphical Model and Bayesian Analysis

Graphical Model:



Posterior π :

 $\pi(\mathbf{B}_{\mathrm{ISR}}, \mathbf{B}_{\mathsf{q}} | \mathbf{\Phi}_{\mathsf{c}}, \mathbf{\Phi}_{\mathsf{q}}) \propto L(\mathbf{B}_{\mathrm{ISR}}, \mathbf{B}_{\mathsf{q}} | \mathbf{\Phi}_{\mathsf{c}}, \mathbf{\Phi}_{\mathsf{q}}) p(\mathbf{B}_{\mathrm{ISR}}, \mathbf{B}_{\mathsf{q}})$ where the prior distribution is given by $p(\mathbf{B}_{\text{ISR}}, \mathbf{B}_{q}) = p(\kappa_{\text{ISR}})$ $\times p(\boldsymbol{\alpha}_{\text{ISR}})$ $\times p(T_{ISR})$ Uniform $\times p(\kappa_q)$ $\times p(\boldsymbol{\alpha}_{q})$ $\times p(T_g)$ $\times p(\sigma_c^2)$ Inverse gamma $\times p(\sigma_a^2)$

ISR Reconstruction in Details

Blocked Random Walk Metropolis–Hastings Updating:

Random walks are used as proposals, i.e.

$$\begin{split} & \textbf{T}' \sim \mathcal{N}(\textbf{T}, \sigma_{\textbf{T}}^2) \\ & \boldsymbol{\alpha}' \sim \mathcal{N}(\boldsymbol{\alpha}, \sigma_{\boldsymbol{\alpha}}^2) \\ & \kappa' \sim \mathcal{N}(\kappa, \sigma_{\kappa}^2) \end{split} \qquad \textbf{Reversible by design} \end{split}$$

Allowable Configurations:

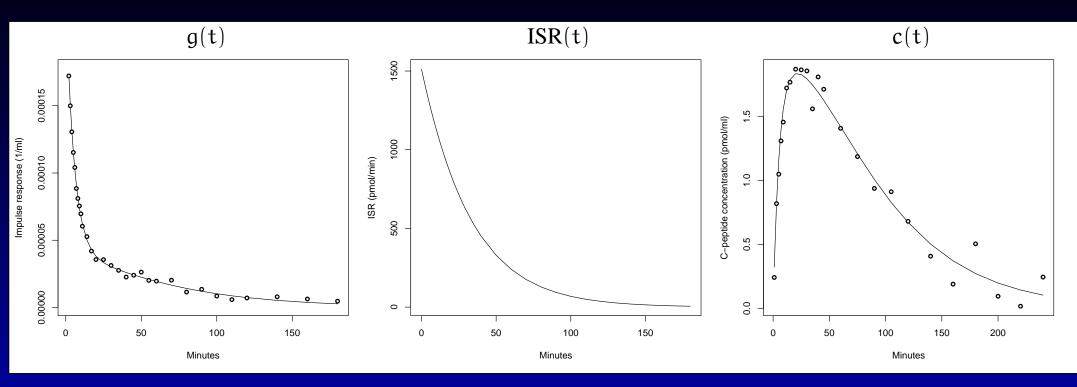
Let Ψ_T and Ψ_{α} denote the set of allowable matrices and vectors, i.e. the validity of the state **B** = (κ , α , **T**) is given by the indicator

$$1(\mathbf{B}) = 1(\kappa > 0, \boldsymbol{\alpha} \in \Psi_{\boldsymbol{\alpha}}, \mathbf{T} \in \Psi_{\mathbf{T}})$$

The proposal $(B'_g, B'_{ISR}) = (\kappa'_g, \alpha'_g, T'_g, \kappa'_{ISR} \alpha'_{ISR}, T'_{ISR})$ is then accepted with

$$\alpha = 1(\mathbf{B}_{g}')1(\mathbf{B}_{ISR}')\min\left(1,\exp\left\{V(\mathbf{B}_{ISR},\mathbf{B}_{g})-V(\mathbf{B}_{ISR}',\mathbf{B}_{g}')+W(\mathbf{B}_{g})-W(\mathbf{B}_{g}')\right\}\right)$$

Simulation Study



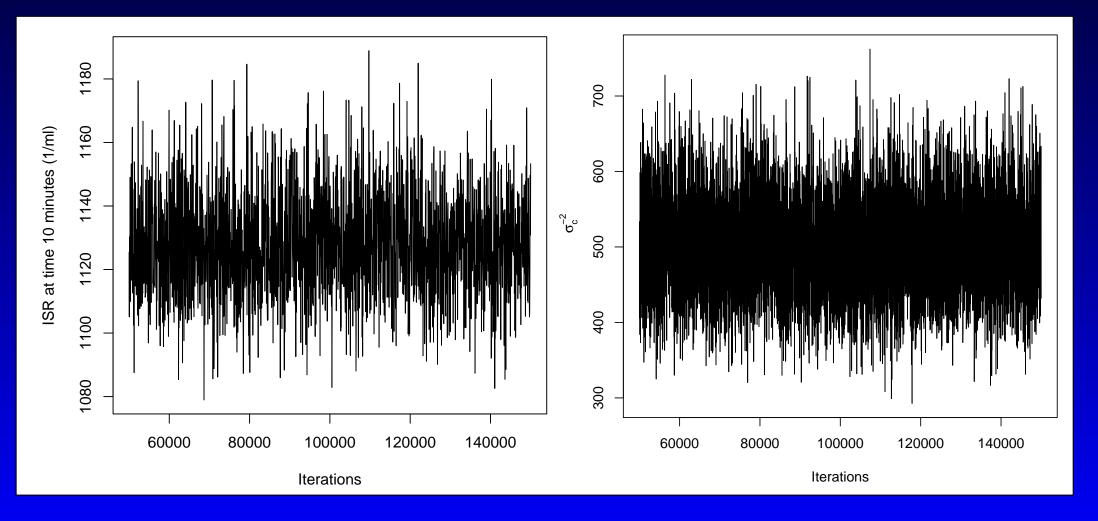
Modifications

- Let $V(B_{ISR}, B_g) \equiv 0$ to obtain good starting values for B_g
- 2 Keep B_g fixed and let $W(B_g) \equiv 0$ to obtain good starting values for B_{ISR}
- $\ensuremath{\mathfrak{S}}$ With good initial values for $B_{\rm ISR}$ and B_g a final run for 150 000 iterations is conducted

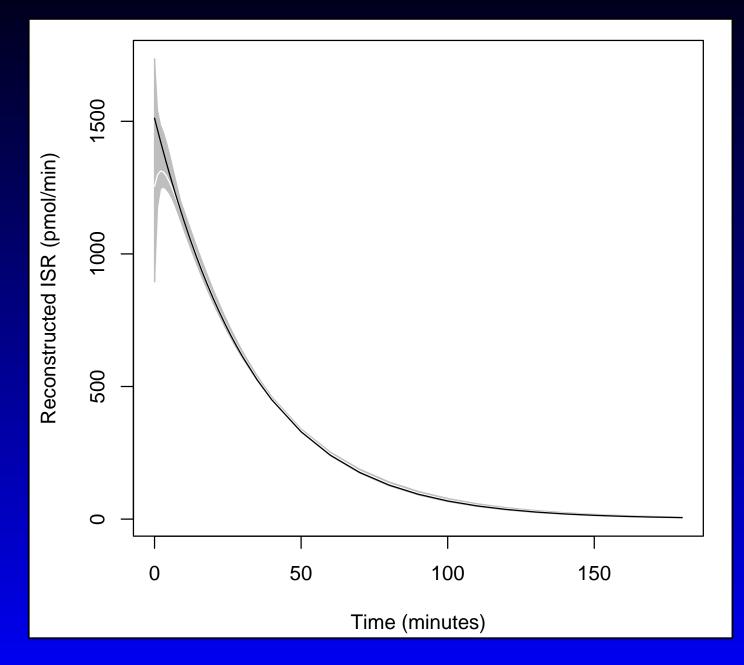
Results

Trace plots:

It is meaningless to trace the parameters as they have no physiological interpretation.



Reconstructed Insulin Secretion Rate



The NN1998 AERx Study

- **Inhaled Insulin Agent:**
- How much of an inhaled insulin agent reaches the bloodstream ?
- Approach:
- Experiment 1:
 - Perform traditional C-peptide bolus experiment followed by an IVGTT
- Experiment 2:
 - Perform another IVGTT inwhich inhaled insulin is administered
- >From the two experiments, we may
 - Observation the subjects endogenous insuline secretion rate
 - Oetermine both the endogenous and exogenous insulin
 - Subtract to find exogenous insulin

All done simultaneously

Discussion

Pros:

- Unified approach
- Possible to make closed form reconstruction of the ISR
- > Quick

Cons:

- Problems with dimensionality (RJMCMC)
- Would be slow!

Future:

- Consider gamma densities as basis functions
- Convolution results in Kummer functions (confluent hypergeometric functions)
- Less 'nice' mathematical representation
- Computationally more tractable