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Motivation

A Bayesian Approach to Bergman's Minimal Model

Kim E. Andersen and Malene Hgjbjerre

Department of Mathematical Sciences, Aalborg University and Novo Nordisk A/S, Denmark

Simulated Data Example

Diabetes is associated with a number of abnormalities of insulin metabolism rang-
ing from an absolute deficiency of the hormone to a combination of insulin defi-
ciency and resistance causing an inability to metabolise glucose from the blood
at normal rates.

Three factors are recognised to play an important role for glucose disposal.

Important Factors for Glucose Disposal

Pancreatic responsiveness

Insulin sensitivity Glucose effectiveness

The capability of insulin to in- The ability of glucose to en- The ability of the pancreatic

crease glucose uptake in mus- hance its own disappearance [3-cells to secrete insulin in re-

cles, liver and adipose tissue at basal insulin level sponse to glucose stimuli

Failure of any of these factors may lead to impaired glucose tolerance, or, if severe,
to overt diabetes and assessment of them may improve classification, prognosis
and therapy of the disease.

Bergman’'s Minimal Model

Quantitative assessment of the factors were made possible by the ‘minimal
model" (Bergman et al., 1979). The ‘minimal model' is based upon an analy-
sis of frequently sampled intravenoues glucose tolerance (FSIVGTT) data, where
a dose of glucose (usually 0.3 g. of glucose per kg. body weight) is administered
intravenously over a 60 seconds period to overnight-fasted subjects. Data from a
single experiment is shown below.

Frequently Sampled Intravenous Glucose Tolerance Test
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The minimal model is based upon a compartmental analysis of the glycaemic
system.

Bergman’s Minimal Model for Glucose and Insulin Kinetics
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The feedback effect illustrated above may be decomposed into two independent
components:

e The effect of glucose to enhance insulin secretion
e The effect of insulin to accelerate glucose uptake,

which by careful compartmental analysis leads to

[ = —nl+vy(G—-h)tt, 1(0) = Iy,
G =—p1(G—Gp) —XG,  G(0) =Gy,
X =—pyX+p3(1—1Ip), X(0) =

The metabolic portrait of a single individual is determined by the four parameters:

The Integrated Metabolic Portrait
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What can be done?

Current Approach

e does not simultaneously take all three differential equations into account

e does not consider the ill-posedness of the estimation problem
0 very dependent on good initial parameter estimates

but are reasonably fast, though not reliable.

Our Approach
e takes all three differential equations into account

e adequately models the a priori information
[ efficient regularisation of the estimation problem

e provides a solution given in terms of probability distributions
0 allows for statistical inference

Assume that physiologic variation and discretisation error can be modelled by
random white noise processes; ef, (—:J)f and ef. Then by discretisation the non-

linear coupled differential equations in (1) become
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Statistical Dependencies

Graphical Model

Directed graphical models (Lauritzen, 1996) represent conditional independence
structures of a statistical model through an appropriate factorisation of the density
w.r.t. a graph. The vertices V represent the components of the model and missing
links respresent conditional independence assumptions. More precisely, the density
of V admits the recursive factorisation given as

p(V) = [T pv! pa(v)),

veV

where p(v| pa(v)) is the density of v given pa(v) = (V)vepa(v) and pa(v) denotes
the parent vertices of v. The model obtained by discretisation can be illustrated
by the following directed acyclic grap

Directed Acyclic Graph lllus Statistical Dependencies

Simulation Based Inference

Let @ = (P1,P2,--+, Gunobs Xunobss Lunobs) denote all unobserved vertices,

where

G nobs = {all unobserved Gi's} = G\ G .
Xunobs = fall X¢'s}
I,nobs = {all unobserved Ii's} =1\ I}

then inference about © is made by exploring the posterior distribution
p(O| D) x p(O)L(D]O),

where the observed data @ = (G, I,,c) enters trough the likelihood function
L(® |®) and the a priori information is modelled by the prior density p(©).

Samples from the posterior are obtained by Markov chain Monte Carlo tech-
niques (Metropolis et al., 1953) by successively simulating values from the full

conditionals

w:veEpa(w)

p(vIVAV) xxp(v] pa(v)) p(w|pa(w)), ve0.

Hereby an irreducible Markov chain {©®j, @1, ...} with state space © and with
stationary distribution p(® | @) is constructed. See Robert and Casella (1999)
for an introduction to MCMC techniques.

Implementation

The Metropolis—Hastings Algorithm

1. Propose a candidate v/ from the proposal distribution q(v,v/).

2. Accept with probability

P VAV, )
(V) =TI S VA gy

Updating e.g. X;
Note how the density p(Xi¢| @, ® \ {X;}) factorises into
P(Xe | @, 0 \{X¢}) o< p(Xe [ X1, L1)p(Xiq1 [ Xe, Le)p(Geaq | G, X).-

The required conditional densities are

Xe | Xe—1, Te—1,Tx ~ N((1 = Atp)X¢ 1 + Atps(Li_1 — Ip), Ty ')
Gi|Gi 1,Xt 1,7G ~ N((1— Atpy — AtX;_1)Gy_1 + Atp1 Gy, 1)

Now, propose a new candidate X{ from a symmetric proposal distribution
X’é | Xt> 0.2 ~ N(Xt> 0.2),

then the acceptance probability o« becomes

(X{ X1, Lo 1) (Keg1 [ X TP (G | G, X{)
(Xt | Xe—1, L) p(Xeg1 [ Xe, L) p(Gig1 | Gy Xi)

o(Xp, X!) = 1 /\E

Simulating Data

In order to investigate the performance of our Bayesian approach to Bergman's
minimal model we simulated experimental data from a normal glucose tolerant
person. The model parameters and data obtained are given below

Model Parameters and Simulated Data
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Results

The Markov chain were run for 15 million iterations. Below is shown summary
statistics for the latter 10 million iterations.

Results

0.032 0.033

0.031

5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15
Millions of iterations Millions of iterations
Posterior 95 % Cl
Parameter ‘Truth® Mean  Lower Upper
S 0.0317 0.0319 0.0312 0.0325
Sy 3.9653  4.1209 3.2485 4.9934
0] 30.1169 39.1301 38.9589 39.3012
n 0.2659  0.2661 0.2658 0.2664
Gy 00.0000 90.1281 88.2466 92.0097
Iy, 7.0000 6.9753 6.7812 7.1295
h 79.0353 79.0107 78.9065 79.1149

Moreover, the active insulin process may be efficiently assessed.

Assessment of the Active Insulin Process

()
0 50 100 150

Discussion

What has been done ?

We have developed a Bayesian method
e to regularise an ill-posed estimation problem and

e assess the metabolic properties of a single individual from all three differential
equations simultanesously

What needs to be done ?

e Better mixing
(] Better proposals

0 Simulated tempering
0 MCMCMC-techniques

Future work
e Real data

e Not only allow for physiological variation/discretisation error, but also take
measurement error into account

e Extend approach to the oral glucose tolerance test procedure

e Extensions to normal populations [ inference on e.g. normal metabolic prop-
erties.

e Prior sensitivity analysis
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