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Profile Likelihood in Directed
Graphical Models from BUGS Output

Malene Hgjbjerre, Department of Mathematical Sciences, Aalborg University, Denmark, malene@math.auc.dk

Approximate profile likelihood of parameters/functions
of parameters in directed graphical models with
incomplete data from posterior samples from software
BUGS (Bayesian inference Using Gibbs Sampling).

Directed Graphical Model

defined by

e directed acyclic graph, G = (V, E)

e joint probability distribution of v = (vy)vev
that is directed Markov w.r.t. to G

i.e. admit
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As Spiegelhalter (1998) consider constants as random
variables with priors on, but condition on them.

Let
N o z, for veX
v T Yy, for vEY
Zpa(v) = (mpa(u)vypa(u))
Then
p(z,y,0,¢) = [] P(20|2pace): Opa(v): Cpa(e))
vEXUY
x TT »0) TT p(ew)
vE® vel

Since 6 and e mutually independent

p(z,y]0,¢) = [[ p(22/2pa(v)s Opace)s Cpa(v))

vEXUY
of 6

L(B|xz,c) = /p(m, y|6,c)dy

of ;. 1 € ©,

L(bi|z,c) = sup L(6|=, c)
0y;
where 8\; = Oo\ (i}
Profile likelihood of ¢ = ¢(8)
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where ® image of parameter space of 8 under g.
of §;,1 € ©,

L(0i|z,e) = /L(9i79\i\m=C)P(e\i\ai)da\i

/p(m, wll;, c)dw

where w = (y, 6\;).
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6g: fixed value of 8. As Geyer & Thompson (1992) consider

p(xz|6,c) 1
p(z]60,c)

Rewrite likelihood function

L(6|z,c)

L(6|z,c)
P(2v|Zpa(v) s Opa(v) s Cpa(v))
“/H & pa(e): Opa(e): o)) o g0 oyay
veen(@) P |Zpa(w) s Bopa(n): Epacv))

Draw 3, y@ ... y™) from p (y|x, 60, c).

Approximate likelihood function
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where zij) =z, for v e X, zij) = yij), for v €Y, and

[C) (3
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Sampling from p (y| @, 8¢, c): in BUGS with 6 fixed as 6.
6 posterior mean of initial Gibbs sampler with priors on 6.

Compute log L(8|2, ¢) in grid formed by quantiles of initial
Gibbs sampler.

Maximize over grid to approximate profile log-likelihood.

7). another generic symbol of 8. Rewrite likelihood function

L(6|z,c)
P(20|Zpa(v)Opa(v) Cpa(v))
// 1T pa(e) Zpalv) Cpale) ]y apla, ¢)dydep
veen(e)P (2v|Zpa(v) P pa(v) +Cpalv))
Draw (y™®, ™), (@, @), (y™) @) from

p(y, |z, c).

Approximate likelihood function
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Sampling from p(y, 4=, ¢): in BUGS with priors on 6.

Compute log I.(6|z, ¢) in grid formed by quantiles of Gibbs
sampler in this version.

Maximize over grid to approximate profile log-likelihood.

v grid points already considered. Form pairs

(9(8),

Need to calculate g(8), already have L(8|z,c).

L(8|z,c)), 6€V

Order pairs in increasing order w.r.t.
into bins.

¢ = g(0), partition

Find pair with maximum value of L(8|, ¢) for each bin.

Combine maximum pairs to approximate profile log-likelihood
of g(8).

From Spiegelhalter, Thomas, Best & Gilks (1996b).
Measure for ten power plant pumps

c; : operation time

2; : number of failures

yil 01,02 ~ F(91,92) Q ’

where G

y; : failure rate of pump 7

Model: i = 1,2,

zi|yi,cq o~

61 : shape parameter

65 : scale parameter

PRIORS Prior 1 Prior 2 Prior 3

6, Exp(10) Exp(1.0) Exp(0.01)
6> T(0.1,1.0) T'(0.01,0.1) T'(0.001,0.001)

Sample size: N = 5.000 Grid size: 200 x 200
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Priors no significant impact
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Good approximation
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Consider © \ {i} as latent variables in method.

Get a 1-dimensional grid. Marginalisation done by summation
instead of maximalisation.

Priors: no significant impact, once Gibbs sampler converged.

Method: hybrid of Bayesian and likelihood - prior used to
compute credible region, approximation done there.

Complementary tool to BUGS.

Good approximation
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