

Aalborg Universitet

Profile likelihood in directed graphical models from BUGS output

Højbjerre, Malene

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Højbjerre, M. (2007). Profile likelihood in directed graphical models from BUGS output. Poster session presented at The Eighth International Workshop on Artificial Intelligence and Statistics, Key West, Florida, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Profile Likelihood in Directed **Graphical Models from BUGS Output**

Malene Højbjerre, Department of Mathematical Sciences, Aalborg University, Denmark, malene@math.auc.dk

Introduction

Approximate profile likelihood of parameters/functions parameters in directed graphical models with incomplete data from posterior samples from software BUGS (Bayesian inference Using Gibbs Sampling).

Directed Graphical Model

Directed graphical model defined by

- ullet directed acyclic graph, $\mathcal{G}=(V,E)$
- joint probability distribution of $oldsymbol{v} = (v_v)_{v \in V}$ that is directed Markov w.r.t. to $\ensuremath{\mathcal{G}}$

i.e. admit recursive factorization property

$$p(\mathbf{v}) = \prod_{v \in V} p(v_v | \mathbf{v}_{\mathrm{pa}(v)})$$

Assume

$$V = X \cup Y \cup \Theta \cup C$$

	random (single-edged)	constant (double-edged)
observed (rectangle)	X : observed data $egin{array}{c} X: & observed \ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & $	$C\colon covariates$ $egin{array}{c} & & & & & & & & & & & & & & & & & & &$
unobserved (circle)	Y : missing data/ latent variables $igg(oldsymbol{y} = (y_v)_{v \in Y} igg)$	Θ : parameters $igoplus_{oldsymbol{ heta}} igoplus_{oldsymbol{v} \in \Theta} igoplus_{oldsymbol{v} \in \Theta}$

As Spiegelhalter (1998) consider constants as random variables with priors on, but condition on them

$$z_v = \left\{ egin{array}{ll} x_v & \mbox{for } v \in X \ y_v & \mbox{for } v \in Y \end{array}
ight.$$

$$oldsymbol{z}_{\operatorname{pa}(v)} = (oldsymbol{x}_{\operatorname{pa}(v)}, oldsymbol{y}_{\operatorname{pa}(v)})$$

Then

$$\begin{split} p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\theta}, \boldsymbol{c}) &= \prod_{v \in X \cup Y} p(z_v | \boldsymbol{z}_{\text{pa}(v)}, \boldsymbol{\theta}_{\text{pa}(v)}, \boldsymbol{c}_{\text{pa}(v)}) \\ &\times \prod_{v \in \Theta} p(\theta_v) \prod_{v \in C} p(c_v) \end{split}$$

Since heta and $extbf{c}$ mutually independent

$$p(\boldsymbol{x},\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{c}) = \prod_{v \in X \cup Y} p(z_v|\boldsymbol{z}_{\text{pa}(v)},\boldsymbol{\theta}_{\text{pa}(v)},\boldsymbol{c}_{\text{pa}(v)})$$

Likelihood of θ

$$L(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{c}) = \int p(\boldsymbol{x}, \boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{c}) d\boldsymbol{y}$$

Profile likelihood of θ_i , $i \in \Theta$

$$\hat{L}(\theta_i|\boldsymbol{x},\boldsymbol{c}) = \sup_{\boldsymbol{\theta}_{\lambda,i}} L(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c})$$

where $oldsymbol{ heta}_{\setminus i} = oldsymbol{ heta}_{\Theta\setminus \{i\}}$.

Profile likelihood of $\phi = g(\theta)$

$$\hat{L}(\phi | \boldsymbol{x}, \boldsymbol{c}) = \sup_{\boldsymbol{\theta} \in g^{-1}(\phi)} L(\boldsymbol{\theta} | \boldsymbol{x}, \boldsymbol{c}), \quad \phi \in \Phi$$

where Φ image of parameter space of $oldsymbol{ heta}$ under g

Integrated likelihood of θ_i , $i \in \Theta$,

$$\begin{split} \check{L}(\theta_i | \boldsymbol{x}, \boldsymbol{c}) &= \int L(\theta_i, \boldsymbol{\theta}_{\backslash i} | \boldsymbol{x}, \boldsymbol{c}) p(\boldsymbol{\theta}_{\backslash i} | \theta_i) d\boldsymbol{\theta}_{\backslash i} \\ &= \int p(\boldsymbol{x}, \boldsymbol{w} | \theta_i, \boldsymbol{c}) d\boldsymbol{w} \end{split}$$

where $\boldsymbol{w} = (\boldsymbol{y}, \boldsymbol{\theta}_{\setminus i})$.

Method

 θ_0 : fixed value of θ . As Geyer & Thompson (1992) consider

$$\frac{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{c})}{p(\boldsymbol{x}|\boldsymbol{\theta}_0,\boldsymbol{c})} = \frac{1}{\alpha}L(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c})$$

Rewrite likelihood function

 $L(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{c})$

$$\propto \!\! \int_{\boldsymbol{v} \in \operatorname{ch}(\Theta)} \frac{p(z_{\boldsymbol{v}} | \boldsymbol{z}_{\operatorname{pa}(\boldsymbol{v})}, \boldsymbol{\theta}_{\operatorname{pa}(\boldsymbol{v})}, \boldsymbol{c}_{\operatorname{pa}(\boldsymbol{v})})}{p(z_{\boldsymbol{v}} | \boldsymbol{z}_{\operatorname{pa}(\boldsymbol{v})}, \boldsymbol{\theta}_{\operatorname{0pa}(\boldsymbol{v})}, \boldsymbol{c}_{\operatorname{pa}(\boldsymbol{v})})} p(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta}_{0}, \boldsymbol{c}) d\boldsymbol{y}$$

Draw $\boldsymbol{y}^{(1)}, \boldsymbol{y}^{(2)}, \dots, \boldsymbol{y}^{(N)}$ from $p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}_0, \boldsymbol{c})$.

Approximate likelihood function

$$\bar{L}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c}) \propto \sum_{j=1}^{N} \prod_{v \in \text{ch}(\Theta)} \frac{p(\boldsymbol{z}_{v}^{(j)} \, | \boldsymbol{z}_{\text{pa}(v)}^{(j)}, \boldsymbol{\theta}_{\text{pa}(v)}, \boldsymbol{c}_{\text{pa}(v)})}{p(\boldsymbol{z}_{v}^{(j)} \, | \boldsymbol{z}_{\text{pa}(v)}^{(j)}, \boldsymbol{\theta}_{\text{pa}(v)}, \boldsymbol{c}_{\text{pa}(v)})}$$

where
$$z_v^{(j)} = x_v$$
, for $v \in X$, $z_v^{(j)} = y_v^{(j)}$, for $v \in Y$, and $z_{\mathrm{pa}(v)}^{(j)} = (\boldsymbol{x}_{\mathrm{pa}(v)}, \boldsymbol{y}_{\mathrm{pa}(v)}^{(j)})$.

Sampling from $p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_0, \mathbf{c})$: in BUGS with $\boldsymbol{\theta}$ fixed as $\boldsymbol{\theta}_0$.

 $oldsymbol{ heta}_0$: posterior mean of initial Gibbs sampler with priors on $oldsymbol{ heta}$

Compute $\log \bar{L}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c})$ in grid formed by quantiles of initial Gibbs sampler

Maximize over grid to approximate profile log-likelihood

 $oldsymbol{\psi}$: another generic symbol of $oldsymbol{ heta}$. Rewrite likelihood function

$$L(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{c})$$

$$\propto \! \! \int \!\!\! \int_{v \in \operatorname{ch}\left(\Theta\right)} \!\! \frac{p(z_v | \boldsymbol{z}_{\operatorname{pa}(v)}, \boldsymbol{\theta}_{\operatorname{pa}(v)}, \boldsymbol{c}_{\operatorname{pa}(v)})}{p(z_v | \boldsymbol{z}_{\operatorname{pa}(v)}, \boldsymbol{\psi}_{\operatorname{pa}(v)}, \boldsymbol{c}_{\operatorname{pa}(v)})} p(\boldsymbol{y}, \boldsymbol{\psi} | \boldsymbol{x}, \boldsymbol{c}) d\boldsymbol{y} d\boldsymbol{\psi}$$

Draw $(\boldsymbol{y}^{(1)}, \boldsymbol{\psi}^{(1)}), (\boldsymbol{y}^{(2)}, \boldsymbol{\psi}^{(2)}), \dots, (\boldsymbol{y}^{(N)}, \boldsymbol{\psi}^{(N)})$ from $p(\boldsymbol{y}, \boldsymbol{\psi} | \boldsymbol{x}, \boldsymbol{c}).$

Approximate likelihood function

$$\bar{\bar{L}}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c}) \propto \sum_{j=1}^{N} \prod_{v \in \operatorname{ch}(\Theta)} \frac{p(\boldsymbol{z}_{v}^{(j)} \, \big| \boldsymbol{z}_{\operatorname{pa}(v)}^{(j)}, \boldsymbol{\theta}_{\operatorname{pa}(v)}, \boldsymbol{c}_{\operatorname{pa}(v)})}{p(\boldsymbol{z}_{v}^{(j)} \, \big| \boldsymbol{z}_{\operatorname{pa}(v)}^{(j)}, \boldsymbol{\psi}_{\operatorname{pa}(v)}^{(j)}, \boldsymbol{c}_{\operatorname{pa}(v)})}$$

Sampling from $p(\boldsymbol{y}, \boldsymbol{\psi} | \boldsymbol{x}, \boldsymbol{c})$: in BUGS with priors on $\boldsymbol{\theta}$

Compute $\log ar{L}(m{ heta}|m{x},m{c})$ in grid formed by quantiles of Gibbs sampler in this version

Maximize over grid to approximate profile log-likelihood

 $\widetilde{
abla}\colon\operatorname{\mathsf{grid}}\operatorname{\mathsf{points}}\operatorname{\mathsf{already}}\operatorname{\mathsf{considered}}.$ Form pairs

$$(g(\boldsymbol{\theta}), \bar{L}(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{c})), \quad \boldsymbol{\theta} \in \widetilde{\nabla}$$

Need to calculate $g(\boldsymbol{\theta})$, already have $\bar{L}(\boldsymbol{\theta} | \boldsymbol{x}, \boldsymbol{c})$.

Order pairs in increasing order w.r.t. $\phi = g(\boldsymbol{\theta})$, partition into bins

Find pair with maximum value of $\bar{L}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{c})$ for each bin

Combine maximum pairs to approximate profile log-likelihood

Consider $\Theta \setminus \{i\}$ as latent variables in method.

Get a 1-dimensional grid. Marginalisation done by summation instead of maximalisation.

Comments

Priors: no significant impact, once Gibbs sampler converged

Method: hybrid of Bayesian and likelihood - prior used to compute credible region, approximation done there.

Complementary tool to BUGS

Example

From Spiegelhalter, Thomas, Best & Gilks (1996b) Measure for ten power plant pumps

 $c_{\,i}$: operation time

 x_i : number of failures

 y_i : failure rate of pump i

 θ_1 : shape parameter

PRIORS	Prior 1	Prior 2	Prior 3
θ_1	Exp(10)	Exp(1.0)	Exp(0.01)
θ_2	$\Gamma(0.1,1.0)$	$\Gamma(0.01,0.1)$	$\Gamma(0.001, 0.001)$

Sample size: N=5.000Grid size: 200×200

Priors no significant impact

Good approximation

Good approximation

Geyer, C. J. & Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data, *Journal of the Royal Statistica*l

Inclinood for dependent data, Journal of the Royal Statistical Society, Series B 54(3): 657-699.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N. & Leimer, H.-G. (1990). Independence properties of directed Markov fields, NETWORKS 20: 491-505.

20: 491–505. Spiegelhalter, D. J. (1998). Bayesian graphical modelling: a case-study in

Spiegelhalter, D. J., (1996). Bayesian graphinal moderning, a case-scuty in monitoring health outcomes, Applied Statistics 47: 115–133.
Spiegelhalter, D. J., Thomas, A., Best, N. G. & Gilks, W. (1996a). BUGS 0.5 Bayesian inference Using Gibbs sampling Manual (version ii), MRC Biostatistics Unit, Cambridge.

Spiegelhalter, D. J., Thomas, A., Best, N. G. & Gilks, W. (1996b). BUGS 0.5 Examples Volume 1 (version i), MRC Biostatistics Unit, Cambridge.

brid ge