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D Pro�le Likelihood in DiretedGraphial Models from BUGS OutputMalene H�jbjerre, Department of Mathematial Sienes, Aalborg University, Denmark, malene�math.au.dkIntrodutionApproximate pro�le likelihood of parameters/funtionsof parameters in direted graphial models withinomplete data from posterior samples from softwareBUGS (Bayesian inferene Using Gibbs Sampling).Direted Graphial ModelDireted graphial model de�ned by� direted ayli graph, G = (V;E)� joint probability distribution of v = (vv)v2Vthat is direted Markov w.r.t. to Gi.e. admit reursive fatorization propertyp(v) = Yv2V p(vvjvpa(v))Assume V = X [ Y [� [ Crandom onstant(single-edged) (double-edged)observed X: observed data C: ovariates(retangle) x = (xv)v2X  = (v)v2Cunobserved Y : missing data/ �: parameters(irle) latent variablesi ify = (yv)v2Y � = (�v)v2�As Spiegelhalter (1998) onsider onstants as randomvariables with priors on, but ondition on them.Let zv = � xv for v 2 Xyv for v 2 Yzpa(v) = (xpa(v);ypa(v))Thenp(x;y;�; ) = Yv2X[Yp(zvjzpa(v) ;�pa(v); pa(v))� Yv2� p(�v) Yv2C p(v)Sine � and  mutually independentp(x;yj�; ) = Yv2X[Yp(zvjzpa(v) ;�pa(v) ; pa(v))Likelihood of �L(�jx; ) = Z p(x;yj�; )dyPro�le likelihood of �i, i 2 �,L̂(�ijx; ) = sup�ni L(�jx; )where �ni = ��nfig.Pro�le likelihood of � = g(�)L̂(�jx; ) = sup�2g�1(�)L(�jx; ); � 2 �where � image of parameter spae of � under g.Integrated likelihood of �i, i 2 �,�L(�ijx; ) = Z L(�i;�nijx; )p(�nij�i)d�ni= Z p(x;wj�i; )dwwhere w = (y;�ni).

MethodVersion 1�0: �xed value of �. As Geyer & Thompson (1992) onsiderp(xj�; )p(xj�0; ) = 1�L(�jx; )Rewrite likelihood funtionL(�jx; )/Z Yv2h(�) p(zvjzpa(v) ;�pa(v) ; pa(v))p(zvjzpa(v) ;�0pa(v) ; pa(v))p(yjx;�0; )dyDraw y(1);y(2); : : : ;y(N) from p (yjx;�0; ).Approximate likelihood funtion~L(�jx; ) / NXj=1 Yv2h(�) p�z(j)v ��z(j)pa(v) ;�pa(v) ; pa(v)�p�z(j)v ��z(j)pa(v) ;�0pa(v) ; pa(v)�where z(j)v = xv, for v 2 X, z(j)v = y(j)v , for v 2 Y , andz(j)pa(v) = (xpa(v);y(j)pa(v)).Sampling from p (yjx;�0; ): in BUGS with � �xed as �0.�0: posterior mean of initial Gibbs sampler with priors on �.Compute log ~L(�jx; ) in grid formed by quantiles of initialGibbs sampler.Maximize over grid to approximate pro�le log-likelihood.Version 2 : another generi symbol of �. Rewrite likelihood funtionL(�jx; )/ZZ Yv2h(�)p(zvjzpa(v) ;�pa(v) ;pa(v))p(zvjzpa(v) ; pa(v) ;pa(v))p(y; jx; )dyd Draw (y(1); (1)); (y(2); (2)); : : : ; (y(N); (N)) fromp(y; jx; ).Approximate likelihood funtion~~L(�jx; ) / NXj=1 Yv2h(�) p�z(j)v ��z(j)pa(v) ;�pa(v) ; pa(v)�p�z(j)v ��z(j)pa(v) ; (j)pa(v); pa(v)�Sampling from p(y; jx; ): in BUGS with priors on �.Compute log ~~L(�jx; ) in grid formed by quantiles of Gibbssampler in this version.Maximize over grid to approximate pro�le log-likelihood.Pro�le likelihood of a funtioner: grid points already onsidered. Form pairs�g(�); ~L(�jx; )�; � 2 erNeed to alulate g(�), already have ~L(�jx; ).Order pairs in inreasing order w.r.t. � = g(�), partitioninto bins.Find pair with maximum value of ~L(�jx; ) for eah bin.Combine maximum pairs to approximate pro�le log-likelihoodof g(�).Integrated likelihood of �iConsider � n fig as latent variables in method.Get a 1-dimensional grid. Marginalisation done by summationinstead of maximalisation.CommentsPriors: no signi�ant impat, one Gibbs sampler onverged.Method: hybrid of Bayesian and likelihood - prior used toompute redible region, approximation done there.Complementary tool to BUGS.

ExampleFrom Spiegelhalter, Thomas, Best & Gilks (1996b).Measure for ten power plant pumpsi : operation timexi : number of failuresModel: i = 1; 2; : : : ; 10xij yi; i � Po (yii)yij �1; �2 � � (�1; �2)whereyi : failure rate of pump i�1 : shape parameter�2 : sale parameter pump iyi�1 �2 ixiPRIORS Prior 1 Prior 2 Prior 3�1 Exp(10) Exp(1:0) Exp(0:01)�2 �(0:1; 1:0) �(0:01; 0:1) �(0:001; 0:001)Sample size: N = 5:000 Grid size: 200� 200
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Priors no signi�ant impat
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Good approximationReferenesGeyer, C. J. & Thompson, E. A. (1992). Constrained Monte Carlo maximumlikelihood for dependent data, Journal of the Royal StatistialSoiety, Series B 54(3): 657{699.Lauritzen, S. L., Dawid, A. P., Larsen, B. N. & Leimer, H.-G. (1990). In-dependene properties of direted Markov �elds, NETWORKS20: 491{505.Spiegelhalter, D. J. (1998). Bayesian graphial modelling: a ase-study inmonitoring health outomes, Applied Statistis 47: 115{133.Spiegelhalter, D. J., Thomas, A., Best, N. G. & Gilks, W. (1996a). BUGS0.5 Bayesian inferene Using Gibbs sampling Manual (version ii),MRC Biostatistis Unit, Cambridge.Spiegelhalter, D. J., Thomas, A., Best, N. G. & Gilks, W. (1996b). BUGS0.5 Examples Volume 1 (version i), MRC Biostatistis Unit, Cam-bridge.


