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ABSTRACT

The problem of fundamental frequency estimation is considered in
the context of signals where the frequencies of the harmonics are not
exact integer multiples of a fundamental frequency. This frequently
occurs in audio signals produced by, for example, stiff-stringed mu-
sical instruments, and is sometimes referred to as inharmonicity. We
derive a novel robust method based on the subspace orthogonality
property of MUSIC and show how it may be used for analyzing au-
dio signals. The proposed method is both more general and less com-
plex than a straight-forward implementation of a parametric model
of the inharmonicity derived from a physical instrument model. Ad-
ditionally, it leads to more accurate estimates of the individual fre-
quencies than the method based on the parametric inharmonicity
model and a reduced bias of the fundamental frequency compared
to the perfectly harmonic model.

Index Terms— Acoustic signal analysis, spectral analysis, fre-
quency estimation

1. INTRODUCTION

The problem of estimating the fundamental frequency, or pitch pe-
riod, of a set of harmonically related sinusoids is one of the classical
problems of signal processing, not least in speech and audio process-
ing where it is important to many applications ranging from analysis
and compression to separation and enhancement. In recent years, it
has also found new applications in music information retrieval and
it remains an active research topic. In the ideal case, the frequen-
cies of the harmonics are integer multiples of the fundamental fre-
quency. For many musical instruments, though, the frequencies are
not exact integer multiples of the fundamental. This phenomenon is
known as inharmonicity and this is the problem we are concerned
with in this paper. For particular instruments, like stiff-stringed in-
struments such as the piano, the inharmonicity is very pronounced
and has to be taken into account when tuning the instrument [1, 2].
Also for speech signals, inharmonicity has been observed to be of
importance for modeling and coding purposes (see, e.g., [3]). There
are many reasons why this inharmonicity should be taken into ac-
count when estimating the fundamental frequency. Firstly, the as-
sumption of the frequencies of the harmonics being exact integer
multiples of the fundamental may lead to a bias in the estimated fun-
damental frequency. It may also lead to significant bias of estimated
amplitudes since the integer multiples may not capture the peaks of
the spectrum. This, in turn, may lead to audible artifacts when re-
synthesizing the audio. Similarly, biased estimates can result in a
bad fit of the signal model to the data and low likelihoods, causing
incorrect model and order selections. Therefore, one would expect
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a fundamental frequency estimator that takes this phenomenon into
account to be more robust than the estimators based on the idealized
model. We will now proceed to define the problem at hand math-
ematically. We are here concerned with a set of sinusoids having
frequencies{ωl} corrupted by an additive white complex circularly
symmetric Gaussian noise,ǫ(n), for n = 0, . . . , N − 1,

x(n) =

L
X

l=1

αle
jωln + ǫ(n), (1)

where{αl} are the complex amplitudes (here considered nuisance
parameters); these may easily be found given the frequencies. In
this work, it is assumed that the number of harmonicsL is known or
found a priori. For the perfectly harmonic case, the frequencies of
the harmonics are exact integer multiples of a fundamental frequency
ω0, i.e.,ωl = ω0l with l ∈ N, in which case the signal model in (1) is
characterized by a single nonlinear parameter. As already discussed,
this model is not always a good fit. Depending on the instrument,
different parametric models of the inharmonicity of the harmonics
can be derived from physical models (see, e.g., [4]). An exampleof
such a model for stiff-stringed instruments isωl = ω0l

√
1 + Bl2

whereB ≪ 1 is an unknown, positive stiffness parameter. In this
case, the model in (1) now contains two unknown nonlinear param-
eters, namelyω0 andB, which complicates matters. This model,
which we will refer to as the parametric model of the inharmonic-
ity, has been used in Bayesian fundamental frequency estimation for
audio analysis in [5] and sinusoidal audio coding in [6].

Recently, it has been shown that the subspace orthogonality prin-
ciple known from the MUltiple SIgnal Classification (MUSIC) esti-
mation method (see, e.g., [7]) can be used for finding the funda-
mental frequency and the model orderL jointly for both a single
source [8] and multiple sources [9]. In this paper, we consider the
problem of taking inharmonicity into account in a method based on
the orthogonality property. We extend the method in [8] to the para-
metric model of the inharmonicity but this leads to a computation-
ally complex method. Instead, we use an alternative model that at
first sight will appear more complicated and derive a novel robust
estimator. More specifically, we use a model where the frequen-
cies{ωl} are modeled asωl = ω0l + ∆l with {∆l} being a set
of small unknown perturbations that are to be estimated along with
the fundamental frequencyω0. We refer to this frequency model as
the perturbed model. The perturbations{∆l} should be small since
arbitrarily large perturbations will result in meaningless estimates of
ω0. Such unstructured perturbations have also been previously used
in a Bayesian framework [10]. One would expect that the introduc-
tion of additionalL nonlinear parameters in the model (1) would
result in a more complicated estimator, but, as it turns out, the result-
ing estimator is, considering the complexity of the problem, rather
simple. Aside from the computational complexity, there is another
important reason why one would prefer the perturbed model over the



parametric one, namely that it is more general, meaning that it can
be expected to hold for a more general class of signals. For exam-
ple, the parametric inharmonicity models are not the same for strings
with clamped or pinned ends (see [4]). While it is here assumed that
the model orderL in (1) is known, it can in fact be found jointly with
the other nonlinear parameters using the proposed method (c.f. [8]),
but this is beyond the scope of this paper.

The rest of this paper is organized as follows. First, in Section
2, we will review the fundamentals of the covariance matrix model
and the subspace orthogonality property and show how this can be
used for finding the fundamental frequency and stiffness parameters
of the parametric inharmonicity model. In Section 3, we then present
the new robust estimator associated with the perturbed model. Some
experimental results and examples are given in Section 4 before the
conclusion in Section 5.

2. SOME PRELIMINARIES

In this section, we present the fundamentals of the MUSIC algo-
rithm (see, e.g., [7]) and introduce some useful vector and matrix
definitions. We will do this for the signal model in (1) based on a
set of unconstrained frequencies{ωl} and then show how this can
be applied to the parametric inharmonicity model. We start out by
defining x̃(n) as a signal vector containingM samples of the ob-
served signal, i.e.,̃x(n) = [ x(n) · · · x(n + M − 1) ]T with (·)T

denoting the transpose. Then, assuming that the phases ofαl are
independent and uniformly distributed on the interval(−π, π], the
covariance matrixR ∈ C

M×M of the signal in (1) can be written as

R = E
n

x̃(n)x̃H(n)
o

= AVA
H + σ2

I, (2)

whereE {·} and(·)H denote the statistical expectation and the con-
jugate transpose, respectively. Note that for this decomposition to
hold, the noise need not be Gaussian. Furthermore,V is a diagonal
matrix containing the squared amplitudes, i.e.,V = diag([ |α1|2
· · · |αL|2 ]), andA ∈ C

M×L a rankL Vandermonde matrix, i.e.,

A =
ˆ

a(ω1) · · · a(ωL)
˜

, (3)

wherea(ω) =
ˆ

1 ejω · · · ejω(M−1)
˜T

. Also, σ2 denotes
the variance of the additive noise,ǫ(n), andI is theM ×M identity
matrix. We also note thatAVA

H has rankL. For notational sim-
plicity, we have omitted the dependency ofA on the unknowns. Let
R = UΛU

H be the eigenvalue decomposition (EVD) of the co-
variance matrix. Then,U contains theM orthonormal eigenvectors
of R, i.e.,U = [ u1 · · · uM ] andΛ is a diagonal matrix contain-
ing the corresponding eigenvalues,λk, with λ1 ≥ λ2 ≥ . . . ≥ λM .
Let G be formed from the eigenvectors corresponding to theM −L
least significant eigenvalues, i.e.,G = [ uL+1 · · · uM ]. The noise
subspace spanned byG will then be orthogonal to the Vandermonde
matrixA, i.e.,AH

G = 0 which is what we refer to as the subspace
orthogonality property. In practice, only an estimate of the covari-
ance matrix is available from which we can obtain an estimate of
the noise subspaceG. From this matrix, an estimate of the these
parameters can be obtained by minimizing the Frobenius norm as

J({ωl}) = Tr
n

A
H
GG

H
A

o

, (4)

with Tr{·} denoting the trace. Based on this cost function, the funda-
mental frequencyω0 and the stiffness parameterB of the parametric

inharmonicity model can be estimated in a straight-forward manner.
Specifically, theA matrix is constructed from the two parameters as

A =
ˆ

a(ω0

√
1 + B) · · · a(ω0L

√
1 + BL2)

˜

. (5)

Based on (4), we then suggest to obtain an estimate of the funda-
mental frequency and stiffness parameter as

(ω̂0, B̂) = arg min
ω0,B

J(ω0, B), (6)

which has to be evaluated for a large range of combinations of the
two parameters. We note that the estimator (6) has not previously
appeared in the literature.

3. ROBUST SUBSPACE METHOD

The question is now how the fundamental frequency and the in-
dividual frequencies can be found for the perturbed model where
ωl = ω0l + ∆l, i.e., the Vandermonde matrix containing the com-
plex sinusoids is now characterized byω0 and{∆l} as

A =
ˆ

a(ω0 + ∆1) · · · a(ω0L + ∆L)
˜

. (7)

However, direct minimization of the cost function in (4) will not only
be very computationally demanding since we now haveL+1 nonlin-
ear parameters, but it will also not lead to any meaningful estimates
of the parameters since we have no control over the distribution of
the perturbations{∆l}. Instead, we propose to estimate the param-
eters by redefining the cost function in (4) as

J(ω0, {∆l}) = Tr
n

A
H
GG

H
A

o

+ P ({∆l}), (8)

whereP ({∆l}) is the penalty function which is a non-decreasing
function of a metric withP ({0}) = 0. Also, it is desirable that the
penalty function is additive over the harmonics. Therefore, a natural
choice isP ({∆l}) =

PL

l=1 νl|∆l|p with p ≥ 1 which penalizes
large perturbations∆l. Also, {νl} is a set of positive regularization
constants, the meaning of which will be discussed later. In arriving at
a computationally efficient estimator, we first note that the Frobenius
norm is additive over the columns ofA, i.e.,

J(ω0, {∆l}) = Tr
n

A
H
GG

H
A

o

+

L
X

l=1

νl|∆l|p (9)

=
L

X

l=1

a
H(ω0l + ∆l)GG

H
a(ω0l + ∆l) +

L
X

l=1

νl|∆l|p. (10)

Furthermore, by substitutingωl by ω0l + ∆l and∆l by ωl − ω0l in
(10), we get the following simplified cost function

J(ω0, {ωl}) =

L
X

l=1

a
H(ωl)GG

H
a(ωl) + νl|ωl − ω0l|p. (11)

It can be seen that the first term no longer depends on the funda-
mental frequency or the perturbations but only on the frequency of
the l’th harmonicωl. Furthermore, we can recognize the first term
in (11) as the reciprocal of the MUSIC pseudo-spectrum, which has
now to be calculated only once for each segment. It can also be seen
that the cost function is additive over independent terms and, there-
fore, the minimization of the cost function can be performed inde-
pendently for each harmonic. The fundamental frequency estimator



can thus be rewritten as

ω̂0 = arg min
ω0

min
{ωl}

(

L
X

l=1

a
H(ωl)GG

H
a(ωl) + νl|ωl − ω0l|p

)

= arg min
ω0

L
X

l=1

min
ωl

n

a
H(ωl)GG

H
a(ωl) + νl|ωl − ω0l|p

o

,

where the frequencies{ωl} and thus perturbations are also found
implicitly. From this, it is now also clear why we required the penalty
function to be additive over the harmonics. We term this estimator
robust since it expected to be more robust towards model mismatch
than the ideal model and the parametric inharmonicity model. For a
givenω̂0, the frequencies can simply be found forl = 1, . . . , L as

ω̂l = arg min
ωl

n

a
H(ωl)GG

H
a(ωl) + νl|ωl − ω̂0l|p

o

, (12)

with only the penalty term changing overl. In the context of sta-
tistical estimation, the augmentation of a log-likelihood function by
such a penalty term will result in a maximum a posteriori estimate
with the penalty term being a log-prior on the perturbations with an
implicit uniform prior on the fundamental frequency. For a Gaussian
prior, for example, we would havep = 2 andνl = 1/(2σ2

l ) with σ2
l

being the variance of thel’th harmonic. The meaning of the regular-
ization constants can also be clarified from the following: For large
νl, the ensuing perturbation will be small and the estimator is ex-
pected to reduce to the perfectly harmonic case, whereas forνl close
to zero, the estimator will reduce to finding unconstrained frequen-
cies from which no meaningful fundamental frequency estimate can
be found. The regularization constantsνl can also be interpreted as
Lagrange multipliers. This means that the estimator can be thought
of as a constrained estimator with a set of implicit constraints. In
this sense, the method is conceptually related to the robust Capon
beamformer of [11] which is based on explicit constraints. It may be
worth modifying the penalty such that less emphasis is put on per-
turbations for higher harmonics or even use an asymmetrical penalty
since the parametric inharmonicity model suggest that the harmon-
ics will be higher than the integer multiple of the fundamental, but
for now we will defer from further discussion of this.

4. EXPERIMENTAL RESULTS

We will now apply the estimators to analysis of audio signals. Since
we assume that the orderL is known, we will focus on a single
note, namely a piano noteC5 ∼ 523.25 Hz whose spectrogram and
time-domain signal are shown in Figure 1. In the experiments, the
following conditions are used. The signal has been down-sampled to
8820 Hz to reduce the computational complexity. The estimates are
obtained in the following way. First, segments consisting of 30 ms
have been used from which the discrete-time analytic signal and a
66× 66 covariance matrix are calculated. The EVD of this matrix is
computed and partitioned into signal and noise subspace eigenvec-
tors withL = 7. Then, the cost functions of the respective estimators
are calculated for a wide range ofωl (andB for the parametric inhar-
monicity model) from which coarse estimates are obtained. Finally,
these are used to initialize gradient-based refinement methods. For
the proposed method, we usep = 1 (corresponding to a Laplacian
prior) since this is expected to result in most perturbations being
close to zero while allowing for a few large ones. The regulariza-
tion constants withνl ∝ 1/l have been used such that larger per-
turbations are allowed for higher harmonics. The exact perturbation
constants were determined empirically for a large set of signals. We
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Fig. 1. Spectrogram and time-domain signal of a piano note.
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Fig. 2. MUSIC (log) pseudo-spectrum of a segment of the piano no-
te along with the estimated frequencies of the harmonics for the per-
fectly harmonic model (circles), the parametric inharmonicity model
(squares) and using the perturbed model (crosses).

note that it is generally safer to chooseνl too large than too small but
other than that, we have observed the choice ofνl not to be critical.

In the first experiment, we will illustrate the ability of the models
and estimators to capture the frequencies of the individual harmon-
ics of the piano note. For this signal, the parametric inharmonicity
model is expected to perform well. In Figure 2, the logarithm of the
MUSIC pseudo-spectrum is shown for a representative stationary 30
ms segment of the signal in Figure 1 along with the frequency esti-
mates obtained using the perfectly harmonic model, the parametric
inharmonicity model and the perturbed model. It can be seen that the
frequencies obtained using the perfectly harmonic model are biased
with theω0 estimate being 528.51 Hz. It can also be seen that the
parametric inharmonicity model captures the peaks fairly accurately
resulting in anω0 estimate of 523.59 Hz. The perturbed model, how-
ever, appears to capture all the peaks for an estimated fundamental
frequency of 526.21 Hz. It can be seen that the proposed method is
able to reduce the bias of the perfectly harmonic model while also
giving accurate estimates of the individual harmonics. Next, the esti-
mated fundamental frequencies are estimated in steps of 10 ms. The
results are shown in Figure 3 for the three methods, namely for the



perfectly harmonic model, the parametric inharmonicity model, and
the perturbed model. The general conclusions can be seen to be the
same as for Figure 2. The parametric inharmonicity model appears
to be the most accurate for this particular signal with the estimates
being close to the 523.25 Hz of the note. It can also be seen that
the perfectly harmonic model here results in a bias throughout the
duration of the signal, and that the perturbed model is able to re-
duce this bias. The remaining bias is most likely due to the use of
a symmetrical penalty function that penalizes negative and positive
perturbations equally. We note that the fluctuations of the estimates
at about 0.85 s are due to modulations of the4’th harmonic. Finally,
we have investigated how well the models are able to capture the
frequencies of the individual harmonics in the following way: Given
the frequency estimates, the model is fitted to the data using least-
squares and the signal-to-noise ratio (SNR) is calculated. In Figure
4, the results are shown. It can be seen that the perfectly harmonic
model does not fit the signal well, and that the proposed method in
fact estimates the frequencies more accurately than the parametric
model, whereby a better fit is obtained.

5. CONCLUSION

In this paper, the problem of robust fundamental frequency estima-
tion has been considered for the case where the harmonics are not
exact integer multiples of a fundamental frequency, a phenomenon
commonly known as inharmonicity that frequently can be observed
in signals produced by musical instruments. A new subspace-based
method has been proposed for finding the fundamental frequency
and a set of small perturbations. We have compared this method to
methods based on a commonly used parametric model of the inhar-
monicity, which is based on a physical musical instrument model,
and the perfectly harmonic model where the frequencies are exact
integer multiples of the fundamental. The proposed method is both
computationally simple and more general than the estimator based
on parametric inharmonicity model and has been found to lead to a
reduced bias compared to the perfectly harmonic model and more
accurate estimates of the individual frequencies than both the other
methods for a piano signal.
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