
 

  

 

Aalborg Universitet

Material-Point Method Analysis of Bending in Elastic Beams

Andersen, Søren Mikkel; Andersen, Lars Vabbersgaard

Published in:
Proceedings of the Eleventh International Conference on Civil, Structural and Environmetal Engineering
Computing

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Andersen, S. M., & Andersen, L. (2007). Material-Point Method Analysis of Bending in Elastic Beams. In B. H. V.
Topping (Ed.), Proceedings of the Eleventh International Conference on Civil, Structural and Environmetal
Engineering Computing Civil-Comp Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60393099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/materialpoint-method-analysis-of-bending-in-elastic-beams(be591780-8eca-11dc-8188-000ea68e967b).html


Abstract

The aim of this paper is to test different types of spatial interpolation for the material-

point method. The interpolations include quadratic elements and cubic splines. A

brief introduction to the material-point method is given. Simple liner-elastic problems

are tested, including the classical cantilevered beam problem. As shown in the paper,

the use of negative shape functions is not consistent with the material-point method

in its current form, necessitating other types of interpolation such as cubic splines

in order to obtain smoother representations of field quantities. It is shown that the

smoother field representation using the cubic splines yields a physically more realistic

behaviour for impact problems than the traditional linear interpolation.

Keywords: MPM, spatial interpolation, cubic splines, beam bending, impact.

1 Introduction

Over the last decades the material-point method (MPM) has emerged as a serious

tool for numerical modelling of continuum problems involving large deformations

and contact between multiple bodies. The method in its current form has been devel-

oped by Sulsky et al. [1, 2]. The method originates from the particle-in-cell method,

developed by Harlow [3]. Some of the early applications of the material-point method

include impact problems [4] and simulations of membranes [5, 6].

In the MPM, two descriptions are used. Material points following the deformation

of the material are utilised to track the position and the state variables while a computa-

tional background grid is employed to solve the governing equations. As the material

points carry all the information about the material, total freedom exists for choosing a

mesh. Hence, the material-point method avoids some drawbacks associated with the

traditional methods adopting a purely Lagrangian or Eulerian description.
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Recently, research has focused on the accuracy and theoretical foundation of the

method. In [7] the energy conservation in the material-point method is analysed. In

the work of Guilkey and Weiss [8], implicit time integration is presented, and an alter-

native implicit scheme is proposed by Sulsky and Kaul [9]. Another way to obtain a

smoother field representation is given by Bardenhagen [10]. Here the field quantities

are smoothed by combining shape functions associated with the computational mesh

and characteristic functions defined for each of the material points. In the work by

Love and Sulsky [11], a formulation of the material-point method is proposed using

hyperelastic materials and nonlinear elastodynamics that is shown to preserve conser-

vative field properties.

An issue that deserves attention is the choice of computational mesh and spatial

discretization order, which is analysed in this paper. The traditional material-point

method approach has been to use a regular mesh consisting of rectangular or triangular

first-order elements. As known from the finite-element method, the use of low-order

elements can cause locking in problems where material bending is dominant. The use

of second-order elements (or computation cells) and cubic splines in the material-point

method is tested against first-order elements for simple elastic bending problems and

problems involving impact. However, the use of second-order finite elements implies

the use of shape functions that have the possibility to become negative. As shown

in the appendix, negative mass associated with grid nodes is not consistent with the

MPM in its current form.

The scope of this paper is as follows. Firstly, an outline of the governing equations

is given in Section 2. Secondly, the material-point method is presented in Section 3,

with particular focus on the four different spatial discretizations. Finally, numerical

examples are given in Section 4.

2 Governing equations

A linear-elastic continuum is considered. A steel beam can with reasonable accuracy

be described as such a material, provided that the deformations remain small. In

this paper, only two-dimensional problems are analysed and the initial computational

domain is denoted Ω0 ∈ R2. At the time t, the domain is denoted Ω(t). The boundary

∂Ω is divided into two disjoint sets: ∂Ωu with prescribed displacements and ∂Ωτ with

known traction.

The accuracy of a numerical model for an elastic continuum depends on its ability

to obey the three governing equations, i.e. balance of momentum, mass conservation,

and conservation of mechanical energy. Firstly, conservation of mass implies that

dρ

dt
+ ρ∇ · v = 0, (1)

where v = v(x, t) is the spatial velocity and ρ = ρ(x, t) is the current density. Further,

∇ is the gradient operator and ∇ · a is the divergence of the vector field a. Secondly,
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conservation of momentum involves that

ρ
dv

dt
= ∇ · σσσ + ρb, (2)

where σσσ = σσσ(x, t) is the Cauchy stress tensor and b = b(x, t) is the specific body

force. Finally, mechanical energy conservation is ensured by the equation

ρ
dE

dt
= σσσ :

dεεε

dt
+ ρv · b, (3)

where E is the internal energy per unit mass in the current configuration, εεε = εεε(x, t)
is the strain and dεεε/dt the corresponding strain rate. Here A : B = aijbij in Cartesian

coordinates. The total derivative d/dt is given as

dc

dt
=

∂c

∂t

∣

∣

∣

x

+ v · ∇c, (4)

where c is the considered field quantity and v is the velocity of the material relatively

to the coordinate system. When material points that follow the deformation of the

material are utilised, the relative velocity is zero and the convective term does not

appear. Furthermore, the balance of mass is implicitly assured.

In order to complete the description of the continuum, a constitutive law relating

the strain rates and the stress rates of the material is needed. The strain rate can be

determined from the equation

dεεε

dt
=

1

2

(

∇v + (∇v)T
)

, (5)

where superscript T denotes the transpose. The stress depends on the type of material

under consideration. A general linear-elastic constitutive model can be expressed as

dσσσ

dt
= D :

dεεε

dt
, (6)

where D is the fourth-order elasticity tensor.

3 The material-point method

3.1 Discretization

To formulate the material-point method (MPM) form of the governing equations,

Eqs. (1) to (3) must be given in a discrete form. The domain Ω0 is divided into Np

sub-domains Ωp and all the mass is ascribed to material points located in the centroid

of each domain. This provides the density field

ρ(x, t) =

Np
∑

p=1

mpδ(x − xp), (7)
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where mp is the mass associated with the material point at the spatial coordinates xp.

The values of mp are based on the initial configuration and they do not change during

the computation; hence, the total mass is conserved.

In order to obtain the material gradients, a computational grid is formed. Thus,

the domain Ω is divided into Ne finite elements. In the numerical examples, dif-

ferent kinds of discretization are applied, including first-order four-node rectangular

elements, second-order eight- and nine-node rectangular elements and cubic splines.

This defines a number of computational nodes, Nn, with standard nodal basis func-

tions Φi(x) associated with node i. By letting the nodal basis functions describe the

spatial variation, the velocity and the acceleration fields are represented as

v(x, t) =
Nn
∑

i=1

Φi(x)vi(t),
dv

dt
=

Nn
∑

i=1

Φi(x)
dvi

dt
, (8)

respectively, where vi(t) are the nodal values of the velocities at the time t. The

equations are solved in an updated Lagrangian frame, ensuring that no time derivatives

of the shape functions occur.

The weak form of the balance of momentum is obtained by multiplication of Eq. (2)

by an arbitrary test function w(x, t) and integrating over the domain Ω. Standard nodal

basis functions are also used to describe the test function w, i.e.

w(t) =
Nn
∑

i=1

Φi(x)wi(t), (9)

where wi(t) are the nodal values of the test function at the time t. Since w is arbitrary,

except where displacements are prescribed, the balance of momentum reduces to

Nn
∑

j=1

mij

dvj

dt
= f int

i + f ext
i . (10)

Here mij = mij(t) are the components of a consistent mass matrix formed at the time

t, whereas the internal and external forces are defined as

f int
i = −

Np
∑

p=1

mp

ρp

σσσp · Gip, f ext
i = τττ i + bi, (11)

respectively, where ρp = ρp(t) and σσσp = σσσp(t) are the mass density and Cauchy

stresses at the material point p and the time t, respectively. Further,

Gip = ∇Φi(x)|
x=xp

(12)

is the gradient of the nodal basis functions and the specific body force is given as

bi =

Np
∑

p=1

mpΦi(xp)bp(t), (13)
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where bp(t) = b(xp, t) is the external acceleration associated with material point p.

The applied traction is found by integrating over the boundary of the domain:

τττ i =

∫

∂Ωτ

Φi(x)τττ(x, t)dx. (14)

In most of the numerical examples presented, lumped nodal masses are utilised in

Eq. (10). The lumped mass associated with node i is expressed as

mi(t) =

Np
∑

p=1

mpΦi(xp(t)). (15)

Thereby, using lumped masses, the balance of momentum can be defined as

mi

dvi

dt
= f int

i + f ext
i . (16)

3.2 The MPM-algorithm

The general algorithm of the material point method can be given as follows. A prob-

lem is formulated with a set of material points that are given all the relevant material

properties. Firstly including any initial conditions, the boundary conditions are im-

posed on the underlying grid and initial conditions are imposed at the material points.

Then the time integration algorithm is started. For all time steps,

1. a computational mesh is generated,

2. the information is transferred from the material points to the grid nodes,

3. the equation of momentum is solved at the grid nodes,

4. information is transferred back to the material points,

5. the state variables are updated.

Different implementations are possible. The algorithm used in this paper is given as:

1. Initialisation of state variables at the material points at the time tk = 0.

2. At each time step: Generation of a computational background mesh.

3. Nodal velocities are calculated by solving the system

Nn
∑

j=1

mk
ijv

k
j =

Np
∑

p=1

mpv
k
pΦi(xp), (17)

where
∑Nn

j=1
mk

ijv
k
j = pk

i is identified as the nodal momentum.
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4. The strain increments ∆εεεp at material point p and the time tk are found by

∆εεεk
p =

∆tk

2

Nn
∑

i=1

(

Gk
ipv

k
i + (Gk

ipv
k
i )

T
)

. (18)

5. The strains are updated at the material points, i.e. εεεk+1
p = εεεk

p + ∆εεεk
p.

6. The stresses at the material points are found according to a chosen strain-driven

constitutive model and based on the updated strain εεεk+1
p .

7. The vectors of internal and external nodal forces are found by Eq. (11).

8. Updated velocities at the material points are found using internal forces:

vk+1
p = vk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij Φj(x

k
p)f

int,k
j . (19)

9. The new position of the material points are found by

xk+1
p = xk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij Φj(x

k
p)p

k
j . (20)

10. The material density is updated at the material points as

ρk+1
p = ρk

pe
−∇·v∆t. (21)

11. Finally, set tk+1 = tk + ∆tk and k = k + 1 and repeat from item 1.

Typically, the time step is constant, i.e. ∆tk = ∆t = constant. The interpolation from

the material points to the computational mesh defined by Eq. (17) is a weighted-least-

squares approach [2]. Several choices have been made in order to obtain the above

algorithm. For instance, for momentum-based updates, Eq. (19) has been made in

order to reduce the numerical dissipation and increase the stability of the method.

Still a number of critical choices are to be made, regarding

• the size of the computational cells,

• the use of an adaptive grid or a uniform grid,

• the number of material points per cell,

• the application of implicit or explicit time integration,

• the use of a forward leap-frog algorithm or higher-order time integration,

• the use of consistent or lumped mass,

• the type of background mesh to use.

The first three items regarding the spatial discretization are problem specific and will

not be addressed here in more detail. The two next issues relate to the accuracy of

the method for a given computational cost. Here, an explicit formulation with forward

leap-frog integration is used. The two last issues regarding the type of background

mesh and the use of consistent or lumped masses are analysed in this paper.
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3.3 Setting of the problem

As mentioned, the field variables are represented by the nodal basis functions. Thereby

also the stress increments will vary according to the shape functions used. When linear

shape-functions are applied, the gradient of the shape functions in either direction are

constant within an element. Hence, when more material points are located within

an element, stress-increments for all these material points are identical. With regard

to beam problems in structural mechanics, the stress is known to vary according to

Navier’s equation:

σx(x, y) =
M(x)

Ix(x)
y, (22)

where σx(x) is the normal stress, M(x) is the moment about the neutral axis, x is the

coordinate along the neutral axis, y is the perpendicular distance to the neutral axis

and Ix is the second moment of inertia about the neutral axis. The classical problem

of a cantilevered beam with the length L and exposed to a single force, F , is illustrated

in Figure 1. In this particular case, the moment is given by M(x) = (x − L)F . This

suggests that using quadratic shape functions, where the stress increments are varying

linearly within each element, is better suited for the solution of beam problems. Also

it is known from finite-element theory that the use of first-order elements can cause

locking for this kind of problem. In the following, the elements used for the numerical

experiments are presented.

(a)

(b) (c)

A

A

L

H

P

x

x

y

y

σn

M(x)

M(0) = PL
M(L) = 0

y = H/2

Figure 1: A classical problem in structural mechanics: (a) Geometry and boundary

conditions, (b) distribution of the bending moment, M(x), and (c) distribution of the

normal stress, σn, at cross-section A−A.
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3.4 Different interpolations used

The four types of elements utilised in the background mesh are shown in Figure 2.

Standard normalised coordinates are used. For the linear elements as well as the nine-

node quadratic elements and the eight-node serendipity element, ξ and η vary between

−1 and 1, i.e. ξ ∈ [−1, 1] and η ∈ [−1, 1]. Lagrangian interpolation functions are

applied, defined by:

• Linear element with four nodes:

N1(ξ, η) = 1

4
(ξ − 1)(η − 1), N2(ξ, η) = −1

4
(ξ + 1)(η − 1),

N3(ξ, η) = 1

4
(ξ + 1)(η + 1), N4(ξ, η) = −1

4
(ξ − 1)(η + 1).

• Quadratic element with nine nodes:

N1(ξ, η) = 1

4
(ξ2 − ξ)(η2 − η), N2(ξ, η) = 1

2
(1 − ξ2)(η2 − η),

N3(ξ, η) = 1

4
(ξ2 + ξ)(η2 − η), N4(ξ, η) = 1

2
(ξ2 + ξ)(1 − η2),

N5(ξ, η) = 1

4
(ξ2 + ξ)(η2 + η), N6(ξ, η) = 1

2
(1 − ξ2)(η2 + η),

N7(ξ, η) = 1

4
(ξ2 − ξ)(η2 + η), N8(ξ, η) = 1

2
(ξ2 − ξ)(1 − η2),

N9(ξ, η) = (1 − ξ2)(1 − η2).

• Serendipity element with eight nodes:

N1(ξ, η) = 1

4
(1 − ξ)(1 − η)(−ξ − η − 1), N2(ξ, η) = 1

2
(1 − ξ2)(1 − η),

N3(ξ, η) = 1

4
(1 + ξ)(1 − η)(ξ − η − 1), N4(ξ, η) = 1

2
(1 + ξ)(1 − η2),

N5(ξ, η) = 1

4
(1 + ξ)(1 + η)(ξ + η − 1), N6(ξ, η) = 1

2
(1 − ξ2)(1 + η),

N7(ξ, η) = 1

4
(1 − ξ)(1 + η)(−ξ + η − 1), N8(ξ, η) = 1

2
(1 − ξ)(1 − η2).

The last type of interpolation employs cubic splines that for the one-dimensional

case are given by

S3(ξ) =











0 for |ξ| > 2,
1

6
(2 − |ξ|)3 for 1 < |ξ| < 2,

2

3
− |ξ|2 + 1

2
|ξ|3 for 0 < |ξ| < 1.

(23)

This cubic-spline interpolation is used for each individual material point and maps the

material-point values to nodes a maximum distance of two grid nodes away in either

direction. In two dimensions, this provides the 16-point stencil shown in Figure 2.

Thereby the local coordinates are restrained by ξ ∈ [0, 1] and η ∈ [0, 1], and the shape

functions become:

8



( 1, 1)--( 1, 1)--( 1, 1)--( 1, 1)--

(1, 1)

(1, 1) (1, 1)

2 3

4

567

8 10

11

12

13

14

15

16

12

34

1

2

3

4

5

6

7

8

912 3

4

567

8 9

1

(1, 1)

ξ

ξ ξ ξη

η η η

(a) (b) (c) (d)

Figure 2: The different elements used: (a) Linear interpolation, (b) serendipity ele-

ments, (c) quadratic interpolation and (d) cubic splines.

N1(ξ, η) = 1

36
(1 − ξ)3(1 − η)3, N2(ξ, η) = 1

6
(1 − ξ)3(2

3
− η2 + 1

2
η3),

N3(ξ, η) = 1

6
(1 − ξ)3(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3), N4(ξ, η) = 1

36
(1 − ξ)3η3,

N5(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)1

6
(1 − η)3, N6(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)(2

3
− η2 + 1

2
η3),

N7(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3),

N8(ξ, η) = (2

3
− ξ2 + 1

2
ξ3)1

6
η3, N9(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)1

6
(1 − η)3,

N10(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)(2

3
− η2 + 1

2
η3),

N11(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3),

N12(ξ, η) = (1

6
+ 1

2
ξ + 1

2
ξ2 − 1

2
ξ3)1

6
η3,

N13(ξ, η) = 1

36
ξ3(1 − η)3, N14(ξ, η) = 1

6
ξ3(2

3
− η2 + 1

2
η3),

N15(ξ, η) = 1

6
ξ3(1

6
+ 1

2
η + 1

2
η2 − 1

2
η3), N16(ξ, η) = 1

36
ξ3η3.

Since each material point interpolates to all grid nodes up to two cells away, it is not

clear how to interpolate near the boundary. For the three other types of interpolation,

a rigid boundary is enforced by setting the velocity of the grid nodes to zero at the

boundary. Here a simple approach is made for the cubic splines. Rigid boundaries are

imposed by having an extra column of grid nodes where the velocities are set to zero.

4 Numerical examples

In order to test the accuracy of the different types of interpolation, the free vibrations

of a linear-elastic bar are analysed. The geometry of the problem is shown in Figure 3.

In the present analysis, the length of the bar is L = 5 and the height is h = 1. Young’s

modulus is E = 104, while Poisson’s ratio is ν = 0.3 and the initial mass density

is ρ0 = 103. A discretization with 180 material points and 45 grid nodes is applied,

9



using 3 × 3 uniformly distributed material points in each computation cell. The total

time of the simulation is ttot = 8 and the fixed time step ∆t = 0.003 is utilised. The

bar is given a cosine-shaped initial velocity field

v(x) = A cos
(πx

L

)

, (24)

A small velocity amplitude of A = 0.01 is applied in order for the grid masses to

remain positive when quadratic nine-node elements are used. With the other three

types of elements, large amplitudes can be prescribed without such problems.

The velocity gradients stemming from the initial velocity field yield strains, and

therefore stresses, thus leading to an interchange from kinematic into potential energy.

Since no material dissipation is present in the model, undamped free vibrations should

occur with no loss of mechanical energy. Therefore, the quality of the different types

of interpolation may be tested by their ability to conserve mechanical energy.

The energy of the system is most naturally measured by the energy of the material

points, as they carry all the information about the problem at all stages of the compu-

tational cycle. As only mechanical energy is considered, the total energy of the system

is given by

Etot = Ekin + Epot (25)

where Ekin denotes the kinetic energy and Epot denotes the potential energy. The

kinetic energy is defined as

Ekin =
1

2

Np
∑

p=1

mpvp · vp (26)

and, provided that no gravitational fields or other potential fields exist, the potential

energy is solely the strain energy of the material points, i.e.

Epot =
1

2

Np
∑

p=1

mp

ρp

σσσp : εεεp (27)

Here it is noted that the strain energy is mathematically well defined, as the calculation

of stress increments according to Eq. (6) yields a hypo-elastic model. Hence, only the

incremental form of the constitutive model is valid and the relation σσσ = D : εεε is gen-

erally not valid. However for small deformations it is presumed that the expression for

0 1 2 3 4 5 6 7
0

0.5

1

x

y

Figure 3: The discretization for the vibrating-bar problem
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the potential energy is sufficiently accurate to provide information about the accuracy

of the different elements.

When lumped masses are used, the kinetic energy of the nodes is defined as

Enodes
kin =

1

2

Nn
∑

i=1

mivi · vi. (28)

When consistent mass is used, the nodal kinetic energy is given by

Enodes
kin =

1

2

Nn
∑

j=1

mijvj · vi. (29)

For conservative systems, where the mechanical energy is to remain constant, a total

error is defined as the change in total energy:

Etot = Etot − Einit
tot . (30)

Alternatively, the total error is defined as

Etot = ∆Ekin + ∆Epot, (31)

where ∆Ekin and ∆Epot express the changes in kinetic and potential energy, respec-

tively, between the initial and the current configuration of the system. In accordance

with the definitions by Bardenhagen [7], this error is divided into an error due to inter-

polation of kinetic energy from the grid to the material points, Eint, and an algorithmic

error associated with everything else, Ealg, i.e.

Etot = −Eint − Ealg, (32)

where

Eint = ∆Enodes
kin − ∆Ekin, Ealg = −∆Enodes

kin − ∆Epot.

In order to test the accuracy of the different elements used, the quantities Ekin,

Enodes
kin , Epot, Etot, Eint and Ealg are calculated at each time step of the simulation. The

results are shown in Figures 4 to 7 using lumped masses.

It is seen that linear elements, the 9-node quadratic elements and the cubic splines

all yield smooth vibrations, while the 8-node serendipity elements perform very poorly.

This is likely due to the negative grid masses associated with corner nodes. Also, it

is observed that the total energy is almost conserved for all the simulations. Hence,

the interpolation error and the algorithm error cancel. This is observed very clearly

for the eight-node elements, where the errors are large, but total energy is neverthe-

less conserved. Comparing the magnitude of the interpolation error, it is smallest for

the nine-node interpolation, followed by the linear elements. Somewhat surprisingly,

the interpolation error is larger using cubic splines than using linear elements. When

consistent masses are used, the interpolation error becomes zero. In Figure 8 the in-

terpolation error is compared for the linear and the quadratic 9-node elements and it

is clearly observed that the quadratic interpolation reduces the interpolation error.
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Figure 4: Energy measures for the vibrating-bar problem using 4-node elements.
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Figure 5: Energy measures for the vibrating-bar problem using 8-node elements.
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Figure 6: Energy measures for the vibrating-bar problem using 9-node elements.
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Figure 7: Energy measures for the vibrating-bar problem using cubic-splines.
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Figure 8: Comparison of the interpolation errors.

4.1 Bending of a cantilevered beam

Next, the problem presented in Subsection 3.3 is analysed for a beam with the length

L = 8 and the height H = 1. In [12] an analytical solution for the deflections is given

for linear-elastic materials. The horizontal deflection is given by

u(x, y) = −
Px2y

2EI
−

νPy3

6EI
+

Py3

6GI
+ (

PL2

2EI
−

Pc2

2GI
)y (33)

and the vertical deflection is given by

v(x, y) =
νPxy2

2EI
+

Px3

6EI
−

PL2x

2EI
+

PL3

3EI
. (34)

It is basically a quasi-static problem where equilibrium is presumed for the bar during

the deformation. This leaves the question on how to simulate it using the dynamic

framework of the material-point method as presented above. Many solutions to this

probably exist. Here it is chosen to gradually apply a force as a material acceleration

b(xP , t). The force is linearly increased starting from zero during the simulation.

The material point in the upper right-hand corner is given a material acceleration

corresponding to the downward force F applied as

bp,y =
−F

mp

mp

mtot

, (35)

where bp,y denotes the y-component of acceleration of the material point, mp is the

mass associated with the material point, at which the acceleration is applied, and mtot

is the total mass of the beam. The undeformed model is shown in Figure 9 and the

material parameters for the beam are: E = 3 · 105, ν = 0 and ρ0 = 103. The number

of material points is 288, whereas 133 grid nodes are used. In the initial configuration,

3 × 3 uniformly distributed material points are applied within each computation cell.

The total simulation time is ttot = 20 with the time step ∆t = 0.003.

Only a force of F = 100, corresponding to very small deformations, is applied.

This is done for two reasons: Firstly, in order for the analytic solution to be valid,

small deflections are presumed; secondly, small deflections are necessary to avoid a

change in sign of the nodal mass for the quadratic 9-node elements.
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Figure 9: The discretization of the cantilevered beam.
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Figure 10: Horizontal normal stresses in the cantilevered beam at the end of the simu-

lation and with different kinds of interpolation: (a) linear interpolation; (b) serendipity

elements; (c) quadratic interpolation; (d) cubic splines.

The normal stresses at the material points at the end of the simulation with the

different element types are shown in Figure 10. It is seen that the correct variation of

the stress, linearly in both directions, is obtained for the eight- and nine-node elements.
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Figure 11: Vertical deflection of the beam neutral axis at the end of the different MPM

simulations compared with the analytical solution.

The stresses are of the same magnitude for the two types of elements. For the linear

elements, as determined by the gradients of the shape functions, the horizontal stresses

within an element are constant while the correct linear variation is observed in the x-

direction, i.e. along the beam. For the simulation using cubic splines it is seen that

the combination of the cubic splines in the interior and linear elements at the border

introduces an nonphysical stress variation.

In order to display the deflection of the neutral beam axis, the average deflection

of the two material points near the neutral beam axis is calculated and plotted against

the x-coordinate. The result is shown in Figure 11. The analytical solution is also

plotted. As seen there is a considerable difference in the magnitude of the deflections.

The smaller deflections are observed for the linear interpolation while the simulation

using the cubic splines yields the largest deformations. The deflections found using

the eight- and nine-node elements are almost identical. The cubic splines yield a result

that is closest to the analytical solution, while the linear and the quadratic interpola-

tions yield deflections significantly lower than the analytical solutions.

In order to show the variation of the deflections, another simulation is performed

using cubic splines. The force is increased by an order of magnitude to F = 800. The

final positions of the material points are plotted along with the analytical deflection

calculated from Eq. (33) and (34). The result is shown in Figure 12. Clearly, the

simulation correctly captures the basic features of the analytic solution.

4.2 A box impacting on a rigidly supported beam

A rigidly supported beam is hit by a falling box. The setting of the problem is shown

in Figure 13. The beam has the material properties E = 105, ν = 0.3 and ρ0 = 103,

whereas the box has the properties E = 106, ν = 0.3, ρ0 = 103. As illustrated in

Figure 13, 864 material points with 3 × 3 material points per cell are applied, and

there are 441 grid nodes in the model. The total time of the simulation is ttot = 3,

using a time step of ∆t = 0.005, and the initial velocity of the box is vinit
box = (0;−2),

i.e. the box moves downwards.
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Figure 12: The deflection of the beam obtained using cubic splines compared to the

analytic solution (F = 800).

A change of sign of the grid masses occurs when the nine-node elements with

quadratic interpolation are employed. Hence, this kind of element is not able to sim-

ulate the problem. For the remaining element types, Figures 14, 15 and 16 show the

energy and the computational errors. The shared velocity field for the two bodies leads

to a funny-looking final configuration, where the bar has got an upward deflection as

shown in Figure 17. The energy measures do not give a very clear picture of what is

going on. Therefore, the average y-position of the material points that make up the

box is plotted as a function of time in Figure 17.

The collision modelled using the cubic splines gives a much smoother collision

than the linear elements or the eight-node serendipity elements. The upward velocity

is considerably lower, indicating that the initial kinetic energy of the box has been

transformed to kinetic energy in the beam and strain energy during the collision. Also,

the figure indicates that the larger amount of kinetic energy in the box is maintained

in the simulations with the eight-node elements.

l

h

L

Hx

y v
init
box

Figure 13: A box falling on a beam: Definition of geometry and boundary conditions

(left) and initial discretization (right).
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Figure 14: Energy measures for the impact problem using four-node elements.
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Figure 15: Energy measures for the impact problem using eight-node elements.
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Figure 16: Energy measures for the impact problem using cubic splines.

5 Conclusion

Different types of interpolation for the material-point method have been tested. As

shown in the first numerical example, the vibration of a linear-elastic bar, quadratic

interpolation provides the most accurate results for the same number of material points

and the same global number of grid nodes. However, when large deformations occur,

the sign of the mass interpolated to the grid nodes changes for some of the nodes and

the use of quadratic elements breaks down.

The main advantage of the material-point method is the ability to handle large de-

formations, so therefore the use of quadratic elements is very limited. This leads to the

study of interpolation using cubic splines. As shown for the vibrating-bar problem, the

order of accuracy using cubic splines is only comparable to the linear interpolation.
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Figure 17: Vertical position of the box during the simulation (left) and the deformation

in the final configuration using cubic splines (right).

The main advantage of using the cubic splines is the smoother field representation.

The advantage is demonstrated by a third numerical simulation, a falling box impact-

ing with a beam. When linear interpolation is used, the box oscillates on the beam

upon collision before it finally bounces off. Using cubic splines, the box hits the bar

and bounces off in one smooth movement as physically expected. Therefore, although

computationally more expensive, the cubic splines are better suited for problems in

which the modelled field quantities vary in a complex way.

Perhaps the main conclusion is that, as the quadratic interpolation is unstable and

the cubic splines do not observe a higher order of accuracy for this implementation of

the MPM, the means to obtain higher accuracy for the MPM lies elsewhere. Things to

explore could be other ways of calculating internal forces by using another integration

than the Riemann sum over material points.
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Appendix: Material-point method with negative mass

In the traditional version of the material-point method (MPM) using linear interpola-

tion, the shape functions are always positive. This is not the case for the nine-node

quadratic element and the eight-node serendipity element. Here it is analysed, how

the method behaves, when negative grid masses are encountered. It is presumed that

lumped masses are used and that all the material points have the same mass. Without

any loss of generality, only a rigid-body motion is considered.

Step 1: A negative grid mass mk
i is encountered at node i and time step k.

Step 2: The grid velocities are found according to the definition

vk
i =

1

mi

Np
∑

p=1

mpv
k
pΦi(x

k
p), i = 1, 2, . . . , Nn. (36)

This yields the correct sign of the velocity relatively to the velocity of the material

points as the negative mass is cancelled by the negative shape function value.

Step 3: The strain increments at the material points are calculated as

∆εεεk
p =

∆tk

2

Nn
∑

i=1

(

Gk
ipv

k
i + (Gk

ipv
k
i )

T
)

, p = 1, 2, . . . , Np. (37)
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If the gradients of the shape functions are correct, this is expected to yield the correct

result. The update of stains and stress does not cause any problems in this context.

Step 4: Calculation of the internal forces in the background grid by means of

f
int,k
i = −

Np
∑

p=1

mp

ρk
p

σσσk
p · G

k
ip, i = 1, 2, . . . , Nn. (38)

Again, this is to be correct if the gradients of the shape functions are correct.

Step 5: Update the velocity of the material points as

vk+1
p = vk

p + ∆tk
Nn
∑

i=1

Nn
∑

j=1

m−1
ij f

int,k
j Φj(x

k
p), p = 1, 2, . . . , Np. (39)

Here the negative sign of the mass and the negative sign of the shape-function also

cancel each other, leading to the a consistent velocity update.

Step 6: Update the position of the material points,

xk+1
p = xk

p +
∆tk

mp

Nn
∑

i=1

pk+1
i Φi(x

k
p), p = 1, 2, . . . , Np, (40)

where the updated momentum is given by pk+1
i = vk+1

i mk
i + f

res,k
i ∆tk. Here it is

observed that the momentum is directed opposite to the material momentum. In the

update of the material point positions, three quantities are directed opposite to the

material quantities: pk+1
i , mk

i and Φi(x
k
p). Therefore, the material-point update is

inconsistent when negative mass is encountered.

In the testing of the eight- and nine-node elements, two characteristic features are

observed. The nine-node quadratic element yields very good results when the grid

masses do not change sign, but breaks down immediately when the masses change

sign. For the eight-node element, the shape functions associated with the four corner

nodes are always negative, while the shape functions associated with the four side

nodes are always positive. The results obtained with the eight-node element are very

inaccurate, but it does not get unstable, as does the nine-node element. These two

observations are probably due to the ‘self restoration’ inherent in the material-point

method. The incorrect material-point update is to a certain extent compensated for

in the next time step, when the new internal forces are calculated. If the sign of the

nodal mass at a grid node changes between two time steps, this restoration becomes

a destabilisation instead. Consequently, the simulations become unstable, as observed

for the nine-node quadratic element.
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