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a b s t r a c t

The problem of online monitoring of cows’ presence and pasture time in an extended area

covered by a strip of new grass using wireless sensor networks has been addressed. The

total pasture time in the extended area was estimated by measuring the pasture time in a

specific part of that area called the gateway connectivity area where sensor nodes mounted

on the cows could communicate directly with a gateway. Packet loss causes a node that was

present in the connectivity range of the gateway frequently to be classified as an absent

node. Therefore, a moving average window with optimal window length and threshold was

designed to minimize the misclassification. As the measured pasture time in the gateway

connectivity area was an underestimation of the total pasture time in the extended area,

an area-based correction factor, same for all individual animals was applied.

As only 23% of the animals in a herd were equipped to be monitored by sensor nodes,

investigations to evaluate if the monitored number of animals could represent the whole

herd were of great importance. To accomplish the investigations, the number of monitored

cows by sensor nodes and the total number of cows (with and without sensor nodes) in

the extended area were counted manually each minute over a period of 3 h during 3 days.

Pearson chi-square test of goodness of fit showed that the number of cows in the extended

area was normally distributed. Furthermore, a statistical test showed that the mean num-

ber of monitored cows in the extended area and the mean of total number of cows in the

extended area corresponded with the percentage of monitored cows by sensor nodes in the

herd (23%).

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Public perception, animal welfare, and milk quality call for
a continued use of grasslands for grazing in dairy farming
(Torjusen et al., 2001). To meet the public concern some milk
producers offer incentives to dairy farmers if they let their
dairy cows graze, but for many farmers this is impossible
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Horsens, Denmark. Tel.: +45 89993014; fax: +45 89993100.

E-mail address: esmaeil.nadimi@agrsci.dk (E.S. Nadimi).

due to livestock management and control problems. Manage-
ment and control relies on monitoring of the herd, which is
significantly complicated by the inherent distribution of the
animals as well as the outdoor location. Successful grazing in
developed agriculture calls for automated and efficient mon-
itoring and control of the animals. The monitoring should
allow us to establish a better understanding of animal behav-
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ior, detect individuals with potential health problems, and
generally optimize the grazing process, all things that poten-
tially would have a significant impact on practical farming.

The general behavior of a herd of animals is well known
by farmers but not so well documented. Different aspects of
animal behavior have been studied by different researchers.
The position of animals in the field were tracked and moni-
tored by White et al. (2001), Schwager et al. (2007) and Butler
et al. (2004) while Oudshoorn et al. (2008) made investigation
based on the positions and the velocities of the movements in
the field. Different behavior phases of dairy cattle were evalu-
ated by Munksgaard et al. (2005), Wilson et al. (2005), Nadimi et
al. (2007) and Bishop-Hurley et al. (2007). None of these refer-
ences, however, addressed an online monitoring system that
registers the time that animals spent in specific areas of the
field. Such information would be useful in strip crop grazing
systems, where the animals are offered a controllable section
of, e.g. new grass at regular intervals (Oudshoorn and Nadimi,
2007). The total number of animals roaming in a particular
area of the field and their total pasture time in that area can
be an indicator of the grass quality, and quantity and may help
determine the right time to provide access to a new strip. From
a strip crop grazing point of view, the question is if we can set
up an automatic monitoring system that can identify animals
present in the new strip, determine how long time they spend
there and based on that say something about the need for a
new strip of grass. In addition it is interesting to investigate if
the whole herd has to be monitored or if a subset of the herd
can be used as an indicator of the need for new feed. Moni-
toring only a subset of a herd might be more economical and
practical.

The most popular system for outdoor localization is based
on the Global Positioning System (GPS) (Butler et al., 2004;
Oudshoorn et al., 2008) but energy consumption and cost
makes it difficult to apply in practical farming. In addition
satellite connection loss has been reported frequently in the
research done by Oudshoorn et al. (2008). A simpler alterna-
tive is based on radio frequency identification (RFID) tags (Ng
et al., 2005). Locating RFID readers strategically in the field
allow animals entering a specific area to be registered. The
main drawbacks of RFID technology are the relatively short
communication range (1–2 m) and the fact that the devices
are passive limiting future extensions such as temperature
and motion monitoring. Monitoring relatively large extended
areas (1800–3000 m2) using RFID tags also demand a signifi-
cant infrastructure. A more natural candidate for an online
monitoring framework is based on wireless sensor network
technology. By providing each animal with a sensor node,
which incorporates computation, sensing, and wireless net-
working capabilities allows relevant health parameters and
location to be collected at regular intervals on each individual.
Information can flow across the group as in a modern commu-
nications network, using low-power radios with well-designed
protocol stacks thereby extending the communication range
of system significantly at no extra cost. This permits data to
be aggregated across the network and forwarded to control
and management systems. Local computational capabilities
on the individual sensor node allow complex filtering and
triggering functions, and application or sensor-specific data
compression algorithms. The application of sensor networks

for animal monitoring was addressed by Szewczyk et al. (2004),
Wang et al. (2006), Bishop-Hurley et al. (2007), Nadimi et al.
(2007) and Schwager et al. (2007).

The objectives of this research were to demonstrate regis-
tration of pasture time in a specific area (a strip with new grass)
using a ZigBee (Szewczyk et al., 2004)-based wireless sensor
network and single hop connectivity. Another objective was
to prove two extensions: an area extension where knowledge
about animal presence in a limited area is used to predict ani-
mal presence in a larger extended area. The other extension
aims at determining the whole herd presence based on reg-
istration of a subset of tagged animals. Yet another objective
was to solve a specific problem regarding packet loss using
data post processing.

Each node in the network was programmed to transmit
data when located within communication range of a gateway
in the area with new grass as illustrated in Fig. 1.

The principle is single hop connectivity that is the gate-
way only registers presence when a specific node is within
the communication range and actively participates in hand-
shaking communication (Lewis, 2004). In this research, multi
hop connectivity as used in modern communication networks
was not utilized.

As the area defined by the communication range does not
necessarily cover the same area as the new grass strip, an area-
based correction factor was applied to the measured time in
the gateway connectivity area to estimate the total pasture
time in the new grass strip.

Most researches (e.g. White et al., 2001; Butler et al., 2004;
Munksgaard et al., 2005; Nadimi et al., 2007; Oudshoorn et al.,
2008) only monitored a portion of a herd of animals but the
monitored behavior was generalized to the whole herd with-
out any reliable proof. However, it is of great importance to
demonstrate that the monitored subset of a herd can repre-
sent the whole herd. In the present paper, a statistical test is
suggested to determine if the number of monitored animals
in the new grass strip could represent the whole herd.

The remainder of this paper is organized as follows. Sec-
tion 2 describes materials and methods that have been used to
monitor the pasture time and animal presence in an extended
area. Section 3 describes the experimental setup and results
and finally, the conclusions are presented.

2. Materials and methods

2.1. Materials

MPR2400 Micaz sensor motes from Crossbow were used for
the experiments in this paper. They have a Chipcon CC2420
radio, which uses 2.4 GHz IEEE 802.15.4/ZigBee RF transceiver
with MAC support. TinyOS was running on the motes. In order
to register the absolute time when the nodes were within
range of communication with the gateway, the gateway was
programmed to register the arrival time of the packets dissem-
inated by the nodes as a time stamp in the received packet.
When a node desired to transmit a message, handshaking
protocols with the destination node were used to improve reli-
ability. The destination and gateway transmitted alternately
as follows: request to send, ready to receive, send message,
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Fig. 1 – Basic strategy for strip crop grazing.

message received. The sampling rate for the packet dissemi-
nation was chosen as 1 Hz (Nadimi et al., 2006).

The CC2420 radio supports up to 255 different transmission
power levels and allows for a programmable transmission fre-
quency. In order to minimize the number of variables in the
experiment, the RF transmission frequency was fixed at a sin-
gle frequency band (2.48 GHz) while the transmission power
(1 mW) was selected to ensure that the nodes were able to
communicate with the gateway only in a certain area, i.e. a
part of the new grass strip (gateway connectivity area).

2.2. Methods

Outdoor wireless communication channels as used in this
work are inherently unreliable and the effect of packet loss
cannot be neglected. Here, the basic idea is to use arrival of
packets as the only indicator for classifying nodes as being
within or outside the gateway communication range. Packets
disseminated by each sensor node contained the identifica-
tion number (node ID) of the node. The packet arrival time
was registered by the gateway and indicated the presence of
the node within the communication range of the gateway at
that time instant. In order to minimize misclassification due
to packet loss in the presence of obstacles, a moving average
window was applied to packet arrival sequence. An optimiza-
tion problem was set up to find the optimal window length
and the optimal threshold for classification.

2.3. Estimation of window length and threshold value

2.3.1. Packet delivery performance
Once the nodes were deployed, each of them followed a
sequence of instructions to gather information about its sur-
roundings and to transmit data packets toward the gateway.
Intermittent communication due to poor connectivity with
the transceiver, presence of obstacles as an interferer and gen-
eral unreliability in the communication channels caused loss

of packets. As an example, packet delivery performance for
one of the nodes in the communication range of the gateway is
represented in Fig. 2 in which 1 is an indicator of packet arrival
and 0 indicates packet loss. The packet loss in this example
was 312 out of 1000 packets or 31.2%.

As it can be seen from Fig. 2, it would lead to a high misclas-
sification rate if packet loss was taken as an indication of the
cow being outside the communication range of the gateway.
Therefore a moving average window and a threshold opera-
tion were employed to minimize misclassification, i.e. if the
average of the packet delivery values in a window around a
given time instant was larger than a given threshold, the cow
was classified as being within the communication range of the
gateway at that time instant.

To calculate the optimal window length and threshold
value, another experiment was carried out in which the

Fig. 2 – Example of packet delivery performance in the
network when the sensor node is within the
communication range of the gateway. 1 indicates packet
arrival and 0 indicates packet loss.
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gateway was programmed to measure the received signal
strength (RSS) of the incoming packets to estimate the dis-
tance between sensor nodes and the gateway. Assuming that
the RSS distance estimate is used as ground truth and based
on packet delivery performance, an optimization problem for
estimation of the optimal window length and the thresh-
old could be formulated. The following sections present the
details of the approach applied.

2.3.2. RSS measurement analysis
In order to convert the received signal strength to an accu-
rate estimate of the distance between the gateway and the
node, extensive preliminary field measurements and calibra-
tions were carried out. Fig. 3 shows the graph of signal strength
versus distance for one of the nodes during calibrations. The
received power level can be converted to a distance estimate
by using a radio wave propagation model fitted to the experi-
mental data (Kotanen et al., 2003; Nadimi et al., 2007):

20 log d = PTx − PRx + C (1)

where PTx [dB m] and PRx [dB m] are the transmitted and
received power levels, respectively. d [m] is the distance
between transmitter and receiver. In this model, constant
C represents the antenna gain and wavelength effects and
was estimated by minimizing the sum of squared differences
between the experimental RSS and the modeled RSS. As all the
nodes have different characteristics such as different antenna
gains or different radios, the graph of received signal strength
versus distance (Fig. 3) is not the same for all the nodes. There-
fore, the optimal constant C in Eq. (1) is different from one
node to another one (the range varied between −60 dB m to
−55 dB m). In the present research, the constant C calculated
for one of the nodes (−56 dBm) was selected as the optimal
constant representing antenna gain and wavelength effect for
all the nodes. This strategy tends to diminish precision of

Fig. 3 – RSS vs. distance for fitted optimal propagation
model and experimental data. Black curve: propagation
model; blue curve: experimental data. Arrows as indicator
of error bar (standard deviation) at each point. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the
article.)

Fig. 4 – Example of estimated distance between sensor
node and the gateway in field experiment with cows.

the results of each individual node (curve fit and estimated
distance between nodes and gateway) and consequently the
whole system. However, that is the practical solution to imple-
ment a similar monitoring system to a large herd of animals
with a large number of nodes as it will be time and energy
consuming process to estimate the optimal constant C for all
the nodes.

To estimate the distance between sensor nodes and the
gateway in case of missing RSS data due to packet loss, a
simple Kalman filter with intermittent observation was imple-
mented to the RSS data (Sinopoli et al., 2004). Modeling the
data as a discrete time Wiener process, the Kalman filter was
designed to estimate the states not observed due to packet
loss. Estimated distances between a sensor node and the gate-
way during an experiment with cows in the field are presented
in Fig. 4.

2.3.3. Optimal window length and threshold
The packet arrival sequence �(t) (t = 1, 2, . . . is time (s); �(t) = 1 if
a packet arrived at time t, and �(t) = 0 otherwise) was filtered
by use of a moving average window of length WL (odd integer)
to obtain a smoothed sequence � ′(t):

� ′(t) = 1
WL

WL∑
i=1

�

(
t − i + WL + 1

2

)
(2)

To classify a node as being inside or outside the gateway com-
munication range at time t, a threshold T was introduced,
i.e. the node was classified as inside if � ′(t) ≥ T and outside if
� ′(t) < T. In order to find the window length, WL and threshold,
T that minimized the likelihood that a node was wrongly clas-
sified (i.e. classified as being within the connectivity range r0

when it was not and vice versa) a minimization criterion was
defined:

J = min
WL,T

∑
e2(t) (3)
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Fig. 5 – Example of packet reception rate vs. distance from
gateway for a node (no obstacles between node and
gateway).

where the classification error e(t) was defined as:

e(t) =
{

� ′(t) − T if � ′(t) ≥ T and r̂(t) > r0 or � ′(t) < T and r̂(t) ≤ r0

0 otherwise
(4)

In Eq. (4), r̂(t) is the RSS-based estimate of the distance between
a node and the gateway and r0 (gateway connectivity range)
was set to 25 m based on packet reception rate (example in
Fig. 5). The selected value of r0 reflects a compromise: on one
hand a large value of r0 was desired to make the covered circle
as large as possible; on the other hand r0 should not be large to
avoid unreliable classification because of low reception rate at
high distances from the gateway (Fig. 5). Among all the facts
which can intensify packet loss rate such as environmental
condition, distance, relative height between transceiver and
receiver, transmission power, data rate, packet size and the
routing protocol; environmental effect and the relative height
are mainly the factors that caused high rate packet loss. While
the experiment and therefore the calibration process were
accomplished in rainy days in the field (outdoor), low recep-
tion rate is expected due to high humidity rate where the radio
waves can be more easily absorbed by the water and the wet
grass. As the curve of packet reception rate versus relative
height between sensor nodes and the gateway ascends until a
certain relative height and then reaches the steady state, rel-
atively short distance between nodes and the ground and the
gateway (40 cm) could be a reason for high packet loss rate.

2.4. Pasture time estimation

In order to monitor the pasture time in the strip of new grass,
the field was extended by moving a section of the fence. As it
is shown in Fig. 6, the rectangular extended area, � (which is
the strip of new grass) was not entirely covered by the gateway
connectivity area which implies that time spent in that area
was not the same as actual pasture time in �. Assuming that
the connectivity between the sensor nodes and the gateway
was uniform in all directions, the area of connectivity would

Fig. 6 – Extended strips of new grass and the connectivity
area.

be a half circle area with radius r0. By registering packet arrival
time (time stamp) at the gateway followed by moving average
filtering and threshold classification, the pasture time in the
gateway connectivity area could be monitored.

Assuming a uniform distribution over �, the pasture time
TE in the extended area as a function of pasture time TC in the
gateway connectivity area is given by:

TE = KTC (5)

where constant K is the ratio of the extended area (�) to the
gateway connectivity area (�r2

0/2).
Since the constant K depended only on fixed geometrical

quantities, it was the same constant for all individuals in the
herd.

2.5. Testing the hypothesis that monitored cows could
represent the entire herd

To estimate pasture time for the entire herd of cows based
on data from the monitored subset of the herd (23%), it was
assumed that the monitored cows could represent the whole
herd. The validity of this assumption was examined by statis-
tical tests that involved two random variables: D1, the number
of monitored cows in the extended area, and D2, the total
number of cows in that area. Both of these variables were sam-
pled each minute over 3 h by manual observation. First, it was
tested if the distributions of D1 and D2 could be approximated
by normal distributions. Then it was tested if the ratio between
the means of D2 and D1 was equal to the ratio k between
the total number of cows and the number of monitored cows
(k = 30/7 = 4.3). If the result of this test was positive, it would
indicate that the monitored cows could represent all cows in
the herd (with respect to pasture time in the extended area).

2.5.1. Test of the normal approximation
Pearson’s chi-square test (�2) is one of a variety of chi-square
statistical procedures whose results are evaluated by reference
to the chi-square distribution (Chernoff and Lehmann, 1954).
Pearson’s chi-square is used to assess tests of goodness of fit
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which establishes whether or not an observed distribution dif-
fers from a theoretical distribution. Pearson chi-square tests
were applied to the samples of D1 and D2 to evaluate whether
the variables were normally distributed.

2.5.2. Testing if the monitored cows was a representative
sample of the herd
In order to evaluate if the monitored subset of the herd could
represent the whole herd, the following null hypothesis H0 and
alternative hypothesis H1 were set up:

H0 : �2 = k�1

H1 : �2 �= k�1
s.t. �2

1 �= �2
2 (6)

where �1 and �2 are the theoretical and unknown mean values
of D1 and D2, respectively. �1 and �2 are the theoretical and
unknown standard deviations of D1 and D2 and k is a constant
representing the ratio of the number of monitored cows to the
total number of cows. In order to define significance level (˛),
the probability function has been introduced:

˛ = p(reject H0|H0 is true) (7)

To reject the null hypothesis, modifications to the standard
test were required to incorporate the ratio k. A modified
version of the two-sample t-test was applied. The result is
a criterion for rejection, |t0| > t1−(˛/2),v where t1−(˛/2),v is the
1 − (˛/2) quantile in the Student’s t-distribution with v degrees
of freedom. The t-statistics t0 and the degrees of freedom v are
defined as:

t0 = ȳ2 − kȳ1√
(s2

2/n2) + (k2s2
1/n1)

(8)

v = ((s2
2/n2) + (k2s2

1/n1))
2

((s2
2/n2)

2
/(n2 − 1)) + ((k2s2

1/n1)
2
/(n1 − 1))

(9)

In Eqs. (8) and (9), ȳ1 and ȳ2 are the sample means of D1 and
D2, respectively, while s1 and s2 are the sample standard devi-
ations of D1 and D2. The sample sizes for D1 and D2 are n1 and
n2, respectively.

3. Experimental setup and results

3.1. Experimental setup

The case study in the presented experiment was a group of
dairy cows. The experiment was carried out during 6 days
with 30 cows 6 h per day on average. Data from 3 days of the
experiment were used for estimation of the optimal window
length and threshold of the filter used for the packet arrival
sequence. The packet arrival sequence from the remaining 3
days were filtered and applied for estimation of pasture time
in the strip of new grass. During the calibration process, the
nodes were placed at fixed distances (1–30 m far from the gate-
way) for 5 min at each distance. The sampling time was set to
1 s and it was expected to receive 300 samples per distance
while the real number of packets received at each distance is
presented by packet reception rate in Fig. 5. The experimental

data in Fig. 3 represents the mean value of the readings taken
at each distance.

Seven out of 30 cows were equipped with wireless nodes
around the neck. The node on the collar as well as collar itself
was fixed very well to prohibit any slide to right or left side.
The antenna pointed the sky in order to have better commu-
nication between nodes and the gateway. The antenna was ½
wave dipole antenna, with an MMCX connector. The gateway
was installed 1.2 m above the ground in a location as indicated
in Fig. 1.

The shape of the extended area was rectangular and the
area was 60 m by 40 m while the shape of the gateway connec-
tivity area was a half circle with a radius of 25 m. Each day, a
new extended area covered by new grass was provided for the
cows. Manual registrations of absolute time of day when each
of the 30 cows was in the extended area and the connectivity
area were carried out 3 h per day during 3 days. Furthermore,
the number of cows roaming in the extended area was reg-
istered manually with a sampling interval of 1 min during
different grazing periods (e.g. first grazing period starts when
the animal enters the field and second grazing period starts
after first lying down period).

3.2. Results and discussion

3.2.1. Pasture time monitoring
Minimizing the cost function in Eq. (3) resulted in an optimal
window length and threshold of 155 s and 0.388, respectively.
The result of applying the moving average window with the
optimal window length and the threshold to the packet deliv-
ery performance (Fig. 2) is presented in Fig. 7. While the
delivery rate in the packet delivery performance was 68.8%
(31.2% packet loss), applying the optimal window improved
the results of packet delivery to 92%. Moving average filtering
and subsequent classification of presence inside or outside the
connectivity area were compared to manual registrations and
resulted in errors as exemplified in Figs. 8 and 9 for two dif-
ferent nodes. Values of 0 and 1 indicate correct and incorrect
classification, respectively.

Fig. 7 – Filtered packet delivery performance by the optimal
moving average window. The threshold (0.388) is presented
by the horizontal line.
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Fig. 8 – Classification error for one of the nodes, example 1.

Fig. 9 – Classification error for one of the nodes, example 2.

The percentages of successful classification for the entire
experiment are presented in Table 1.

In order to estimate the total pasture time length for each
of the monitored cows in the extended area using estimated
total pasture time length in the gateway connectivity area,

Table 1 – Classification success rate

Sensor node Success rate (%) Average per
node (%)

Day 1 Day 2 Day 3

Node #1 84 82 78 81.3
Node #2 78 75 83 78.6
Node #3 88 76 90 84.6
Node #4 72 74 75 73.6
Node #5 75 78 75 76
Node #6 83 88 84 85
Node #7 68 72 71 70.3

Average per day 78.3 77.8 79.4 78.5a

a Overall average.

Table 2 – Estimated pasture time as percentage of true
pasture time for all the monitored cows during the
experiment

Sensor node Success rate (%) Average per
node (%)

Day 1 Day 2 Day 3

Node #1 89 83 74 82
Node #2 92 95 86 91
Node #3 91 66 89 82
Node #4 67 70 72 69.7
Node #5 94 81 85 86.7
Node #6 80 77 70 75.7
Node #7 77 68 73 72.7

Average per day 84.3 77.1 78.4 79.9a

a Overall average.

Eq. (5) was applied with K = 2.44 as the extended area was
2400 m2 and gateway connectivity area was 981.74 m2. Statis-
tical analysis of the cows’ GPS positions confirmed that they
were uniformly distributed over the extended area.

Table 2 shows the estimated pasture time as percentage of
true pasture time for all the monitored cows during the exper-
iment. As it can be concluded from Table 2, the estimated total
pasture time using Eq. (5) was always an underestimation of
the real total pasture time. One reason for this could be that
the packet loss rate was generally higher in this experiment
than it was in the experiment used for finding the optimal
window length and classification threshold. Apart from the
proposed moving average window, a potential solution for the
problem of packet loss could be as introduced by Guo et al.
(2006) in which an onboard flash memory was used in their
designed nodes to store considerable amounts of data. Stored
packets would then be sent to the gateway as soon as nodes
could communicate to the gateway. However, this solution to
the problem of packet loss would require extra hardware facil-
ities and causes delay in classifying the presence or absence in
the communication range of the gateway, this relatively short
delay will not have a critical influence on the performance of
the monitoring system.

3.2.2. Normality test for number of cows in the extended
area
In order to evaluate whether the total number of cows (D2)
in the extended area was normally distributed using Pearson
chi-square test, contingency tables were constructed for data
from all days. As an example, Table 3 presents the contingency
tables for two different datasets containing total number of
cows (D(1)

2 and D
(2)
2 ) in two different grazing periods from the

first day. It was concluded from the Pearson chi-square test of
goodness of fit with two degrees of freedom that D2 was nor-
mally distributed (hypothesis accepted at a significance level
of 0.2).

As presented in Table 3, the estimated mean value of D
(2)
2

(total number of cows in the extended area during second
grazing period) is smaller while the estimated variance is
larger compared to the estimated mean value and variance
of D

(1)
2 (total number of cows in the extended area during first

grazing period) with grass offer reduction.
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Table 3 – Contingency table for evaluating Pearson chi-square test of goodness of fit to normal distributions for two
different datasets containing total numbers of cows in the extended area

Data set #1 (D(1)
2 ) intervals Observed

counts (O)
Expected
counts (E)

(O−E)2

E Data set #2 (D(2)
2 )

intervals
Observed
counts (O)

Expected
counts (E)

(O−E)2

E

D
(1)
2 < 7.5 6 5.21 0.12 D

(2)
2 < 4.5 6 4.53 0.47

7.5 < D
(1)
2 < 10.5 8 8.58 0.03 4.5 < D

(2)
2 < 7.5 7 7.14 0.00

10.5 < D
(1)
2 < 13.5 9 11.31 0.47 7.5 < D

(2)
2 < 9.5 5 6.56 0.37

13.5 < D
(1)
2 < 16.5 9 9.02 0 9.5 < D

(2)
2 < 11.5 7 6.80 0.00

D
(1)
2 > 16.5 8 5.85 0.78 D

(2)
2 > 11.5 14 13.94 0

Sum n
(1)
2 = 40 n

(1)
2 = 40 1.4 Sum n

(2)
2 = 39 n

(2)
2 = 39 0.84

Chi-square test = 0.25 Chi-square test = 0.33

ȳ
(1)
2 = 12.15, s

(1)
2 = 4.13 ȳ

(2)
2 = 9.86, s

(2)
2 = 4.49

The 80% quantile in the chi-square distribution with 2 degrees of freedom is 3.21 so the test statistic of 1.4 and 0.84 is less and therefore the
hypothesis of a normal distribution can be accepted.

Table 4 – Results of testing if the monitored cows could represent the entire herd

Statistics Dataset

Grazing period 1 Grazing period 2

Total number
of cows,D(1)

2

Number of cows carrying

sensors, D
(1)
1

Total number of
cows, D

(2)
2

Number of cows carrying

sensors, D
(2)
1

Average ȳ
(1)
2 = 12.15 ȳ

(1)
1 = 2.6 ȳ

(2)
2 = 9.86 ȳ

(2)
1 = 2.4

S.D. s
(1)
2 = 4.13 s

(1)
1 = 1.31 s

(2)
2 = 4.49 s

(2)
1 = 1.28

Observations n
(1)
2 = 40 n

(1)
1 = 40 n

(2)
2 = 39 n

(2)
1 = 39

v 71 73
k 4.3 (=30/7) 4.3 (=30/7)
t0 1.24 −0.36
t1−(˛/2),v 1.289 1.287
|t0| < t1−(˛/2),v True True

The hypothesis was tested at significance level ˛ = 0.2.

Pearson chi-square test of goodness of fit was also applied
to D1 and the results demonstrated that the distribution of
D1 during first and second grazing period (D(1)

1 and D
(2)
1 ) was

Gaussian (hypothesis accepted at a significance level of 0.2)

and the estimated mean value of D
(1)
1 and D

(2)
1 was 2.6 and 2.4,

respectively.

3.2.3. Testing the hypothesis that monitored cows could
represent the entire herd
The results of testing the null hypothesis in Eq. (6) are shown
in Table 4. The significance level is chosen equal to 0.2
(Montgomery, 1996). Based on the results of the last row in
Table 4, it is concluded that the introduced null hypothesis
cannot be rejected.

4. Conclusion

The problem of online monitoring of cows’ presence and pas-
ture time in an extended area in the field with new grass has
been addressed and solved by using wireless sensor networks.
The total pasture time in the extended area was estimated
by measuring the pasture time in the gateway connectiv-
ity area where the sensor nodes could communicate directly
to the gateway. However, as the measured time in the con-
nectivity area underestimated the total pasture time in the
extended area, an area-based correction factor was applied

and the results showed 79.9% success rate (21.1% error) on
average.

As only 23% of the animals were equipped to be moni-
tored by sensor nodes, investigations to evaluate whether the
monitored animals could represent the whole herd were car-
ried out. Pearson chi-square test of goodness of fit has been
successfully applied to the datasets containing the number of
cows roaming in the extended area and the number of cows
carrying sensor nodes in the extended area. The results of
statistical analysis indicated that the datasets were normally
distributed. The hypothesis was that cows with and without
sensor nodes would spend the same relative amount of time in
the extended area. This hypothesis was confirmed by a mod-
ified two-sample t-test for the expected relation between the
mean number of cows with sensor nodes in the extended area
and the mean number of cows totally in the extended area.

Applying a moving average window with optimal window
length and optimal threshold could successfully compensate
for packet loss between sensor nodes and gateway and thereby
improve the result of classification as being within or outside
communication range of the gateway.
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