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24 ANAL YTICAL MODEL FOR 
FICTITIOUS CRACK PROPAGATION 
IN REINFORCED CONCRETE BEAMS 
WITHOUT DEBONDING 

J.P. ULFKJÆR and R. BRINCKER 
Department of Building Technology and Structural Engineering, 
Aalborg University, Aalborg, Denmark 

Abstract 
The non-linear fracture mechanical problem of combined crack growth and reinforcement 
action is modelled by adopting a simplified fictitious crack model for concrete and a linear 
elastic-plastic action for the reinforcement. The softening relation of the concrete is 
assumed to be linear, however, the crack growth is further simplified by introducing a 
continuous layer of springs at the midsection mainly representing a simplified material 
response araund the fracture zone. In the reinforcement the strain condition is assumed to 
be equal to the strain condition in the concrete. The important question of debonding 
between the reinforcement and the concrete is therefore not considered. The model gives 
closed form solutions for the whole load dispiacement curve. Further, the model can 
describe important effects qualitatively cmTect. For instance the change of behaviour from 
brittie to duetile when the reinforcement area is increased and from duetile to brittie when 
the size scale is increased. Experiments are performed with two types of reinforcement, 
notehed and un-notched reinforcements. Comparisans between the model and the 
experiments show that the assumption of a linear softening relation is not adequate and 
that the debonding problem should be taken into account. 
Keywords: Fictitious Crack Model, Lightly Reinforced, Three Point Bending, Size Effects, 
Experiments, Debonding. 

l Introduetion 

Since the invention of the fictitious crack model by A. Hillerborg and M. Modeer in the 
late 1970's, [l], a lot of attention has been devoted tothis model and other non-linear 
fracture mechanical models (e.g. The Crack Band Model, [2]). Themodel is now widely 
acknowledged and the Norwegian offshore industry has adapted themodel in constructing 
and re-assessing buge concrete offshore platforms as the Draugen Gravity Base Structure 
with a height of 285 m (1993) [3]. 

Size-Scale Effects in the Faiture Mechanisms of Materials and Structures. Edited by A. Carpinteri. 
Published in 1996 by E & FN Spon, 2-6 Boundary Row, London SE1 8HN. ISBN: O 419 20520 9. 
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Figure l. Sketch of the load dispiacement curve for slightly reinforced concrete beams where the three 
phases are indicated. 

A variety of numerical methods based on the fictitious crack model exists which can be 
used to predict the load-carrying capacity of plain and reinforced concrete structures, 
[3][4][5] , but there seems to be a Jack of simple analytical methods. To the authors' 
knowledge only one other analytical model exists which describes crack propagation in 
reinforced concrete beams basedon fracture mechanics [6]. Themodel is basedon linear 
elastic fracture mechanics and assumes that the reinforcement is rigid-perfectly plastic. 
Thus, this model is applicable to brittie concrete beams. 

An analytical model based on the fictitious crack model and a layer of non-linear 
springs at the midsection of a plain concrete beam in three point bending is developed [7] 
[8] and also refined for reinforced concrete [9]. Themodel is here presentedin detail and 
compared with experimental results. Also, the problem of debonding is analysed by testing 
beams with and without notehed reinforcement. lt is assumed that the debonding is 
minirnized by using notehed reinforcement steel. 

2 Basic Assumptions 

The fracture process in lightly reinforced concrete beams is assumed to progress as 
indicated in figure l . In this model the fictitious crack model is used with the 
approximations: l) the locaJ response of the concrete is represented by a thin layer of 
springs with thickness h due to the crack, 2) the softening relation is linear, 3) the strain 
in the reinforcement is equal to the strain in the concrete, 4) there is no initial notch or 
crack, and 5) a single fictitious crack develops at the mid-section. Consider the beam in 
figure 2 subjected to a rotational controlled load (the rotationtp is the angle between the 
deflected beam and vertical) with the reinforcement area Ar at the depth r . The 
reinforcement is assumed to be linear elastic-perfectly plastic as deseribed by the modulus 
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Figure 2. a) The geometry of the considered beam. The hatched areais the layer of non-linear springs. b) 
The deformed beam, when the elastic deformations in the beam parts outside the layer are neglected. 
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Figure 3. The constitutive relation for a) the concrete and b) the steel. 
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of elasticity, E, and the yield stress, o_;., see tigure 3. The concrete is deseribed by the mo- :i : 
dulus of elasticity and the brittleness number, B. The brittleness number is a parameter 
including both the material parameters and the beam size. In the present case the 
brittleness number B is defined as 
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where E, is the modulus of elasticity of the concrete, ou is the tensile strengthof the con
crete, GF is the fracture energy, of the concrete and wc is the critical crack opening displa
cement of the concrete, see figure 3. The thickness h of the elastic layer is assumed to be 
proportional to the beam depth h= kb. This assumption has been validated by comparising 
results for concrete beams with detailed numerical computations where k is varied in order 
to obtain identica1 peak loads. These investigations indicated a typical value of k "'0.5, 
Ulfkjær et al. (1990). The calculations are divided into three phases. Phase I): befare the 
tensile strength is reached in the tensile side of the beam, phase IT): development of a 
fictitious crack in the layer, and phase lli): crack propagation. The phases and the 
corresponding stress distributions are indicated in figure l. Each phase is further divided 
in to two situations: a) the steel remains elastic or b) the steel yields. 

The deformation o f the layer consists o f two contributions. An elastic part v e and a part 
w describing the crack opening dispiacement The total elengation v is given by v= ve+ 
w. 

In phase I w = O. Assuming only rigid bod y motions of the beam parts outside the Iayer, 
i t is easily found that in all three p hases the total elangation is given by v = q; (c - 2y) 
where c is the size of the compression zone and y is the vertical axis. The size of the 
compresion zone is determined in phase I by requiring horisontal equilibrium. In phase II 
and m the size of the compresion zone is determined by considering geometrical similar 

· triangles. By requiring that the stress in the elastic part is equal to the stress in the 
,

1

! fictitious crack the crack opening dispiacement can be deterrnined by using the faet that 
,l 

1
' the stress in the elastic part is o= EJ:e where e is the strain o f the la y er given by e= v e l 

,,1 
1 .. 

''l! 
! 

h, and the stress in the fictitious crack is determined by the softening relation given by 
o( w) = ou( l - wlwJ. It is thereby possible to describe the stress distribution in the concrete 
in all three phases. 

Considering the concrete model and the reinforcement model the de bonding o f the steel
concrete interface is not considered. The combined model is constructed simply by taking 
the simplest possible compatibility condition, namely the reinforcement strain is equal to 
the concrete strain, i.e. the steel strain in the layer is taken as the layer deformation divided 
by the layer thickness, and the steel stress can then be computed according to the 
constitutive condition deseribed in figure 3b. 

3 Solutions for the Load-Dispiacement Curve 

In the foliowing the geometrical quantities aremade non-dimensional by division by the 
beam depth, further the corresponding Greek letter is used to indicate a non-dimensional 
quantity. Reference is also made to section 9 for a fulllist of notation. Solutions for the 
case of rigid-body motions for the beam parts outside the layer are given in the following. 

3.1 Phase I 
In this phase the concrete is linear elastic. Horizontal equilibrium gives the normalized 
position of the neutral axis (measured from the hottom of the beam) a

11 
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aT/ 
l( l + 2(par) for c s; c 
2 l + (p s y 

(2) l( 1 - p ay l) a = for E > E 17 2 a e s y 
li 

where ( = E, l E, is the flexibility ratio between steel and concrete, p = A/td is the rein
forcement ratio, ar= r Id is the normalized position of the reinforcement, e= q;Ejka,, is a 
normalized rotation and c_. is the steel strain. The equivalent non-dimensional moment, J.1 
= 6M/td2 a,, , where M = 114 F l is the bending moment and F is the force, becomes 

a(e) 
J.l( e ) = e ( 4 - 6a17) - 6 s pa 

au r 
(3) 

where a,,. is the steel stress. Thus, the moment rotation curve is linear in phase I if the steel 
is not yielding, and bi-linear if the steel yields. Phase I ends when the strain at the battom 
equals Eu= a,, l E, yielding the foliowing condition to the normalized rotation 

es; (4) 

3.2 Phase II 
In phase II the fictitious crack develops. The size of the elastic tensile zone is found by the 
condition that the strain at the fictitious crack tip is Eu giving a17= 112 e. The position of 
the neutral axis is determined by taking horizontal equilibrium giving the non-dimensional 
size of the fictitious crack C1· = ar! d 

af = (l + (p)(l - B) ± 

(l + (pf(I - B)2 
- (l - B)( (l + 2(pa) + lo + e (p)) for 

af = (l - B) ± 

and the equivalent moment becomes 

( 
2a. (e )3 

) 
J.l(e) =e .t - 6a/e) + 4 

l - B · 

a(e) 
- 3 + 6 s pa 

a r 
u 

(5) 

(6) 

Which is completely equivalent to the plain concrete model [8] except for the last term 
taking the steel into account. 

3.3 Phase III 
In phase m the real crack starts gro wing. The size of the elastic tensile zone is as in p hase 
II a 77= 1/2 e. B y considering si mil ar triangles the non-dimensional size a1 o f the fictitious 
crack is determined as 

i 
: l 
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( 
l - B) l 

ar == B 2fJ (7) 

Again this is equivalent to the plain concrete beam. The normalized length of the real 
crack, a, is determined by requiring horizontal equilibrium. 

l 
a== l + (p---± 

2BfJ 
(f"(p + 2(1 - a)) + B(-1-)

2 

for E ::; Ey 
fV\ r 2BfJ s 

a == l -
l 

± 
2BfJ 

2 °v l p-· -
0 28 

Il 

+B(-1 )2 

2BfJ 

and the equivalent moment becomes 

(8) 

fJ ( 2(a + af)z - 2Ba') + 6os pa (9) 
l - B O r 

u 

3.4 Elastic Deformations 
Elastic deformations in the beam parts outside the elastic layer are allowed for by 

subtracting the elastic deformation p( fJ) from the elastic layer leaving only deformations 
due to crack growth and then ad ding the elastic deformations of the w hole beam using a 
solution for an elastic beam with a concentrated force given by [11]. The central elastic 
beam detleetion is 

å - Mlz{J(A) 
e 12EJ 

(10) 

where El is the bending stiffness o f the beam, f3 is a factor describing the influence o f the 
concentrated load fJ = l +2.85/A-2 

- 0.84/Jl, and A is the slenderness ratio A=l!b. 
Introducing the elastic rotation 

The relation (Il) can be written in non-dimensional form 

{)e ::: Y Jl 

where 

Y - f3 
3kA. 

(11) 

(12) 

(13) 

The effect of the beam flexibility is introduced by adding fJe and subtracting the 
deformation of the elastic springs. Thus, the total deformation ~ is 
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Figure 4. Moment-rotation curves for beams with different reinforcement ratios. 

Table l. Geomett·y and materiais parameters for standard beam. 

Beam Depth, b [mm] 200.0 

Beam Width, t [mm] 200.0 

Beam Length, L [mm] 1600.0 

Notch depth, a . [mm] o 

Position of Steel, r [mm] 10 

Specific Fracture Energy, GF [Nmm/mm2
] 0.1 

Concrete Tensile Strength, a" [N/mm2
] 3 

Modulus of Elasticity, E [N/mm2
] 20000 

Brittleness number, B 0.1125 

Steel Tensile Strength, a.r [N/mm2
] 400 

Modules of Elastesity for the Steel [N/mm2
] 2.1 ES 
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el = e + ee - f-l = e + ( y - l )f-l (14) 

4 Load-Dispiacement Curves 

A standard beam geometry at different size scales and with different reinforcement ratios 
are analysed. The geometry and the material parameters for the standardbeamare shown 
in table l . 

Figure 4 shows normalized moment-rotation curves for the standard beam for different 
reinforcement areas. In figure 5 normalized moment-rotation curves are shown for the 
standard beam at different size scales but with a constant reinforcement ratio. 

The shapes of the curves and the peak moment are seen to be dependent on both the 
reinforcement area and the size of the structure. Thus, for increasing sizes the 
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Figure 5. Moment-rotation cUI·ves for the reinforced standardbeamat different size scales. 

3.0 

maximum non-dimensional moment is decreasing indicating an increasing brittleness and 
for increasing reinforcement ratios the maximal non-dimensional moment is increasing. 
For small sizes and large reinforcement ratios the non-dimensional moment at the 
midsection becomes larger than the moment necessary for initiation of a crack in a 
neighbouring section. In this case multiple cracking will occur and, thus the assumption 
of only one crack at the midsection is violated. 
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5 Experiments 

5.1 Materials 

Concrete 
A high strength concrete with a max. aggregate size of 8 mm was used. the mechanical 
properties are shown in Table 2 

Cylinder compres- Prism splitting Y o ung' s modulus 
sive strength strength 

Mean S.dev Mean S.dev. Mean S.dev. 

78,3 4.0% 9.30 7.8% 42660 2.5% 

Table 2. Mechanical properties oftested concrete, units are [MPa]. 

Steel 
Threaded steel bars were used as reinforcement instead of conventional reinforcement 
steel. This was done because conventional steel not was available in the small diameters 
used. Using linear regression the ultimate strength was found as ay= 588 MPa with a 
coefficient of variation of 3.5 %, and the modulus of elasticity was Es=l.83 105MPa with 
a coefficient of variation of 1.6 %. 

Also notehed steel bars with two nominal diameters were used d/lom= 6.0 mm and 8.0 
mm. For each diameter several different notch detphs were considered. Two parabolic 
relations between the ultimate load and the effective diameter were obtained as P}6J=-

15.7de/ + 838.4 838.4de,/ - 406.3 and pu!SJ=- 14.6de/ + 1191.2de}- 3533.2 where Pu is in 
[N] and defis in [mm]. These two expresions are needed to eliminate Weibull effects when 
designing beams with notehed and un-notched reinforcement in arder to have the same 
load carrying capacity. 

Specimen 
To study the structural size effect the experiments were carried out on 2 different beam 
gearnetries (Size A: width and depth: 100mmand span: 800 mm; Size B width: 100 mm, 
depth: 200 mm; and span: 800 mm). Here only results for beam size A are presented. 

5.2 Testing equipment and procedure 
The beams were subjected to three-point bending in a servo-controlled materiais testing 
system. In arder to measure the true beam deflection a reference bar was placed on each 
side of the beam, and the beam deflection was measured as the distance from the load 
point to the reference bar using two L VDTs. 

5.3 Fracture Parameter Restllts 
8 plain concrete beams were tested in three point bending to determine the fracture 
parameters 0,

1 
and G F·. The parameters were estimated u sin g a numerical procedure called 

the direct sub-structure method [ 11] gu essing the shape o f the a-w relation and using the 
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Pigure 7. Comparisans between the model- dashed lines and experiments solid lines. For beam type A with 
diferent reinforcement ratios Top) A,= O mm 2 middle) 9.8 mm2 bottom) 27.7 mm2 
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Nelder and Mead scheme, [12] an optirnization was carried out to deterrnine the estimates 
of the two parameters. The method is fully deseribed in [13]. The tensile strength was 
estimated as 7.39 MPa with a coefficient of variation of 6.4% and the fracture energy was 
0.131 Nmm/mm2 with a coefficient of variation of 6.9 %. 

6 Model evaluation 

The material parameters deseribed in the previous section are used as input to the model. 
When calculating the non-dimensional moment the effective beam depth was used and 
when calculating the elastic deformations the total beam depth was used. In the foliowing 
comparison of the model and the experimental results is made. The solid lines are the 
experiments and the dashed lines are the model curves. In figure 7 the results for series 4 
are shown for beam size A with increasing reinforcement area. It is seen that the stifness 
and the yielding moment are decribed very well whereas the peak moment is calculated 
to high. This is due to the assumption of a linear softening relation. Instead a bi-linear 
softening relation should be used, Petersson (1981), Brincker and Dahl (1989). The 
intermediate phase of the fracture is not deseribed too well, and it is assumed that this is 
due to the faet that debonding is not taken into account. The yield load is deseribed very 
well for most of the beams. These results are also general for beam size B. 

7 Debonding 

The influence of debonding is studied by using notehed reinforcement. In this way the 
stresses in the rebar in sections outside the rnidsection are small which reduces the 
debonding in these sections. The difference in the behaviour between the two experiments 
is therefore mainly attributed to debonding between the rebar and the concrete. Two 
typical load-dispiacement curves are shown in figure 8 and it is seen that there is a 
remarkble difference between the two experiments. The drop in the load after the the first 
peak is more pronounced for the un-notched beam and the rotational capacity for the un
notched beam is much larger than for the notehed beam. Thus, in order to be able to 
describe the load dispiacement curve it is necessary to inelude debonding in the model. 

8 Condusions 

A simple analytical model for the response of reinforced beams in bending is developed 
by combining the fictitious crack model with linear-elastic-perfectly plastic reinforcement 
action. The method gives explicit solutions for the moment curvature relation and 
describes transitions from brittie to duetile behaviour with changes in size scale and 
reinforcement ratio 

Experiments were performed on high-strength concrete beams, and the fracture 
parameters were determined by using an indirect method. The results showed that the 
assumption of a linear softening relation is too rough, and instead the equations should be 
derived for a bi-linear softening relation. Further, the experiments showed a significant 
influence from debonding between reinforcement and concrete. 
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10 Notation 

The foliowing symbols are used in this paper: 
a = real crack Jength 
a1 = fictitious crack length 
B = brittleness modulus 
b = beam depth 
c = size of compresion zone 
dnom = the nominal diameter of notehed steel 
Ec =modulus of elasticity for the concrete 
Es =modulus of elasticity for the steel 
GF = specific fracture energy 
h = thickness of layer 
I = moment of inertia 
k = elasticity coefficient which determines the thickness of the layer 
l = beam length 
M = cross-sectional moment 
w =crack opening dispiacement 
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w, = critical crack opening dispiacement 
v = elongation of layer 
v" = elongation of layer corresponding to the tensile strength 
t = beam thickness 

= normalized crack length 
= normalized fictitious crack length 

a, = nonnalized position of the reinforcement 
a,., = normalized position of the neutral axis 
y = flexibility coefficient 
fP = rotation of beam 
e = nonnalized rotation 

= normalized rotation that separates phase II and III 
= slenderness of the beam 

J1 = normalized cross-sectional moment 
c; = stiffness ratio between steel and concrete 
a = axial stresses 
a" = tensile strength of the concrete 
av = tensile strength of the steel 
p = the reinforcement ratio 
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