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Abstract

The aim of this paper is to investigate the possibility of esti-
mating an average damping parameter for a rocking system
due to impact, the so-called coeflicient of restitution, from
the random response, i.e. when the loads are random and
unknown, and the response is measured. The abjective is to
obtain an estimate of the free rocking response from the mea-
sured random response using the Random Decrement {(RDD)
Technique, and then estimate the coefficient of restitution
from this free response estimate, In the paper this approch is
investigated by simulating the response of a single degree of
freedom system loaded by white noise, estimating the coefli-
cient of restitution as explained, and comparing the estimates
with the value used in the simulations. Several estimates for
the coeflicient of restitution are considered, and reasonable
results are achieved.

Nomenclature

t,T : time
1,7,n : subscripts
X (#),Y(t) : response or stochastic process
z(t), y{f} : continous time series
k, b, r : ridig body geometry

g ¢ frictional coefficient
a,v : acceleration and velocity
g : gravity acceleration
e : coeflicient of restitution
# : rocking angle
8,y : critical rocking angle
M : body mass
I : body inertia moment
v : natural rocking frequency
#y : rocking amplitude

F : load

s(8) : sign function

e : coefficient of restitution
D(r) :
D(r) :
C(t) : trig condition at time ¢

RDD signature
RDD estimate

N : number of trig points
Ryvy(r) :

a,v : trig level, velocity

auto correlation function for ¥'(¢)

o : standard deviation

g{t), {t) :
Gla,v,t) :
AT : time step

unit response, impulse response

free response for initial conditions (a,v)

pn : Gaussian distributed npumbers
8" : rocking angle just before impact

8" : rocking angle just after impact

1. Introduction

The dynamic response of solid-block structural systems excited by
horizontal base motions might include sliding as well as rocking
thus dissipating the kinetic energy in a different way from that of
conventional structural systems.

To study the dissipation of energy in rocking syslemns, a simple
one-degree-of-freedom system is considered, figure 1.a. The body
and the base are assumed to be non-deformable, and in the initial
state the ridig body is assumed to rest on the plane base having
contact over the entire base area. Only simple contact exists be-
tween the body and the base without any other form of connection
or attachment.

When the body is subjected to horizontal forces, either by ap-
plying external horizontal loads or by inertia forces arising from
horizontal movements of the base, these forces will change the dis-
tribution of shearing stresses and normal stresses over the contact
region. When the horizontal loads exceed a certain value, sliding
or turning might occur.
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Considering a rectangular body with a height &, a base width &
and a body-base interface with simple frictional properties, the
two modes are easily identified. If the horizontal and vertical ac-
celeration of the base is a, and a,, respectively, then the body
will slide if the horizontal acceleration is larger than the frictional
resistance, i.e. if ay > pg(l + au/g), where g is the gravity accel-
eration and u is the coefficient of friction. Similarly it will rock if
ay > (b/R)g(1+ ay/g). Thus, slender bodies will have a tendency
to rock, and compact bodies a tendency to slide, the transition
being given by u = b/h.

However, for random base excitation such as earthquakes, because
of the time varying characteristics of the excitation signal, the
response will be a complicated combination of sliding and rocking,
the mixture of the modes depending on the coefficient of friction
# and the slendernes ratio h/b.

If the body is slender, the sliding contribution will be small, and
most of the kinetic energy is dissipated by the impacts occurring
during rocking response. The dissipation of energy during im-
pact is described by the so-called coefficient of restitution further
defined in the following.

The objective of this paper is to investigate some possibilities for
estimating the coeflicient of restitution.

To obtain good estimates of physical parameters of mechanical
systems, it is always an advantage to measure the response to a
well-defined artificial loading. For instance, a simple and aceurate
way of estimating the coefficient of restitution is to make a free
response test, [1]. For real structures, however, because of the
risk of damage and the difficulties of exciting large structuresin a
well-defined way, this possiblity only exist in a few cases, There-
fore, in practice, one might often accept to estimate the physical
parameters from natural responses, in this case, from the response
to earthqaukes.

Rezal earthquake excitation is not dealt with in this investigation.
Instead, to simplify the problem only constant Gaussian white
noise excitation 1s considered. Real earthquakes are more com-
plicated. They are broadbanded but usually not close to white
noise, and the transient phenomena are often of importance. It
is believed however, that if the techniques developed here works
well for the white noise case, the techniques can be revised and
extended to be applicable also to earthquakes.

If both the excitation and the response of a rocking system are
known, i.e. if accurate time series are awailable, then in principle it
is possible to obtain good estimates of all the physical parameters
of the rocking system by adjusting a mathematical model so that
the difference between the measured response and the response of
the model is minimum in some sense. This approch is often called
System Identification, Ljung {2], and might be used for any kind
of excitation, simple excitation like harmonic exciation or pulse
excitation, white noise exciation or earthqauke excitation.

The system identification techniques are generally quite power-
full. However, they are often complicated and computationally
expensive, and for non-linear systems the techniques are not fully
developed. Further, the application of the technique assumes that
a complete mathematical model can be formulated covering the
behaviour of the real system in any way that is relevant to the
consided situation. Thus, it might be difficult to use this approch
to non-linear systems like a rocking system.

Therefore it is of value to develop simple techniques to give reason-
able estimates of some of the most important physical parameters

of rocking systems.

One of the simplest ways to get an estimate of the coefficient of
restitution of a rocking system when only the response is known,
is to use the Random Decrement technique. Using this technigue
an estimate of the free response is obtained from the random re-
sponse by a simple averaging algorithm. A computer routine that
calculates this estimate from the time series of the rocking re-
sponse can be written in any language using only a few lines of
simple code.

Once an estimate of the free response is obtained, the coefficient of
restitution can be obtained in different ways. It is expected that
the free response estimates obtained by the RDD technique will be
biased, i.e. include systematic ervors, Therefore it is expected that
some ways of estimating the coefficient of restitution are better
than others. To illustrate the bias problems, and to get an idea of
how to estimate the coeflicient of restitution from the free response
estimates, intensive simulations were carried out in the following
way.

By using the analytical solution for the free rocking response, the
rocking response to a discrete Gaussian white noise horizontal
base excitation was accurately simulated for a given value of the
coefficient of restitution, the eiarge: value. This value of the coef-
ficient of restitution is considered to be the exact value that also
represents the target value for the following effort of obtaining
its estimate. Next, from the simulated response to white noise
excitation, free response estimates where obtained by employing
the Random Decrement (RDD) technique as already mentioned.
From these free response estimates an approximate value of the
the coeflicient of restitution was obtained. Different ways of ob-
taining this approximate value were considered, and the results
were compared with the original value eyo,g.¢ thus getting a de-
gree of the inherent bias in every case.

The results show, that it does not seem possible to obtain unbiased
estimates of the coefficient of restitution using the RDD technique.
However, one of the measures, a very simple measure based on
the time lag for the first crossing and the first valley in the free
response estimate, seems to be able to give estimates with an
acceptable bias.

2. Rocking Response of a Single Solid Body

The rocking response of ridig bodies has been studied from the
beginning of this century. A review of this research is given by
Ishiyama [3]. Here only a short a presentation of the most impor-
tant concepts for rocking of rigid bodies will be given.

A rectangular body is considered, figure 1.a. It is assumed that
the movemnent of the body will be pure rocking, i.e. pure angular
displacement around one of the two bottom corners. If the rocking
angle is smaller than the critical angle ., (the overturning angle),
se figure 1.a, then the moment will act as a restoring moment equal
to Mgrsin{f.. — 6), where M is the mass of the body, g is the
gravity acceleration, and r is the distance from the mass mid point
of the body to one of the bottom corners. Using the equation of
impulse momentum, it is easy to see, that if the body is loaded
by the ground motion X, then the equations of motion are given
by, Spanos et al {4]
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18+ MrX cos(8., — 0) + Mgrsin(f, —6) = 0; 950

. . 1
If+ MrX cos(6, — 0) — Mgrsin{f,, —8) = 0; <0 )

where I is the inertia moment of the body around one of the
bottom corners. As it appears from the equations of motion, the
problem is non-linenar. The non-linearities are due to the term
sin(f., — ¢}, but also due to the change of sign when @ crosses
zero. A complete set of boundary conditions is given by specifying
{9,6) = (a,v). If it is assumed that the ground motions are zero,
X =0, then the solution to the equations of moticn is the free
response G(a,v,t). If we specify (#,6) = (8,,0), and assume that
the argument of the sine function is smal! so that sin(8,, — #) =
8., — 8, then the equations can be solved analytically, Housner [5]

8(t) = G(a,0,t) = 8o — (fcr — Bp)cosh(t); >0 (2)

where v = /Mgr/I. This solution can be used to obtain the
duration T of one full rocking period with the amplitude equal to
8, Housner [5]

4 1
T = Zcosh™
, <osh (1 S /9,,,,) ®

However, the simplest possible form of the equations of motion
is obtained for small relative rocking angles, i.e. in the lmit
(8/0.r) — 0 and for slender systems (small 8.,) where cos(f., —
#) = 1 and sin(f,, — 8) = 8.,. In this case the equations of motion
reduce to

6 = v28.,.5(8) + F (4)

where ¢ = —~1 for positive rocking angles, s = 1 for negative rock-
ing angles and where F is the loading term F = —MrX. For this
equation, the free response consists of second order polynomials
in time, and the rocking period is found as

T = % 2 260/01:1' (5)

The rocking periods given by eq. (3) and eq. (5) are shown in
figure 1.b. As it appears from the figure, the rocking period T
depenids strongly on the amplitude 6. Further, if the relative
rocking angle 6y /6., is smaller than approximately 0.1, then the
differences between the solutions given by eq. (3) and eq. {5) are
neglectable.

None of the above equations of motion include any damping term.
It is usually assumed that energy is dissipated only by impact,
i.e. when the rocking angle becomes zero, and the rotation point
shifts from one side of the body to the other. Further it is assumed
that, at every impact, the angular velocity is reduced by a constant
factor, i.e. the angular velocity 8" just after the impact is obtained
from the angular velocity 8’ just before the impact by the simple
reduction

it -

f = ef (6)

where e is a constant - the so-called coefficient of restitution, usu-

ally a number a little below one. This assumption corresponds
to assume that the kinetic energy is reduced by the factor ¢? at
every impact. However, in every cycle there are two such impacts.
Therefore after one cycle, the energy of the system is reduced by
€', thus defining the constant logarithmic decrement §, Thomson
[6] given by

§ = log(1/e*) (7)

3. Estimation of Free Response

The Random Decrement (RDD) technique is a simple and fast
technique for estimation of correlation functions for Gaussian pro-
cesges.

The Random Decrement (RDD) technique was developed at NASA
in the late sixties and early seventies by Henry Cole and co-workers
{7-10]). The basic idea of the technique is to estimate a so-called
RDD signature by simple averaging. If the time series y(t) is given,
then the RDD signature estimate ﬁ('r) is formed by averaging ¥
segments of the time series y(t)

N
Diry = %ZU(T + 1) Cyut) (8)

=1

where the time series y(t) at the times ¢; satisfies the trig condition
Cy1), and N is the number of trig points. The trig condition
might for instance be that y{t;) = a (the level crossing condition)
or some similar condition.

Vandiver et al, [11] defined the RDD signature as the conditional
expectation D{(r) = E[{V(r}| Y (0) = «], and proved that in the
case of the level crossing trig condition applied to a zero mean
Gaussian process, the RDD signature is simply proportional to
the auto-correlation function Ryy

D(r) = E¥(r) Y(0)=a = 2], ©)

3
Ty

where a is the trig level and ¢} is the variance of the process.
This result was generalized to a more general trig condition by
Brincker et al. {12.13]

D(r) = BiY(r)| Y(0) = a,¥{0) = o] = R;’QT)G_R%;;(")U
" (10)

where Ry () is the derivative of the correlation function and

where o?-, is the variance of the derivative process ¥(t), for a

Gaussian process given by o} = ~R{(0).

Now let Y(t) be the response of a linear system loaded by white
noise. In that case it is known, Crandall [14], that the normalized
correlation function Ryy(7)/oy is equal to the free response g(1)
for a unit displacement and that the normalized derivative of the
correlation function R\ {7)/ey is equal to the free response k()
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for a unit impulse, giving

D{ry = ag(r)+vh(r) (11}
thus, for white noise loading, the RDD signature is a linear com-
bination of the system functions g(r) and (7} expressing the free
response for the initial condition (¥,Y) = (a,v). Thus, for a
linear system, a correlation function estimate might be obtained
by the RDD technique or by some other technique, for instance
the Fast Fourier Transform technique, Bendat and Piersol, [15],
and if the system is loaded by white noise, the estimate can be
considered as a free response.

One of the advantages with the RDD technique is, that in the
case of a non-linear system, a similar result applies. This is not
the case {for Fast Fourier Transform estimates,

Now let the stochastic process Y(t) be the zero mean rocking
response from a single degree of freedom system. The free response
for the initial conditions H = [¥(0),¥{0)] = [a,v] is given by
G(a, v, 1), and we will consider the conditional response process

Ye(t) = {Y(¢} | H =n} (12)
where 17 = [a,v]. Instead of conditioning on the response process
Y (t), we will condition on the load process X(t). Thus, let us
consider a load process X (), ¢ < 0 that is such that H = n.
However, since it suffices only to consider the derivatives at ¢ = 0,
we can write

Xe(t) = {XWIE=¢} (13)

where = is a vector containing the derivatives Z = [X (0}, X(0), ... ]
However, for any non-linear system the response is determined
solely by the load history, Y.(t) = £i__ {X.(7)} where £__ _{}

1s a non-linear functional. Thus, since H is a complete set of initial
conditions, then

Y.(t) = G(a,v,t) (14)

for cases where the load vanishes for positive times X.(t) =0, ¢ >
0. Therefare, if the load is non-vanishing for positive times, it is
obvious to try to write the general solution in the form

Y.(t) = Gla,v,t)+ Li_o {X (7)) (15)

This is only true for systems where the principle of superposition is
valid, In this case, for a non-linear system like a rocking system,
this can only be assumed as an approximation. However, if we
accept eq. (15) as an approximation, then the RDD signature,
which is the expectation of the conditiona! process, is given by

D(r) = E[Y(r)]

= G(a,v,7) + E[Lpp {X(1)}]

il

(16)

The first part is the free response, and the second part is due to a
finite length auto-correlation of the load process. The last part is
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in general not simple to evaluate. For this part, the expectation
has to be carried out also for the multidimensional conditional
variable Z, since many different load processes might result in the
same H. However, if the load process is assumed to be white noise,
the process has no memory, and therefore in this case conditions
at t = 0 has no influence on the process for ¢ > 0. The conditions
can therefore be removed, and since the unconditional response is
zero mean, the last term vanishes, and we get the simple result

D(r) = G(a,v,7) (1n

Using this result to estimate the free response from the random
response, it is not possible to consider all combinations of a and
v. Furthermore, in practice one has to use finite size condition
windows instead of excact conditions like Y (0) = q, Y(O) =v. In
practice, therefore, it is convenient to estimate the signatures

Dya(7)
Dy(7)

E[Y(r)| Y(0) = a,Y(0) = 0]

. (18)
E¥y(r)} Y(0) =0,Y(0) = |

by avaraging using the finite size window conditions

N,

Dy(r) = 3= 3 ur+4)| o(t) €la+Baja— Ad], §(t) =0
¢ =1
N,

Du(r) = 37 2 u(r +8)| 4(t) =0, §(t) € [o+ Avio - Au]

i=1
(19)
For a broadbanded load process the relation between the RDD
signatures and the free response is taken from eq. (17) as an
approximation

14

Du(r) = gla,7) 0

D,(r) = h(v,7)
where g(a, 7) = G(a,0,7), h{v,7) = G(0,v,7). If the load process
is not perfectly white noise, the RDD signatures will be coloured
by the load process correlation function. However, in many cases
the error might be reduced by removing unwanted frequences by
filtering.

The asumption given by eq. {15) must be expected to cause bias
errors in the free response estimates. However, since the free re-
sponse estimates satisfy the proper initial conditions, the bias and
its first derivative must be zero for time lag zero, thus, this bias
will be small at the first part of the free response estimates.

The estimates D,{(r), D,(r), however, also suffer from random
errors due to the limited number of averagings and from bias in-
troduced by the finite size windows y(#;) € [e + Aa;a — Adg], and
¥(t;) € [v+ Av; v—Av]. In practice the choice of window sizes Aa,
Av is a trade off between bias and variance, i.e. small windows
will give small bias but large variance, and vice versa. The bias
can be removed by using different window sizes and extrapolating
back to window size zero as shown later.



4. Response Simulation

The rocking response of a single degree of freedom system is sim-
ulated by using the simple version of the equation of motion given

by eq. (4).

First a discrete white noise time series is obtained by simulating a
series of N zero mean independent Gaussian distributed numbers
pn, n = 1,2,...,N. This time series is taken as the load term.
However, since the time series is discrete, the values p, has to be
considered as impulses rather than load intensity.

Given the time series p,, the equation of motion might be solved
exactly using the following scheme.

The first value of the rocking angle is found from the initial con-
ditions (8q,85) = (a,v), and as long as the sign function s(8) is
constant, the next values (6, 8) are found from the recursive for-
mulas

9u+1
bni1 = 0 +0,AT + —21—9.:,.:/2.5(0)AT2

it

é" + Gcruzs(ﬂ)AT + P+
(21)

where the time step AT is kept constant. In every step it is
checked if the sign function s(8) changes by obtaining the largest
root + from the equation

B, 4 6,7+ %ac,uzs(s)fﬂ =0 (22)

The largest root will always be positive. If r > AT the sign func-
tion remains constant during the next time step, and the equations
(21) might be used. However, if 7 < AT, the sign function will
change during the next time step because § will cross zero. Now
let (6;,9:‘) denote the rocking angle and the angle velocity just
L[]

before crossing and let (8,8, ) denote the corresponding guanti-
ties just after the c¢rossing, then - in the case the sign function
changes sign during the next time step - the next values of (4,89}
are found from

Busr = b + 0., S(OHAT — 7) 4 Pni1
PR 23
Onpr = 0, +6,(AT-7)+ %9"023(9)(AT — 7')2 (23)
where , N
6, = 6, =20
" . (24)

Gn = é,,+95,u25(9)r; é,, = eb,

and where of cause the sign function s(#) changes sign at the
crossing point. Figure 2 shows some examples of a simulated
response for a coefficient of restitution of ¢ = 0.95.

The solution scheme outlined above will give exact solutions, i.e.
solutions that correspond exactly to the value of restitution sup-
plied to the equations. In all simulations the value e = 0.95 was
used.

The random responses ¥ were simulated with a resonably small
time step so that a constant rocking signal with amplitude equal
to the standard deviation of the response process would have ap-
proximately 75 simulated points per cycle.

RDD signatures were estimated from the signals using the ideal-

ized trig condition (¥, ¥} = (,0) where the trig level a was taken
as @ & 20y, oy being the standard deviation of the simulated
response process, Two-sided RDD signatures were estimated, i.e.
symmetrical averaging windows were used, and the free response
estimate was obtained from the two-sided signature by taking only
the even part of the signature in order to force the right velocity
(v = 0) condition on the estimate.

Figure 2.c shows a typical RDD free response estimate found as an
average from 10 time series with 6000 points in each time series.
As it appears from the figure, the RDD free response estimate
fades out too fast, i.e. the estimate seems to be biased,

All simulations were performed using the MATLAB software pack-
age, [16].

5. Estimation of Coefficient of Restitution

In this paragraph different techniques for determination of the
coeffictent of restitution from the RDD free response estimates
will be tested.

First we will consider a simple global measure and a simple local
measure. From a statistical point of view, it is an advantage
to use the whole free response estimate, therefore we will take
a global measure of the coefficient of restitution by ealculating
the logarithmic decrement § using all the extremes r; of the free
response estimate. The logarithmic decrement is expressed by the
initial value ry of the free response estimate and the ith extreme
r;, Thomson [6]

2 To
& = =1

2 (7% (29)
and thus, the logarithmic decrement can be found by linear re-
gression on 6 and 2In{|r;!). The coefficient of restitution is then
obtained from eq. (7). This estimate of the cocfficient of restitu-
tion is denoted é&,.

As explained above, the use of eq. (15) must be expected to
impose bias on the free response estimate. However, the bias and
its first derivative will be zero at time lag zero, i.e. the first part of
the free response estimate must be expected to have much smaller
bias than the tail. Also from the free responses shown in figure
2, it seems, that the bias is small on the first half cycle of the
free response estimate and large on the tail. Therefore, it seems
natural to estimate the coefficient of restitution from the first half
cycle only. As a simple measure

G = I (26)

To

is taken where the initial value rq and the first minimum r; is
obtained simply as the maximum value and the minimum value
of the free response estimate.

However, the estimates also suffer from bias introduced by the
finite size window Ae in eq. {19). This bias can be removed by
estimating the coeflicient of restitution for several window sizes
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and then extrapolate back to zero. The result of this analysis for
é, and &g is shown in figure 3 showing the estimated values of
the coeflicient of restitution as a function of the relative window
size AafAa g, The maximum window size Aa,,,; was taken as
Abmag = 0.28a where a is the trig level. Each point in the figure
is an estimate of the coefficient of restitution found from averaging
100 values each estimated from time series with 6000 points.

As it appears from Figure 3, the global measure, the estimate
€q, is heavily biased as it would be expected. The value of &,
corresponding to zero window size was found as é; = (.8083. The
local measure using only the first part of the free response estimate
is much closer to the exact value e4,,4.¢ = 0.95. The value of &,
corresponding to window size zero was found as &, = 0.9626.

The extrapolation was made by linear regression. However, since
the number of trig points varies with the window size, a large win-
dow will give small variance but large bias and vice versa. There-
fore, the linear regression was carried out by minimizing the least
square weighted by the variances, Hald [L7]. Since the reciprocal
variance will be approximately proportional to the number of trig
points, and the number of trig points is approximately propor-
tional to the window size, the least squares were simply weighted
by the window size.

From this preliminary analysis, and from the theoretical consider-
ations given above, it can concluded, that measures of the coefhi-
cient of restitution found by using a large part of the free response
estimate will be heavily biased, and therefore not usuful for practi-
cal purposes. Further, it might be concluded, that local measures
using only the first part of the free response estimate are not so
heavily biased, and might be usefull for practical estimation. A
detailed investigation was carried out to find the best way to es-
timate the coefficient of restitution from the first part of the free
response estimate.

In the detailed investigation four different methods were tested all
using only the first half cycle of the free response estimate. Let
the number of points in the first half cycle be Njy. Then the initial
value ¢; was found fitting a second order polynomial to the N}, /8
first points of the estimate. Similarly, the first minimum ¢; and
the corresponding time #; were found using /Ny /4 points around
the minimum. The slopes v, and v, just before and just after
the crossing and the crossing time ¢; were found fitting a second
order polynomial using N, /8 points at each side of the crossing
point. Since the ideal free response (for the simplified equations
used in this paper} is known to be second order polynomials, four
different measures of the the coefficient of restitution can easily
be defined

I =
€1
- vz
€z = —
e (27)
. leal £
83 = +— ———
e tax—1t
gy =
R

For each of these measures, the coefficient of restitution was ob-
tained as a function of the window size as explained above. How-
ever, the simulation/estimation was repeated 20 times in order
to investigate bias and random errors. The results are shown in
Figure 4.

The empirical mean value and the empirical standard deviation
corresponding to window size zero were found as
& = 0.0628; s; = 0.0048
& = 0.9948; 355 = 0.0055
£y = 0.9717; sz, = 0.0039

&, = 0.9539; s; = 0.0065

(28)

It is casy to see, that the first three measures are biased, especially
&y is heavily biased. The last measure e4 is the only measure that
seems to be unbiased. However, a simple f-test show, that with a
probability close to one, this measure is biased too. For this mea-
sure however, the bias is relatively small, and it seems resonable
to accept this way of estimating the coefficient of restitution for
practical purposes.

6. Conclusions

A technique has been developed and tested for estimation of the
coefficient of restituion of rocking systems loaded by white noise.
The technique is simple to apply, and only time series of the ran-
dom rocking response has to be available.

The technique consists of two steps. First a free estimate is ob-
tained by the Random Decrement Technique, and then from the
free response estimate, the coeflicient of restitution might be esti-
mated. Because of non-ideal trig conditions and an approximate
superposition assumption, it is to be expected that the Random
Decrement free response estimates will be biased. However, the
window bias might be removed by using several windows and ex-
trapolating back to zero. Further, the influence of bias introduced
by the superposition assumption might be minimized using oniy
the very first part of the free response estimate.

Several ways of estimating the coefficient of restitution from the
first part of the free response estimate were suggeested and inten-
sive simulations were carried out to investigate bias and random
errors of the suggested measures. Only one of the suggested mea-
sures showed an acceptably small bias. This measure is based only
on the first crossing time of the free response estimate and the first
crossing time of the derivative of the free response estimate.

The performed investigations were based on estimating the free re-
sponse for the initial conditions (¥,¥) = (e,0). However, since it
can conluded that only the first part of the free response estimate
is unbiased, it might be a better idea to obtain free response esti-
mates for the initial conditions (¥, ¥) = (0,v). Using the Random
Decrement technique to obtain such an estimate, the {two-sided)
derivative of the estimate will have a discontinuity at time lag
zero directly corresponding to the coefficient of restitution, eq.
(6), and therefore in this case the coefficient of restitution might
be estimated using only a very narrow band around zero of the
free response estimate.

This idea has to be investigated before final proposals can be made
how to use the random decrement technique for estimation of the
coefficient of restitution in practice. Also it has to be investigated
if the technique can be used in case of non-white but broad-banded
loading, and how the technique is to be used on real systems with
several degrees of freedom.
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Figure 1. Rocking system with one-degree-of-freedom.
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Figure 2. Figures ) and b) show simulated responses for ¢ =
0.95. Figure c) shows a free response estimate obteined from sim-
ulated random responses by the Random Decrement Technique.
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