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Abstract 

The aim of t his paper is to in vestigate the possibility of esti~ 
mating an average damping parameter for a rocking system 
due to impact, the so-called coeffi.eient of restitution, from 
the random response, i.e. when the loads are random and 
unknown, and the response is measured. The objective is to 
obtain an estimate of the free rocking respause from the mea
sured random response using the Random Decrement (RDD) 
Technique, and then estimate the coeffi.cient of restitution 
from this free respause estimate. In the paper this approch is 
investigated by simulating the response of a single degree of 
freedom system loaded by white noise, estimating the c:oeffi
cient o f restitution as explained, and c:omparing the estimates 
with the value used in the simulations. Several estimates for 
the c:oeftldent of restitution are c:onsidered, and reasonable 
results are ac:hieved. 

Nomenelature 

t 1 r time 

i, j, n subscripts 

X(t), Y( t) response or stochastic process 

x( t), y( t) continnus time series 

h, b, r riclig bo dy geometry 

fl. frictional coefficient 

a, v acceleration and velacity 

g gravity acceleration 

e coefficient of restitution 

() rocking angle 

()er critical rocking angle 

M body mass 

I body inertia moment 

v natural rocking frequency 

()0 rocking amplitude 

F load 

s( O) sign furretion 

e coefficient of restitution 

D( r) RDD signature 

b( T) RDD estimate 

C( t) trig condition at time t 

N number of trig points 

Ryy(r) auto cerrelation fundion for Y( t) 

a, v trig level, velacity 

a standard deviation 

g( t), h( t) unit response, impulse response 

G( a, v, t) free response for initial conditions (a, v) 

l:l.T time step 

Pn Gaussian distributed numbers 

()' rocking angle just befare impact 

()" rocking angle just after irnpact 

l. Introduetion 

The dynamic response of solid-block structuralsystems excited by 
horizontal base motions rnight inelude sliding as well as rocking 
thus dissipating the kinetic energy in a different wa.y from tbat of 
conventional structural systems. 

To study the dissipation of energy in rocking systems, a simple 
one-degree-of-freedom system is considered, figure l.a. The body 
and the base are assumed to be non-deformable, and in the initial 
state the riclig body is assumed to rest on the plane base having 
contact over the entire base area. Only simple contact exists be
tween the body and the base without any other form of connedion 
or attachment. 

When the body is subjected to horizontal forces, either by ap
plying external horizontal loads ar by inertia forces arising from 
horizautal movements of the base, these forces will change the dis
tribution of shearing stresses and normal stresses over the contact 
region. When the horizontalloads exceed a cerlain value, sliding 
or turning might occur. 

528 



Considering a rectangular body with a height h, a base width b 
and a body-base interface with simple frictional properties, the 
two modes are easily identified. If the horizautal and vertical ac
celeration of the base is ah and av, respeetively, then the body 
will slide if the horizontal acceleration is larger than the frietional 
resistance, i.e. if ah> pg(l +av/g), where g is the gravity accel
eration and p. is the coefficient of frietion. Similarly i t will rock if 
ah > (b/h)g(l +av/g). Thus, siender bodies will have a tendency 
to rock, and campaet bodies a tendency to slide, the transition 
being given by p.= bf h. 

However, for random base excitation such as earthquakes, because 
of the time varying characteristics of the excitation signal, the 
response will be a complicated combination of sliding and rocking, 
the mixture of the modes depending on the coefficient of frietion 
p. and the slendernes ratio hjb. 

If the body is slender, the sliding contribution will be small, and 
most of the kinetic energy is dissipated by the impacts occurring 
during rocking response. The dissipation of energy during im
pact is deseribed by the so-called coefficient of restitution further 
defined in the following. 

The objective of this paper is to investigate some possibilities for 
cstimating the coefficient of restitution. 

To obta.in good estimates of physical parameters of mechanical 
systems, it is always an advantage to measure the response to a 
well-defirred artificialloading. For instance, a simple and accurate 
way of estimating thc cocfficient of restitution is to make a free 
response test, [1]. For real structures, however, because of the 
risk of damage and the difficulties of exciting large struetures in a 
well-defirred way, this possiblity only exist in a few cases. There
fore, in practice, one might often accept to estimate the physical 
parameters from natural responses, in this case, from the response 
to earthqaukes. 

Real earthquake excitation is not dealt with in this investigation. 
Instead, to simplify the problem only constant Gaussian white 
noise excitation is considered. Real earthquakes are more com
plicated. They a.re broadbanded but usually not close to white 
noise, and the transient phenomena are aften of importance. It 
is bclieved however, that if the techniques developed here works 
well for the white noise case 1 the techniques can be revised and 
extended to be applicable also to earthquakes. 

If bo t h the exe i tation and the response of a roclcing system ar e 
known, i.e. if accurate time series are awailable, then in principle i t 
is possible to obtain good estimates of all the physical parameters 
of the rocking system by adjusting a mathematical model so that 
the difference between the measured response and the response of 
the model is minimum in some sense. This approch is often called 
System ldentification, Ljung [2], and might be used for anykind 
of excitation, simple excitation like ha.rmonic exciation or pulse 
excitation, white noise exciation or earthqauke excitation. 

The system identification techniques are generally quite power
fult. However, they are often complicated and computationally 
expensive, and for non-linear systems the techniques are not fully 
developed. Purther, the application of the technique assumes that 
a complete mathematical model can be formulated covering the 
behaviour of the real system in any way that is relevant to the 
consided situation. Thus, it might be difficult to use this approch 
to non-linear systems like a rocking system. 

Therefore i t is of value to dcvclop simple tcchniques to give reason
able estimates of some of the most important physical parameters 

of rocking systems. 

One of the simplest ways to get an estimate of the coefficient of 
restitution of a rocking system whcn only the response is known, 
is to use the Random Deerem en t technique. U sing thi s technique 
an estimatc of the free response is obtained from the random rc
sponse by a simple averaging algorithm. A computer routine that 
calcillates this estimate from the time series of the rocking re
sponse can be written in any language using only a few lines of 
simple code. 

Once anestimate of the free responseis obtained, the coefficient of 
restitution can be obta.ined in different ways. It is expeeted that 
the free response estimates obta.ined by the RDD technique will be 
biased, i.e. inelude systematic errors. Therefore i t is expected that 
some ways of estimating the coefficient of restitution are better 
than others. To illustrate the bias problems, and to get an idea of 
how to estimate the coefficicnt of restitution from the free response 
estimates, intensive simulations were carried out in the foliowing 
way. 

By using the analytical solution for the free rocking response, the 
rocking response to a discrete Gaussian white noise horizontal 
base excitation was accurately simulatedfor a given value of the 
coefficient of restitution, the Cta.rgd value. This value of the coef
ficient of restitution is considered to be the exact value that also 
represents the target valne for the foliowing effort of obtaining 
its estimate. Next, from the simulated response to white noise 
excitation, free response estimates where obtained by employing 
the Random Decrement (RDD) technique as already mentioned. 
From these free response estimates an approximate value of the 
the coefficient of restitution was obtained. Different ways of ob
ta.ining this approximate valne were considered, and the results 
were compared with the original value eta.rg~t thus getting a de
gree of the inherent bias in every case. 

The results show, that i t does not seem possible to obtain unbiased 
estimates of the coefficient of restitution using the RDD technique. 
However, one of the measures, a very simple measw-e based on 
the time lag for the first crossing and the first valley in the free 
response estimate, seems to be able to give estimates with an 
acceptable bias. 

2. Roeking Response of a Single Solid Body 

The rocking rcsponse of riclig bodies has been studied from thc 
beginning of this century. A review of this research is given by 
Ishiyama [3]. Here only a short a prescntation of themost impor
tant concepts for rocking of rigid bodies will be given. 

A reetangular body is considered, figure l.a. It is assumed that 
the mavement of the body will be pure rocking, i.e. pure angular 
dispiacement araund o n e of the two bo t tom corners. lf the rocking 
angle is smaller than the critical angle Bcr (the overtuming angle), 
se figure l. a, then the moment will aet as a restoring moment equal 
to Mgrsin(Bcr- 8), where M is the mass of the body, g is thc 
gravity acceleration, and r is the distance from the massmid point 
of the body to one of the hottom corncrs. Using the equation of 
impulsc momentum, it .~s easy to see, that if the body is loaded 
by the ground motion X, then the cquations of motion are given 
by, Spanos et al [4] 
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IO+ M r X cos( Ø"- Ø)+ Mgrsin(Ø"- Ø) 

IB+ MrXcos(Bcr ~ 8)- Mgrsin(Bc•·- 8) 
(l) 

whcre I is the inertia moment of the body araund one of the 
hottom corners. As it appears from the equations of motion, the 
problem is non-linenar. The non-linearities are due to the term 
sin(l~cr - 8), but also due to the change of sign when 8 crosses 
zero. A complete set of boundary conditions is given by specifying 
(O,iJ) ==(a, v). Ifit is assumed that the ground motions are zero, 
X = O, then the solution to the equations of motion is the free 
response G( a, v, t). If we specify ( 8, Ø) == ( 80 , O), and assume t hat 
the argument of the sine furretion is smal l so that sin( B er - 8) ~ 
Bcr- B, then the equations eau be solved analytically, Housner [5] 

O( t) G(a,O,t) ~ 0"-(0,,-00 )cosh(vt); 0>0 (2) 

where v= JMgrfl. This solution can be used to obtain the 
duration T of one full rocking period with the amplitude equal to 
Bo, Housner [5] 

(3) 

However, the simplest possible form of the equations of motion 
is obtained for small relative rocking angles, i.e. in the limit 
(O/Der) -+O and for siender systems (small Øer) where cos( Der-
8) = l and sin( Der- 8) ::::Der· In this CMe the equations of motion 
reduce to 

(4) 

whcre s = -l for positive rocking angles, s = l for negative rock
ingangles and where F is the loading term F= -Mr:i. Forthis 
equation, the free response consists of second order polynomials 
in time, and the rocking period is found as 

4 
T ~ -)200 /0o, 

v 
(5) 

The rocking periods given by eq. (3) and eq. (5) are shown in 
figure l. b. As i t appears from the figure, the rocking period T 
depends strongly on the amplitude Bo. Further, if the relative 
rocking angle 80 /0er is smaller than approximately 0.1, then the 
differences between the solutions given by eq. (3) and eq. (5) are 
ncglectable. 

None of theabove equations of motion inelude anydamping term. 
It is usually assumed that energy is dissipated only by impact, 
i.e. when the rocking angle becomes zero, and the rotation point 
shifts from ane side of the body to the other. Purther i t is assumed 
that, at every impact, the angular velacity is reduced by a constant 
factor, i.e. the angular velocity i/' just after the impact is oh tained 
from the angular velacity il just before the impact by the s.imple 
reduction 

il' e i/ (6) 

-,.vhere e is a constant - the so-called coefficient of restitution, usu-

ally a number a littie below one. This assurnption corresponds 
to assume that the kinetic energy is reduced by the factor e2 at 
every impact. However, in every cycle there are two such impacts. 
Therefore after one cycle, the energy of the system is reduced by 
e4 , thus defining theoonatant loga.rithmic decrement 6, Thomson 

[6] given by 

li log( l/e') (7) 

3. Estimation of Free Response 

The Random Decrement (RDD) technique is a simple and fast 
technique for estimation of rorrelation furretions for Gaussian pro
cesses. 

The Random Decrement (RDD) technique was developed at N ASA 
in the late aixties and early seventies by Henry Cole and co-workers 
[7-10]. The basic idea of the technique is to estimate a so-called 
RDD signature by simple averaging. Ifthe time series y( t) is given, 
then the RDD signature estimate b( T) is formed by averaging N 
segments o f the time series y( t) 

l N 
D( r) ; N LY( r+ t;)[ Gy( to) 

i= l 

(8) 

where the time series y(t) at the times ti satisfies the trig condition 
Cy(t;)> and N is the number of trig points. The trig condition 
might for instance bethat y( t;)= a (the level crossing condition) 
or some similar condition. 

Vandiver et al, [11] defined the RDD signature as the conditional 
expectation D( r)= E[Y(r)f Y(O) = aJ, and proved that in the 
case of the level crossing trig condition applied to a zero mean 
Gaussian process, the RDD signature is simply proportional to 
the auto-correlation function Ryy 

D( r) ~ E[Y(r)[ Y(O) ~a] (9) 

where a is the trig level and o-} is the variance of the process. 
This result was generalized to a more general trig condition by 
Brincker et al. [12-13] 

D( r) E[Y(r)[ Y(O) ~a, Y(O) ~v] 
Ryy(r) R~y(r) 
---a----v 

a} a~ 
(lO) 

where R;,.T( T) is the derivative of the correlation furretion and 
where a~ is the variance of the derivative process Y(t), for a 

Gaussian process given by u:~= -R~y(O). 

Now let Y( t) be the response of a linear system loaded by white 
noise. In that case it is known, Crandall [14], that the normalized 
cerrelation furretion Rvv( r)/ oy is equal to the free response g( T) 
for a unit dispiacement and that the normalized derivative of the 
correlation fundion R~y(r)Jay is cqual to the free response h( r) 
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for a unit impulse, giving 

D( r) = a g( r)+ v h( r) (Il) 

thus, for white noise loading, the RDD signature is a linear com
bination of the system furretions g( r) and h( r) expressing the free 
responsefor the initial condition (Y, Y) =(a, v). Thus, for a 
linear system, a cerrelation furretion estimate might be obtained 
by the RDD technique or by some other technique, for instance 
the Fast Fourier Transform technique, Bendat and Piersol, [15], 
and if the system is loaded by white noise, the estimate can be 
considered as a free response. 

One of the advantages with the RDD technique is, that in the 
case of a non-linear system, a similar result applies. This is not 
the case for Fast Fourier Transform estimates. 

Now let the stochastic process Y(t) be the zero mean rocking 
respause from a single degree of freedom system. The free response 
for the initial conditions H = [Y( O), Y(O)] = (a, v] is given by 
G( a, v, r), and we will consider the conditional respause process 

Y,( l) = {Y( l) l H=~} (12) 

where 7J = [a, v]. Instead of conditioning on the response process 
Y(t), we will condition on the load process X( t). Thus, let us 
consider a load process Xc(t), t s; O that is such that H = "1· 
However, since it su:ffices only to consider the derh-atives at t= O, 
we can write 

X,(l) = {X(I)I 2: = 0 (13) 

where 3 is a vectorcontaining the derivatives a= [X(O), X(O), ... ]. 
However, for any non-linear system the response is determined 
solely by the load his tory, Yc( t) = .C~=-oo {X c( r)} where C~=-oo {} 
is a non-linear functional. Thus, since H is a complete set of initial 
con di tions, t hen 

G( a, v, l) (14) 

for cases where the load vanishes for positive times Xc(t) =O, t > 
O. Therefore, if the load is non-vanishing for positive times, it is 
obvious to try to write the general solution in the form 

(15) 

Thisis only true for systems where the princip le of superposition is 
valid. In this case, for a non-linear system like a roeking system, 
this can only be assumed as an approximation. However, if we 
accept eq. (15) as an approximation, then the RDD signature, 
which is the expectation of the conditional process, is given by 

D( r) E[Y,(r)] 

G(a, v, r)+ El C;"'+ {X,(I)}] 
(16) 

The first part is the free response, and the second part is due to a 
firrite length auto-correlation of the load process. The last part is 
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in general not simple to eval.uate. For this part, the expectation 
has to be carried out also for the multidimensional conditional 
variable a, since many different load processes might result in the 
same H. However, ifthe loadprocessis assumed to be w hi te noise, 
the process has no memory, and therefore in this case conditions 
at t = O has no influence on the process for t > O. The conditions 
can therefore be removed, and since the unconditionaJ response is 
zero mean, the last term vanishes, and we get the simple result 

D( r) G(a,v,r) (17) 

U sing thi s result to estimate the free response from the random 
response, it is not possible to consider all combinations of a and 
v. Furthermore, in practice one has to use finite size condition 
windows instead of exeaet conditions like Y(O) =a, Y(O) =v. In 
practice, therefore, it is convenient to estimate the signatures 

D.(r) 

D.(r) 

EIY(r)l Y(O) =a, Y(O) =O] 

E[Y(r)l Y(O) =O, Y(O) =v] 
(18) 

by avaraging using the finite size window conditions 

D.( r) 

b.( r) 

l N. 

N l::>C r+ 1;)1 y( l;) E la+ 6a; a- 6a], y( l;) =o 
4 i=l 

l N. 

N L y( r+ 1;)1 y( l;)= O, !i(t;) E l v+ 6v; v- 6v] 
v i=l 

(19) 

For a broadbanded load process the relation between the RDD 
signatures and the free response is tak en from eq. ( 17) as an 
approximation 

D.(r) "" g( a, r) 

D.(r) "" h(v,r) 
(20) 

where g( a, r)= G(a, O, r), h( v, r)= G(O, v, r). If the load process 
is not perfectly white noise, the RDD signatures will be coloured 
by the load proces s correlation function. However, in man y cases 
the error might be reduced by removing unwa.nted frequences by 
filtering. 

The asumption given by eq. (15) must be expected to cause bias 
crrors in the free response estimates. However, since the free re
sponse estimates satisfy the proper initial conditions, the bias and 
its first derivative must be zero for time lag zero, thus, this bias 
will be small at the first part of the free response estimates. 

The estimates Da( r), hv(r), however, also su:ffer from random 
errors due to the limited number of averagings and from bias in
troduced by the firrite size windows y( ti) E [a+ L\ a; a- 6.a], and 
Y(ti) E [v+6.v; v-.6..v]. In practice the choice of window sizes 6.a, 
6v is a trade off between bias and variance, i.e. small windows 
will give small bias but large variance, and vice versa. The bias 
can be removed by using different window sizes and extrapolating 
back to window size zero as shown la ter. 



4. Response Simulation 

The rocking response of a single degree of freedom system is sim
ulated by using the simple version of the equation of motion given 
by cq. (4). 

Firs t a discrete w hitenoise time series is obtained by simulating a 
series of N zero mean independent Gaussian distributed numbers 
Pn, n= 1,2, ... ,N. Thistime series is taken as the load term. 
However, since the time series is discrete, the vaJues Pn has to be 
considered as irnpulses rather than load intensity. 

Given the time series Pn, the equation of motion might be solved 
exactly using the following scherne. 

The first value of the rocklug angle is found from the initial con
ditions (80 ,00 ) =(a, v), and~ lang as the sign fundion s( O) is 
constant, the next values (8,8) are found from the recursive for
mulas 

(21) 

wherc the time step t::..T is kept constant. In every step it is 
checked if the sign function s( B) clmnges by obtaining the !argest 
root T from the equation 

. l 2 2 
Bn + BnT + 2BcrV s(B)r = O (22) 

The largest root will always be positive. If T > 6.T the sign furre
tion remains constant during the next time step, a.nd the equations 
(21) might be used. However, if T < t::..T, the sign function will 
change during the next time step because (J will cross zero. Now 
let ( 8~, Ø~) denote the r~ki~,g angle and the angle v~locity j u~ t 
before crossing and let (B n, 8,J denote the correspondmg quanb
ties just after the crossing, then - in the case the sign functio_n 
changes signduring the next time step- the next values of (8,8) 
are found from 

ti~+ 8"v2s(8)(6T- r)+ Pn+I 

e~+ Bn(t>T- r)+ ~e"v2s(Ø)(t>T- r)2 
(23) 

where 
8~ =: 8~ = o 
e~ B n + 8crV2 s( B)r 

(24) 

and where of cause the sign function s( 8) changes sign at the 
crossing point. Figure 2 shows some examples of a simulated 
rcsponse for a coefficient af restitution af e = 0.95. 

The solution scheme outlirred above will give exact solutions, i.e. 
solutions that cerrespond exactly to the value of restitution sup
plied to the equations. In all simulations the value e = 0.95 was 
used. 

The random respauses Y were simulated with a resonably small 
time step so that a constant rocking signal with arnplitude equal 
to the standard deviation of the response process would have ap
proximately 75 simulated points per cycle. 

RDD signatures were estimated from the signals using the ideal-

i z ed t rig con di t ion (Y, Y) = (a, O) w her e the t rig level a was tak en 
as a ~ 2oy, a-y being the standard deviation of the simulated 
response process. Two-sided RDD signatures were estimated, i.e. 
symmetrical averaging windows were used, and the free response 
estimate was obtained from the two-sided signature by taking only 
the even part of the signature in arder to force the right velocity 
(v = O) condition on the estimate. 

Figure 2.c shows a typical RDD free response estimate found as an 
average from 10 time series with 6000 points in each time series. 
As it appears from the figure, the RDD free response estimate 
fades out too fast, i.e. the estimate seems to be biased. 

All simulations werc performed using the MATLAB software pack
age, [16]. 

5. Estimation of Coefficient of Restitution 

In this paragraph different tcchniques for determination of the 
coefficient of restitution from the RDD free respause estimates 
will be tested. 

First we will consider a simple global measure and a simple local 
measure. From a statistical point of view, it is an advantage 
to use the whole free response estimate, therefore we will take 
a global measure of the coefficient of restitution by calculating 
the logarithmic decrement 8 using all the extremcs r; of the free 
response estimate. The logarithmic decrcment is expressed by the 
initial value r 0 of the frec response estimate and the ith extreme 
r;, Thomson [6} 

2 ro 
& ~ -In(-) 

; lr;l (25) 

and thus, the logarithmic deeremcut can be found by linear re
gression on i8 and 2ln(lri\). The coefficient af restitution is then 
obtained from eq. (7). This estimate of the cocffic.ient of restitu
tion is denoted C9 • 

As explained above, the use of eq. (15) must be expected to 
impose bias on the free response estimate. However, the bias and 
its firs t derivative will be zero at time lag zero, i.e. the first part of 
the free respause estimate must be expected to have much smaller 
bias than the tail. Also from the free respauses shown in figure 
2, it seems, that the bias is small on the first half cyde of the 
free response estimate and large on the taiL Therefore, it seems 
natura! to estimate the coefficient of restitution from the first half 
cyde only. As a simple measure 

(26) 

is tak.en where the initial value ro and the first minimum r 1 is 
obtained simply as the maximuro value and the minimum value 
of the free response estimate. 

However, the estimates also suffer from bias introduced by the 
finite size window .6.a in eq. {19). This bias can be removed by 
estimating the coefficient of restitution for several window sizes 
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and then extrapolate back to zero. The result of this analysis for 
iig and ii0 is shown in figure 3 showing the estimated values of 
the coefficient of restitution as a function of the relative window 
size 6.a/ 6.ama:~:. The maximuro window size 6.amaz wa.s taken as 
.6.amu S::: 0.28a where a is the trig leveL Each point in the figure 
is anestimate of the coefficient of restitution found from averaging 
100 values each estimated from time series with 6000 points. 

As it appears from Figure 3, the global measure, the estimate 
ii9 , is heavily biased as it would be expected. The value of ii9 
corresponding to zero window size was found as ii9 = 0.8083. The 
local measure using only the firs t part of the free response estimate 
is much eloser to the exact value etargd = 0.95. The value of e0 

corresponding to window size zero was found as iio = 0.9626. 

The extrapolation was made by linear regression. However, since 
the number of trig points varies with the window size, a large win
dow will give small variance but large bias and vice versa. There
fore, the linear regression was carried out by rninimizing the least 
square weighted by the variances, Hald [17J. Since the reciprocal 
variance will be approximately proportional to the number of trig 
points, and the munber of trig points is approximately propor
tional to the window size, the least squares were simply weighted 
by the window size. 

From this preliminary analysis, and from the theoretical consider
ations given above, it can concluded, that measures of the coeffi
cient of restitution found by using a large part of the free response 
cstimate will be hcavily biased, and therefore not usuful for practi
cal purposes. Further, it might be concluded, that local measures 
using only the first part of the free response estimate are not so 
heavily biased, and might be usefull for practical estimation. A 
detailed investigation was carried out to find the hest wa.y to es
timate the coefficient of restitution from the first part of the free 
response estimate. 

In the detailed investigation four different methods were tested all 
using only the first half cycle of the free response estimate. Let 
the number of points in the firs t half cycle be N h. Then the initial 
value c1 was found fltting a second arder polynomial to the Nh/8 
first points of the estimate. Similarly, the first minimum c2 and 
the corresponding time t2 were f o und using N h/ 4 points araund 
the minimum. The slopes tit and t12 just befare and just after 
the crossing and the crossing time it were found fltting a second 
arder polynomial using N 11/8 points at each side of the crossing 
point. Since the ideal free response (for the simplified equations 
used in this paper) is known to be second orrler polynomials, four 
different measures of the the coefficient of restitution can easily 
be defi.ned 

e, 

e, 

e, 

e, 

~ 
v~ 
v, 
v, 
bl t, 
Ct f2- h 

t, 
t2- i t 

(27) 

For each of these measures, the coefficient of restitution was ob
tained as a furretion of the window size as explai.ncd above. How
ever, the simulation/estimation was repeated 20 times in order 
to investigate bias and random errors. The results are shown in 
Figure 4. 

The empirical mean value and the empirical standard deviation 
corresponding to window size zero were found as 

e, 0.9628 ; se, 0.0048 

e, 0.9948 ; se, 0.0055 

e, 0.9717 ; 0.0039 
(28) 

.se, ~ 

e, 0.9539 ; se, 0.0065 

It is easy to see, that the first three measures are biased, especially 
ii 2 is heavily biased. The last measure e4 is the only measurethat 
seems to be unbiased. However, a simple t-test show, that with a 
probability close to one, this measure is biased too. For this mea
sure however, the bias is relatively small, and it seems resonable 
to accept this way of estimating the coefficient of restitution for 
practical purposes. 

6. Condusions 

A technique has been developed and tested for estimation of the 
coefficient of restituion of rocking systems Ioaded by white noise. 
The technique is simple to apply, and only time series of the ran
dom rocking respause has to be available. 

The technique consists of two steps. First a free estimate is ob
tained by the Random Decrement Teclmique, and then from the 
free respause estimate, the coefficient of restitution might be esti
mated. Because of non-ideal trig conditions and an approximate 
superposition assumption, it is to be expected that the Random 
Deeremcut free respause estimates will be biased. However, the 
window bias rnight be removed by using several windows and cx
trapolating back to zero. Fllrther, the influence of bias introduced 
by the superposition assurnption might be minimized using only 
the very first part of the free response estimate. 

Several ways of estimating the coeffi.cient of restitution from the 
first part of the free response estimate were suggccsted and inten
sive simulations were carried out to investigate bias and random 
errors of the suggested measures. Only one of the suggested mea
sures showed an acceptably sma.ll bias. This measure is bascd only 
on the first crossing time of the free response estimate and the firs t 
crossing time of the derivative of the free response estimate. 

The performed in vestigations were basedon estimating the free re
sponse for the initial conditions (Y, Y)= (a, O). However, since i t 
can conlucled that only the first part of the free response estimate 
is unbiased, it might beabetter idea to obtain free response esti
mates for the initial conditions (Y, Y) = (0, t1 ). Using the Random 
Decrement technique to obtain such an estimate, the (two-sided) 
derivative of the estimate will have a discontinuity at time lag 
zero directly corresponding to the coefficient of restitution, eq. 
(6), and therefore in this case the coefficient of restitution might 
be estimated using only a very narrow band araund zero of the 
free response estimate. 

This idea has to be investigated befare final proposais can be made 
how to use the random deeremcut technique for estimation of the 
cocfficient of restitution in practice, Also i t has to be investigated 
if the technique can be used in case of non-white but broad-banded 
loading, and how the technique is to be used on real systems with 
several degrees of freedom. 
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a} Period of rocking system 
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Figure l. Roeking system with one-degree-of-freedom. 
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c' Free res anse estimated from randorn res anse 
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Figure 2. Figures a) and b) llhow simulated responus for e = 

0.95. Figure c) shows a free respons e estimat e o b tained from sim
ulated random responses by the Random Decrement Technique. 

Figure 3. The figure shows 
the two estimate3 eg and eo 
aJ a fundion of the relative 
window size f::..aj.6.amax. 
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Figure 4. 20 repetit~·on:J of the Jour estimate3 i:1, €2, €3, €4 a., 
funciionJ o f ih e relative window Jize !::..af !'::..amar1 etarget = 0.95. 
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