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Abstract

It is proved that for general, not necessarily periodic quasi one dimensional sys-
tems, the band position operator corresponding to an isolated part of the energy
spectrum has discrete spectrum and its eigenfunctions have the same spatial local-
ization as the corresponding spectral projection. As a consequence, an eigenbasis of
the band position operator provides a basis of optimally localized (generalized) Wan-
nier functions for quasi one dimensional systems. If the system has some translation
symmetries (e.g. usual translations, screw transformations), they are ”inherited” by
the Wannier basis.

1 Introduction

Wannier functions (WF) were introduced by Wannier in 1937 [1] as bases in subspaces of
states corresponding to energy bands in solids, bases consisting of exponentially localized
functions (localized orbitals). For periodic crystals they are defined as Fourier transform
of Bloch functions of the corresponding bands. Since then WF proved to be a key tool in
quantum theory of solids as they provide a tight binding description of the electronic band
structure of solids. At the conceptual level they lay at the foundation of all effective mass
type theories e.g the famous Peierls-Onsager substitution describing the dynamics of Bloch
electrons in the presence of an external magnetic field (see e.g.[2]and references therein).
At the quantitative level, especially after the seminal paper by Marzari and Vanderbilt
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[3], WF become an effective tool in ab initio computational studies of electronic properties
of materials. Moreover during the last decades WF proved to be an essential ingredient
in the study of low dimensional nanostructures such as linear chains of atoms, nanowires,
nanotubes etc (see e.g. [4],[5]). In particular WF are essential for most formulations
of transport phenomena using real space Green’s function method based on Landauer-
Büttiker formalism both at rigorous [6] and computational levels [7],[4].

A few remarks are in order here. The first one is that realistic low dimensional systems
are not strictly one (two) dimensional but rather quasi one (two) dimensional and one has to
take into account the (restricted) motion along perpendicular directions. This adds specific
features as for example the screw symmetry in nanotubes and nanowires absent in strictly
one dimensional systems. The second one is that realistic systems, due to the presence of
defects, boundaries, randomness etc, do not have usually full translation symmetry and
this ask for a theory of WF not based on Bloch formalism. Finally let us remind that
contrary to a widespread opinion (see e.g. the discussion in [2]) that WF always exist for
isolated band in solids this is not true. More precisely, in more than one dimension there
are subtle topological obstructions and these are related to the QHE [8], [9], [10]: a band
for which WF are known to exist gives no contribution to the quantum Hall current. It is
then crucial to have rigorous proofs of the existence of exponentially localized WF.

For one dimensional periodic systems the existence of exponentially localized WF has
been proved by Kohn in his classic paper [11] about analytic structure of Bloch functions.
An extension of Kohn analysis to qusi one dimensional systems has been done recently by
Prodan [12]. As for higher dimensions it was known since the work by des Cloizeaux [13]
[14] that there are obstructions to the existence of exponentially localized WF and that
these obstructions are of topological origin (more precisely as explicitly stated in [15] these
obstructions are connected to the topology of a vector bundle of orthogonal projections).
The fact that for simple bands of time reversal invariant systems the obstructions are ab-
sent was proved by des Cloizeaux [13] [14] under the additional condition of the existence
of center of inversion and by Nenciu [15] in the general case. While the proofs in [13] [14],
[15] did not use the vector bundle theory it was suggested in [2],[16] that the characteristic
classes theory in combination with some deep results in the theory of analytic functions
of several complex variables (Oka principle) can be used to give alternative proof of the
above results and to extend them to composite bands of time reversal symmetric systems.
This has been substantiated recently in [17], [10] where the existence of exponentially lo-
calized Wannier functions has been proved for composite bands of time reversal symmetric
systems in two and three dimensions settling in the affirmative a long standing conjecture.
In conclusion the situation is satisfactory as far as periodic time reversal symmetric hamil-
tonians are considered (as already mentioned for hamiltonians which are not time reversal
symmetric exponentially localized Wannier functions might not exists).

Motivated by the great interest in nonperiodic structures much effort has been devoted
to extend the results about existence of exponentially localized bases for isolated bands in
nonperiodic systems. The basic difficulty stems from the fact that for nonperiodic systems
one cannot define Wannier functions as Fourier transforms of the Bloch functions. One
way out of the difficulty is to start from the periodic case or tight-binding limit where the
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Wannier functions are known to exist and and use perturbation or “continuity” arguments.
The basic idea is that since the obstructions are of topological origin the existence of
exponentially localized WF is stable against perturbations. Indeed along these lines it
has been possible to prove the existence of (generalized) WF for a variety of nonperiodic
systems [18], [19], [20], [2], [16]. Since in the periodic case the obstructions to the existence
of exponentially localized WF are absent [13],[14],[15] in one dimension it was naturally to
conjecture [16],[21] that in one dimension WF exist for all isolated bands irrespective of
periodicity properties.

The first problem to be solved was to find an alternative definition of WF. The basic idea
goes back to Kivelson [22], who proposed to define the generalized WF as eigenfunctions
of the “band position” operator. To substantiate the idea one has to prove that the
band position operator is self-adjoint, has discrete spectrum and its eigenfunctions are
exponentially localized. For the particular case of a periodic one dimensional crystal with
one defect Kivelson proved that the eigenfunctions of the band position operator are indeed
exponentially localized and asked for a general proof. In the general case, by a bootstrap
argument, Niu [21] argued that the eigenfunctions of the band position operator (if they
exist) are at least polynomially localized. In full generality the fact that for all isolated
parts of the spectrum the band position operator is self-adjoint, has discrete spectrum and
its eigenfunctions are exponentially localized has been proved in [23].

In this paper we extend the results in [23] to quasi one-dimensional systems i.e. three
dimensional systems for which the motion extends to infinity only in one direction. In
addition we add the result (which is new even in the strictly one dimensional case) that
(see Theorem 2 below for details) the “density” of WF is uniformly bounded. While the
main ideas of the proof are the same as in [23] there are major differences both at the
technical and physical level. In particular for quasi one dimensional systems with screw
symmetry the constructed WF inherits this symmetry a property which is very useful in
computational applications. Finally let us remark that WF defined as eigenfunctions of
the band position operator have very nice properties. They are maximally and exponential
optimally localized in the sense of Marzari and Vanderbilt [3], are (up to uninteresting
phases) uniquely defined and for real (i.e. time reversal invariant) Hamiltonians they can
be chosen to be real functions and this solves for the general quasi one dimensional case
the “strong conjecture” in Section V.A of [3].

2 The results

Consider in L2(R3) the following Hamiltonian describing a particle subjected to a scalar
potential V :

H = P2 + V, P = −i∇, sup
x∈R3

∫

|x−y|≤1

|V (y)|2dy < ∞ (2.1)

which, as is well known (see [24]), is essentially self-adjoint on C∞
0 (R3). We have already

said in the introduction that we are interested in potentials V which tend to zero as the
distance from the Ox1 axis tends to infinity. Let us now be more precise. The notation
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x = (x1,x⊥) will be used throughout the paper. For any R > 0, define:

IV (R) := sup
x1∈R,|x⊥|≥R

∫

|x−y|≤1

|V (y)|2dy. (2.2)

The decay assumption for V will be:

lim
R→∞

IV (R) = 0. (2.3)

It is easy to see that [0,∞) ⊂ σ(H) (using a Weyl sequence argument), thus the only
region where H might have an isolated spectral island is below zero. Now suppose that σ0

is such an isolated part of the spectrum and define:

−E+ := sup{E : E ∈ σ0} < 0. (2.4)

If Γ is a positively oriented contour of finite length enclosing σ0, then the spectral subspace
corresponding to σ0 is:

K := Ran(P0), P0 =
i

2π

∫

Γ

(H − z)−1dz. (2.5)

At a heuristic level, due to the fact that the wave packets from K cannot propagate
in the classically forbidden region (see (2.4) and (2.3)), at negative energies the motion is
confined near the Ox1 axis, i.e. the system has a quasi one dimensional behavior.

2.1 The technical results

The following proposition states the ”localization” properties of P0. On one hand, this
give a precise meaning to the previously discussed quasi one dimensional character, and
on the other hand it provides some key ingredients to the proof of exponential localization
of eigenfunctions of the band position operator.

Let a ∈ R, and let 〈X‖,a〉 be the multiplication operator corresponding to:

ga(x) :=
√

(x1 − a)2 + 1, (2.6)

and 〈X⊥〉 be multiplication operator given by:

g⊥(x) :=
√

|x⊥|2 + 1. (2.7)

Proposition 1. There exist α‖ > 0, α⊥ > 0, M < ∞ such that:

sup
a∈R

‖ eα‖〈X‖,a〉P0e
−α‖〈X‖,a〉 ‖≤ M, and (2.8)

‖ eα⊥〈X⊥〉P0e
α⊥〈X⊥〉 ‖≤ M. (2.9)
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The proof of Proposition 1 will also give values for α‖ and α⊥. In particular α⊥ can be any
number strictly smaller than

√
E+.

We now can formulate the main technical result of this paper. To emphasize its gen-
erality we stress that its proof only uses the decay condition (2.3) and the existence of an
isolated part of the spectrum satisfying (2.4).

Theorem 2. Let X‖ be the operator of multiplication with x1 in L2(R3) and consider in

K the operator

X̂‖ := P0X‖P0 (2.10)

defined on D(X̂‖) = D(X‖) ∩ K. Then

i. X̂‖ is self-adjoint on D(X̂);

ii. X̂‖ has purely discrete spectrum;

iii. Let g ∈ G := σ(X̂‖) be an eigenvalue, mg its multiplicity, and {Wg,j}1≤j≤mg
an

orthonormal basis in the eigenspace of X̂ corresponding to g. Then for all β ∈ [0, 1], there

exists M1 < ∞ independent of g, j and β such that:

∫

R3

e2(1−β)α‖|x1−g|e2βα⊥|x⊥||Wg,j(x)|2dx ≤ M1, (2.11)

where α‖ and α⊥ are the same exponents as for P0;

iv. Let a ∈ R and L ≥ 1. Denote by N(a, L) the total multiplicity of the spectrum of X̂‖

contained in [a − L, a + L]. Then there exists M2 < ∞ such that

N(a, L) ≤ M2 · L. (2.12)

2.2 Further properties of the Wannier basis

We come now to the case when V (hence H) has additional symmetries. The point here is
that although the Wannier functions are not eigenfunctions of H, one would like them to
inherit in some sense the symmetries of H. The reason is that usually the Wannier basis is
used in order to write down an effective Hamiltonian in K, and one would like this effective
Hamiltonian to inherit as much as possible the symmetries of H.

First we comment on time reversal invariance. Since V (x) is real, H commutes with the
anti-unitary operator induced by complex conjugation. It follows (see (2.5)) that P0 and
X̂‖ are also real, thus the eigenfunctions of X̂‖ can be chosen to be real. Hence Theorem
2 provides us with a Wannier basis which is time reversal invariant.

Second we consider the so called ”screw-symmetry” along the Ox1-axis, of much interest
in the physics of carbon nanotubes. Namely, writing

x⊥ = (r, θ), r ≥ 0, θ ∈ [0, 2π), (2.13)
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one assumes that for some θ0 ∈ [0, 2π) we have:

V (x1, r, θ) = V (x1 + 1, r, θ + θ0). (2.14)

Here θ + θ0 has to be understood modulo 2π. Defining the screw-symmetry operators T θ0

n

by:
(T θ0

n f)(x1, r, θ) := f(x1 − n, r, θ − nθ0), (2.15)

one has a (unitary!) representation of Z in L2(R3). Taking into account (2.14) and the
fact that [−∆, T θ0

n ] = 0 (use cylindrical coordinates to prove this), one obtains:

[H,T θ0

n ] = 0, (2.16)

and then from functional calculus and (2.5):

[P0, T
θ0

n ] = 0. (2.17)

In particular, this implies that the family {T θ0

n }n∈Z induces a unitary representation of Z

in K. Moreover, from (2.10) and 2.17) one obtains:

[T θ0

n , X̂‖] = nT θ0

n . (2.18)

Let p < ∞ be the number of eigenvalues of X̂‖ in the interval [0, 1), and let {gj}p
j=1 be the

distinct eigenvalues (each with multiplicity mj < ∞). We have:

X̂‖Wgj ,αj
= gjWgj ,αj

, αj = 1, 2, ...,mgj
. (2.19)

From (2.18 ) and (2.19) one obtains that for all gj, αj, n ∈ Z:

X̂‖T
θ0

n Wgj ,αj
= (gj + n)T θ0

n Wgj ,αj
. (2.20)

Conversely, for every other g ∈ σ(X̂‖), choose an eigenvector Wg. We can find n ∈ Z such

that g + n ∈ [0, 1). Since X̂‖T
θ0

n Wg = (g + n)T θ0

n Wg, it means that g + n must be one of
the gj’s considered above. Therefore we proved the following corollary:

Corollary 3. The spectrum of X̂‖ consists of a union of p ladders:

G = ∪p
j=1Gj, Gj = {g : g = gj + n, n ∈ Z}, j ∈ {1, 2, ..., p}, (2.21)

and an orthonormal basis in K can be chosen as:

Wn,gj ,αj
:= Wgj+n,αj

:= T θ0

n Wgj ,αj
, (2.22)

n ∈ Z, j ∈ {1, 2, ..., p}, αj ∈ {1, 2, ...,mgj
}.
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It is interesting to express the effective Hamiltonian P0HP0 as an infinite matrix with
the help of the Wannier basis. For notational simplicity we relabel the pair (gj, αj) as
l ∈ {1, 2, ..., Nc =

∑p

j=1 mgj
} and write the Wannier basis as {Wn,l}n∈Z, l∈{1,2,...,Nc}. Note

that Nc is nothing that the number of Wannier functions per unit cell [0, 1). Let

hθ0

l,k(m,n) := 〈Wm,l, HWn,k〉. (2.23)

The important fact is that in spite of a rotation with an angle θ0 for which it might
happen that θ0

2π
to be irrational, from (2.16) and (2.22) one obtains (with the usual abuse

of notation):
hθ0

l,k(m,n) = hθ0

l,k(m − n). (2.24)

Then a standard computation gives the effective Hamiltonian as an operator in (l2)Nc which
is of standard translation invariant tight binding type:

(hθ0

effφ)l(m) :=
∑

k,n

hθ0

l,k(m − n)φk(n). (2.25)

This is another consequence of the quasi one-dimensional character of the motion for nega-
tive energies. More precisely, it reflects the fact that for arbitrary values of θ0, since T θ0

n is
a unitary representation of Z, one can still develop a Bloch type analysis but with a more
complicated form of ”Bloch” functions:

Ψk(x) = eikx1uk(x), uk(x) = T θ0

n uk(x). (2.26)

However, due to the complicated symmetry of the resulting Bloch functions (which does
not allow to represent the fiber Hamiltonian as a differential operator on the unit cell with
”simple” boundary conditions), the analysis gets much harder. The Bloch analysis reduces
to the standard one (with a larger unit cell) for rational values of θ0

2π
.

We end up this section with a remark about localization properties of Wannier functions
as given by Theorem 2. As eigenfunctions of X̂‖ they are optimally localized in the sense
of Marzari and Vanderbilt (see the discussion in [3]). More precisely, since the constants
α‖ and α⊥ in (2.8), (2.9) and (2.11) are the same, the Wannier functions have maximal
exponential localization in the sense that they have the same exponential decay as the
integral kernel of P0. This proves for general quasi one-dimensional systems the ”strong
conjecture” in Section VA of [3] concerning the exponential localization of the optimally
localized Wannier functions.

3 Proofs

This section is devoted to the proof of Proposition 1 and Theorem 2. A certain number of
unimportant finite positive constants appearing during the proof will be denoted by M .

One of the key ingredients in both proofs is the exponential decay of the integral kernel
of the resolvent of Schrödinger operators. This is an elementary result in the Combes-
Thomas-Agmon theory of weighted estimates. We summarize the needed result in:
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Lemma 4. Let W be a potential such that supx∈R3

∫

|x−y|≤1
|W (y)|2dy < ∞. Define K :=

P2 + W (x) as an operator sum, and let h be a real function satisfying:

h ∈ C∞(R3), sup
x∈R3

{|∇h(x)| + |∆h(x)|} = m < ∞. (3.1)

Fix z ∈ ρ(H). Then there exists αz > 0 such that

‖eαzh(K − z)−1e−αzh‖ ≤ M, (3.2)

‖eαzhPj(K − z)−1e−αzh‖ ≤ M, (3.3)

where Pj = −i ∂
∂xj

, j ∈ {1, 2, 3}.

Without giving the details of the proof of Lemma 4, for later use we write down a key
identity in (3.5): under the condition

1 + αz(±iP · ∇h ± i∇h · P − αz|∇h|2)(K − z)−1 invertible (3.4)

one has

e±αzh(K − z)−1e∓αzh (3.5)

= (K − z)−1[1 + αz(±iP · ∇h ± i∇h · P − αz|∇h|2)(K − z)−1]−1.

Then (3.4) holds true if for example αz > 0 is small enough.

3.1 Proof of Proposition 1

Take Γ in (2.5) a contour of finite length enclosing σ0 and satisfying

dist(Γ, σ(H)) =
1

2
dist(σ0, σ(H) \ σ0). (3.6)

Then since |∇ga| ≤ 1, |∆ga|2 ≤ 2, the estimate (2.8) follows directly from Lemma 4 by
taking α‖ sufficiently small such that for all z ∈ Γ:

‖α‖(iP · ∇ga + i∇ga · P − α‖|∇ga|2)(K − z)−1‖ ≤ b < 1.

We now prove (2.9). If R > 0, define:

HR = −∆ + (1 − χR)V, (3.7)

where

χR(x) =

{

1 for |x⊥| ≤ R
0 for |x⊥| > R

. (3.8)

From (2.3) it follows that
lim

R→∞
inf σ(HR) = 0.
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In particular, for sufficiently large R, (HR−z)−1 is analytic inside Γ. Since H−HR = χRV ,
then using resolvent identities we obtain:

(H − z)−1 = (HR − z)−1 (3.9)

− (HR − z)−1χRV (HR − z)−1 + (HR − z)−1χRV (H − z)−1χRV (HR − z)−1.

From (2.5), (3.9) and the fact that (HR − z)−1 is analytic inside Γ one has

P0 =
i

2π

∫

Γ

(HR − z)−1χRV (H − z)−1χRV (HR − z)−1. (3.10)

Notice that for all α > 0:

sup
x∈R3

∫

|x−y|≤1

|(eαg⊥χRV )(y)|2dy < ∞. (3.11)

Take now α⊥ > 0 such that 3.4 holds true for all z ∈ Γ, K = HR, h = g⊥ and αz = α⊥.
That is let us suppose that

1 + α⊥(±iP · ∇g⊥ ± i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1 is invertible (3.12)

uniformly on Γ. Then we can rewrite P0 as:

P0 = e−α⊥〈X⊥〉

{

i

2π

∫

Γ

[

eα⊥〈X⊥〉(HR − z)−1e−α⊥〈X⊥〉
]

[

eα⊥g⊥χRV (H − z)−1
] [

eα⊥g⊥χRV (HR − z)−1
]

(3.13)
[

1 + α⊥(−iP · ∇g⊥ − i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1
]−1

dz
}

e−α⊥〈X⊥〉.

Due to (3.11) the operator under the integral sign is uniformly bounded in z and the proof
of Proposition 1 is finished provided we can show why we can choose α⊥ as close to

√
E+

as we want. The argument is as follows. Choose 0 ≤ α⊥ <
√

E+. Choose a contour Γ
which is very close to σ0, at a distance δ > 0, infinitesimally small. Using the spectral
theorem (or in this case the Plancherel theorem), there exists δ small enough such that the
following estimates hold true:

sup
z∈Γ

∥

∥(P2 − z)−1
∥

∥ ≤ const, sup
z∈Γ

max
j∈{1,2,3}

∥

∥Pj(P
2 − z)−1

∥

∥ ≤ const. (3.14)

Hence we can find δ small enough and R large enough such that the operator in (3.12) is
invertible if

1 + α⊥(±iP · ∇g⊥ ± i∇g⊥ · P − α⊥|∇g⊥|2)(P2 −ℜ(z))−1 is invertible (3.15)

uniformly on Γ. Now the operator in (3.15) is invertible if

1 ± iα⊥(P2 −ℜ(z))−
1

2 (P · ∇h + ∇h · P)(P2 −ℜ(z))−
1

2

− α2
⊥(P2 −ℜ(z))−

1

2 |∇h|2(P2 −ℜ(z))−
1

2 (3.16)

9



is invertible (by a resummation of the Neumann series and analytic continuation). Now
assume that uniformly on Γ we have:

0 < α2
⊥(P2 −ℜ(z))−

1

2 |∇h|2(P2 −ℜ(z))−
1

2 ≤ α2
⊥

−ℜ(z)
< 1,

which can be achieved if α2
⊥ < E+ and δ is chosen to be small enough. Define

S :=
(

1 − α2
⊥(P2 −ℜ(z))−

1

2 |∇h|2(P2 −ℜ(z))−
1

2

)− 1

2

,

and
T = T ∗ := S(P2 −ℜ(z))−

1

2 (P · ∇h + ∇h · P)(P2 −ℜ(z))−
1

2 S.

Then the operator in (3.16) is invertible if 1± iα⊥T is invertible, which is always the case:

(1 ± iα⊥T )−1 = (1 ∓ iα⊥T )(1 + α2
⊥T 2)−1.

Therefore Proposition 1 is proved.

3.2 Proof of Theorem 2

Proof of (i). First we recall an older result (see e.g. [25, 2, 26]), according to which the
commutator [X‖, P0] defined on D(X‖) has a bounded closure on L2(R3). We seek an

approximate resolvent of X̂‖ by defining for µ > 0 the operator

R̂±µ = P0(X‖ ± iµ)−1P0. (3.17)

Since one can rewrite R̂±µ as

R̂±µ = (X‖ ± iµ)−1P0 + (X‖ ± iµ)−1[X‖, P0](X‖ ± iµ)−1P0

it follows that R̂±µK ⊂ D(X̂‖) and by a straightforward computation (as operators in K)

(X̂‖ ± iµ)R̂±µ = P0(X‖ ± iµ)P0(X‖ ± iµ)−1P0 = 1K + Â±µ (3.18)

with
Â±µ = P0[X‖, P0](X‖ ± iµ)−1P0. (3.19)

Since [X‖, P0] is bounded and ‖(X‖ ± iµ)−1‖ ≤ 1
µ
, it follows that for sufficiently large µ:

‖Â±µ‖ ≤ 1

2
. (3.20)

Then again as operators in K:

(X̂ ± iµ)R̂±µ(1K + Â±µ)−1 = 1K (3.21)
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This implies that X̂ ± iµ is surjective on R̂±µ(1K + Â±µ)−1K ⊂ D(X̂) . By the

fundamental criterion of self-adjointness [24] X̂ is self-adjoint in K on D(X̂). In addition,
from (3.21) one obtains the following formula for the resolvent of X̂‖:

(X̂‖ ± iµ)−1 = R̂±µ(1K + Â±µ)−1. (3.22)

Proof of (ii). We will show that R̂±µ is compact in K which implies (see (3.22)) that X̂‖ has
compact resolvent, thus purely discrete spectrum. Consider a cut-off function φN which
equals 1 if |x| ≤ N and is zero if |x| ≥ 2N . For N ≥ 1 we can decompose:

R̂±µ = P0(X‖ ± iµ)−1φNP0 + P0(X‖ ± iµ)−1(1 − φN)P0. (3.23)

Writing
φNP0 = {φN(P2 + 1)−1}{(P2 + 1)P0}

we see that φNP0 is compact (even Hilbert-Schmidt) in L2(R3) (the first factor is Hilbert-
Schmidt while the second one is bounded). Now if 0 < α is small enough, we know that
eαg⊥P0 is bounded (see (2.9)). Since

lim
N→∞

∥

∥(X‖ ± iµ)−1(1 − φN)e−αg⊥
∥

∥ = 0,

we have shown:
lim

N→∞

∥

∥

∥
R̂±µ − P0(X‖ ± iµ)−1φNP0

∥

∥

∥
= 0,

thus R̂±µ equals the norm limit of a sequence of compact operators, therefore it is compact.

Accordingly, since the self-adjoint operator X̂‖ has compact resolvent it has purely discrete
spectrum [24]:

σ(X̂‖) = σdisc(X̂‖) =: G, (3.24)

and the proof of the second part of Theorem 2 is finished.

Proof of (iii). Now we will consider the exponential localization of eigenfunctions of X̂‖.
Let g ∈ G be an eigenvalue, mg its multiplicity and Wg,j, 1 ≤ j ≤ mg be an orthonormal

basis in the eigenspace of X̂‖ corresponding to g. We shall prove that uniformly in g and j

‖eα‖〈X‖,g〉Wg,j‖ ≤ M and (3.25)

‖eα⊥〈X⊥〉Wg,j‖ ≤ M. (3.26)

Taking (3.25) and (3.26) as given, one can easily obtain (2.11) by a simple convexity
argument: the function f(x) = a1−xbx ; a, b > 0 is convex on R, and for 0 ≤ β ≤ 1 one
has:

βe2α‖ga(x) + (1 − β)e2α⊥g⊥ ≥ e2(1−β)α‖ga(x)e2βα⊥g⊥ , (3.27)

which together with (3.25) and (3.26) it proves (2.11) with M1 = M2. Since (3.26) follows
directly from (2.9) and Wg,j = P0Wg,j we are left with the proof of (3.25).
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Although the proof of (3.25) mimics closely the proof in the one dimensional case
[23], we give it here for completeness. In order to emphasize the main idea of the proof
let us remind one of the simplest proofs of the exponential decay of eigenfunctions of
Schrödinger operators corresponding to discrete eigenvalues (assuming that the potential
V is bounded and has compact support). Namely assume that for some E > 0 we have
(−∆ + V + E)Ψ = 0, which can be rewritten as

Ψ = −(−∆ + E)−1V Ψ. (3.28)

Since for |α| <
√

E, eα|·|(−∆ + E)−1e−α|·| and eα|·|V are bounded:

Ψ = −e−α|·|
{

eα|·|(−∆ + E)−1e−α|·|
}

(eα|·|V )Ψ

which proves the exponential localization of Ψ. The main idea in proving (3.25) is to
rewrite the eigenvalue equation for X̂‖ in a form similar to (3.28) and and then to use
(2.8).

Let us start with some notation. If b > 0 (sufficiently large) and a ∈ R, define:

fa,b(x) := b f

(

x1 − a

b

)

(3.29)

where f is a real C∞
0 (R) cut-off function satisfying 0 ≤ f(y) ≤ 1 and

f(y) =

{

1 for |y| ≤ 1
2

0 for |y| ≥ 1
.

Define the function ha,b by:

ha,b(x) := x1 − a + ifa,b(x). (3.30)

Note that by construction, ha,b only depends on x1, and obeys:

|ha,b(x)| ≥ b

2
. (3.31)

Moreover, its first two derivatives are uniformly bounded:

sup
x∈R3

sup
a∈R

sup
b≥1

{|∇ha,b(x)| + |∆ha,b(x)|} = K < ∞. (3.32)

The eigenvalue equation for Wg,j reads as P0(X̂‖ − g)P0Wg,j = 0. Using (3.30) it can be
rewritten as:

P0hg,bP0Wg,j = iP0fg,bP0Wg,j. (3.33)

We now prove that P0hg,bP0 is invertible. Like in the proof self-adjointness of X̂‖ we
compute

P0h
−1
g,bP0P0hg,bP0 = 1K + P0h

−1
g,b [P0, hg,b] P0. (3.34)

12



The key remark is that [P0, hg,b] is bounded. Indeed we have the identity:

[P0, hg,b] = − 1

2π

∫

Γ

(H − z)−1 {P · ∇hg,b + ∇hg,b · P} (H − z)−1dz

= − 1

2π

∫

Γ

(H − z)−1 {−i∆hg,b + 2∇hg,b · P} (H − z)−1dz. (3.35)

It follows that [P0, hg,b] is uniformly bounded in g ∈ R and b ≥ 1 (see (3.32)). Taking into
account (3.31) one obtains that the operator

B̂g,b = P0h
−1
g,b [P0, hg,b] P0 : K → K (3.36)

satisfies

‖B̂g,b‖ ≤ 1

2
(3.37)

if b ≥ b0 for some large enough b0 < ∞. It follows that 1 + B̂g,b is invertible and then the
eigenvalue equation (see (3.33), (3.34) and (3.36)) takes the form

Wg,j = i
(

1 + B̂g,b

)−1

P0h
−1
g,bP0fg,bP0Wg,j (3.38)

which is the analog of (3.28). By construction (see the definition of fg,b in (3.29)):

‖eα‖〈X‖,g〉fg,b‖ ≤ beα‖(b+1).

Moreover,

eα‖〈X‖,g〉P0h
−1
g,bP0e

−α‖〈X‖,g〉 =
{

eα‖〈X‖,g〉P0e
−α‖〈X‖,g〉

}

h−1
g,b

{

eα‖〈X‖,g〉P0e
−α‖〈X‖,g〉

}

is bounded due to (2.8). Thus the only thing it remains to be proved is the existence of a
b large enough such that the following bound holds:

sup
g∈R

∥

∥

∥

∥

eα‖〈X‖,g〉
(

1 + B̂g,b

)−1

e−α‖〈X‖,g〉

∥

∥

∥

∥

< ∞. (3.39)

Using the Neumann series for
(

1 + B̂g,b

)−1

, it follows that it suffices to prove that

lim
b→∞

sup
g∈R

∥

∥

∥
eα‖〈X‖,g〉B̂g,be

−α‖〈X‖,g〉
∥

∥

∥
= 0. (3.40)

Since (see (3.31)) limb→∞ ‖h−1
g,b‖ = 0 (uniformly in g ∈ R), for (3.40) to holds true it is

sufficient to show:
sup
g∈R

∥

∥eα‖〈X‖,g〉 [P0, hg,b] e
−α‖〈X‖,g〉

∥

∥ ≤ const. (3.41)

But this easily follows from (3.35), (3.32), (3.2) and (3.3) where we take K = H, αz = α‖

and h = gg. The proof of (iii) is concluded.

Proof of (iv). We start with a technical result:
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Lemma 5. Fix 0 ≤ α⊥ <
√

E+. Then there exists a bounded operator D such that

P0 = e−α⊥〈X⊥〉(P2 + 1)−1D (3.42)

Proof. We use the notation and ideas of Proposition 1, and we rewrite P0 in a convenient
form. First, for R > 0 we have

(H − z)−1 = (HR − z)−1 − (HR − z)−1χRV (H − z)−1.

Second, choose Γ close enough to σ0 and R large enough, such that (HR − z)−1 becomes
analytic inside Γ and (3.12) holds true for all z ∈ Γ. Then we can write:

P0 = −e−α⊥〈X⊥〉 i

2π

∫

Γ

(3.43)

(HR − z)−1[1 + α⊥(iP · ∇g⊥ + i∇g⊥ · P − α⊥|∇g⊥|2)(HR − z)−1]−1eα⊥g⊥χRV (H − z)−1dz.

Now by the closed graph theorem we have that (P2 + 1)(HR + 1)−1 is bounded (here R is
large enough such that (−∞,−1/2) ⊂ ρ(HR)), and together with the spectral theorem:

sup
z∈Γ

‖(P2 + 1)(HR − z)−1‖ < ∞.

Use this in (3.43) and we are done.

We now have all the necessary ingredients for proving the last statement of our theorem.
For every L > 0 and a ∈ R, denote by χL,a the characteristic function of the slab {x :
|x1 − a| ≤ L}. Then define the operator B := χL,aP0. Using (3.42) let us show that B is
Hilbert-Schmidt, and moreover, uniformly in a ∈ R we have:

‖B‖2
2 ≤ M · L, (3.44)

for some M < ∞. Indeed, since B = χL,ae
−α⊥〈X⊥〉(−∆ + 1)−1D, a direct computation

using the explicit formula for the integral kernel of the free Laplacian gives:

‖χL,ae
−α⊥〈X⊥〉(P2 + 1)−1‖2

2 ≤ const · L.

It follows that the operator χL,aP0χL,a = BB∗ is trace class and

|Tr(χL,aP0χL,a)| ≤ ‖B‖2
2 ≤ M · L (3.45)

for some M < ∞ independent of L and a.
Now let PL,a

0 be the orthogonal projection onto the subspace spanned by those Wg,j for
which g ∈ [a − L, a + L]:

PL,a
0 :=

∑

|g−a|≤L

mg
∑

j=1

〈·,Wg,j〉Wg,j. (3.46)
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We can choose A sufficiently large such that (3.25) implies:

∫

|x1−a|≥A

|Wg,j(x)|2dx ≤ 1

2
, (3.47)

uniformly in a and g ∈ [a − L, a + L]. Since P0 ≥ PL,a
0 , from (3.45) one obtains:

M · (L + A) ≥ Tr(χL+A,aP0χL+A,a) ≥ Tr(χL+A,aP
L,a
0 χL+A,a)

=
∑

|g−a|≤L

mg
∑

j=1

∫

R3

χL+A,a(x)|Wg,j(x)|2dx

≥
∑

|g−a|≤L

mg
∑

j=1

1

2
=

1

2
N(a, L), (3.48)

where in the last inequality we used (3.47). In particular, if L ≥ 1, then uniformly in a ∈ R

we have
N(a, L) ≤ 2M · (1 + A)L

and the proof is finished.
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