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0.1 Inference

(This text written by Jesper Møller, Aalborg University, is submitted for the
collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives’,
edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by Clarendon
Press, Oxford, and planned to appear as Section 4.1 with the title ‘Inference’.)

This contribution concerns statistical inference for parametric models used in
stochastic geometry and based on quick and simple simulation free procedures as
well as more comprehensive methods using Markov chain Monte Carlo (MCMC)
simulations. Due to space limitations the focus is on spatial point processes.

0.1.1 Spatial point processes and other random closed set models

Recall that a spatial point process X considered as a random closed set in R
d is

nothing but a random locally finite subset of R
d. This means that the number

of points n(X ∩ B) falling in an arbitrary bounded Borel set B ⊂ R
d is a finite

random variable. This extends to a marked point process where to each point
xi ∈ X there is associated a mark, that is a random variable Ki defined on
some measurable space M (for details, see e.g. Stoyan et al. (1995) or Daley and
Vere-Jones (2003)).

Most theory and methodology for inference in stochastic geometry concern
spatial point processes and to some extend marked point processes, cf. the mono-
graphs Ripley (1981, 1988), Cressie (1993), Stoyan et al. (1995), Stoyan and
Stoyan (1995), Van Lieshout (2000), Diggle (2003), Møller and Waagepetersen
(2003), and Baddeley et al. (2006). A particular important case is a germ-grain
model (Hanisch, 1981), where the xi are called germs and the Ki primary grains,
the mark space M = K is the set of compact subsets of R

d, and the object of
interest is the random closed U set given by the union of the translated primary
grains xi +Ki = {xi + x : x ∈ Ki}. The most studied case is the Boolean model
(Hall, 1988; Molchanov, 1997), i.e. when the germs form a Poisson process and
the primary grains are mutually independent, identically distributed, and inde-
pendent of the germs. Extensions to models with interacting grains have been
studied in Kendall et al. (1999) and Møller and Helisova (2007).

0.1.2 Outline and some notation

In the sequel we mostly confine attention to planar point processes, but many
concepts, methods, and results easily extend to R

d or a more general metric
space, including many marked point process models. (For example, when dis-
cussing the Norwegian spruces in Figure 0.6, this may be viewed as a marked
point process of discs.) We concentrate on the two most important classes of
spatial point process models, namely Poisson/Cox processes in Section 0.1.3 and
Gibbs (or Markov) point processes in Section 0.1.4. We illustrate the statisti-
cal methodology with various application examples, where many are examples
of inhomogeneous point patterns. We discuss the current state of simulation-
based maximum likelihood inference as well as Bayesian inference, where fast
computers and advances in computational statistics, particularly MCMC meth-
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ods, have had a major impact on the development of statistics for spatial point
processes. The MCMC algorithms are treated in some detail; for a general intro-
duction to MCMC and for spatial point processes in particular, see Møller and
Waagepetersen (2003) and the references therein. We also discuss more classical
methods based on summary statistics, and more recent simulation-free infer-
ence procedures based on composite likelihoods, minimum contrast estimation,
and pseudo likelihood. Often the R package spatstat spatstat (Baddeley and
Turner 2005, 2006) is used; in other cases own software in R and C has been
developed.

Throughout this contribution we use the following notation. Unless otherwise
stated, X is a planar spatial point process and B is the class of Borel sets in R

2.
We letW ∈ B denote a bounded observation window of area |W | > 0, and assume
that a realization X ∩W = x is observed (most often only one such realization
is observed). Here the number of points, denoted n(x), is finite. Moreover, I[·]
(or I[·]) is an indicator function.

0.1.3 Inference for Poisson and Cox process models

Poisson processes (Kingman, 1993) are models for point patterns with complete
spatial independence, while Cox processes (Cox, 1955) typically model a positive
dependence between the points. Both kinds of processes may model inhomogene-
ity (Diggle, 2003; Møller and Waagepetersen 2003, 2007).

As an illustrative example of an inhomogeneous point pattern we refer to
the rain forest trees in Figure 0.1. These data have previously been analyzed in
Waagepetersen (2007a) and Møller and Waagepetersen (2007), and they are just
a small part of a much larger data set comprising hundreds of thousands of trees
belonging to hundreds of species (Hubbell and Foster, 1983; Condit et al., 1996;
Condit, 1998).

Fig. 0.1. Locations of 3605 Beilschmiedia pendula Lauraceae trees observed
within a 500× 1000 m region at Barro Colorado Island.

0.1.3.1 Definition and fundamental properties of Poisson and Cox processes
The most fundamental spatial point process model is the Poisson process in R

2.



Inference 3

The process is defined in terms of a locally finite and diffuse measure µ on B.
These assumptions on µ allow us to view the Poisson process as a locally finite
random closed set X ⊆ R

2; for more general definitions, relaxing the assumptions
on µ, see e.g. Kingman (1993). Below we recall the definition of the Poisson
process, and discuss why extensions to Cox processes are needed.

In stochastic geometry terms, the Poisson process is simplest characterized
by its avoidance probability

P(X ∩B = ∅) = exp(−µ(B)), B ∈ B (0.1)

showing that the process is uniquely defined by µ. A more constructive descrip-
tion is that

(i) N(B) = n(X∩B), the number of points falling within any bounded B ∈ B,
is Poisson distributed with mean µ(B), and

(ii) conditional on N(B), the points in X ∩ B are mutually independent and
identically distributed with a distribution given by the normalized restric-
tion of µ to B.

Clearly (i) implies (0.1) and µ is the intensity measure of the Poisson process,
and (ii) implies that the locations of the points in X ∩ B are independent of
N(B). It is rather straightforwardly verified that (i)-(ii) is equivalent to (i) and
(iii), where (iii) is the independent scattering property:

(iii) N(A) and N(B) are independent if A,B ∈ B are disjoint.

Considering an arbitrary countable partition of R
2 into bounded Borel sets and

applying (i)-(iii) is one way of constructing and thereby verifying the existence
of the Poisson process, see e.g. Møller and Waagepetersen (2003).

Throughout this contribution, as in most statistical applications, µ is as-
sumed to be absolutely continuous with respect to Lebesgue measure, i.e. µ(B) =
∫

B
ρ(x) dx, where ρ is the intensity function. If ρ(x) = c is constant for all x in

a set B ∈ B, then the Poisson process is said to be homogeneous on B with in-
tensity c. Note that stationarity of the Poisson process (i.e. that its distribution
is invariant under translations in R

2 of the point process) is equivalent to the
process being homogeneous on R

2.
Although various choices of inhomogeneous intensity functions may gener-

ate different kinds of aggregated point patterns, the Poisson process is usually
considered to be a too simplistic model for statistical applications because of
the strong independence properties described in (ii)-(iii) above. A natural exten-
sion giving rise to a model for aggregated point patterns with more dependence
structure is given by a doubly stochastic construction, where Λ(x) is a random
locally integrable function so that X conditional on a realization Λ(x) = λ(x),
x ∈ R

2, is a Poisson process with intensity function λ(x). Then X is said to be
a Cox process (Cox, 1955) driven by Λ (or driven by the random measure given
by M(B) =

∫

B
Λ(x) dx). The simplest example is a mixed Poisson process, i.e.

when Λ(x) = Λ(o) does not depend on x where Λ(o) is a non-negative random
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variable, see Grandell (1997). In practice more flexible models are needed, as
discussed in the following section.

0.1.3.2 Modelling intensity In order to model inhomogeneity, spatial hetero-
geneity or aggregation it is important to account for possible effects of covariates
(also called explanatory variables), which we view as a non-random (p + 1)-
dimensional real function z(x) = (z0(x), . . . , zp(x)), x ∈ R

2, and which we as-
sume is known at least within the observation window W . In practice z(x) may
only be partially observed on a grid of points, and hence some interpolation
technique may be needed (Rathbun, 1996; Rathbun et al., 2007; Waagepetersen,
2007c). For instance, Figure 0.2 shows two kinds of covariates z1 and z2 for the
rain forest trees in Figure 0.1, taking z0 ≡ 1 as discussed below and letting z1
and z2 be constant on each of 100 × 200 squares of size 5 × 5 m.
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Fig. 0.2. Rain forest trees: the covariates z1 (altitude; left panel) and z2 (norm
of altitude gradient; right panel) are recorded on a 5 by 5 m grid.

Poisson processes with log-linear intensity: The mathematical most convenient
model for a Poisson process is given by a log-linear intensity function (Cox, 1972)

ρ(x) = exp(β · z(x)) (0.2)

where β = (β0, . . . , βp) is a real (p + 1)-dimensional parameter and · denotes
the usual inner product. We refer to β0, . . . , βp as regression parameters. In the
sequel, as in most applications, we assume that z0 ≡ 1 and call β0 the intercept.
Thus the process is in general inhomogeneous if p > 0.

Log-Gaussian Cox processes: Let Φ = {Φ(x) : x ∈ R
2} denote a stationary

Gaussian process (Adler, 1981). The log-linear Poisson process model extends
naturally to a Cox process driven by

Λ(x) = exp(β · z(x) + Φ(x)). (0.3)

Such log-Gaussian Cox process models (Coles and Jones, 1991; Møller et al.,
1998) provide a lot of flexibility corresponding to different types of covariance
functions c where by stationarity of Φ, c(x− y) = Cov(Φ(x),Φ(y)). Henceforth,
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since we can always absorb the mean of Φ into the intercept β0, we assume with-
out loss of generality that EΦ(x) = −c(0)/2 or equivalently that E exp(Φ(x)) = 1.
Thereby the log-Gaussian Cox process also has intensity function (0.2), cf. Sec-
tion 0.1.3.5.

Shot-noise Cox processes: Another very flexible class of models is the shot-
noise Cox processes (Wolpert and Ickstadt, 1998; Brix, 1999; Møller, 2003). As
an example of this, let

Λ(x) = exp(β · z(x))
1

ωσ2

∑

y∈Y

k((x − y)/σ) (0.4)

where Y is a stationary Poisson process with intensity ω > 0, k(·) is a density
function with respect to Lebesgue measure, and σ > 0 is a scaling parameter.
This form of the random intensity function can be much generalized, replacing
Y with another kind of model and the kernel k(x− y) by another density k(·; y)
which may be multiplied by a positive random variable γy, leading to (general-
ized) shot-noise Cox processes (Møller and Torrisi, 2005). In analogy with the
assumption made above for log Gaussian Cox processes, the random part fol-
lowing after the exponential term in (0.4) is a stationary stochastic process with
mean one, so the shot-noise Cox process also has intensity function (0.2), cf.
Section 0.1.3.5. Often a bivariate normal kernel k(x) = exp(−‖x‖2/2)/(2π) is
used, in which case we refer to (0.4) as a modified Thomas process (Thomas,
1949).

0.1.3.3 Simulation Due to the complexity of spatial point process models, sim-
ulations are often needed when fitting a model and studying the properties of
various statistics such as parameter estimates and summary statistics. For a Pois-
son process X with intensity function ρ, it is useful to notice that an independent
thinning {x ∈ X : U(x) ≤ p(x)}, where p : R

2 → [0, 1] is a Borel function and
the U(x) are mutually independent uniform random variables on [0, 1] which are
independent of Y, is a Poisson process with intensity function pρ.

Simulation of a stationary Poisson process X restricted to a bounded region
B is straightforward, using (i)-(ii) in Section 0.1.3.1. If B is of irregular shape,
we simulate X on a larger region D ⊃ B such as a rectangle or a disc, and return
X ∩ B (corresponding to an independent thinning with retention probabilities
p(x) = I[x ∈ B]).

Usually the intensity function ρ(x) of an inhomogeneous Poisson process X

is bounded by some constant c for all x ∈ B. Then we can first simulate a homo-
geneous Poisson process on B with intensity c, and second make an independent
thinning of this with retention probabilities p(x) = ρ(x)/c.

Thus the essential problem of simulating a Cox process on B is how to sim-
ulate its random intensity function Λ(x) for x ∈ B. For the log-Gaussian Cox
process driven by (0.3), there exist many ways of simulating the Gaussian pro-
cess (Schlater, 1999; Lantuejoul, 2002; Møller and Waagepetersen, 2003). For
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the shot-noise Cox process X driven by (0.4), it is useful to notice that this
is a Poisson cluster process obtained as follows. Conditional on Y in (0.4), let
Xy for all y ∈ Y be mutually independent Poisson processes, where Xy has
intensity function ρy(x) = exp(β · z(x))k((x − y)/σ)/(ωσ2). Then we can take
X = ∪y∈YXy, that is, the superposition of ‘clusters’ Xy with ‘centres’ y ∈ Y.
We may easily simulate each cluster, but how do we simulate those centre points
generating clusters with points in B? In fact such centre points form a Pois-
son process with intensity function ρ(y) = ωP(Xy ∩ B 6= ∅), and the paper by
Brix and Kendall (2002) shows how we can simulate this process as well as the
non-empty sets Xy ∩ B. This paper provides indeed a neat example of a per-
fect simulation algorithm, but it is easier to use an algorithm for approximate
simulation, simulating only those centres which appear within a bounded region
D ⊃ B such that P(Xy ∩ B 6= ∅) is very small if y 6∈ D (Møller, 2003; Møller
and Waagepetersen, 2003).

0.1.3.4 Maximum likelihood Consider a parametric point process models spec-
ified by an unknown parameter θ, e.g. θ = β in case of (0.2); many other examples
appear in the sequel. We assume that the point process X restricted to W has
a density fθ with respect to a stationary Poisson process Y with intensity one,
i.e. P(X ∩W ∈ F ) = E (fθ(Y ∩W )I[Y ∩W ∈ F ]) for all events F . Given the
data X ∩W = x, the likelihood function L(θ;x) is any function of θ which is
proportional to fθ(x), and the maximum likelihood estimate (MLE) is the value
of θ which maximizes the likelihood function (provided such a value exists and it
is unique). Thus when we specify the likelihood function we may possibly (and
without mentioning) exclude a multiplicative term of the density, if this term
depends only on x (and not on θ). Obviously, the MLE does not depend on such
a multiplicative term.

The log-likelihood function of the Poisson process with log-linear intensity
function (0.2) is

l(β;x) = β ·
∑

x∈x

z(x) −

∫

W

exp (β · z(x)) dx. (0.5)

Here the integral can be approximated by the Berman and Turner (1992) device,
and the MLE can be obtained by spatstat. Asymptotic properties of the MLE
are studied in Rathbun and Cressie (1994) and Waagepetersen (2007b).

In general, apart from various parametric models of mixed Poisson processes,
the likelihood for Cox process models is intractable. For instance, for the log-
Gaussian Cox process driven by (0.3), the covariance function c(x) and hence
the distribution of the underlying stationary Gaussian process Φ may depend
on some parameter γ, and the likelihood function is given by

L(θ;x) = Eθ

[

exp

(

−

∫

W

Λ(x) dx

)

∏

x∈x

Λ(x)

]



Inference 7

where the expectation is with respect to the distribution of Λ with parameter
θ = (β, γ). This depends on the Gaussian process in such a complicated way
that L(θ;x) is not expressible on closed form. Similarly, the likelihood function
for the unknown parameter θ = (β, ω, σ) of the shot-noise Cox process driven by
(0.4) is not expressible on closed form.

Møller and Waagepetersen (2003, 2007) discuss various ways of performing
maximum likelihood inference based on a missing data MCMC approach (see
also Geyer (1999) though this reference is not specifically about Cox processes).
Since these methods are rather technical, Section 0.1.3.7 discusses simpler ways
of making inference for Cox processes, using moment results as given below.

0.1.3.5 Moments A spatial point process X has nth order product density
ρ(n)(x1, . . . , xn) if for all non-negative Borel functions q(x1, . . . , xn) defined for
x1, . . . , xn ∈ R

2,

E

6=
∑

x1,...,xn∈X

q(x1, . . . , xn) =

∫

· · ·

∫

q(x1, . . . , xn)ρ(n)(x1, . . . , xn) dx1 · · · dxn

where the 6= over the summation sign means that the points x1, . . . , xn are
pairwise distinct. See e.g. Stoyan et al. (1995). For pairwise distinct x1, . . . , xn,
we may interpret ρ(n)(x1, . . . , xn) dx1 · · · dxn as the probability of observing a
point in each of n infinitesimally small regions containing x1, . . . , xn and of areas
dx1, . . . , dxn, respectively. Of most interest are the intensity function ρ(x) =
ρ(1)(x) and the pair correlation function g(x, y) = ρ(2)(x, y)/(ρ(x)ρ(y)) (provided
ρ(x)ρ(y) > 0).

For a Poisson process, Slivnyak-Mecke’s formula (which is later given by
(0.13)) implies ρ(n)(x1, . . . , xn) = ρ(x1) · · · ρ(xn), and so g(x, y) = 1. For a
general point process X, at least for small distances ‖x − y‖, we may expect
g(x, y) > 1 in the case where realizations of X as compared to a Poisson process
tend to be aggregated point patterns (e.g. as in a cluster cluster), and g(x, y) < 1
in the case where realizations tend to be regular point patterns (e.g. caused by
a repulsion between the points).

For a Cox process driven by Λ,

ρ(n)(x1, . . . , xn) = E [Λ(x1) · · ·Λ(xn)] . (0.6)

This takes a nice form for a log-Gaussian Cox process (Møller et al., 1998) where
in particular ρ(x) = exp(β · z(x)) (since the Gaussian process Φ is assumed to
be stationary with mean −c(0)/2) and g(x, y) = exp(c(x− y)). This shows that
the distribution of (X,Φ) is specified by (ρ, g), where g(x, y) = g(x− y) (with a
slight abuse of notation) is translation invariant and as one may expect, g(x) > 1
if and only if c(x) > 0. For the shot-noise Cox process given by (0.4), we obtain
from (0.6) and Campbell’s theorem (which is later given by (0.13)) that also
ρ(x) = exp(β · z(x)). For the modified Thomas process, we obtain from (0.6)
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and Slivnyak-Mecke’s formula that g(x, y) = g(r) depends only on the distance
r = ‖x− y‖, where

g(r) = 1 + exp
(

−r2/
(

4σ2
))

/
(

4πωσ2
)

(0.7)

showing that g(r) > 1 is a decreasing function.

0.1.3.6 Summary statistics and residuals Exploratory analysis and validation
of fitted spatial point process models are usually based on various summary
statistics and residuals. In this section we focus mostly on summary statistics and
residuals associated to the first and second order moment properties. These apply
for many point process models which are not necessarily stationary, including the
inhomogeneous Poisson and Cox process models discussed in this contribution,
and the Gibbs point process models considered later in Section 0.1.4.

First order properties: In the case of a spatial point process with constant
intensity function on W , we naturally use the estimate ρ̂ = n(x)/|W |. This is in
fact the maximum likelihood estimate if X is a homogeneous Poisson process on
W . In the inhomogeneous case,

ρ̂(x) =
1

c(x)

∑

y∈x

k0((x − y)/b), x ∈ W (0.8)

is a non-parametric kernel estimate (Diggle, 1985), where k0 is a density function
with respect to Lebesgue measure, b > 0 is a user-specified parameter, and
c(x) =

∫

W
k0((x− y)/b) dy is an edge correction factor ensuring that

∫

W
ρ̂(x) dx

is an unbiased estimate of
∫

W
ρ(x) dx. The kernel estimate is usually sensitive to

the choice of the band width b, while the choice of kernel k0 is less important.
Various kinds of residuals may be defined (Baddeley et al., 2005; Waage-

petersen, 2005). Due to space limitations let us just mention the smoothed raw
residual field obtained as follows. By Campbell’s theorem, if we replace x in (0.8)
by X ∩W , then ρ̂(x) has mean

∫

W
ρ(y)k0((x − y)/b) dy/c(x). Suppose we have

fitted a parametric model with parameter θ and estimate θ̂, where the intensity
function ρθ may depend on θ. Then the smoothed raw residual field is given by

s(x) = ρ̂(x) −
1

c(x)

∫

W

ρ
θ̂
(y)k0((x − y)/b) dy, x ∈ W. (0.9)

Positive/negative values of s suggest that the fitted model under/overestimates
the intensity function. In spatstat the residual field is represented as a greyscale
image and a contour plot. See also Figure 0.5 in Section 0.1.3.8.

Second order properties: Assume that the pair correlation function is invariant
under translations, i.e. g(x, y) = g(x−y). This assumption is called second order
intensity reweighted stationarity (Baddeley et al., 2000) and it is satisfied for the
Poisson process, the log-Gaussian Cox, and shot-noise Cox processes studied in
this contribution, cf. Section 0.1.3.5.
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The inhomogeneous K and L-functions (Baddeley et al., 2000) are defined
by

K(r) =

∫

‖x‖≤r

g(x) dx, L(r) =
√

K(r)/π, r > 0.

In the stationary case we obtain Ripley’s K-function (Ripley, 1976; Ripley, 1977)
with the interpretation that ρK(r) is the expected number of points within
distance r from the origin o, where the expectation is with respect to the so-called
reduced Palm distribution at o (intuitively, this is the conditional distribution
given that X has a point at o). For a Poisson process, L(r) = r is the identity,
which is one reason why one often uses the L-function (see also Besag (1977b)).
For a log-Gaussian Cox process, we may obtain K(r) by numerical methods. For
the modified Thomas process, (0.7) implies that

K(r) = πr2 +
(

1 − exp
(

−r2/
(

4σ2
)))

/ω. (0.10)

In order to investigate for a possible anisotropy, directional K-functions
have been constructed (Stoyan and Stoyan, 1995; Brix and Møller, 2001), while
Mugglestone and Renshaw (1996) use a method as part of two-dimensional
spectral analysis. Frequently, g is assumed to be invariant under rotations, i.e.
g(x, y) = g(‖x− y‖), in which case K and g are in a one-to-one correspondence,
and it is usually easy to estimate and investigate a plot of g. Non-parametric
kernel estimation of g is discussed in Stoyan and Stoyan (2000); it is sensitive to
the choice of band width and a truncation near zero is needed.

An unbiased estimate of K(r) is given by

6=
∑

x,y∈x

I[‖x− y‖ ≤ r]

ρ(x)ρ(y)|W ∩ (W + x− y)|
(0.11)

where W + x denotes W translated by x, and |W ∩ (W + x − y)| is an edge
correction factor, which is needed since we sum over all pairs of points observed
within W . In practice we need to plug in an estimate of ρ(x)ρ(y), and denote
the resulting estimate of K by K̂. It may be given by a parametric estimate
ρ
θ̂
(x)ρ

θ̂
(y) or by a non-parametric estimate, e.g. ρ̂(x)ρ̂(y) from (0.8) (but see

also Stoyan and Stoyan (2000) in the stationary case and Baddeley et al. (2000)
in the inhomogeneous case). Using the parametric estimate seems more reliable,
since the degree of clustering exhibited by K̂ may be very sensitive to the choice
of band width if (0.8) is used.

The non-parametric estimate K̂ for the tropical rain forest trees (Figures 0.1-
0.2) obtained with a parametric estimate of the intensity function is shown in
Figure 0.3 (Section 0.1.3.7 describes the estimation procedure). The plot also
shows theoreticalK-functions for fitted log Gaussian Cox, modified Thomas, and
Poisson processes, where all three processes share the same intensity function (see
again Section 0.1.3.7). The trees seem to form a clustered point pattern, since
K̂ is markedly larger than the theoretical K-function for a Poisson process.
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Fig. 0.3. Estimated K-function for tropical rain forest trees and theoretical
K-functions for fitted Thomas, log Gaussian Cox, and Poisson processes.

Further summaries and confidence bounds: Other summary statistics than those
based on first and second order moment properties usually assume stationarity of
the point process X. This includes the F,G, J-functions below, which are based
on interpoint distances. Also summary statistics based on higher-order moment
properties exist (Stoyan and Stoyan, 1995; Møller et al., 1998; Schladitz and
Baddeley, 2000).

Suppose that X is stationary with intensity ρ > 0. The empty space function
F and the nearest-neighbour functionG are the cumulative distribution functions
of the distance from respectively an arbitrary location to the nearest point in X

and a ‘typical’ point in X (i.e. with respect to the reduced Palm distribution at
o) to its nearest-neighbour point in X. For a stationary Poisson process, F (r) =
G(r) = 1 − exp(−πr2). In general, at least for small distances, F (r) < G(r)
indicates aggregation and F (r) > G(r) indicates regularity. Van Lieshout and
Baddeley (1996) study the nice properties of the J-function defined by J(r) =
(1 − G(r))/(1 − F (r)) for F (r) < 1. Non-parametric estimation of F and G
accounting for edge effects is straightforward, see e.g. Stoyan et al. (1995), and
combining the estimates we obtain an estimate of J .

Finally, estimates ĝ(r), K̂(r), F̂ (r), . . . may be supplied with confidence in-
tervals for each value of r obtained by simulations ĝi(r), K̂i(r), F̂i(r), . . . , i =
1, 2, . . . under an estimated model, see e.g. Møller and Waagepetersen (2003).
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This is later illustrated in Figures 0.7, 0.9, and 0.10.

0.1.3.7 Composite likelihood and minimum contrast estimation The intensity
functions of the log-linear Poisson process, the log-Gaussian, and shot-noise Cox
processes in Section 0.1.3.2 are of the same form, viz. ρβ(x) = exp(β · z(x)),
cf. Section 0.1.3.5. Their pair correlation functions are different, where gψ de-
pends on a parameter ψ which is usually assumed to be variation independent
of β ∈ R

p+1, e.g. ψ = (ω, σ) ∈ (0,∞)2 in the case of the modified Thomas
process, cf. (0.7). Following Møller and Waagepetersen (2007) we may estimate
β by maximizing a composite likelihood function based on ρβ , and ψ by another
method based on gψ or its corresponding K-function Kψ given by e.g. (0.10).

The composite likelihood function is derived as a certain limit of a product of
marginal likelihoods. Let Ci, i ∈ I, be a finite partitioning ofW into disjoint cells
Ci of small areas |Ci|, and define Ni = I[X ∩ Ci 6= ∅] and pi(θ) = Pθ(Ni = 1) ≈
ρθ(ui)|Ci|, where ui denotes a representative point in Ci. Under mild conditions
the limit of log

∏

i pi(θ)
Ni(1−pi(θ))(1−Ni) becomes (0.5); this is the log composite

likelihood function.
For the rain forest trees (Figures 0.1-0.2) we obtain the maximum compos-

ite likelihood estimate (β̂0, β̂1, β̂2) = (−4.989, 0.021, 5.842) (under the Poisson
model this is the MLE). Assuming asymptotic normality (Waagepetersen, 2007b)
95% confidence intervals for β1 and β2 under the fitted shot-noise Cox pro-
cess are [−0.018, 0.061] and [0.885, 10.797], respectively, while much more nar-
row intervals are obtained under the fitted Poisson process ([0.017, 0.026] and
[5.340, 6.342]).

For instance, ψ may be estimated by minimizing the contrast

∫ b

a

(

K̂(r)α −Kψ(r)α
)2

dr

where typically 0 ≤ a < b <∞ and α > 0 are chosen on an ad hoc basis, see e.g.
Diggle (2003) and Møller and Waagepetersen (2003). For the rain forest trees,
replacing ρ(x)ρ(y) in (0.11) by the parametric estimate of ρ(x)ρ(y) obtained from
above and taking a = 0, b = 100, and α = 1/4, we obtain (ω̂, σ̂) = (8×10−5, 20).
The estimated theoretical K-functions are shown in Figure 0.3.

These ‘simulation-free’ estimation procedures are fast and computationally
easy, but the disadvantage is that we have to specify tuning parameters such as
a, b, α. Theoretical properties of maximum composite likelihood estimators are
investigated in Waagepetersen (2007b) and Waagepetersen and Guan (2007), and
of the minimum contrast estimators in Heinrich (1992).

0.1.3.8 Simulation-based Bayesian inference A Bayesian approach often pro-
vides a flexible framework for incorporating prior information and analyzing
Poisson and Cox process models.

As an example, consider Figure 0.4 which shows the locations of just one
species (called seeder 4 in Illian et al. (2007)) from a much larger data set where
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the locations of 6378 plants from 67 species on a 22 m by 22 m observation
window W in the south western area of Western Australia have been recorded
(Armstrong, 1991). The plants have adapted to regular natural fires, where re-
sprouting species survive the fire, while seeding species die in the fire but the fire
triggers the shedding of seeds, which have been stored since the previous fire. As
argued in more detail in Illian et al. (2007) it is therefore natural to model the
locations of the reseeding plants conditionally on the locations of the resprouting
plants.

seeder  4

 

 

Fig. 0.4. Locations of Leucopogon conostephioides plants observed within a
22 × 22 m window.

In the sequel we consider the 19 most dominant (influential) species of re-
sprouters, with y1, . . . , y19 the observed point patterns of resprouters as given
in Figure 1 in Illian et al. (2007), and define covariates by

zi(x) =
∑

y∈yi: ‖x−y‖≤κy,i

(

1 − (‖x− y‖/κy,i)
2
)2

, i = 1, . . . , 19

where κy,i ≥ 0 is the radius of interaction of the ith resprouter at location y.
Note that we suppress in the notation that zi depends on all the κy,i with y ∈ yi.
As usual X∩W = x denotes the data (here the point pattern of seeder 4), where
we assume that X ∩W is a Poisson process with log-linear intensity function
(0.2) and parameter β = (β0, . . . , β19), where β0 is an intercept and βi for i > 0
controls the influence of the ith resprouter. Thus the log-likelihood is of the form
(0.5) but with unknown parameter θ = (β, κ), where κ denotes the collection of
all the radii κy,i.
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Using a fully Bayesian set up, we treat θ = (β, κ) as a random variable, where
Table 1 in Illian et al. (2007) provides some prior information on κ. Specifically,
following Illian et al. (2007), we assume a priori that the κy,i and the βi are
mutually independent, each κy,i follows the restriction of a normal distribution
N(µi, σ

2
i ) to [0,∞), where (µi, σ

2
i ) is chosen so that under the unrestricted normal

distribution the range of the zone of influence is a central 95% interval, and each
βi is N(0, σ2)-distributed, where σ = 8. Combining these prior assumptions with
the log-likelihood we obtain the posterior density

π(β, κ|x) ∝ exp
(

β0/(2σ
2) −

19
∑

i=1

{

β2
i /(2σ

2) +
∑

y∈yi

(κy,i − µi)
2/(2σ2

i )
})

× exp
(

β ·
∑

x∈x

z(x) −

∫

W

exp(β · z(u) du)
)

, βi ∈ R, κy,i ≥ 0 (0.12)

(suppressing in the notation that z depends on κ and we have conditioned on
y1, . . . ,y19 in the posterior distribution).

Monte Carlo estimates of various marginal posterior distributions are cal-
culated using simulations from (0.12) obtained by a hybrid MCMC algorithm
(see e.g. Robert and Casella (1999)) where we alter between updating β and
κ using random walk Metropolis updates (for details, see Illian et al. (2007)).
For example, a large (small) value of P(βi > 0|x) indicates a positive/attractive
(negative/repulsive) association to the ith resprouter, see Figure 2 in Illian et al.
(2007). The model can be checked following the idea of posterior predictive model
assessment (Gelman et al., 1996), comparing various summary statistics with
their posterior predictive distributions. The posterior predictive distribution of
statistics depending on X (and possibly also on (β, κ)) is obtained from simu-
lations: we generate a posterior sample (β(j), κ(j)), j = 1, . . . ,m, and for each
j ‘new data’ x(j) from the conditional distribution of X given (β(j), κ(j)). For
instance, the grey scale plot in Figure 0.5 is a ‘residual’ plot based on quadrant
counts. We divide the observation window into 100 equally sized quadrants and
count the number of seeder 4 plants within each quadrant. The grey scales reflect
the probabilities that counts drawn from the posterior predictive distribution are
less or equal to the observed quadrant counts where dark means high probability.
The stars mark quadrants where the observed counts are ‘extreme’ in the sense
of being either below the 2.5% quantile or above the 97.5% quantile of the pos-
terior predictive distribution. Figure 0.5 does not provide evidence against our
model. A plot based on the L-function and the posterior predictive distribution
is also given in Illian et al. (2007); again there is no evidence against our model.

Møller and Waagepetersen (2007) discuss another Bayesian analysis for the
rain forest trees, using a shot-noise Cox process model. They consider the Poisson
process Y of mother points from (0.4) as one part of the prior (more precisely,
to obtain a finite process, Y is restricted to a bounded region B ⊃ W as dis-
cussed in Section 0.1.3.3); remaining unknown parameters are denoted θ, and a
certain prior is imposed on θ. Simulations from the posterior are again obtained
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Fig. 0.5. Residual plots based on quadrant counts. Quadrants with a ‘*’ are
where the observed counts fall below the 2.5% quantile (white ‘*’) or above
the 97.5% quantile (black ‘*’) of the posterior predictive distribution. The
grey scales reflect the probabilities that counts drawn from the posterior
predictive distribution are less or equal to the observed quadrant counts (dark
means small probability).

by a hybrid MCMC algorithm, where one type of update involves conditional
simulation of Y given the data and θ, using the Metropolis-Hastings birth-death
algorithm in Section 0.1.4.7 (see also Møller (2003)).

For simulation-based Bayesian inference for a log-Gaussian Cox process, we
need among other things to make conditional simulation of the Gaussian pro-
cess Φ in (0.3) given the data and θ. This may be done by a Langevin-Hastings
algorithm (Besag, 1994; Roberts and Tweedie, 1996) as detailed in Møller et al.
(1998) and Møller and Waagepetersen (2003). Promising results in Rue and Mar-
tino (2005) suggest that it may be possible to compute accurate approximations
of posterior distributions without MCMC.

0.1.4 Inference for Gibbs point processes

While Cox processes provide flexible models for aggregation or clustering in
a point pattern, Gibbs point processes provide flexible models for regularity
or repulsion (Van Lieshout, 2000; Møller and Waagepetersen, 2003). Though
the density has an unknown normalizing constant (Section 0.1.4.1), likelihood
inference based on MCMC methods is easier for parametric Gibbs point process
models (Sections 0.1.4.2 and 0.1.4.4) than for Cox process models. On the other
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hand, Bayesian inference is more complicated, involving an auxiliary variable
MCMC method and perfect simulation based on a technique called dominated
coupling from the past (Sections 0.1.4.6 and 0.1.4.7).

An example of a regular point pattern is shown in Figure 0.6. The data set
is actually a marked point pattern, with points given by the tree locations and
marks by the stem diameters, where the discs may be thought of as ‘influence
zones’ of the trees. Figure 0.7 shows estimates of F,G, J and provides evidence
of regularity in the point pattern, which in fact to a large extent is due to forest
management but may also be caused by repulsion between the trees. The data
set has been further analyzed using point process methods by Fiksel (1984),
Penttinen et al. (1992), Goulard et al. (1996), and Møller and Waagepetersen
(2003, 2007).
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Fig. 0.6. Norwegian spruces observed in a 56 × 38 m window in Tharandter
Forest, Germany. The radii of the 134 discs equal 5 times the stem diameters.

0.1.4.1 Gibbs point processes Gibbs point processes arose in statistical physics
as models for interacting particle systems (see e.g. Ruelle (1969)), and they
have important applications in stochastic geometry and spatial statistics (see
e.g. Baddeley and Møller (1989), Van Lieshout (2000), and Stoyan et al. (1995)).
They possess certain Markov properties which are useful for ‘local computations’
and to account for edge effects. Summary statistics for Gibbs point processes,
including the intensity function ρ, are in general not expressible on closed form.
Instead the Papangelou conditional intensity (Papangelou, 1974) becomes the
appropriate tool.

Definition of conditional intensity Below we define the Papangelou conditional
intensity λ(x;x) for a general point process X, assuming the process exists; the
question of existence of Gibbs point processes is discussed later. Here x ⊂ R

2

denotes a locally finite point configuration and x ∈ R
2.

By the Georgii-Nguyen-Zessin formula (Georgii, 1976; Nguyen and Zessin,



16

r

F
(r

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

G
(r

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

J(
r)

0 1 2 3

1
2

3
4

5

Fig. 0.7. Left to right: estimated F,G, J-functions for the Norwegian spruces
(solid lines) and 95% envelopes calculated from simulations of a homogeneous
Poisson process (dashed lines) with expected number of points equal to the
observed number of points. The long-dashed curves show the theoretical val-
ues of F,G, J for a Poisson process.

1979), X has Papangelou conditional intensity λ if this is a non-negative Borel
function such that

E
∑

x∈X

h(x,X \ {x}) =

∫

E[λ(x;X)h(x,X)] dx (0.13)

for non-negative Borel functions h. The GNZ-formula (0.13) is a very general and
useful but indirect definition/characterization of the conditional intensity. If P!

x is
the reduced Palm distribution at the point x (intuitively, this is the conditional
distribution given that X has a point at x) and P!

x is absolutely continuous
with respect to the distribution P of X, we may take λ(x;x) = ρ(x)( dP!

x/P)(x)
(Georgii, 1976). Thus, for x 6∈ x, we may interpret λ(x;x) dx as the conditional
probability that there is a point of the process in an infinitesimally small region
containing x and of area dx given that the rest of the point process coincides
with x. For a Poisson process, λ(x;x) = ρ(x) and (0.13) becomes the Slivnyak-
Mecke formula (Mecke, 1967). When h(x,X \ {x}) = h(x) only depends on its
first argument, (0.13) reduces to Campbell’s theorem (e.g. Stoyan et al. (1995))
with ρ(x) = Eλ(x;X).

Existence and uniqueness of λ is often not a trivial issue (Georgii, 1976;
Preston, 1976; Georgii, 1988). In fact two infinite point processes may share
the same Papangelou conditional intensity (even in the stationary case); this
phenomenon is known in statistical physics as phase transition. By (0.13), for a
Cox process driven by Λ, we can take λ(x;X) = E [Λ(x) |X], but this conditional
expectation is in general not expressible on closed form. As explained later, the
GNZ-formula is more useful in connection to Gibbs point processes.

In particular, the conditional intensity exists for a finite point process X

defined on a bounded region B ∈ B, assuming this has an density f with respect
to the unit rate Poisson process on B, and f is hereditary, i.e.

f(y) > 0 whenever f(x) > 0, y ⊂ x ⊂ B, x finite. (0.14)
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Then we can take
λ(x;x) = f(x ∪ {x})/f(x \ {x}) (0.15)

if f(x\{x}) > 0, and λ(x;x) = 0 otherwise. The precise definition of λ(x;x) when
x ∈ x is not that important, and (0.15) just covers this case for completeness. In
fact λ(x;x) is unique up to a Lebesgue null set of points x times a Poisson null
set of point configurations x. Note that λ(x;x) = λ(x;x\{x}), and (0.14) implies
that f and λ are in a one-to-one correspondence. Often we specify f(x) ∝ h(x)
only up to proportionality, and call h an unnormalized density. Here we assume
that h is hereditary and integrable with respect to the unit rate Poisson process
on B, in which case we can replace f by h in (0.15). These conditions are ensured
by local stability, which means that for some finite constant K,

h(x ∪ {x}) ≤ Kh(x) for all finite x ⊂ B and x ∈ B \ x. (0.16)

Then λ(x;x) ≤ K is uniformly bounded. A weaker condition ensuring integrabil-
ity of h is Ruelle stability (Ruelle, 1969). We restrict attention to local stability,
since this property is usually satisfied for Gibbs point processes used in stochastic
geometry, and it implies many desirable properties as discussed in Section 0.1.4.7.

Definition and Markov properties of Gibbs point processes Suppose that R > 0
is a given parameter and U(x) ∈ (−∞,∞] is defined for all finite x ⊂ R

2 such
that U(x)=0 if x contains two points R units apart. Then a point process X

is a Gibbs point process (also called a canonical ensemble in statistical physics
and a Markov point process in spatial statistics) with potential U if it has a
Papangelou conditional intensity of the form

λ(x;x) = exp



−
∑

y⊆x∩BR(x)

U(y ∪ {x})





for all locally finite x ⊂ R
2 and x ∈ R

2\x, where BR(x) is the closed disc of radius
R centered at x. Note that the conditional intensity is zero if U(y∪{x}) = ∞. It
satisfies a local Markov property: λ(x;x) depends on x only through x∩BR(x),
i.e. the R-close neighbours in x to x. Usually R is chosen as small as possible, in
which case it is called the range of interaction.

An equivalent characterization of a Gibbs point process is given by a so-called
local specification (Preston, 1976). This means that a spatial Markov property
should be satisfied: for any bounded B ∈ B, the conditional distribution of X∩B
given X \ B agrees with the conditional distribution of X ∩ B given X ∩ ∂B,
where ∂B = {x ∈ R

2 \B : BR(x) ∩B 6= ∅} is the R-close neighbourhood to B.
It also means that the conditional density of X∩B given X∩ ∂B = ∂x is of the
form

fB(x|∂x) =
1

cB(∂x)
exp



−
∑

y⊆x:y 6=∅

U(y ∪ ∂x)



 (0.17)
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with respect to the unit rate Poisson process on B. Here cB(∂x) is a normalizing
constant (called the partition function in statistical physics), which in general is
not expressible on closed form.

Conditions ensuring existence of an infinite Gibbs point process, unique-
ness or non-uniqueness (the latter is known as phase transition in statistical
physics), and stationarity are rather technical (Georgii, 1976; Preston, 1976;
Georgii, 1988). In general closed form expressions for ρ(n) and other summary
statistics are unknown (even in the stationary case or in the finite case).

For a finite Gibbs point process X defined on a bounded region B ∈ B, the
density is of the form

f(x) =
1

c
exp



−
∑

y⊆x:y 6=∅

U(y)



 (0.18)

corresponding to the case of (0.17) with ‘free boundary condition’ ∂x = ∅. The
celebrated Hammersley-Clifford theorem (Ripley and Kelly, 1977) states that for
a finite point process on B with hereditary density f , the local Markov property
is equivalent to (0.18).

The spatial Markov property can be used to account for edge effects when the
Gibbs process is observed within a bounded window W but it extends outside
W . Let W⊖R = {x ∈ W : BR(x) ⊆W} be the R-clipped window. Conditional on
X∩∂W⊖R = ∂x, we have that X∩W⊖R is independent of X\W . The conditional
density of X ∩W⊖R|X ∩ ∂W⊖R = ∂x is given by (0.17) with B = W⊖R, and
combining this with (0.15) we see that the conditional intensity λW⊖R,∂x(x;x)
of X ∩W⊖R|X ∩ ∂W⊖R = ∂x agrees with λ, that is

λW⊖R,∂x(x;x) = λ(x;x ∪ ∂x), x ⊂W⊖R finite, x ∈ W⊖R \ x. (0.19)

0.1.4.2 Modelling conditional intensity Usually parametric models of a Gibbs
point process with a fixed interaction radius R have a conditional intensity of a
log-linear form

logλθ(x;x) = θ · t(x;x) =
k

∑

i=1

θi · ti(x;x) (0.20)

where θ = (θ1, . . . , θk) is a real parameter vector (possibly infinite parameter
values of some θi are also included as exemplified below for a hard core process),
t(x;x) = (t1(x;x), . . . , tk(x;x)) is a real vector function, where ti(x;x) of the
same dimension as θi, i = 1, . . . , k, and · is the usual inner product.

We say that a Gibbs point process has interactions of order k, if k is the
smallest integer so that the potential U(x) does not vanish if n(x) ≤ k. Then we
usually assume that

U(x) = −θi · V (x) if n(x) = i ≤ k (0.21)

where V (x) is a vector function with non-negative components, and
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ti(x;x) =
∑

y⊆x∩BR(x):n(y)=i−1

V (y ∪ {x}), i = 1, . . . , k. (0.22)

The first order term V ({x}) is usually constant one or it is given by a vector of
covariates V ({x}) = z(x), where θ1 = β consists of regression parameters (Ogata
and Tanemura, 1989), while the higher order terms V (x) (n(x) > 0) are usually
one-dimensional.

We often consider pairwise interaction processes with repulsion between the
points, i.e. θ2 ≤ 0 and θn = 0 whenever n ≥ 3, where in many cases V ({x, y}) =
V (‖x−y‖)$ is a real decreasing function of ‖x−y‖. A special case is the Strauss
process (Strauss, 1975; Kelly and Ripley, 1976) where V ({x}) = 1, V ({x, y}) =
I[‖x − y‖ ≤ R], and (θ1, θ2) ∈ R × [−∞, 0]; if θ2 = −∞, we use in (0.21) the
convention that −∞ × 0 = 0 and −∞ × 1 = −∞, and call R a hard core
parameter since all points in the process are at least R-units apart from each
other. Figure 0.8 shows perfect simulations (for details, see Section 0.1.4.7) of
different Strauss processes restricted to the unit square.

Fig. 0.8. Simulation of a Strauss process on the unit square (i.e. V ({x}) = 1
if x ∈ [0, 1]2 and V ({x}) = 0 otherwise) when R = 0.05, θ1 = log(100), and
θ2 = 0,− log 2,−∞ (from left to right).

The Widom-Rowlinson model (Widom and Rowlinson, 1970) (or area-interaction
process, Baddeley and Van Lieshout (1995)) is given by

logλθ(x;x) = β − ψ|Bx(R) \ ∪y∈xBy(R)|

where β, ψ ∈ R. This is clearly of the form (0.20), and for a finite area-interaction
process the corresponding density is proportional to

exp (βn(x) − ψ| ∪y∈x By(R)|) .

It follows that this is a Markov point process with interaction range R, but the
Hammersley-Clifford representation (0.18) is not so useful: using the inclusion-
exclusion formula on | ∪y∈x By(R)|, we obtain this representation, but the ex-
pression for the potential is intricate. For ψ 6= 0, the process has interactions of
all orders, since the ti(x)-terms in (0.22) do not vanish for any i ≥ 1 and the
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corresponding θi = ψ is non-zero for all i ≥ 2. The model is said to be attractive
if ψ > 0 and repulsive if ψ < 0, since λθ(x;x) is an increasing respective de-
creasing function of x. Phase transition happens for all sufficient numerical large
values of ψ > 0 (Ruelle, 1971; Häggström et al., 1999).

Further specific examples of Gibbs point process models are given in Van
Lieshout (2000) and the references therein.

Consider again Figure 0.6. The conditional intensity for a Norwegian spruce
with a certain influence zone should depend not only on the positions but also on
the influence zones of the neighbouring trees. A tree with influence zone given by
the disc Br(x), where x is the spatial location of the tree and r is the influence
zone radius, is treated as a point (x, r) in R

2 × (0,∞). We assume that the
influence zone radii belong to a bounded interval M = [a, b], where a and b are
estimated by the minimal and maximal observed influence zone radii, and we
divide M into six disjoint subintervals of equal size. Confining ourselves to a
pairwise interaction process with repulsion, we let

λθ((x, r);x) = exp



β(r) + ψ
∑

(x′,r′)∈x

|Br(x) ∩Br′(x
′)|



 (0.23)

where β(r) = βk if r falls in the kth subinterval, and θ = (β1, . . . , β6, ψ) ∈
R

6 × (−∞, 0]. This enables modelling the varying numbers of trees in the six
different size classes, and the strength of the repulsion between two trees is given
by ψ times the area of overlap between the influence zones of the two trees.
However, the interpretation of the conditional intensity is not straightforward —
it is for instance not in general a monotone function of r. On the other hand, for
a fixed (x, r), the conditional intensity will always decrease if the neighbouring
influence zones increase.

0.1.4.3 Residuals and summary statistics Exploratory analysis and validation
of fitted Gibbs point process models can be done using residuals and summary
statistics, cf. Figure 0.7. As mentioned theoretical closed form expressions for
summary statistics such as ρ, g,K,L, F,G, J are in general unknown for Gibbs
point process models, so one has entirely to rely on simulations. Residuals are
more analytical tractable due to the GNZ-formula (0.13), see Baddeley et al.
(2005, 2007). These papers discuss in detail how various kinds of residuals can
be defined, where spatstat can be used for the log-linear model (0.20). For
example, the smoothed raw residual field is now given by

s(x) = ρ̂(x) −
1

c(x)

∫

W

λ
θ̂
(y;x)k0((x − y)/b) dy, x ∈ W

with a similar interpretation of positive/negative values as in (0.9) but referring
to the conditional intensity instead.

0.1.4.4 Simulation-based maximum likelihood inference Ogata and Tanemura
(1984) and Penttinen (1984) are pioneering works on simulation-based maximum
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likelihood inference for Markov point processes; see also Geyer and Møller (1994)
and Geyer (1999). This section considers a parametric Gibbs point process model
with finite interaction radiusR, potential of the form (0.21), and finite interaction
of order k (though other cases such as the area-interaction process are covered
as well, cf. Section 0.1.4.2). We assume to begin with that R is known.

First, suppose that the process has no points outside the observation window
W . By (0.18) and (0.21) the log-likelihood

l(θ;x) = θ · t(x) − log cθ, t(x) = (t1(x), . . . , tk(x)) (0.24)

is of exponential family form (Barndorff-Nielsen, 1978), where

ti(x) =
∑

y⊆x:n(y)=i

V (y), i = 1, . . . , k.

Thus the score function (the first derivative of l with respect to θ) and observed
information (the second derivative) are

u(θ) = t(x) − Eθt(X), j(θ) = Varθt(X),

where Eθ and Varθ denote expectation and variance with respect to X with
parameter θ. Consider a fixed reference parameter value θ0. The score function
and observed information may then be evaluated using the importance sampling
formula

Eθq(X) = Eθ0 [q(X) exp ((θ − θ0) · t(X))] /(cθ/cθ0)

with q(X) given by t(X) or t(X)Tt(X). The importance sampling formula also
yields

cθ/cθ0 = Eθ0 [exp ((θ − θ0) · t(X))] .

Approximations of the log likelihood ratio l(θ;x) − l(θ0;x), score, and observed
information are then obtained by Monte Carlo approximation of the expecta-
tions Eθ0 [· · · ] using MCMC samples from the process with parameter θ0, see
Section 0.1.4.7. The path sampling identity (Gelman and Meng, 1998) provides
an alternative and often numerically more stable way of computing a ratio of
normalizing constants.

Second, if X may have points outside W , we have to correct for edge effects.
By (0.17) the log likelihood function based on the conditional distribution X ∩
W⊖R|X ∩ ∂W⊖R = ∂x is of similar form as (0.24) but with cθ depending on
∂x. Thus likelihood ratios, score, and observed information may be computed by
analogy with the case above. Alternatively, if X is contained in a bounded region
S ⊃W , the likelihood function based on the distribution of X may be computed
using a missing data approach. This is a more efficient and complicated approach,
see Geyer (1999) and Møller and Waagepetersen (2003). Yet other approaches
for handling edge effects are discussed in Møller and Waagepetersen (2003).

For a fixed R, the approximate (conditional) likelihood function can be maxi-
mized with respect to θ using Newton-Raphson updates. Frequently the Newton-
Raphson updates converge quickly, and the computing times for obtaining a MLE
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are modest. MLE’s of R are often found using a profile likelihood approach, since
the likelihood function is typically not differentiable and log concave as a function
of R.

Asymptotic results for MLE’s of Gibbs point process models are established
in Mase (1991) and Jensen (1993) but under restrictive assumptions of stationar-
ity and weak interaction. According to standard asymptotic results, the inverse
observed information provides an approximate covariance matrix of the MLE,
but if one is suspicious about the validity of this approach, an alternative is to
use a parametric bootstrap, see e.g. Møller and Waagepetersen (2003).

For the overlap interaction model (0.23), Møller and Waagepetersen (2003)
computed MLE’s using both missing data and conditional likelihood approaches,
where the conditional likelihood approach is based on the trees with locations
in W⊖2b, since trees with locations outside W do not interact with trees located
inside W⊖2b. The conditional MLE is given by

(β̂1, . . . , β̂6) = (−1.02,−0.41, 0.60,−0.67,−0.58,−0.22), ψ̂ = −1.13.

Confidence intervals for ψ obtained from the observed information and a para-
metric bootstrap are [−1.61,−0.65] and [−1.74,−0.79], respectively. The fitted
overlap interaction process seems to capture well the second order characteristics
for the point pattern of tree locations, see Figure 0.9.
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Fig. 0.9. Model assessment for Norwegian spruces: estimated L(r) − r func-
tion for spruces (solid line) and average and 95% envelopes computed from
simulations of fitted overlap interaction model (dashed lines).

0.1.4.5 Pseudo-likelihood The maximum pseudo likelihood estimate (MPLE)
is a simple and computational fast but less efficient alternative to the MLE.

First, consider a finite point process with no points outside the observa-
tion window W . Let Ci, i ∈ I, be a finite partitioning of W into disjoint cells
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Ci of small areas |Ci|, and define Ni = I[X ∩ Ci 6= ∅] and pi(θ) = Pθ(Ni =
1|X \ Ci) ≈ λθ(ui,X \ Ci)|Ci|, where ui denotes a representative point in Ci.
Under mild conditions (Besag et al., 1982; Jensen and Møller, 1991) the limit of
log

∏

i(pi(θ)/|Ci|)
Ni(1 − pi(θ))

(1−Ni) becomes

∑

x∈x

λθ(x,x) −

∫

W

λθ(x,x) dx (0.25)

which is known as the log pseudo-likelihood function (Besag, 1977a). By the
GNZ formula (0.13), the pseudo score

s(θ) =
∑

x∈x

d logλθ(x,x)/dθ −

∫

W

(d logλθ(x,x)/dθ)λθ(x,x) dx (0.26)

provides an unbiased estimating equation s(θ) = 0 (assuming in (0.26) that
(d/dθ)

∫

W
· · · =

∫

W
(d/dθ) · · · ). This can be solved using spatstat if λθ is on a

log linear form (Baddeley and Turner, 2000).
Second, suppose that X may have points outside W and X is Gibbs with

interaction radius R. To account for edge effects we consider the conditional
distribution X ∩ W⊖R|X ∩ ∂W⊖R = ∂x. By (0.19) and (0.25) the log pseudo
likelihood function is then given by

∑

x∈x∩∂W⊖R

λθ(x,x) −

∫

W⊖R

λθ(x,x) dx.

Asymptotic results for MPLE’s of Gibbs point process models are established
in Jensen and Møller (1991), Jensen and Künsch (1994), and Mase (1995, 1999).
Baddeley and Turner (2000) estimate the asymptotic variance by a parametric
bootstrap.

0.1.4.6 Simulation-based Bayesian inference Suppose we consider a paramet-
ric Gibbs point process model with a prior on the parameter θ. Since MCMC
methods are needed for simulations of the posterior distribution of θ, the main
difficulty is that the Hastings ratio in a ‘conventional’ Metropolis-Hastings algo-
rithm involves a ratio cθ/cθ′ of normalizing constants which we cannot compute
(here θ denotes a current value of the Markov chain with invariant distribution
equal to the posterior, and θ′ denotes a proposal for the next value of the chain).
Heikkinen and Penttinen (1999) avoided this problem by just estimating the pos-
terior mode, while Berthelsen and Møller (2003) estimated each ratio cθ/cθ′ by
path sampling (Section 0.1.4.4) which at each update of the Metropolis-Hastings
algorithm involved several other MCMC chains. Recently, Møller et al. (2006)
introduced an auxiliary variable method which avoids such approximations. The
method has been used for semi- or non-parametric Gibbs point process models
(Berthelsen and Møller, 2004, 2006, 2007).
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Fig. 0.10. Left panel: locations of 617 cells in a 2D section of the mocous mem-
brane of the stomach of a healthy rat. Centre panel: non-parametric estimate
of the pair correlation function for the cell data (full line) and 95%-envelopes
calculated from 200 simulations of a fitted inhomogeneous Poisson process.
Right panel: non-parametric estimate of the pair correlation function for the
cell data (full line) and 95%-envelopes calculated from 200 simulations of
fitted transformed Strauss process.

This section provides a survey of Berthelsen and Møller (2007), where the
cell data in the left panel in Figure 0.10 was analyzed by a pairwise interaction
process,

fθ(x) =
1

cθ

∏

x∈x

β(x)
∏

{x,y}⊆x

ϕ(‖x− y‖), (0.27)

ignoring edge effects and considering x as a finite subset of the rectangular
observation window in Figure 0.10; we shall later impose a very flexible prior
for the first and second order interaction terms β and ϕ. The data set has also
be analyzed by Nielsen (2000) by transforming a Strauss point process model
in order to account for inhomogeneity in the horizontal direction (Jensen and
Nielsen, 2000; Nielsen and Jensen, 2004). The centre panel in Figure 0.10 clearly
shows that a Poisson process is an inadequate model for the data, where the
low values of the estimated pair correlation ĝ(r) for distances r < 0.01 indicates
repulsion between the points, so in the sequel we assume that ϕ ≤ 1. The right
panel in Figure 0.10 shows simulated 95%-envelopes under the fitted transformed
Strauss point process, where ĝ(r) is almost within the envelopes for small values
of the distance r, suggesting that the transformed Strauss model captures the
small scale inhibition in the data. Overall, ĝ(r) follows the trend of the 95%-
envelopes, but it falls outside the envelopes for some values.

We assume a priori that β(x) = β(x1) is homogeneous in the second coordi-
nate of x = (x1, x2), where β(x1) is similar to the random intensity of a Thomas
process (but with p = 1 and using a one-dimensional Gaussian kernel in (0.4)),
and where various prior assumptions on the parameters of the shot-noise process
are imposed (see Berthelsen and Møller (2007)). The left panel in Figure 0.11
shows five simulated realizations of β under its prior distribution. We also use
the prior model in Berthelsen and Møller (2007) for the pairwise interaction
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Fig. 0.11. Left panel: Five independent realizations of β under its prior distri-
bution. Right panel: Ten independent realizations of ϕ under its prior distri-
bution.

function. First, ϕ(r) is assumed to be a continuous and piecewise linear function
which increases from zero to one, see the right panel in Figure 0.11. The change
points of ϕ(r) are modelled by a homogeneous Poisson process on [0, rmax], where
rmax = 0.02 (ĝ in Figure 0.10 indicates that there is little interaction beyond an
inter-point distance of 0.01, but to be on the safe side we let rmax = 0.02). The
step sizes of ϕ(r) at the change points are modelled by a certain Markov chain to
obtain some smoothness in ϕ, and various prior assumptions on the intensity of
the Poisson process of change points and the parameters of the Markov chain for
the step sizes are imposed (see Berthelsen and Møller (2007)). We also assume
independence between the collection of random variables θ1 modelling β and the
collection of random variables θ2 modelling ϕ. Next, since a posterior analysis
indicated the need for an explicit hard core parameter h < rmax in the model,
we modify (0.27) by replacing ϕ(r) throughout by

ϕ̃(r;h) =











0 if r < h

ϕ
( (r−h)rmax

rmax−h

)

if h ≤ r ≤ rmax

1 if h > rmax.

(0.28)

Finally, h is assumed to be uniformly distributed on [0, rmax] and independent
of (θ1, θ2), whereby the posterior density of θ = (θ1, θ2, h) can be obtained.

Details on how to simulate from the posterior distribution, including how
to use the auxiliary variable method from Møller et al. (2006), are given in
Berthelsen and Møller (2007). The auxiliary variable method requires perfect
simulations from (0.28); see Section 0.1.4.7. The left panel of Figure 0.12 shows
the posterior mean E(β(x1)|x) together with pointwise 95% central posterior
intervals. Also the smooth estimate of the first order term obtained by (Nielsen,
2000) is shown, where the main difference compared with E(β(x1)|x) is the
abrupt change of E(β(x1)|x) in the interval [0.2, 0.4]. For locations x = (x1, x2)
near the edges of W , E(β(x1)|x) is ‘pulled’ towards its prior mean as a conse-
quence of the smoothing prior. Apart from boundary effects, since β(x1, x2) only
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Fig. 0.12. Posterior mean (solid line) and pointwise 95% central posterior in-
tervals (dotted lines) for β (left panel) and ϕ̃ (right panel). The left panel also
shows the first order term (dashed line) estimated by a fitted transformed
Strauss process, and an estimate of the cell intensity (dot-dashed line).

depends on x1, we may expect that the intensity ρθ(x1, x2) only slightly depends
on x2, i.e. ρθ(x1, x2) ≈ ρθ(x1) where, if we let W = [0, a]× [0, b], ρθ(x1) is given
by 1/b times the integral of ρθ(x1, x2) over x2 ∈ [0, b]. We therefore refer to
ρθ(x1) as the cell intensity, though it is more precisely the average cell intensity
in W at x1 ∈ [0, a]. A non-parametric estimate of ρθ(x1) is given by

ρ̂(x1) =





∑

(y1,y2)∈x

φ((x1 − y1)/σk)/σk)





/

[b× (Φ((1 − x1)/σk) − Φ(x1/σk))]

which is basically the one-dimensional edge-corrected kernel estimator of Dig-
gle (1985) with bandwidth σk = 0.075 (here φ and Φ denote the density and
cumulative distribution function of the standard normal distribution). The left
panel of Figure 0.12 also shows this estimate. The posterior mean of β(x1) is
not unlike ρ̂(x1) except that E(β(x1)|x) is higher as would be expected due to
the repulsion in the likelihood. The posterior mean of ϕ̃ is shown in the right
panel of Figure 0.12 together with pointwise 95% central posterior intervals. The
figure shows a distinct hard core on the interval from zero to the observed min-
imum inter-point distance d which is a little less than 0.006, and an effective
interaction range which is no more than 0.015 (the posterior distribution of ϕ̃(r)
is concentrated close to one for r > 0.015). This further confirms that rmax was
chosen sufficiently large. The corner at r = d of the curve showing the posterior
mean of ϕ̃(r) is caused by that ϕ̃(r) is often zero for r < d (since the hard core
is concentrated close to d), while ϕ̃(r) > 0 for r > d. Further posterior results,
including a model checking based on the posterior predictive distribution, can
be found in Berthelsen and Møller (2007).

0.1.4.7 Simulation algorithms Consider a finite point process X with density
f ∝ h with respect to the unit rate Poisson process defined on a bounded region
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B ∈ B of area |B| > 0, where h is a ‘known’ unnormalized density. The normal-
izing constant of the density is not assumed to be known. This section reviews
algorithms for making simulated realizations of X.

Birth-death algorithms Simulation conditional on the number of points n(X)
can be done using a variety of Metropolis-Hastings algorithms, e.g. using a Gibbs
sampler (Ripley, 1977, 1979) or a Metropolis-within-Gibbs algorithm, where at
each iteration a single point given the remaining points is updated, see Møller
and Waagepetersen (2003). The standard algorithms (i.e. without conditioning
on n(X)) are discrete or continuous time algorithms of the birth-death type,
where each transition is either the addition of a new point (a birth) or the
deletion of an existing point (a death). The algorithms can easily be extended
to birth-death-move type algorithms, where e.g. in the discrete time case the
number of points is retained in a move by using a Metropolis-Hastings update
(Norman and Filinov, 1969; Geyer and Møller, 1994).

In the discrete time case, a Metropolis-Hastings birth-death algorithm may
update a current state Xt = x of the Markov chain as follows. Assume that h
is hereditary, and define r(x;x) = λ(x;x)|B|/(n(x) + 1) where λ is the Papan-
gelou conditional intensity. With probability 0.5 propose a birth, i.e. generate
a uniform point x in B, and accept the proposal Xt+1 = x ∪ {x} with prob-
ability min{1, r(x;x)}. Otherwise propose a death, i.e. select a point x ∈ x

uniformly at random, and accept the proposal Xt+1 = x \ {x} with probabil-
ity min{1, 1/r(x;x \ {x})}. As usual in a Metropolis-Hastings algorithm, if the
proposal is not accepted, Xt+1 = x. This algorithm is irreducible, aperiodic,
and time reversible with invariant distribution f . Thus the distribution of Xt

converges towards f , and if h is locally stable, the rate of convergence is geomet-
rically fast and a central limit theorem holds for Monte Carlo errors (Geyer and
Møller, 1994; Geyer, 1999). If h is highly multimodal, e.g. in the case of a strong
interaction like in a hard core model with a high packing density, the algorithm
may be slowly mixing. It may then be incorporated into a simulated tempering
scheme (Geyer and Thompson, 1995; Mase et al., 2001).

An analogous continuous time algorithm is based on running a spatial birth-
death process Xt with birth rate λ(x,x) and death rate 1 (Preston, 1977; Ripley,
1977). This is also a reversible process with invariant density f , and convergence
of Xt towards f holds under weak conditions (Preston, 1977), where local stabil-
ity of h implies geometrically fast convergence (Møller, 1989). It can be extended
to a coupling construction with a dominating spatial birth-death process Dt,
t ≥ 0, which is easy to simulate (even in equilibrium) and from which we may
easily obtain the spatial birth-death process Xt from above by a dependent thin-
ning. Since the coupling construction is also used below in connection to perfect
simulation we give here the details. Assume that h is locally stable with uniform
upper bound K ≥ λ. Initally, suppose that X0 ⊆ D0. Let 0 < τ1 < τ2 < . . .
denote the transition times in Dt, and set τ0 = 0. For i ≥ 1, if we condition
on both τi−1 = t, Dt = d, Xt = x, and the history (Ds,Xs), 0 ≤ s < t, then
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τi − τi−1 is exponentially distributed with mean 1/(K + n(d)). If we also con-
dition on τi − τi−1, then with probability K/(K + n(d)) a birth occurs so that
Dτi

= d ∪ {x}, where x is uniformly distributed on B, and otherwise a death
happens so that both Dτi

= d \ {y} and Xτi
= x \ {y}, where y is a uniformly

selected point from d. Furthermore, in case Dτi
= d ∪ {x}, we generate a uni-

form number Ri ∈ [0, 1] (which is independent of x and anything else so far
generated), and set Xτi

= x∪ {x} if Ri ≤ λ(x;x)/K, and Xτi
= x otherwise. It

follows that Dt is dominating Xt in the sense that Xt ⊆ Dt for all t ≥ 0, and as
required, Xt is a spatial birth-death process with birth rate λ and death rate 1.
Moreover, Dt is a spatial birth-death process with birth rate K and death rate
1, so its equilibrium distribution is a homogeneous Poisson process with rate K.

Perfect simulation One of the most exciting recent developments in stochastic
simulation is perfect (or exact) simulation, which turns out to be particular
applicable for locally stable point processes. By this we mean an algorithm where
the running time is a finite random variable and the output is a draw from a
given target distribution (at least in theory — of course the use of pseudo random
number generators and practical constraints of time imply that we cannot exactly
return draws from the target distribution). The most famous perfect simulation
algorithm is due to Propp and Wilson (1996); for a tutorial on perfect simulation
in stochastic geometry, see Møller (2001).

One problem with the Propp-Wilson algorithm is that it applies only for
uniformly ergodic Markov chains (Foss and Tweedie, 1998) and most spatial
point process algorithms are only geometrically ergodic (Kendall, 2004). Another
problem is that a kind of monotonicity property and existence of unique upper
and lower bounds are needed with respect to a partial ordering, but the natural
partial ordering of point processes is set inclusion, and for this ordering there is
no maximal element (the minimal element is the empty point figuration ∅). Below
we describe the simplest solution to these problems based on a technique called
dominating coupling from the past (DCFTP). The technique was developed in
Kendall (1998) and Kendall and Møller (2000); various other solutions have been
proposed in Wilson (2000), Fernández et al. (2002), and Berthelsen and Møller
(2002b).

DCFTP uses the coupling construction for the spatial birth-death processes
Dt and Xt described above, assuming that f is locally stable and that D0 follows
its Poisson process equilibrium distribution. However, we generate Dt backwards
in time t ≤ 0, which by reversibility is the same stochastic construction as
generating it forwards in time t ≥ 0. One possibility, here called DCFTP1, would
be to stop the backwards generation of Dt at time τ = sup{t ≤ 0 : Dt = ∅},
and then set Xτ = ∅ and use the same coupling construction as before when
generating forwards Xt, τ < t ≤ 0. In fact, with probability one, the algorithm
terminates (i.e. τ > −∞) and X0 ∼ f is a perfect simulation. Note that we do
not need to generate the exponential waiting times for transitions, since only the
jumps of births and deaths are used, that is, we need only to generate J0 = D0
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and if J0 6= ∅, the jump chain J1,J2, . . . ,JM1
corresponding to Dt backwards in

time 0 > t ≥ τ (so that J1 6= ∅, . . . , JM1−1 6= ∅, and JM1
= ∅) and the jump chain

I1−M1
, I2−M1

, . . . , I0 corresponding to Xt forwards in time τ < t ≤ 0 (so that
I0 = X0). However, as demonstrated in Berthelsen and Møller (2002a), DCFTP1
is infeasible in practice, since the number of jumps M1 can be extremely large
for spatial point process models with even a modest value of K|B| (the expected
number of points in D0).

In practice we use instead the DCFTP2-algorithm based on a sequence of dis-
crete starting times T0 = 0 > T1 > T2 > . . . for so-called upper and lower bound-
ing processes Un

t and Lnt , t = Tn, Tn+1, . . . , 0, n = 1, 2, . . ., constructed forwards
in time as described below such that the following funnelling/sandwiching prop-
erty is satisfied,

Ln+1
t ⊆ Lnt ⊆ It ⊆ Un

t ⊆ Un+1
t ⊆ Jt, t = Tn, Tn + 1, . . . , 0, n = 1, 2, . . . .

(0.29)
Here we imagine for the moment that (Dt,Xt) is extended further back in time,
which at least in theory is easily done, since the process regenerates each time
Dt = ∅. Thereby we see that Ln0 = Un

0 = I0 = X0 is a perfect simulation for
all sufficiently large n, and we let M2 denote the smallest possible n with Ln0 =
Un

0 . The DCFTP2-algorithm consists in first generating D0 from its Poisson
process equilibrium distribution, second if D0 = ∅ to return X0 = ∅, and else for
n = 1, . . . ,M2, generating JTn−1+1, . . . ,JTn

and (Un
Tn
,LnTn

), . . . ,(Un
0 ,L

n
0 ), and

returning X0 = LM2

0 . Note that only the dominating jump chain and the pairs of
upper and lower processes are generated until we obtain coalescence Ln0 = Un

0 ;
it is not required to generate the ‘target’ jump chain It. Empirical findings in
Berthelsen and Møller (2002a) show that M2 can be much smaller than M1.

To specify the construction of upper and lower processes, recall that in case
of a forwards birth (corresponding to a backwards death) of Dt, we generated
a uniform number used for determining whether a birth should occur or not in
Xt. Let R0, R1, . . . be mutually independent uniform numbers in [0, 1], which
are independent of the dominating jump chain Jt. To obtain (0.29) we reuse
these uniform numbers for all pairs of upper and lower processes as follows. For
n = 1, 2, . . ., initially, Un

Tn
= JTn

and LnTn
= ∅. Further, for t = Tn + 1, . . . , 0, if

Jt = Jt−1 ∪ {x}, define

maxλnt (x) = max{λ(x;x) : Lnt−1 ⊆ x ⊆ Un
t−1},

minλnt (x) = min{λ(x;x) : Lnt−1 ⊆ x ⊆ Un
t−1},

Un
t =

{

Un
t−1 ∪ {x} if Rt ≤ maxλnt (x),

Un
t−1 otherwise,

Lnt =

{

Lnt−1 ∪ {x} if Rt ≤ minλnt (x),

Lnt−1 otherwise.
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Furthermore, if Jt = Jt−1 \ {x}, define Un
t = Ut−1 \ {x} and Lnt = Lt−1 \ {x}.

Hence by induction we obtain (0.29) if we are reusing the Ri when constructing
It as in DCFTP1.

In practice we need some kind of monotonicity so that maxλnt and minλnt can
be quickly calculated. If λ(x;x) is a non-decreasing function of x (the ‘attractive
case’), i.e. λ(x;y) ≤ λ(x;x) whenever y ⊂ x, then maxλnt (x) = λ(x;Un

t−1) and
minλnt (x) = λ(x;Lnt−1). If instead λ(x;x) is an non-increasing function of x (the
‘repulsive case’), then maxλnt (x) = λ(x;Lnt−1) and minλnt (x) = λ(x;Un

t−1).
As starting times Ti, we may use a doubling scheme Ti+1 = 2Ti as proposed in

Propp and Wilson (1996). In Berthelsen and Møller (2002a) a random doubling
scheme is used, where T1 = sup{t ≤ 0 : Jt ∩ J0 = ∅}.

For instance, DCFTP2 has been used in connection to the pairwise interaction
process fitting the cell data in Section 0.1.4.6. Figure 0.8 shows perfect simula-
tions of different Strauss processes as defined in Section 0.1.4.2, with θ2 = 0
(the Poisson case), θ2 = − log 2, and θ2 = −∞ (the hard core case), using
the same dominating process (and associated marks Ri) in all three cases, with
K = exp(θ1) = 100. Due to the dependent thinning procedure in the algorithm,
the point pattern with θ2 = 0 contains the two others, but the point pattern
with θ2 = −∞ does not contain the point pattern with θ2 = − log 2 because the
Strauss process is repulsive.
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