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AN EXAMPLE OF AN ALMOST GREEDY UNIFORMLY

BOUNDED ORTHONORMAL BASIS FOR Lp([0, 1])

MORTEN NIELSEN

Abstract. We construct a uniformly bounded orthonormal almost greedy basis
for Lp([0, 1]), 1 < p < ∞. The example shows that it is not possible to ex-
tend Orlicz’s theorem, stating that there are no uniformly bounded orthonormal
unconditional bases for Lp([0, 1]), p 6= 2, to the class of almost greedy bases.

1. Introduction

Let B = {en}n∈N be a bounded Schauder basis for a Banach space X, i.e., a
basis for which 0 < infn ‖en‖X ≤ supn ‖en‖X < ∞. An approximation algorithm
associated with B is a sequence {An}∞n=1 of (possibly nonlinear) maps An : X → X
such that for x ∈ X, An(x) is a linear combination of at most n elements from
B. We say that the algorithm is convergent if limn→∞ ‖x − An(x)‖X = 0 for every
x ∈ X. For a Schauder basis there is a natural convergent approximation algorithm.
Suppose the dual system to B is given by {e∗k}k∈N. Then the linear approximation
algorithm is given by the partial sums Sn(x) =

∑n
k=1 e∗k(x)ek.

Another quite natural approximation algorithm is the greedy approximation algo-
rithm where the partial sums are obtained by thresholding the expansion coefficients.
The algorithm is defined as follows. For each element x ∈ X we define the greedy
ordering of the coefficients as the map ρ : N → N with ρ(N) ⊇ {j : e∗j(x) 6= 0}
such that for j < k we have either | e∗ρ(k)(x)| < | e∗ρ(j)(x)| or | e∗ρ(k)(x)| = | e∗ρ(j)(x)|
and ρ(k) > ρ(j). Then the greedy m-term approximant to x is given by Gm(x) =
∑m

j=1 e∗ρ(j)(x)eρ(j). The question is whether the greedy algorithm is convergent. This

is clearly the case for an unconditional basis where the expansion x =
∑∞

k=1 e∗k(x)ek

converges regardless of the summation order. However, Temlyakov and Konyagin [4]
showed that the greedy algorithm may also converge for certain conditional bases.
This leads to the definition of a quasi-greedy basis.

Definition 1.1 ([4]). A bounded Schauder basis for a Banach space X is called quasi-
greedy if there exists a constant C such that for x ∈ X, ‖Gm(x)‖X ≤ C‖x‖X for

m ≥ 1.

Wojtaszczyk proved the following result which gives a more intuitive interpretation
of quasi-greedy bases.

Theorem 1.2 ([9]). A bounded Schauder basis for a Banach space X is quasi-greedy
if and only if limm→∞ ‖x − Gm(x)‖X = 0 for every element x ∈ X.

In this note we study quasi-greedy bases for Lp := Lp([0, 1]), 1 < p < ∞, with
a particular structure. We are interested in uniformly bounded bases B = {en}n∈N

such that B is an orthonormal basis for L2. It is a well-known result by Orlicz that

Key words and phrases. Bounded orthonormal systems, Schauder basis, quasi-greedy basis,
almost greedy basis, decreasing rearrangements.
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such a basis can be unconditional only for p = 2, so it is never trivially quasi-greedy
except for p = 2.

It was proved by Temlyakov [8] that the trigonometric system in Lp, 1 ≤ p ≤ ∞,
p 6= 2, fails to be quasi-greedy. Independently, and using a completely different
approach, Córdoba and Fernández [1] proved the same result in the range 1 ≤ p < 2.
One can also verify that the Walsh system fails to be quasi greedy in Lp, p 6= 2.
This leads to a natural question: are there any uniformly bounded orthonormal
quasi-greedy bases for Lp?

A negative answer to this question would give a nice improvement of Orlicz’s
theorem to the class of quasi-greedy bases. However, such an improved result is
not possible. Below we construct a uniformly bounded orthonormal almost greedy

basis for Lp, 1 < p < ∞. An almost greedy basis is a quasi-greedy basis with one
additional property.

Definition 1.3. A bounded Schauder basis {en}n for a Banach space X is almost

greedy if there is a constant C such that for x ∈ X,

‖x − Gn(x)‖X ≤ C inf
{
∥

∥x −
∑

j∈A

e∗j(x)ej

∥

∥ : A ⊂ N, |A| = n
}

.

It was proved in [2] that a basis is almost greedy if and only if it is quasi-greedy
and democratic. A Schauder basis {en}n is called democratic if there exists C such
that for any finite sets A,B ⊂ N with |A| = |B|, we have

∥

∥

∑

j∈A

ej

∥

∥

X
≤ C

∥

∥

∑

j∈B

ej

∥

∥

X
.

We can now state the main result of this note.

Theorem 1.4. There exists a uniformly bounded orthonormal almost greedy basis

for Lp([0, 1]), 1 < p < ∞.

We should note that without the assumption that the system be uniformly bounded,
one can obtain a stronger result. It is known that the Haar system on [0, 1], nor-
malized in Lp, is an unconditional and democratic basis (a so-called greedy basis)
for Lp, 1 < p < ∞, see [7].

2. A uniformly bounded almost greedy ONB for Lp

Classical uniformly bounded orthonormal systems such as the trigonometric basis
and the Walsh system fail to form quasi-greedy bases for Lp := Lp([0, 1]), 1 < p < ∞.
The problem behind this failure is that such systems are very far from being demo-
cratic. This behavior is not representative for all uniformly bounded orthonormal
bases. In this section we construct an example of a quasi greedy uniformly bounded
system in Lp, 1 < p < ∞. The example we present is a variation on a construction
by Kostyukovsky and Olevskĭı [5]. The example in [5] was used to study pointwise
convergence a.e. of greedy approximants to L2-functions. Later Wojtaszczyk [9]
used the same type of construction to define quasi-greedy bases for X ⊕ ℓ2, with X
a quasi-Banach space with a Besselian basis.

Let us introduce some notation. The Rademacher functions are given by rk(t) =
sign(sin(2kπt)) for k ≥ 1. Khintchine’s inequality will be essential for the estimates
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below. The inequality states that for 1 ≤ p < ∞ there exist Ap, Bp such that for
any finite sequence {ak}k≥1,

(1) Ap

(

∑

k

|ak|2
)1/2

≤
(

∫ 1

0

∣

∣

∣

∣

∑

k

akrk(t)

∣

∣

∣

∣

p

dt

)1/p

≤ Bp

(

∑

k

|ak|2
)1/2

.

Khintchine’s inequality shows that the Rademacher functions form a democratic
system in Lp. However, the Rademacher system is far from complete so it cannot
be used directly to obtain an almost greedy basis in Lp. In our example we use the
fact that the Rademacher functions form a subsystem of a complete system, namely
the Walsh system. The Walsh system W = {Wn}∞n=0 is defined as follows. We let

W0(t) = 1 and for n =
∑k

j=1 εj2
j−1, the binary expansion of n ∈ N, we let

(2) Wn(t) =
k

∏

j=1

r
εj

j (t).

The Walsh system forms a uniformly bounded orthonormal basis for L2 and a
Schauder basis for Lp, 1 < p < ∞, see [3]. The idea is to reorder the Walsh system
such that we obtain large dyadic blocks of Rademacher functions with the remain-
ing Walsh functions placed in between the Rademacher blocks. Let us consider the
details.

For k = 1, 2, . . ., we define the 2k × 2k Olevskĭı matrix Ak = (a
(k)
ij )2k

i,j=1 by the
following formulas

a
(k)
i1 = 2−k/2 for i = 1, 2, . . . , 2k,

and for j = 2s + ν, with 1 ≤ ν ≤ 2s and s = 0, 1, . . . , k − 1, we let

a
(k)
ij =











2(s−k)/2 for (ν − 1)2k−s < i ≤ (2ν − 1)2k−s−1

−2(s−k)/2 for (2ν − 1)2k−s−1 < i ≤ ν2k−s

0 otherwise.

One can check (see [6, Chapter IV]) that Ak are orthogonal matrices and there exists
a finite constant C such that for all i, k we have

(3)
2k

∑

j=1

|a(k)
ij | ≤ C.

Put Nk = 210k

and define Fk such that F0 = 0, F1 = N1−1 and Fk −Fk−1 = Nk −1,
k = 1, 2, . . .. We consider the Walsh system W = {Wn}∞n=0 on [0, 1]. We split W into
two subsystems. The first subsystem W1 = {rk}∞k=1 is the Rademacher functions
with their natural ordering. The second subsystem W2 = {φk}∞k=1 is the collection of
Walsh functions not in W1 with the ordering from W . We now impose the ordering

φ1, r1, r2, . . . , rF1 , φ2, rF1+1, . . . , rF2 , φ3, rF2+1, . . . , rF3 , φ4, . . .

The block Bk := {φk, rFk−1+1, . . . , rFk
} has length Nk, and we apply A10k

to Bk to

obtain a new orthonormal system {ψ(k)
i }Nk

i=1 given by

(4) ψ
(k)
i =

φk√
Nk

+

Nk
∑

j=2

a
(10k)
ij rFk−1+j−1.
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The system ordered ψ
(1)
1 , . . . , ψ

(1)
N1

, ψ
(2)
1 , . . . , ψ

(2)
N2

, . . . will be denoted B = {ψk}∞k=1.

It is easy to verify that B is an orthonormal basis for L2 since each matrix A10k

is
orthogonal. The system is uniformly bounded which follows by (3) and the fact that
W is uniformly bounded. The system B is our candidate for an almost greedy basis
for Lp, 1 < p < ∞. We split the proof of Theorem 1.4 into three parts. First we
prove that B is democratic in Lp. Then we prove that the system forms a Schauder
basis for Lp, and the final step is to prove that the system forms a quasi-greedy basis
for Lp.

Lemma 2.1. The system B = {ψk}∞k=1 is democratic in Lp, 1 < p < ∞, with
∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

p

≍ |A|1/2.

Proof. Fix 2 < p < ∞. Let S =
∑

k∈Λ ψk with |Λ| = N . We write

S =
∞

∑

k=1

∑

j∈Λk

ψ
(k)
j =

∞
∑

k=1

|Λk|√
Nk

φk +
∞

∑

k=1

∑

i∈Λk

Nk
∑

j=2

a
(10k)
ij rFk−1+j−1 := S1 + S2,

with
∑

k |Λk| = |Λ|, and |Λk| ≤ Nk. Notice that the coefficients of
∑

j∈Λk
ψ

(k)
j

relative to the block Bk has l2-norm |Λk|1/2 since A10k

is orthogonal. Hence, by
Khintchine’s inequality,

‖S2‖p =

∥

∥

∥

∥

∞
∑

k=1

Nk
∑

j=2

(

∑

i∈Λk

a
(10k)
ij

)

rFk−1+j−1

∥

∥

∥

∥

p

≤ Bp

(

∑

k

|Λk|
)1/2

= BpN
1/2.

We now estimate S1. Write

S1 =
∞

∑

k=1

|Λk|√
Nk

φk =
∑

k∈A

|Λk|√
Nk

φk +
∑

k∈B

|Λk|√
Nk

φk := S1
1 + S2

1 ,

where A = {k : |Λk| ≤ (Nk)
3/4} and B = {k : |Λk| > (Nk)

3/4}. Using the Cauchy-
Schwartz inequality,

‖S1
1‖p ≤

∑

k∈A

|Λk|√
Nk

≤
(

∑

k∈A

|Λk|
)1/2(

∑

k∈A

|Λk|
Nk

)1/2

≤ N1/2

(

∑

k∈N

N
−1/4
k

)1/2

= CN1/2.

We turn to S2
1 . If B is empty, we are done. Otherwise, B is a finite set and we can

define L = max B. Using |Λk| ≤ Nk, we obtain

∑

k∈B;k<L

|Λk|√
Nk

≤
∑

k∈B;k<L

√

Nk ≤
10L−1
∑

j=1

2j/2 ≤ 2 · 2(10L−1/2) ≤ 2 · 2(10L/4) ≤ 2
|ΛL|√
NL

Hence,

‖S2
1‖p ≤

∑

k∈B

|Λk|√
Nk

≤ 3
|ΛL|√
NL

≤ 3
√

|ΛL| ≤ 3
√

|Λ| = 3N1/2,

where we used that |ΛL| ≤ NL. We conclude that ‖S‖p ≤ C ′N1/2, with C ′ inde-
pendent of Λ. Since N1/2 = ‖S‖2 ≤ ‖S‖p we deduce that B is democratic in Lp,
2 ≤ p < ∞. For 1 < q < 2 we have ‖S‖q ≤ ‖S‖2 = N1/2. By Hölder’s inequality,

N = ‖S‖2
2 ≤ ‖S‖q‖S‖p ≤ CpN

1/2‖S‖q,
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for 1/q + 1/p = 1. Again, we conclude that ‖S‖q ≍ N1/2, so B is democratic in Lq,
1 < q < 2. ¤

Next we prove that B is a basis for Lp.

Lemma 2.2. The system B = {ψk}∞k=1 is a Schauder basis for Lp, 1 < p < ∞.

Proof. Notice that span(B) = span(W) by construction, so span(B) is dense in
Lp, 1 < p < ∞, since W is a Schauder basis for Lp. Fix 2 < p < ∞ and let
f ∈ Lp. Let Sn(f) =

∑n
k=1〈f, ψk〉ψk be the partial sum operator. We need to

prove that the family of operators {Sn}n is uniformly bounded on Lp. Notice that
{〈f, ψk〉}k ∈ ℓ2(N) since Lp ⊂ L2. For n ∈ N, we can find L ≥ 1 and 1 ≤ m ≤ NL

such that

Sn(f) =
n

∑

k=1

〈f, ψk〉ψk =
L−1
∑

k=1

Nk
∑

j=1

〈f, ψ
(k)
j 〉ψ(k)

k +
m

∑

k=1

〈f, ψ
(L)
k 〉ψ(L)

k := T1 + T2.

Let us estimate T1. If L = 1 then T1 = 0, so we may assume L > 1. The construction
of B shows that T1 is the orthogonal projection of f onto

span

( L−1
⋃

k=1

Nk
⋃

j=1

{ψ(k)
k }

)

= span
{

{W0,W1, . . . ,WL−2} ∪ {rℓ0 , rℓ0+1, . . . , rFL−1
}
}

,

with ℓ0 = ⌊log2(L)⌋. It follows that we can rewrite T1 as

T1 =
L−2
∑

k=0

〈f,Wk〉Wk + PR(f),

where PR(f) is the orthogonal projection of f onto span{rℓ0 , rℓ0+1, . . . , rFL−1
}. Thus,

using Khintchine’s inequality,

‖T1‖p ≤ Cp‖f‖p + Bp‖f‖p,

where Cp is the basis constant for the Walsh system in Lp. Next we rewrite T2 in
the system {φL, rFL−1+1, . . . , rFL

},

T2 =
m

∑

k=1

〈f, ψ
(L)
k 〉 φL√

NL

+

NL
∑

j=2

( m
∑

k=1

〈f, ψ
(L)
k 〉a(10L)

ij

)

rFL−1+j−1.

By Khintchine’s inequality, and the fact that A10L

is orthogonal,
∥

∥

∥

∥

NL
∑

j=2

( m
∑

k=1

〈f, ψ
(L)
k 〉a(10L)

ij

)

rFL−1+j−1

∥

∥

∥

∥

p

≤ Bp‖{〈f, ψ
(L)
k 〉}k‖ℓ2 < ∞.

Also,
∥

∥

∥

∥

m
∑

k=1

〈f, ψ
(L)
k 〉 φL√

NL

∥

∥

∥

∥

p

≤
m

∑

k=1

|〈f, ψ
(L)
k 〉| 1√

NL

≤ ‖{〈f, ψ
(L)
k 〉}k‖ℓ2

√

m

NL

≤ ‖{〈f, ψ
(L)
k 〉}k‖ℓ2 ,

so ‖T2‖p < ∞. The estimates of T1 and T2 are independent of n, and we obtain that
supn ‖Sn(f)‖p < ∞. Using the Banach-Steinhaus theorem we deduce that {Sn}n

is a uniformly bounded family of linear operators on Lp. We conclude that B is a
Schauder basis for Lp, 2 < p < ∞, and the result for 1 < p < 2 follows by a duality
argument. ¤
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We can now complete the proof of Theorem 1.4. Lemma 2.3 below together with
Lemmas 2.1 and 2.2 immediately give Theorem 1.4.

Lemma 2.3. The system B = {ψk}∞k=1 is a quasi-greedy basis for Lp, 1 < p < ∞.

Proof. First we consider 2 < p < ∞. Let f ∈ Lp ⊂ L2. Then we have the Lp-norm
convergent expansion

(5) f =
∞

∑

i=1

〈f, ψi〉ψi,

with ‖{〈f, ψi〉}i‖ℓ2 ≤ ‖f‖2 ≤ ‖f‖p. It suffices to prove that Gm(f) is convergent in
Lp since Gm(f) → f in L2. We write (formally)

f =
∞

∑

k=1

Nk
∑

j=1

〈f, ψ
(k)
j 〉ψ(k)

k

=
∞

∑

k=1

Nk
∑

j=1

〈f, ψ
(k)
j 〉 φk√

Nk

+
∞

∑

k=1

Nk
∑

i=1

〈f, ψ
(k)
i 〉

Nk
∑

j=2

a
(10k)
ij rFk−1+j−1

= S1 + S2.

Consider a sequence {εk
i } ⊂ {0, 1}. By Khintchine’s inequality, and the fact that

each A10k

is orthogonal,

∥

∥

∥

∥

∞
∑

k=1

Nk
∑

j=2

( Nk
∑

i=1

εk
i 〈f, ψ

(k)
i 〉a(10k)

ij

)

rFk−1+j−1

∥

∥

∥

∥

p

≤ Bp

(

∑

k

Nk
∑

i=1

εk
i |〈f, ψ

(k)
i 〉|2

)1/2

.

It follows that S2 is convergent and actually converges unconditionally in Lp. From
this and the convergence of the series (5), we conclude that the partial sums for the
series S1,

S1
n =

L−1
∑

k=1

Nk
∑

j=1

〈f, ψ
(k)
j 〉 φk√

Nk

+
m

∑

j=1

〈f, ψ
(L)
j 〉 φL√

NL

converge in Lp.
The series defining S2 converges unconditionally, so it suffices to prove that the

series defining S1 converges in Lp when the coefficients {〈f, ψi〉}i are arranged in
decreasing order. We define the sets

Λk =

{

j :
1

Nk

< |〈f, ψ
(k)
j 〉| <

1

N
1/10
k

}

Λ′
k =

{

j : |〈f, ψ
(k)
j 〉| ≤ 1

Nk

}

(6)

Λ′′
k =

{

j : |〈f, ψ
(k)
j 〉| ≥ 1

N
1/10
k

}

.

Then (formally)

S1 =
∞

∑

k=1

∑

j∈Λk

〈f, ψ
(k)
j 〉 φk√

Nk

+
∞

∑

k=1

∑

j∈Λ′

k

〈f, ψ
(k)
j 〉 φk√

Nk

+
∞

∑

k=1

∑

j∈Λ′′

k

〈f, ψ
(k)
j 〉 φk√

Nk

= T+T ′+T ′′.
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Notice that
∑

j∈Λ′

k
‖〈f, ψ

(k)
j 〉 φk√

Nk
‖p ≤

∑

j∈Λ′

k

|〈f,ψ
(k)
j 〉|√

Nk
≤ 1/

√
Nk, so the series defining

T ′ converges absolutely in Lp. For T ′′ we notice that |Λ′′
k| ≤ ‖f‖2

2N
1/5
k , so

∑

j∈Λ′′

k

∥

∥

∥

∥

〈f, ψ
(k)
j 〉 φk√

Nk

∥

∥

∥

∥

p

≤
∑

j∈Λ′′

k

|〈f, ψ
(k)
j 〉|√

Nk

≤ ‖f‖p‖f‖2
2

N
3/10
k

,

and the series defining T ′′ converges absolutely in Lp.
The series defining S1, T ′ and T ′′ converge in Lp, so we may conclude that the

series defining T converges in Lp. From (6), we get

|〈f, ψ
(k)
i 〉| >

1

Nk

≥ 1

N
1/10
k+1

≥ |〈f, ψ
(k+1)
j 〉|, i ∈ Λk, j ∈ Λk+1; k = 1, 2, . . .

so when we arrange T by decreasing order, the rearrangement can only take place
inside the blocks. The estimate

∑

j∈Λk

∥

∥

∥

∥

〈f, ψ
(k)
j 〉 φk√

Nk

∥

∥

∥

∥

p

≤
(

∑

j∈Λk

|〈f, ψ
(k)
j 〉|2

)1/2 |Λk|1/2

√
Nk

, k ≥ 1,

shows that rearrangements inside blocks are well-behaved, and
∑

j∈Λk

∥

∥

∥

∥

〈f, ψ
(k)
j 〉 φk√

Nk

∥

∥

∥

∥

p

→ 0 as k → ∞.

We conclude that Gm(f) is convergent in Lp and consequently B is a quasi-greedy
basis in Lp, 2 ≤ p < ∞. Fix 1 < q < 2 and let p be given by 1/q + 1/p = 1. By
Lemma 2.1, for any finite subset A ⊂ N,

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

q

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

p

≤ C|A|,

so B is a so-called bi-democratic system in Lp. It follows from [2, Theorem 5.4;
(1) ⇒ (2)] that B is a quasi-greedy basis for Lq. This completes the proof. ¤

Remark 2.4. To get a uniformly bounded quasi-greedy basis consisting of smooth

functions, we can use the same construction based on the trigonometric system with

any lacunary subsequence playing the role of the Rademacher system.

Acknowledgment. The author would like to thank Boris Kashin and Rémi Gri-
bonval for discussions on uniformly bounded quasi-greedy systems that provided
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