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Abstract 
 
As an important index of a plant’s N nutrition, leaf nitrogen content (LNC) can be quickly monitored 

in real time with hyperspectral information, which is helpful to guide the precise application of N in cotton 
leaves. In this study, taking cotton dripping in Xinjiang, China, as the object of study, five N application 

treatments (0, 120, 240, 360, 480 kg·ha-1) were set up, and the hyperspectral data and the N content of main 
stem functional leaves at the cotton flower and boll stage were collected. The results showed that (1) comparing 
the correlations of the three types of spectral data from the original spectra, first derivative spectra, and second 
derivative spectra with the LNC of cotton, the first derivative spectra increased the correlation between the 
reflectance in the peak and valley ranges of the spectral curves and the LNC of cotton; (2) in the three 
hyperspectral regions of VIS, NIR, and SWIR, all R2 values of the estimation model for the LNC of cotton 
established based on the characteristic wavelengths of the original and the first derivative spectra were greater 
than 0.8, and the model accuracy was better than that of the second derivative spectra; and (3) the normalized 
root mean square error (n-RMSE) values of the validated model using MLR, PCR, and PLSR regression 

methods were all in the range of 10–20%, indicating that the established model could well estimate the nitrogen 
content of cotton leaves. The results of this study demonstrate the potential of the three hyperspectral domains 
of VIR, NIR, and SWIR to estimate the LNC of cotton and provide a new basis for hyperspectral data 
application in crop nutrient monitoring. 

 
Keywords: characteristic wavelengths; leaf spectrum; near-infrared region; PCR; PLSR; short wave 

infrared region 
 
Introduction 
 
Nitrogen is the “life element” of crop physiological activities. Nitrogen deficiency hinders the synthesis 

of crop protein, leads to a decline in the photosynthetic rate and leaf yellowing, affects the photosynthetic 
capacity and growth of crops, and thus affects the yield and quality of crops (Serrano et al., 2000; Wang et al., 
2015). Hyperspectral imaging is considered a real-time and rapid tool for non-destructive monitoring of crop 
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nitrogen. Be-cause of the correlation between nitrogen and other elements, characteristic wavelengths that are 
significant for nitrogen estimation are found in the vegetation spectrum (Curran, 1989; Homolová et al., 
2013). 

In C3 plants, approximately 19% of leaf nitrogen is allocated to the light-harvesting complex, where it 
is mainly used to synthesize chlorophylls and chlorophyll-binding proteins in both photosystems (Chapin et 
al., 1987). This relationship explains the strong correlation between nitrogen and chlorophyll suggested by 
many studies. In the early stage of crop growth, chlorophyll content and nitrogen content in leaves have a high 
correlation, and the characteristics of chlorophyll absorption in the visible spectrum can be directly used to 
estimate nitrogen content (le Maire et al., 2008; Zhang et al., 2020). Chlorophyll content in leaves of cotton 
was correlated with Vogelmann1 in the four growing periods (squaring stage, full budding stage, flowering and 
boll stage, and boll opening stage); the correlation coefficients were 0.944, 0.907, 0.895, and 0.930, respectively 
(Hong et al., 2019). In the reproductive growth stage, due to the dynamic transfer of nitrogen, nitro-gen is 
redistributed from vegetative organs to reproductive structures (Ohyama, 2010), and the chlorophyll content 
in leaves decreases, but the nitrogen content in plants will remain unchanged. The correlation between 
chlorophyll content in the canopy and nitrogen con-tent in the aboveground parts will gradually weaken with 
the emergence or aging of re-productive organs (Berger et al., 2020). Moreover, some studies suggest that the 
relation-ship between chlorophyll and nitrogen is highly dependent on the growing season of crops (Spaner et 
al., 2005; Xu et al., 2021). This relationship is unstable in different cultivars, so it is limited to estimate nitrogen 
by chlorophyll (Hosgood, 1994). 

The different absorption peaks of protein (and nitrogen) are mainly in the range of the SWIR spectra 
in Curran’s research work (1989). Furthermore, Kokaly (2009) suggested that the VIS and NIR could be used 
to directly evaluate the nitrogen status of crops. Zhang et al. (2010) constructed and evaluated the NIR spectral 
model of rice leaf nitrogen content by using partial least squares regression (PLS), principal component 
regression (PCR), and stepwise multiple regression (SMR) based on NIR spectroscopy. Lee et al. (2020) 
pointed out that the accuracy of the nitrogen concentration monitoring model for cotton leaves based on the 
ratio of red edge position and short wave near-infrared band was relatively high. Wang et al. (2021) believed 
that leaf structure parameters (leaf thickness) and dry matter content (protein, cellulose, and lignin) lead to 
high reflectivity and reflectivity fluctuations in the near-infrared and short-wave infrared regions and that 
1500-1900 nm and 2000-2400 nm in the short-wave infrared region are the main wavelengths of nitrogen. 

Using a field-portable spectrometer with spectral range of 350-2500 nm, researchers have established a 
spectral index based on the composition of the visible spectral domain and the near-infrared spectral domain 
to estimate the total nitrogen concentration of winter wheat leaves (Duan et al., 2019). Wang et al. (2021) 
believed that the spectral signal in the short-wave infrared region is closely related to the nitrogen concentration 
in the leaves, but only the effects of chlorophyll (visible light region) and nitrogen concentration (short-wave 
infrared region) on the Vmax of photosynthesis were studied. Shi et al. (Shi et al., 2015) established the 
normalized difference spectral index (NDSI) and the three-band spectral index (TBSI) of five varieties using 

wavelengths in the spectral range of 400–2400 nm in rice, corn, tea, sesame, and soybean. The bands used 
involved three spectral domains of visible, near-infrared, and short-wave infrared, and the authors believed that 
species-specific differences could affect the hyperspectral estimation of crop leaf nitrogen concentration. 
Kennedy et al. (2013) studied the biochemical components of birch and eucalyptus through near-infrared 

(1100–2300 nm) spectral information. The results showed that the relative prediction standard deviation 

(RPD) value of the established nitrogen model was 3.90-4.78, showing excellent model performance (RPD ≥ 
3, indicating that the model had a favourable prediction effect). 

The research conducted thus far is mainly based on the estimation and analysis of crop nutrient 
components in a few sensitive bands, such as considering only a single spectral region of visible light, near-
infrared, and short-wave infrared, or using vegetation indices involving two spectral regions to construct 
models. Studies have not fully ac-counted for the interaction effects between the spectral domains, nor have 
they fully taken advantage of the detailed spectral information provided by hyperspectral equipment. In this 
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study, we measured the nitrogen content of main-stem functional leaves at the flower and boll stage of cotton 
in drip irrigation. The high spectral range of 350-2500 nm was divided into three spectral regions: visible (VIS), 
near-infrared (NIR), and short-wave infra-red (SWIR). By screening the characteristic wavelengths of the three 
spectral regions, the estimation accuracy of the high spectral regions of cotton leaves was analysed by multiple 
linear regression (MLR), principal component regression (PCR), and partial least square regression (PLSR) to 
explore and analyse the potential of the three hyperspectral regions in estimating nitrogen content in cotton 
leaves, and to provide a new idea for monitoring crop nutrition information. 

 
 

Materials and Methods 
 
Experimental design 
The test was conducted in the second company (85°59′41″ E, 44°19′54″ N) of the teaching experimental 

field of Shihezi University in Shihezi City, Xinjiang, China, from April to September 2020. The sunlight 

duration was 2721-2818 h. The active cumulus temperature of ≥ 0 °C was 4023-4118 °C, and that of ≥ 10 °C 
was 3570-3729 °C with a frost-free period of 168-171 d. The soil texture of the experiment was loam. The soil 

nutrients of the plough horizon (0–20 cm) were as follows: organic matter 19.06 g·kg-1, total nitrogen content 

12.8 mg·kg-1, available potassium 165.1 mg·kg-1, available phosphorus 20.8 mg·kg-1. In order to obtain cotton 

leaves with different nitrogen content, five nitrogen levels-N0 (0 kg·ha-1), N120 (120 kg·ha-1), N240 (240 kg

·ha-1), N360 (360 kg·ha-1), and N480 (480 kg·ha-1) - were set up in the experiment. All nitrogen fertilizer 
(urea, nitrogen content of 46%) was applied with water 8 times during the whole growth period of cotton. 

Potassium phosphate fertilizer (potassium dihydrogen phosphate, 150 kg·ha-1) was applied once before sowing 
cotton. 

 
Acquisition of hyperspectral data of cotton leaves 
The main stem function leaf is an important source organ of cotton. Six cotton plants were selected for 

each treatment, and 226 samples were obtained. The hyperspectral instrument adopted was the sr-3500 
portable ground object spectrometer of the Spectral Evolution Company of the United States, with the spectral 

range of 350–2500 nm. The spectrometer has a built-in light source and leaf clip. When obtaining 
hyperspectral data, we avoided the vein of cotton leaves. Three positions of each cotton leaf were measured, 
and each position was repeated three times. The average value was taken as the spectral data of the position, 
and the average reflectivity of the three positions was taken as the spectral data of the leaf (Figure 1). Before 
measuring different cotton leaves, the spectrometer was calibrated with the whiteboard. 

 

 
Figure 1. Hyperspectral data acquisition location of cotton leaves (numbers 1, 2, and 3 represent the order 
and position of measurement) 
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Determination of LNC  
The nitrogen content of cotton leaves was determined by the Kjeldahl method. The main stems and 

leaves of cotton were put into an envelope and dried in an oven at 105 ℃ for 30 min, and then dried at 85 ℃ 
until attaining a constant mass. The dried sample was crushed and then sieved through 100 mesh. 

We took 0.1000 g of the sample with one-ten-thousandth balance and put it into the digesting tube. 
Then, it was digested with H2SO4-H2O2. The volume of digestive juice was fixed to 50 ml, and 10 ml was put 
into the Kjeldahl nitrogen analyzer for distillation, using sulfuric acid for titration. The nitrogen content of 
leaves was calculated according to the following formula:  
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where c is the concentration of the dilute sulfuric acid solution (mol/L); v and v0 are the volumes of 
dilute sulfuric acid used in titrating sample solution and the volume of dilute sulfur used in titrating blank, 

respectively (ml); 0.014 is the molar mass of nitrogen (kg·mol-1); ts is the separation multiple, the ratio of 
constant volume to separated volume; 10-3 is the conversion multiple between kilograms and grams; and m is 
the mass of the weighted sample (g). 

 
Selection of characteristic wavelength of the LNC in cotton  
According to previous studies, hyperspectral bands are divided into three spectral regions: visible region 

(VIS, 380-700 nm), near-infrared region (NIR, 700–1300 nm), and short-wave infrared region (SWIR, 1300–
2500 nm). The VIS region contains 321 wavelengths, the NIR region contains 600 wavelengths, and the SWIR 
region contains 1200 wavelengths. Because each spectral region contains substantial redundant information 
and multicollinear data, to reduce the number of input variables and improve the modelling accuracy, we used 
the successive projections algorithm (SPA) to select the characteristic wavelength of the blade. The SPA can 
find the least redundant variables from the spectral information, effectively eliminate the collinearity between 
variables, minimize the collinearity between variables, and reduce the complexity of the model. The SPA of this 
study was completed in MATLAB R2014b. 

 
Establishment and evaluation of multiple linear regression model 
The model was constructed using multivariate linear regression (MLR), partial least square regression 

(PLSR), and principal component regression (PCR) in The Unscrambler X 10.4 software based on feature 
wavelength screening. 

The correction set determination coefficient (R2
C), prediction set determination coefficient (R2

P), 
correction root mean square error (RMSEC), and prediction root mean square error (RMSEP) were used to 
quantify the accuracy and thereby evaluate the model. A favourable model should have higher R2

C and R2
P and 

lower RMSEC and RMSEP. The model was validated by the normalized root mean square error (n-RMSE), 
and then the 1:1 histogram of simulated and measured values was drawn to show the fitting and reliability of 
the model. When n-RMSE is less than 10%, the simulation performance of the model is excellent; when n-
RMSE is (10%, 20%), the simulation performance of the model is good; when n-RMSE is (20%, 30%), the 
simulation performance of the model is average; when n-RMSE is more than 30%, the simulation performance 
is poor (Ma et al., 2018; Duan et al., 2019). 

 
 
Results  
 
Statistical analysis of the LNC in cotton 
In this study, before the establishment of the hyperspectral inversion model of the LNC in cotton, the 

total samples were divided into the correction set and verification set by using the content gradient method. 

The content gradient method is a method of sample selection—that is, the samples are arranged in order of 
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composition content from large to small; the prediction set obtains every two data points, and the other data 
comprise the correction set (Yu et al., 2018). There were 151 samples in the calibration set and 75 samples in 
the prediction set. The statistical parameters are shown in Table 1. The results show that the calibration set is 
consistent with the overall sample data range distribution, and contains the numerical range of the prediction 
set samples which can be used to establish and verify the model. The results show that the calibration set is 
consistent with the range of the total sample data, and contains the data range of the prediction set, which can 
be used for modelling and verification of the model. 

 
Table 1. Statistical characteristics of samples 

Treatment Samples Mean Max Min SD CV (%) 

Total 226 24.18 35.88 7.66 7.69 31.81 

Calibration set 151 24.20 35.88 7.66 7.71 31.85 

Prediction set 75 24.13 35.59 8.03 7.65 31.74 

 
The correlation between spectral reflectance of different pretreatment and the LNC 
The derivative is a common spectral pre-processing method that can effectively eliminate the influence 

of linear background noise and baseline drift and improve the spectral resolution and sensitivity. The 
correlation between the original spectrum, the first derivative spectrum, and the second derivative spectrum 
and the LNC in cotton was studied (Figure 2). There was a negative correlation between the original spectral 
reflectance in the visible region and the nitrogen content in cotton leaves, and both reached an extremely 

significant level. The correlation at 507–541 nm and 697–700 nm was above 0.75 (F < 0.01), indicating that 
the increase in the LNC would reduce the spectral reflectance of visible light, which is mainly because the 
increase in leaf nitrogen content would increase the chlorophyll content of leaves, and then increase the light 
absorption of leaves. After the first derivative transformation, there was a significant negative correlation 

between the spectral reflectance and the LNC at 567–673 nm, and the significance was more than 0.80 (F < 

0.01) at 633–636 nm, and more than 0.85 (F < 0.01) at 697–700 nm (Figure 2, VIS-1-Derivative spectrum). 
After the second derivative treatment, although there were many bands with significant correlations with leaf 
nitrogen content, the correlation was greater 0.75 only at the four wavelengths of 650 nm in red valley and 

688–690 nm in the red edge region, indicating that the correlation between leaf nitrogen concentration and 
spectral reflectance was different under different spectral pre-treatments. For the VIS, the first derivative 
spectrum can enhance the correlation between some spectral bands and leaf nitrogen content. 

In the near-infrared spectral domain (NIR), there was a significant negative correlation between the 

original spectral reflectance and leaf nitrogen concentration at 701–763 nm, and a maximum negative 
correlation at 720 nm (r = -0.871, F < 0.01). This band range is the red edge region of leaf reflectance spectrum 
and the sensitive region of leaf structure and physicochemical parameter change response. The correlation 
between the first derivative spectrum and leaf nitrogen content changed rapidly from an extremely significant 
negative correlation to an extremely significant positive correlation in this band, and the correlation was more 

than 0.75 at 720–763 nm and reached the maximum positive correlation at 743 nm (r = -0.868, F < 0.01). 
Moreover, the second derivative spectra showed an extremely significant positive correlation with leaf nitrogen 

content in the range nm bands 924–961, 1077–1162, and 1262–1300, and an extremely significant negative 

correlation in the range of bands 701–706, 996–1062, 1167–1186, 1197–1205, and 1212–1255. These bands 
are due to the peaks and troughs of the high reflection platform in the near-infrared spectral region. It is 
considered that the first derivative spectrum will enhance the relationship between the reflectivity of the peak 
and trough range of the spectral curve and the nitrogen content of the blade. The correlation between the 
second derivative of the NIR spectrum and leaf nitrogen content reached the maximum positive correlation at 

714 nm (r = −0.866, F < 0.01). There is an extremely significant positive correlation at 1110–1137 nm and an 

extremely significant negative correlation at 1141–1168 nm. This phenomenon is also caused by the peaks and 
troughs of the high reflection platform. 
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There are also several peaks and troughs in the SWIR due to the influence of water absorption and 
chemical bonds of proteins and other substances. At 1450, 1650, and 1900 nm, the inflection points of the 
SWIR infrared spectrum region were positive and had a negative correlation with leaf nitrogen content. From 
the correlation between the LNC and spectral reflectance in the SWIR in Figure 2, it can be seen that derivative 
can enhance the spectral correlation more obviously, and the correlation range between the original spectrum 

and leaf nitrogen content is −0.329 to 0.655. The correlation between the first derivative and leaf nitrogen 

content ranged from −0.817 to 0.838, with the maximum positive correlation at 1306 nm and the maximum 
negative correlation at 1682 nm. The correlation between the second derivative and leaf nitrogen content 

ranged from −0.839 to 0.807, with the maximum positive correlation at 1410 nm and the maximum negative 
correlation at 1383 nm. 
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Figure 2. The correlation between the reflectance of the three spectral regions and the LNC in cotton  
(F0.05: significant correlation (P < 0.05); F0.01: extremely significant correlation (P < 0.01)) 
 
Feature wavelength selection based on SPA 
SPA was used to select the characteristic wavelength of the original spectrum, the first derivative 

spectrum, and the second derivative spectrum. In VIS, there were only two characteristic wavelengths selected 
by the second derivative spectrum, and the two characteristic wavelengths were in the red region. Seven 
characteristic wavelengths were selected in the blue, green, and red bands of the original spectrum and the first 
derivative spectrum. Among the selected characteristic wavelengths, the wavelengths of 450 nm and 459 nm, 
544 nm and 561 nm, and 674 nm and 676 nm were near the green reflection peak, blue reflection valley, and 
red reflection valley, respectively, indicating that the selected characteristic wavelengths conformed to the 
absorption characteristics of chlorophyll in visible light to a certain extent, and wavelengths of 693 nm, 699 
nm, and 700 nm were at the red edge. The selected characteristic wavelengths significantly correlated with leaf 
nitrogen content. 
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In the near-infrared region, the higher reflection platform is formed mainly due to the influence of leaf 
structures such as mesophyll tissue. In this region, 19 characteristic wavelengths were selected. In the red edge 

position range of 700–760 nm, there are two characteristic wavelengths selected by the original spectrum and 
the first derivative spectrum, and one characteristic wavelength selected by the second derivative spectrum. The 
wavelengths of 812 nm, 842 nm, 845 nm, 880 nm, and 885 nm may be related to the fourth harmonic 
generation of N-H bonds. The wavelengths of 913 nm, 935 nm, 938 nm, 950 nm, 953 nm, and 957 nm may 
be related to the fourth harmonic generation of C-H bonds in leaves. The wavelengths of 975 nm, 976 nm, 977 
nm, 995 nm, and 1000 nm may be related to the elongation of N-H bonds. SWIR is mainly the spectral region 
of water absorption, but the absorption of protein is also in this band. In this region, the second derivative 
spectrum had the most characteristic wavelengths, but only two wavelengths had a significant relationship with 
leaf nitrogen content. The characteristic wavelengths of 1501 nm, 1977 nm, 2145 nm, and 2308 nm were 
related to the first overtone and elongation of the N-H bond, and the characteristic wavelengths of 1712 nm, 
1748 nm, 1723 nm, and 2405 nm were related to the first overtone and elongation of the C-H bond. The C-
H bond and N-H bond are the main components of protein. 

 
Table 2. Characteristic wavelengths of different spectrum regions 

Spectral region Pretreatment method Numbers Characteristic wavelength (nm) 

VIS 
(380–700 nm) 

original spectrum 7 
459**, 475**, 508**, 544**, 674**, 693**, 

700** 

first derivative spectrum 5 390, 450**, 561*, 676**, 699** 

second derivative spectrum 2 693**, 698** 

NIR 
(701–1300 nm) 

original spectrum 19 
744**, 756**, 812*, 880*, 913*, 935, 

938, 950, 953, 957, 965, 966, 968, 975, 
976, 977, 995, 1201**, 1300** 

first derivative spectrum 6 706**, 730**, 885, 963*, 964, 975 

second derivative spectrum 5 707**, 842, 975, 1000, 1249 

SWIR 
(1301–2500 nm) 

original spectrum 4 1301**, 1374**, 1712**, 2405** 

first derivative spectrum 5 1397**, 1748**, 1945, 1977, 2496 

second derivative spectrum 7 
1334**, 1380**, 1501, 1723, 2145, 

2308, 2482 
Notes: ** and * represent correlations significant at the probability level of P < 0.01 and P < 0.05, respectively. 

 
Establishment and validation of cotton leaf nitrogen content estimation model based on different 

hyperspectral regions 
Using the characteristic wavelengths selected by the continuous projection algorithm (Table 2), the 

estimation model of cotton leaf nitrogen content was established based on simple multiple linear regression 
(MLR), principal component regression (PCR), and partial least squares regression (PLSR). The model 
parameters are shown in Figures 3-5. In the constructed model, the best estimation models of different 
regression models in different spectral domains were obtained based on the determination coefficient (R2) and 
the optimal principle of n-RMSE. 

 
Establishment and validation of the LNC in cotton estimation model based on original spectrum 
Based on the characteristic wavelengths screened by the original spectral reflectance, the LNC 

estimation model was built (Figure 3). By comprehensively comparing the modeling effects of the three spectral 
regions, the MLR model established in the NIR had the highest accuracy (R2c = 0.909, R2p = 0.899) due to 
more characteristic wavelengths), and the model constructed in the SWIR had the lowest accuracy (R2c = 
0.789, R2p = 0.848). In the VIS and NIR domain, the accuracy of the PCR model was relatively low, and the 
R2c values of the model were 0.843 and 0.873, respectively. In the SWIR, the accuracy of the model based on 
the PLSR was slightly lower, and there were no differences in the model parameters of R2, RMSE, and n-RMSE 
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based on the MLR and PCR. This may be due to the significant correlation between the selected characteristic 
wavelengths and leaf nitrogen content, and the less characteristic wavelengths. Using the characteristic 
wavelengths of three spectral regions, the n-RMSE of LNC in the cotton estimation model based on the 

original spectrum was 10.193–12.630%, indicating that the accuracy of the models was sufficient. 
 

 
Figure 3. Regression model parameters of cotton LNC in different spectral regions based on original 
spectral characteristic wavelengths 

 
Establishment and verification of estimation model based on first derivative spectrum 
According to the estimation model established by analysing the characteristic wave-length of the first 

derivative spectrum (1-Derivative spectrum) (Figure 4), the model con-structed by PCR in the NIR domain 
had the highest accuracy of R2c and R2p, which were 0.843 and 0.852, respectively. In the VIS and SWIR, the 
accuracy of R2c and R2p of the three methods was above 0.8. The accuracy of the model in the SWIR was 
increased. R2c values were 0.807, 0.806, and 0.804, respectively; and R2p values were 0.821, 0.820, and 0.813, 
respectively, indicating that the first derivative spectrum increases the accuracy of the model in the SWIR. For 
the validation model, the n-RMSE ranged from 12.303% to 15.406%. Compared with the validation model of 
the original spectrum, the n-RMSE value increased, and the model accuracy was low. 
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Figure 4. Regression model parameters of cotton LNC in different spectral regions based on first derivative 
spectrum characteristic wavelengths 

 
Establishment and verification of estimation model based on second derivative spectrum 
In the estimation model of the LNC using second derivative spectral reflectance (2-Derivative spectrum, 

Figure 5), the R2c and R2p values established by MLR, PCR, and regression methods in three spectral domains 
did not reach 0.8, and the values of R2p were greater than R2c. The accuracy of the MLR model was also the 
best in the NIR domain (R2c = 0.746, R2p = 0.790). Although the n-RMSE value of the validation model was 

10–20%, it was the highest among the three types of data, indicating that the modelling effect using the second 
derivative spectra in the data processing method of three was worse than the other two types of data. 

Through the analysis of the above results, when estimating the LNC by using different spectrum regions, 
the model based on the original spectrum in the VIS and NIR was superior, along with the effect of the model 
based on the first derivative spectrum in the SWIR. In contrast, the model established by using the second 
derivative spectrum in the three spectrum regions was poor. The optimal values of R2c, R2p, and n-RMSE are 
the multiple linear regression models based on the original spectrum in the NIR. Perhaps due to the small 
number of the characteristic wavelengths selected, the accuracy of the PCR and PLSR models was not better 
than that of multiple linear regression models in the 27 estimation models of the LNC in cotton leaves. 
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Figure 5. Regression model parameters of cotton LNC in different spectral regions based on second 
derivative spectrum characteristic wavelengths 

 
 
Discussion 
 
The application of spectrum regions to estimate the biochemical components of crops started at the 

earliest based on leaf spectra, mainly because the leaf spectra were not affected by crop canopy structure, soil 
background, or the monitoring environment, and the obtained spectral data were relatively ideal (Hasituya et 
al., 2020; Lee et al., 2020). In this study, the LNC of cotton was researched. Based on the VIS (380–700 nm), 

NIR (701–1300 nm), and SWIR (1301–2500 nm) of hyperspectral imaging, we studied the potential of three 
spectrum regions to estimate the LNC of crops, respectively. 

The VIS is affected by the content of the chlorophyll, while the NIR band is mainly affected by the 
change in the spectral albedo caused by the structure of the leaves. In this study, the characteristic wavelength 
in the visible spectrum was mainly near the reflection peak or valley of red, green, and blue light and the range 
of the red edge position. The characteristic wavelength of the NIR was mainly related to the activities of N-H 
bonds and C-H bonds, which is consistent with previous research results, indicating that they have universal 
applicability as the key band for the study of plant spectral reflection (Cochrane, 2000; Liu et al., 2011; Rubert-
Nason et al., 2013; Fan et al., 2019). 

In the VIS and NIR, it is considered that the accuracy of the model established by using the characteristic 
wavelength of the original spectrum and the first derivative spectrum is higher, which is consistent with 
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previous research results. In this study, the characteristic wavelengths in the visible spectrum were mainly near 
the reflection peak or valley of red, green, and blue light and the range of the red edge position. These results 
indicate that the information reflected by the leaves can be more retained by the uncomplicated data 
transformation in the estimation of biochemical components of crops by using the hyperspectral spectrum 
information of the leaves (Cochrane, 2000; Rubert-Nason et al., 2013; Fan et al., 2019; Zhang et al., 2020). In 
the VIS and NIR, the accuracy of the model established by using the characteristic wavelengths of the original 
spectrum and the first derivative spectrum is higher, which is consistent with previous research results. These 
results indicate that the information reflected by the leaves can be more retained by the original spectrum or 
the uncomplicated data transformation in the estimation of bio-chemical components of crops by using the 
hyperspectral spectrum information of the leaves (Yi et al., 2010; Fan et al., 2019).  

The SWIR is mainly the reflection curve related to the chemical bond (C-H, N-H, and O-H bonds) 
interactions and various biochemical nutrition characteristics of crops (Rubert-Nason et al., 2013; Zhang et al., 
2018). For the SWIR, the characteristic wave-lengths selected based on the original spectrum have an extremely 
significant correlation with the LNC in cotton, which is consistent with the performance results of the VIS 
and NIR (Table 2). In terms of the characteristic wavelengths considering first derivative and second derivative 

screening, the characteristic wavelengths of 1301–1397 nm were related to the second overtone of the C-H 

and O-H bonds in the protein, the characteristic wave-lengths of 1712–1748 nm were mainly generated by the 

first overtone absorption of the C-H bond, and the characteristic wavelengths of 1977–2308 nm were related 
to the first overtone and extension of the N-H bond, which is consistent with the research results of Zhang et 
al.(2018) on the protein. Comparing and analysing the models established by the characteristic wavelength of 
three spectrum types, the R2c and R2p values of each regression model established by the first derivative were 
the highest. 

By comparing and analysing the three modelling methods for the application of three spectrum domains, 
this study shows that PCR and PLSR have no advantage over MLR, which is different from the research results 
of Yi et al. (2010) and Zhang et al. (Zhang et al., 2020). This may be due to the small number of characteristic 
wavelengths selected in this study, which makes PCR and PLSR unable to reduce and re-screen the 
characteristic wavelengths. The n-RMSE of the models established based on the three modelling methods were 
all in the range of 10-20%, indicating that the models by dividing the whole band into three spectrum domains 
and using various modelling methods were relatively stable and with suitable prediction accuracy, and could be 
applied to the estimation of LNC in cotton. 

 
 
Conclusions 
 

In this study, we researched cotton leaf samples in the range of 7.66–38.88 g/kg. Through the 
correlations between the wavelength of three spectrum regions (VIS, NIR, and SWIR) and the LNC and the 
comparative analysis of the models constructed, the results showed that (1) the first derivative pre-treatment 
method can enhance the correlation between spectral band and leaf nitrogen content; (2) the multiple linear 
regression and principal component regression model based on the characteristic band screened by original 
spectrum and first derivative spectrum is more suitable for estimating leaf nitrogen content, with R2c = 0.794 
~ 0.909 and R2p = 0.774 ~ 0.899; (3) the model validation accuracy n-RMSE of the estimation models 

established by using VIS, NIR and SWIR is 10–20%, indicating that the three spectral regions have the 
potential to estimate the nitrogen content of cotton leaves, which provides a new idea for more comprehensive 
estimation of crop nutrient information by using hyperspectral data. 
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