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Abstract 

Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) combined with multivariate data analysis have been applied for 
the discrimination of 15 different Romanian wines (white, rosé and red wines), obtained from different origin-denominated 
cultivars. Principal component analysis and hierarchical cluster analysis was performed using different regions of FT-MIR 
spectra for all wines. The general fingerprint of wines was splitted in four characteristic regions, corresponding to phenolic 
derivatives, carbohydrates, amino acids and organic acids, which confer the wines quality and authenticity. By qualitative and 
quantitative evaluation of each component category, it was possible to discriminate each wine category, from red, to rosé and 
white colours, to dry, half-dry and half-sweet flavours. The multivariate data analysis based on absorption peaks from FT-MIR 
spectra demonstrated a very good, significant clustering of samples, based on the four main components: phenolics, 
carbohydrates, amino acids and organic acids. Therefore, the ATR-FT-MIR analysis proved to be a very fast, cheap and 
efficient tool to evaluate the quality and authenticity of wines, and to discriminate each wine category, based on their colour 
and sweetness, as consequence of their biological (cultivar) specificity. 

Keywords: carbohydrates and acidity, Fourier Transform Mid-Infrared Spectroscopy, phenolics, Principal Component Analysis, red, rosé 

and white wines 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Grapes, grape juices and wines, consumed in moderate 
quantities, proved to contain a large number of 
phytochemicals with health benefits promoting effects 
(German and Walzem, 2000), from essential amino acids, 
minerals, organic acids, aromas, stilbenes (resveratrol), 
vitamins, and especially a large variety  of pigments 
(flavonoids and anthocyanins) as well catechins, 
procyanidins and phenolic acid derivatives (Jackson, 2008).  

            Therefore, the quality and authenticity of the 
varietal origin of grapes and wines is of great interest to both 
the wine industry and the consumer (Cozzolino et al., 2003; 
Cozzolino et al., 2009). The main secondary metabolites 
found in grapes, with important roles in plant resistance to 
pathogens, allelopathy, oxidative stress and plant growth 
regulation, are the phenolic derivatives (Ogbemudia and 
Thompson, 2014). These derivatives include monophenolic 
compounds (phenolic acids, as free or derivatized as esters or 
glucosides, e.g. benzoic and cinnamic acid derivatives), and 

especially polyphenolics (anthocyanins and flavonoids, 
catechins, procyanidins, and their derivatives) key-
biomarkers of grapes and wines’ quality, having antioxidant, 
antimutagenic, antiproliferative and antimicrobial 
properties (Guerrero et al., 2009). Phenolic acids are derived 
from benzoic and cinnamic acids and are found as free acids 
and esters, glycosides or bound complexes, which have also 
beneficial effects on human health (German and Walzem, 
2000; Mateus et al., 2001; Socaciu, 2008).  

The modern analytical methods to evaluate phenolic 
derivatives are usually based on reversed-phase high-
performance liquid chromatography (HPLC), or another 
separation techniques such as gas chromatography or 
capillary electrophoresis, followed by ultraviolet (UV), 
electrochemical (EC), fluorescence (F) or mass 
spectrometric (MS) detection (Lorrain et al., 2013). 
Commonly, for wines direct analysis or solid-phase 
extraction followed by reversed phase HPLC-UV-VIS or 
HPLC-MS methods were used to analyze the phenolic 
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2005; Kupina and Shrikhande, 2003) or to verify the 
authenticity of different fruit juices (Leopold et al., 2011).  

During the last two decades, extended studies on grapes 
and wines were reported, using NIR and FT-IR coupled 
with biostatistical tools, either to evidentiate saccharides, 
alcohols or other quality parameters, or their authenticity 
and traceability, related to origin (cultivar or region) 
(Chedea et al., 2010; Coimbra et al., 2002; Da Costa et al., 
2004; Edelmann et al., 2001; Edenharder et al., 2001; 
Orbán et al., 2006; Peña-Neira et al., 2000). Using the FT-
IR spectra of the wine polysaccharide (1200 and 800 cm-1) 
of the dry extracts coupled with PCA and CCA 
chemometric methods, it was possible to discriminate 
extracts based on the polysaccharide composition. Based on 
the bands from 1600 cm-1, the polyphenolic content was 
also evaluated (Gorinstein et al., 1992). 

Mid-infrared spectroscopy and UV-Vis spectroscopy 
combined with multivariate data analysis have been applied 
also for the discrimination of different red wine cultivars 
(‘Cabernet Sauvignon’, ‘Merlot’, ‘Pinot Noir’, 
‘Blaufrankisch’, ‘St. Laurent’, and ‘Zweigelt’). Both 
authentic wines and their phenolic extracts were 
investigated by ATR-MIR spectroscopy and UV-Vis 
spectroscopy (Edelmann et al., 2001). The main 
components (sugar and organic acids) failed to offer 
satisfactory classification of wines, but by using phenolic 
extracts, a complete discrimination of all cultivars 
investigated was achieved.  

The FT-IR spectra were also used for the differentiation 
and classification of wines and brandies during their ageing 
process, as well as for the characterization and 
differentiation of distilled drinks from several countries 
(Palma and Barroso, 2002), good linear regression 
coefficients (0.995) between the ageing scale and the FT-IR 
data being obtained (Eichinger et al., 2004). 

The oenological wine parameters (alcoholic degree, 
volumic mass, total acidity, glycerol, total polyphenol index, 
lactic acid and total sulphur dioxide) were investigated by 
combined NIRS and FT-MIRS. In this case, NIRS yielded 
better results, but the use of both methods improved the 
determination of glycerol and total sulphur dioxide. The 
validation sets used for developing general equations were 
built with samples from different “apellation d’origine” 
(Urbano Cuadrado et al., 2005). 

A fast and accurate study was reported on 22 Romanian 
red wines of ‘Cabernet Sauvignon’, ‘Merlot’, ‘Fetească 
Neagră’, ‘Pinot Noir’ and ‘Burgund’ varieties, comparing 
1H-NMR with the IR spectroscopy (Todasca et al., 2007). 
By IR spectroscopy, characteristic bands for amino acids 
(1604 cm-1) and organic acids (1719 cm-1) were investigated, 
but the method could not provide good differentiations. 
Meanwhile, the NMR method is considered to be more 
accurate, but much more expensive.  

This study aims to investigate the use of mid-infrared 
(MIR) and multivariate data analysis techniques to classify 
Romanian wines produced from autochthonous cultivars. 
In this respect, the Fourier Transform mid-infrared (FT-
MIR) spectroscopy was applied to characterize 15 different 
Romanian wines (white, rosé and red wines), obtained from 
different authentic, origin-denominated cultivars, found in 
different Romanian regions. The wines were investigated by 

fingerprint providing detailed information regarding 
individual phenolics and their quantity, enabling high 
resolution and accurate measurement of monomeric 
anthocyanins and catechins (Ginjom et al., 2011), but also 
the discrimination of cultivars (Muccillo et al., 2014), the 
influence of fermentation, vinification, maturation during 
storage, formation of oligomeric and polymeric pigments 
(García-Falcón et al., 2007; Ivanova et al., 2012). In spite of 
so many factors of influence, the differences in the overall 
quality of wines, their phenolic fingerprint still remains 
characteristic for each cultivar (Avar, 2007; Da Costa et al., 
2000; Gruz et al., 2008).  

In contrast to chromatography, spectroscopic 
techniques (UV-Vis, IR), when applied to mixtures, are less 
selective but may contain information about the complete 
phenolic composition of the wines under investigation 
(Gorinstein et al., 1992). UV-Vis spectrometry coupled 
with infrared spectroscopy, proved to be a cheap and rapid 
analytical method to be used for wine composition, quality 
and authenticity evaluation (Linskens and Jackson, 1988; 
Somers and Verétte, 1988).  

The use of infrared (IR) spectroscopy for routine 
analysis of wine began with near infrared spectroscopy 
(NIRS) as preferred method in the early 1980’s (Hashimoto 
and Kameoka, 2008; Ough and Amerine, 1988). Since that 
time, the focus for quantitative analysis of grapes and wine 
has moved towards Fourier transform infrared (FT-IR) 
technology in the mid-infrared region, since it offers better 
accuracy in determination and more constituents and 
properties can be quantified compared to NIRS (Dubernet 
and Dubernet, 2000; Eichinger et al., 2004; Patz et al., 2004; 
Soriano et al., 2007). Modern infrared spectroscopic 
instrumentation is fitted with chemometric software 
packages that facilitate the establishment of calibration 
models which can be used to quantify many components 
simultaneously, thereby reducing the analysis time and cost 
(Eichinger et al., 2004). FT-IR spectroscopy technology and 
chemometric techniques for analysis of grapes and wine 
were implemented in South Africa in the early 2000’s 
(Bauer et al., 2008) and several qualitative and quantitative 
applications were developed in the last few years. 

Near-infrared (NIR), as well as mid-infrared (MIR) 
spectroscopic techniques combined with multivariate data 
analysis, proved to be very promising for their good 
reproducibility in routine analysis (Irudayaraj and Tewari, 
2003; Schulz and Baranska, 2007). While NIR absorptions 
reflect only overtones and combination bands of 
fundamental transitions, less distinct, the mid-infrared 
(MIR) absorption bands are related to defined vibrational 
transitions and are better resolved. The significant 
improvements in the IR instruments design and auxiliary 
optics have made modern MIR spectrometers robust for 
routine applications for liquids, MIR spectra being 
conveniently recorded using the attenuated total reflection 
(ATR) technique (Wilson and Tapp, 1999).  

The Fourier Transform Infrared Spectroscopy (FT-IR) 
technique, in combination with chemometrics, is a fast and 
reproducible technique for identifying the authenticity and 
adulteration of different food and beverage products (Da 
Costa et al., 2004). The FT-IR is increasingly used for the 
authentication of alcoholic beverages (Gallignani et al., 
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Multivariate data analysis  
Advanced chemometrics was applied to discriminate 

between different wine samples, based on their colour, 
content of phenolic derivatives, amino acids and organic 
acids, as well as carbohydrates. Therefore, the discrimination 
was performed using the whole FT-MIR spectra (600-3500 
cm-1) as well as the regions identified (1-4) at frequencies of 
600-940 cm-1 (1), 970-1100 cm-1 (2), 1600-1716 cm-1 (3) 
and 2800-3000 cm-1 (4). To discriminate among these 
samples and regions, the principal component analysis 
(PCA) was applied on the peak areas corresponding to each 
region, using Unscrambler X 10.1 Software, version 10.1.  

The correlation factors were calculated using Origin 
software (OriginLab, version 8.0). 

Results and discussion 

FT-MIR spectral fingerprinting of individual wine 
samples 

Fig. 1 exhibits the general FT-MIR spectra of all wine 
samples, from white (samples no. 1-4), to rosé (samples no. 
5, 6) and red wines (samples no. 7-15), according to their list 
in Tab. 1 in the whole IR region range, from 600 to 3500 
cm-1. In all samples, similar spectral features were generally 
obtained, but with specific quantitative modifications in the 
fingerprint region (1800-600 cm-1). Comparing the shapes 
of spectra, there were identified four different regions (1-4) 
which can show specific differences, related to the colour of 
wines (white, rosé and red wines), and to the sweetness (dry 
vs half-dry and half-sweet). 

Tab. 2 includes the specific wave numbers and 
fingerprint regions used to identify the stretching and 
bending vibrations, depending on the functional groups, as 
reported in literature (Coimbra et al., 2002; Gorinstein et 
al., 1992; Todasca et al., 2007). Such data were useful in the 
interpretation of the FT-MIR absorption peaks obtained in 

attenuated total reflectance (ATR) and the most important 
components (phenolics, carbohydrates, amino acids and 
organic acids) were localized in specific fingerprint regions 
of the spectra. Based on the differences between the FT-
MIR spectra, by multivariate data analysis (Principal 
component analysis), were identified the specific 
discrimination factors useful to authenticate the biological 
(cultivar) and regional origin, as well their sweetness index. 

Materials and methods 

Wine samples 
Fifteen Romanian wines, including white (n=4), rosé 

(n=2) and red (n=9), of different sweetness indexes (5 
samples dry, 7 samples half-dry and 3 samples half-sweet) 
were investigated. These wines originated from different 
cultivars and were produced in ten different wineries from 
Romania, namely Jidvei, Coteşti, Panciu, Huşi, Recaş, 
Ceptura, Tohani, Sarica-Niculiţel, Murfatlar, and Sadova 
Corabia. The wines, packed in glass bottles and produced in 
the vintage years 2008-2012, were purchased from local 
supermarkets and stored at room temperature until 
analyzed. Tab. 1 includes data from each wine sample, the 
specific cultivar, the year of production and the 
denomination (as dry, half-dry, half-sweet) and their region 
of origin. All wine samples were centrifuged at 3000 
rot/min for 15 min, then used directly for recording the FT-
MIR spectra. 

Tab. 1. Numbering of wine samples: white (1-4), rosé (5-6), red (7-15) 
with references to the sweetness index (dry, half-dry, half-sweet) and the 
production year 
 No. Cultivar (Variety) Vineyard Year Wine type 

White wine 
1 Feteasca Alba Cotesti 2011 Half-dry 
2 Feteasca Alba Jidvei 2011 Dry 
3 Feteasca Regala Jidvei 2011 Half-dry 
4 Feteasca Regala Recas 2012 Half-dry 

Rosé wine 
5 Babeasca Rose Panciu 2012 Half-dry 
6 Busuioaca de Bohotin Husi 2011 Half-sweet 

Red wine 
7 Babeasca Neagra Panciu 2012 Half-dry 
8 Babeasca Neagra Husi 2009 Dry 
9 Babeasca Neagra Sarica-Niculitel 2011 Dry 

10 Babeasca Neagra Sadova Corabia 2010 Dry 
11 Feteasca Neagra Cotesti 2008 Half-sweet 
12 Feteasca Neagra Panciu 2011 Half-dry 
13 Feteasca Neagra Ceptura 2012 Dry 
14 Feteasca Neagra Tohani 2010 Half-dry 
15 Feteasca Neagra Murfatlar 2011 Half-sweet 

 
Fourier Transform Mid-Infrared (FT-MIR) Spectroscopy 
The FT-IR spectra were obtained with a Shimadzu IR 

Prestige-21 spectrometer including a HATR device and an 
internal reflection accessory (10 reflections) made of Zinc 
Selenide (ZnSe). The samples were recorded by co-adding 
64 scans. Each spectrum was registered from 3500-600 cm-1. 
As reference, the background spectrum of air was collected. 
The total phenolic extracts’ contents were measured 
without any preparation, directly on the ZnSe ATR 
(Attenuated Total Reflection) crystal. Between 
measurements, the ATR crystal was carefully cleaned using 
acetone. 

Tab. 2. Characteristic IR wave numbers (cm-1) for stretching and 

bending vibrations in wines, according to literature reports (Coimbra et 

al., 2002; Gorinstein et al., 1992; Todasca et al., 2007) 

 
Fingerprint 

regions 
( cm-1) 

Characteristic 
frequencies 

( cm-1) 
Assignment 

< 1000 690, 745, 961, 
964 

Phosphates, Phenolics, Mono-substituted 
phenyl derivatives, Unsaturated lipids, 

incl. carotenoids 

970-1100 
976, 1030, 

1060, 1065, 
1079 

Glucose, Oligo- and polysaccharides, incl. 
metoxylated derivatives 

Alcohols (ethanol) 

1500-1716 
1566, 1574, 
1650, 1662, 
1655, 1700 

Organic acid stretching vibrations at 
1700  cm-1 

Amide I, II 
Aromatic ring stretching at 1600 cm-1 

Stretching vibrations of Amino acids and 
their  derivatives at 1530-1600 cm-1 

Esters  and flavours 1715 cm-1 

2800-2935 
2854, 2920, 

2934 

Fatty acids, Polyols (glycerol), Free 
phenolic acids and catechins,  

Cholesterol, Carotenoid pigments 

3300-3500  
OH stretching from water and other 

hydroxylated molecules ( alcohols and 
phenols) 
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Fig. 1. Individual FT-MIR spectra registered for all 15 wine samples, in the region 600-3500 cm-1 
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to carbohydrates, mainly glucose (1033 cm-1), but also 
fructose and sucrose (1100 cm-1); region 3 was specific to 
amino acids (1602-1608 cm-1) and organic acids              
(1700 cm-1). 

FT-IR spectra of wines showed absorption bands at 
different frequencies and these bands can be attributed to 
the various functional groups. IR spectral peaks are related 
to the bonds in the compounds, thus they could be assigned 
to the composition of the specific food sample such as its 
phenol, alcohol, aldehyde, higher alcohol, polyol, acid, sugar, 
volatile acid and amino acid content (Lee et al., 2009). 

Tab. 4 shows detailed information regarding the values 
of peak intensities at 1033, 1100, 1600, 1700 cm-1, which 
can be used as quantitative markers of differences between 
the individual wines and wine types (based on colour and 
sweetness index). The ratios 1033/1100 cm-1 and 
1600/1700 cm-1 were also used to characterize 
quantitatively the sweetness claimed on the label of these 
wines (dry, half-dry and half-sweet). Fig. 3 represents the 
differences between mean values registered from peak 
intensities corresponding to glucose (G), fructose+ sucrose 
(F+S), amino acids (AA) and organic acids (OA). 
Characteristic absorbance peaks of sugar components (970-
1100 cm-1) as well as amino acids and organic acids (1600-

all wine spectra. The region 750-900 cm-1 corresponds to 
absorptions of phenyl/aromatic derivatives, including 
phenolics. Aromatic derivatives have also OH- stretching 
bands between 1200-1250 cm-1.  The region 1030-1100 cm-

1 is specific to absorptions of -C-OH groups found in 
carbohydrates, e.g. 1030 cm-1  for glucose and 1060 cm-1  for 
fructose (Leopold et al., 2009). Amino acids like proline, 
alanine, arginine, glutamic acid, γ-aminobutiric acid absorb 
at 1608 cm-1 and simple phenolics like gallic acid and 
catechins absorb around 1600 cm-1. The absorption band at 
1716 cm-1 is characteristic to organic acids found in wines 
(tartaric, acetic, lactic, citric, malic acids). The absorption 
band at 2938 cm-1 is usually related to polyols, like glycerol 
and other compounds like flavours. Generally, wines 
contain water, alcohols, glycerol, sorbitol, mannitol, amino 
acids, esters, minerals, sulfites, phenols, sugars, organic acids 
such as tartaric, malic and citric acids, aldehydes, as well as 
volatile acids as common ingredients (Cerdán et al., 2004). 
Similarity of the most important components gave rise to 
similar peak positions in the FT-IR spectra of the studied 
Romanian wines.  
 

Identification of specific functional groups and molecules in 
wines, depending on their colour and sweetness  

According to Fig. 2, representing a generic FT-MIR 
spectra of wines, it was possible to consider 4 specific regions 
which can be useful for wines’ characterization: region 600-
940 cm-1 (1) corresponds to phenolics derivatives (including 
esters), region 2 (970-1100 cm-1) to carbohydrates (glucose, 
fructose and oligosaccharides, mainly saccharose), region 3 
(1600-1716 cm-1) to free amino acids, peptides and organic 
acids and region 4 (2800-3000 cm-1) for  polyols (mainly 
glycerol). Tab. 3 includes the FT-MIR absorption wave 
numbers, specific to the 4 regions of each wine 
fingerprinting: 600-940 cm-1 (1), 970-1100 cm-1 (2), 1600-
1700 cm-1 (3). In the 4th region (2800-3000 cm-1), all wines 
absorbed at the same wave numbers, 2887 and 2931 cm-1. 
Generally, the range 600-1800 cm-1 was considered as 
“fingerprint region”, useful to differentiate wines according 
to their sweetness index (dry vs half-dry and half-sweet). 
One can notice that in region 1, the absorptions are 
determined mainly by the polyphenols, region 2 was specific 

 

Fig. 2. The FT-MIR spectra of a wine sample: 1 - spectral 
region 600-940 cm-1; 2 - spectral region 970-1100 cm-1; 3 - 
spectral region 1600-1716 cm-1; 4 - spectral region 2800-3000 
cm-1 

Wine no. 1  (600-940 cm-1) 2  (970-1100 cm-1) 3 (1600-1700cm-1) 

1 630, 777, 817, 864,920 1033 1602,1716 
2        775, 817, 854, 921 1033 1608,1716 
3 605, 667, 777,817,862, 920 1031 1602,1716 
4 630, 779, 817, 864, 921 1033 1608,1716 
5 603, 775, 817, 860, 920 1031 1602,1716 
6 630, 775, 815, 864, 898, 898 1028 1608,1716 
7 603, 630, 775, 817, 862, 920 1033 1602,1716 
8 605, 630, 775, 817, 923 1033 1608,1716 
9 771, 854, 923,995 1033 1602,1716 

10 771, 854, 923 1033 1608,1716 
11 775, 815, 862,920 1033 1602,1716 
12 603, 775, 815,862, 921 1033 1608,1716 
13 607, 630, 775,854, 921 1033 1602,1716 
14 605, 775,817, 862,921 1033 1608,1716 
15 603, 775,815,862,920 1033 1602,1716 

 

Tab. 3. FT-MIR absorption wave numbers specific to the 4 regions of each wine fingerprinting: 600-940 cm-1 (1), 970-1100 cm-1 (2), 1600-1700 cm-1 

(3). In the 4th region (2800-3000 cm-1), all wines absorbed at the same wave numbers, 2887 and 2931 cm-1 
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1716 cm-1) appeared and the intensity of these peaks 
increased with the increase of sugar and acid content. Thus, 
according to the characteristic peaks in the infrared spectra 
in the range of 970-1100 cm-1 and 1600-1716 cm-1, dry, half-
dry and half-sweet wines can be divided according to the 
amount of sugar, amino acids and organic acids, that can be 
evaluated in accordance with such spectra. Tarantilis et al. 
(2008) also reported differentiation between wine samples 
based on small differences between spectra of their phenolic 
extracts, the spectral region between 1800-900 cm-1 being 
chosen for wine fingerprinting. Also, Chen et al. (2009) 
have achieved discrimination between dry and sweet red 
wine samples using 2D correlation spectroscopy and MIR. 

 
Multivariate Data Analysis by Principal Component 

Analysis 
PCA was performed on the MIR spectra, to examine 

qualitative differences within the set of red, rosé and white 
wines. Figs. 4-7 present the results of  PCA analysis and 

scoring, to discriminate between wine types, based on the 
general FT-IR fingerprint (Fig. 4, from 600 to 1800 cm-1) 
considering as well the three regions of IR absorption 
specific to phenolic derivatives (Fig. 5, 750-940 cm-1), 
carbohydrate derivatives (Fig. 6, 970-1100 cm-1) and amino 
acids and organic acids (Fig. 7, 1600-1716 cm-1).  

As presented in Fig. 4, for the whole fingerprint region, 
the first principal component (PC1) explained 68% of the 
variability and the second principal component (PC2) 
explained 22% of the variability; while together PC1 and 
PC2 explained 90% of the whole variability of wine samples 
and showed a good similarity for white wines (grouped in 
the positive quadrate), also for rosé wines (close in the 
inferior quadrate). Red wines were more heterogeneous in 
the composition and were spread, not clustered in a specific 
group. Nevertheless, the red, half-sweet wines (11 and 15) 
were close to the rosé wines, which proved to be superior in 
sweetness. 

As presented in Fig. 5, for the region 750-940 cm-1, 
specific to phenolic derivatives, the first two components 

561 

Tab. 4. Peak intensities which can be used as quantitative markers of differences between the individual wines and wine types (based on colour and 

sweetness index) 

Wine 
no. 

1033 cm-1 

(glucose) 

1100 cm-1 

(fructose and 
sucrose) 

1033/1100 
1600 cm-1 

(amino acids) 
1700  cm-1 

(organic acids) 
1600/1700 Wine type 

1 0.3901 0.246 1.5858 0.1081 0.1332 0.812 Half-dry  
2 0.4006 0.242 1.6554 0.1038 0.1494 0.695 Dry 
3 0.4233 0.2387 1.7734 0.0853 0.1223 0.697 Half-dry 
4 0.4142 0.2534 1.6346 0.0986 0.1299 0.759 Half-dry 
5 0.43052 0.2378 1.8104 0.0974 0.1151 0.846 Half-dry 
6 0.3978 0.2125 1.8720 0.0633 0.0854 0.741 Half-sweet 
7 0.4154 0.2265 1.8340 0.1018 0.0777 1.310 Half-dry 
8 0.414 0.2495 1.6593 0.1163 0.1206 0.964 Dry 
9 0.2714 0.169 1.6059 0.1192 0.0685 1.740 Dry 

10 0.3903 0.2388 1.6344 0.1290 0.1045 1.235 Dry 
11 0.4318 0.2347 1.8398 0.0952 0.0765 1.244 Half-sweet 
12 0.4183 0.2345 1.7838 0.1163 0.0785 1.481 Half-dry 
13 0.4039 0.2518 1.6041 0.1237 0.1183 1.045 Dry 
14 0.4135 0.2385 1.7338 0.1196 0.0955 1.252 Half-dry 
15 0.4282 0.2291 1.8691 0.1044 0.0790 1.322 Half-sweet 

Mean values 
(MV) 

0.4028 0.2335 1.7263 0.1054 0.1036 1.0762  

 

 

Fig. 3. Mean values of peak intensities registered for: glucose, 
fructose and sucrose (F+S), amino acids (AA) and organic 
acids (OA). Abbreviations: MV-mean value; D-dry, HD-half-
dry; HS-half-sweet; W-white; Ro-rosé 

 
Fig. 4. The PCA scoring to discriminate between wine types, 
based on the FTIR fingerprint region (600-1800 cm-1). Sample 
numbering as in Tab. 1 
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(PC1 and PC2) together, explained 98% of the whole 
variability of wine samples. Although the variance explained 
was high (98%), a weaker clustering of wines based on their 
different colours was obtained. In this case, the wines were 
discriminated along the axis PC2, depending on the type of 
wine to which they belong (white, rosé or red), the three 
groups being partially overlapped with each other.  Such 
overlaps are due to the closer relationship between some of 
wines which come from the same vineyard (eg, sample no. 1 
overlapped red wines, close to the sample no. 11) or the 
same manufacturer (eg, sample no. 5 overlapped red wines, 
close to the samples no. 7 and 12). A weaker clustering of 
wines can also be explained by the fact that PCA is sensitive 
to the number of samples in the data set and it requires 
relative equality in group sizes to adequately discriminate 
between groups with very similar characteristics (Bevin et 
al., 2008). 
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 Fig. 5. The PCA scoring to discriminate between wine types, 
based on the FTIR fingerprint region specific to phenolic 
derivatives (750-940 cm-1). Sample numbering as in Tab. 1 
 

Fig. 6, representing the scores for the region 970-1100 
cm-1, specific to carbohydrates derivatives, revealed an 
excellent clustering of wines, not only based on colour, but 
especially considering their sweetness index, excepting wine 
no. 9. The first principal component (PC1) explained 90% 
of the variability and the second principal component 
(PC2) explained 7% of the variability; together, PC1 and 
PC2 explained 97% of the whole variability of wine samples. 

 

Fig. 6. The PCA scoring to discriminate between wine types, 
based on the FTIR fingerprint region specific to carbohydrate 
derivatives (970-1100 cm-1). Sample numbering as in Tab. 1 

 

 

Fig. 7. The PCA scoring to discriminate between wine types, 
based on the FTIR fingerprint region specific to amino acids 
and organic acids derivatives (1600-1716 cm-1). Sample 
numbering as in Tab. 1 
 

Fig. 7 represents the scores for the region 1600-1716  
cm-1, specific to amino acids and organic acids derivatives. In 
this case, the first principal component (PC1) explained 
68% of the variability and the second principal component 
(PC2) explained 29% of the variability, together PC1 and 
PC2 explaining 97% of the whole variability of wine 
samples and suggesting a good clustering based on acidity. 
Thus, we can notice higher PC1 values for white wines 
(samples no. 1-4, clustered in the positive quadrate of PC1 
and negative quadrate of PC2), followed by rosé wines 
(samples no. 5-6, clustered in the negative quadrates of both 
PC1 and PC2), being more acidic, compared with red 
wines, less clustered and located all along the first axis 
(PC1), in the upper part of the plot, in the positive 
quadrates of PC1 and PC2. Interestingly, samples no. 8, 10, 
13, excepting 9, were more acidic, belonging to the dry 
wines category. 

The combination of MIR and chemometric techniques 
presented in this study allowed almost complete 
discrimination between samples. Although some samples 
did overlap, generally, a separation was observed between 
samples, according to their colour and sweetness index, 
which demonstrates that the high information content of 
MIR spectra has been used successfully for the fast 
classification of different types of wine. The ability of the 
MIR model to discriminate or identify wine samples was 
based on the vibrational responses of chemical bonds to 
MIR radiation (Cozzolino et al., 2009). As has been 
reported before by Zhang et al. (2010), using PCA as pre-
processing method, dry and sweet wine samples can be 
classified correctly. The same authors suggested that the 
identification of glycerol, carboxylic acids or esters by MIR 
spectra analysis could serve to discriminate the different 
manufacturers and evaluate the quality of wine samples. 
Also, Cozzolino et al. (2009) have managed to achieve 
discrimination, within a set of red and white Australian 
wines, according to the two production systems (organic vs 
non-organic), although some samples were overlapped. In 
contrast, Bevin et al. (2008) have not succeeded to 
adequately discriminate 73 white wines belonging to 
different varieties, by means of the PCA score plot.    

Finally, we can point out that multivariate data analysis 
showed that all four components of wines (phenolics, 
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carbohydrates, amino acids, organic acids) which contribute 
to the colour, sweetness and acidity, are responsible for the 
good, significant clustering of  these wines. Although some 
of the wines were of the same variety, they came from 
different manufacturers; therefore, the PC plots of FT-IR 
data showed that the components of these wines are 
different and wines are clustered in their own individual 
groups, based on the colour and sweetness, and are 
apparently differentiated by their geographical origin. 

 

Conclusion 

This study has demonstrated that mid-infrared 
spectroscopy, coupled with principal component analysis 
represents a very powerful tool for distinguishing groups 
that have very similar properties, but have consistent overall 
differences, and might be used as a technique for the 
discrimination between different red, rosé and white wine 
varieties.  

The results suggested that mid-infrared spectroscopy is 
an overall and effective method that offers the possibility to 
evaluate the authenticity of wines, without the need for 
costly and laborious chemical analysis.  

The use of this fast technique can offer benefits for the 
wine industry by being a robust rapid screening tool for the 
discrimination of different types of wine, based on their 
colour and sweetness, and also being capable of measuring 
wine quality and assuring consumers of the quality of the 
final product to be enjoyed. 
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