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(i)-the critical impurity density Nepn(cpp) (Ta(a), X) in the MIT, as that given in Eq. (10), by using the
generalized empirical Mott parameters My ) (X),

(i))-the density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT),
Ngg,{(CDp)( Td(a) x), as that given in Eq. (26), by using the empirical Heisenberg parameters Hy, ) (X),
as those given in Eq. (17), according to: for givenrgyg) and x, Nfgz(wp)( Tda(a) x) =
Nepn(cpp)(Ta(a), X), with a precision of the order of 9.99 X 1076 (1.49 x 1075), as seen in Tables 1n

and 1p, respectively, and

(iff)-the OBG, Egn1(gp1)(N*, Taa), %, T), N* = N — Nepn(npp), s that given in Eq. (28); its numerical
results are reported in Tables 2, 3n and 3p, showing, in particular, in Table 2, in which rgc) = rpeg), x=0
and T=20 K, the numerical results of Egy1(gp1) are found to be in good agreement with the data, obtained
by Wagner & del Alamo (1988), with maximal relative deviations: 1.428 % (4.556 %), respectively.
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Introduction

By basing on the same physical model and treatment method, as used in our recent works (Van Cong,
2024; 2023; 2023), and also other works (Kitel, 1976; Van Cong et al., 2014, Van Cong & Debiais, 1993;
Van Cong et al., 1984; Wagner & del Alamo, 1988), we will investigate the critical impurity density in the
metal-insulator transition (MIT), obtained in the n(p)-type degenerate Sij_yGey- crystalline alloy, 0 <
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X < 1, and also applied to determine the optical band gap (OBG), being due to the effects of the size of
donor (acceptor) d(a)-radius, I'q(a), the x-Ge concentration, the temperature T, and finally the high d(a)-
density, N, assuming that all the impurities are ionized even at T=0 K.

In the n(p)-type degenerate Si;_,Ge,- crystalline alloy, we will determine:

(i)-the critical impurity density Nepn(cpp) (Ta(a), X) in the MIT, as that given in Eq. (10), by using the
generalized empirical Mott parameters My ) (X),

(i))-the density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT),
Ngg;(wp)( Td(a) x), as that given in Eq. (26), by using the empirical Heisenberg parameters o, ) (X),
as those given in Eq. (17), according to: for givenry) and x, Nggr{(CDp)( Td(a) x) =
Nepn(cpp) (Ta(ay, X), with a precision of the order of 9.99 X 107° (1.49 x 107°), as seen in Tables 1n
and 1p, respectively, and

(iii)-the OBG, Egn1(gp1) (N*, Ta(a), X T), N* =N — Ncpn(npp), as that given in Eq. (28); its numerical
results are reported in Tables 2, 3n and 3p, showing, in particular, in Table 2, in which rgc) = rpeg), x=0
and T=20 K, the numerical results of Egy1(gp1) are found to be in good agreement with the data, obtained
by Wagner & del Alamo (1988), with maximal relative deviations: 1.428 % (4.556 %), respectively.

In the following, we will determine those functions: Nepncpp) (Tdca) X)» NEBE(CDp)( Td(a)» X), and
ﬁnally, Egnl(gpl)(N*l rd(a), X, T)
Critical Density in the MIT, N cppcpp) (T d(a), X)

Such the critical impurity density Nepnccpp)(Taa), X), expressed as a function of gy and x, is
determined as follows.

Effect of x-Ge Concentration

Here, the values of the intrinsic energy-band-structure parameters, such as: the effective average number
of equivalent conduction (valence)-band edges g (v (X), the unperturbed relative effective electron (hole)
mass in conduction (valence) bands mey)(X) /Mg, M, being the electron rest mass, the reduced effective
mass M (X)/m,, the unperturbed relative dielectric static constant €, (X), the effective donor (acceptor)-
Edo(ao) )
(4“/3)X(rdo(ao))3 ’
atryca) = do(ao) = I'si = 0.117 nm, are given respectively in the following (Van Cong, 2024; 2023;
2023).

ionization energy Ego(ao)(X), and the isothermal bulk modulus Bge(ae)(X) =

g(x)=3xx+3Xx(1—-x)=3,g,x)=2xx+2X(1—-x)=2, 1)

m.(x)/m, = 0.12 X x 4+ 0.3216 X (1 —x), my(x)/m, = 0.3 X x + 0.3664 X (1 — x),

__ mc(X)xXmy(X)
o)/, = D), ®
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€0(x) =158 Xxx +11.4 X (1 —x), 3)

Ego(X) ineV = 0.7412 X x + 1.17 x (1 —x), )
_ 13600%[m¢(v)(X)/mo]

Edo(ao) (x) = ea (02 meV, and )
— Edo(ao)(x)

Bdo(ao)(x) = (4n/3)x(rdo(ao))3‘ (6>

Effects of Impurity Size, with a Given x

Here, one shows that the effect of the size of donor (acceptor) d(a)-radius, I'q(a), and x-Ge concentration
strongly affects the changes in all the energy-band-structure parameters, which can be represented by the
effective relative static dielectric constant €(rq(ay, X), in the following.

At Tq(a) = I'do(ao), the needed boundary conditions are found to be, for the impurity-atom volume V=

(4m/3) x (rd(a))3, Vdo(ao) = (41/3) X (rdo(ao))g, for the pressure p, as: po =0, and for the
deformation potential energy (or the strain energy) o, as: 0, = 0. Further, the two important equations
(Van Cong, 2023, 2023; Van Cong et al., 1984), used to determine the o-variation: A6= 6—0, = 0, are

dp_ B _ do .. ~ddo_B . . .
defined by: vy and p= v - gving: ——(=5)= 7. Then, by an integration, one gets:

\% rd(a 3
[AG(Fd(a)'X)]n(p):Bdo(ao)(X)XW_Vdo(ao)>>< In (Vdo(a0)>: Edoao) () X [(rdiial)) B 1] %
3
Td(a)
n (rdo(ao)) = 0. (7a)

Furthermore, we also shown that, as T'q) > I'do(ao) (Td(a) < Tdo(ao)), the compression (dilatation)
gives rise to: the increase (the decrease) in the energy gap Egno(gpo) (rd(a), X), and in the effective donor
(acceptor)-ionization energy Eq(a) (rd(a), X) in absolute values, being obtained from the effective Bohr

model, and then such the compression (dilatation) is represented respectively by: + [Ac(rd(a); X)]n(p),

2
o(%)
E:gno(gpo) (I‘d(a),X) - Ego(x) = E:d(a) (rd(a)'X) - Edo(ao) x) = E:do(ao) (x) X [<i> - 1] =

€(rd(a))
+ [Ao(rd(a), X)] n(p)’

for rd(a) > rdo(ao), and for rd(a) < rdo(ao),
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2
o(X)
Egno(gpo) (Taca)y X) — Ego(X) = Eq(a)(Taa), X) — Edo(ao)(X) = Edo(ao)(X) X l(s?mio)) B 1] -
_ [AG(rd(a),X)]n(p). (7b)

Therefore, from above Equations (7a) and (7b), one obtains the expressions for relative dielectric

constant €(I'q(a), X) and energy band gap Egn(gp) (rd(a), X), as:

. . _ €0(%x)
(@i)-for rqa) = I'doao), since €(rqcay, X)= - - < g,(%),
Td(a) _ Td(a)
\/1+[(rdo(ao)) 1]Xln(rdo(ao))
T'd(a) 3
Egno(gpo) (rd(a)lx) - Ego(x) = Ed(a) (rd(a)'x) - Edo(ao) x) = Edo(ao) (x) X [(m) - 1] X
3
rd(a) >
In (rdo(ao)) =0, (821)

according to the increase in both Egp(gp) (rd(a), X) and Eq(y) (rd(a), X), for a given x, and

€0 (%)

1- (—rd(a) )3—1 xln(—rd(a) )3
Tdo(ao) T'do(ao)

> £,(x), with a condition, given

(ii)-for rd(a) < rdo(ao), since S(Fd(a), X):\]
3 3
. Td(a) — Td(a)
by [(rdo(ao)) 1] X In (rdo(ao)) < 1’

r 3
E:gno(gpo) (rd(a)' X) - Ego(x) = Ed(a) (rd(a)rx) - Edo(ao) (X) = _Edo(ao) (X) X [(M) - 1] X

Tdo(ao)

n (L)3 <0, (8.b)

Tdo(ao)

corresponding to the decrease in both Egy(gp) (rd(a), X) and Eq(g) (rd(a), X), for a given x.

Furthermore, the effective Bohr radius agp(gp)(rca)) is defined by:

£(rq(a),X)xh? _ €(rq(a) X
HLH: 0.53 x 1078 cm x —d@X)
mev) (X)Xq My (X)/mo

©)

apn(p) (Tdacay X) =

where —q is the electron charge.

In the n(p)-type degenerate Siy_yGey- crystalline alloy, the critical donor (acceptor)-density in the MIT,
Ncpnnpp) (Td(ay, X), is determined, using the generalized empirical Mott parameters My, (%), as:

Ncpn(Ta, x)1/3 X agp(rq, x) = My (x), M,(X) = 0.25 X x + 0.290364495 X (1 —x), and
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Nepp(fas X) /3 X agy (1, X) = Mp (%), Mp(x) = 0.25 X x + 0.3687018 x (1 — X). (10)

It should be noted in Eq. (10) that, for the Mott criterion in the MIT, his empirical parameter is found
to be equal to: My=0.25, while, from Eq. (10), My(x = 0) = 0.290364495 and M,(x =1) =
0.25 are chosen such that we can obtain the experimental values of critical densities of the Si-crystal,
as (Van Cong, 2023; Van Cong et al, 2014): N¢pn(rg = rp,x =0) = 3.52 x 10'® cm™3 and
Ncpp(Ta = rp, x = 0) = 4.06 X 108 cm™3.

In the following, these obtained numerical results can also be justified by calculating the numerical results
of the density of electrons (holes) localized in exponential conduction (valence)-band (EBT) tails,

EBT
NCDn(CDp)( T'd(a), X)'

NEEE(CDp) (rd(a), X)- Expression

In order to determine NESE(CDp)(rd(a),X), we first present our physical model and also our
mathematical methods.

Physical model

In the n(p)-type degenerate Si;_yGey- crystalline alloy, if denoting the Fermi wave number

by: Kenep) (N, X) = (31‘[2 N/gcw) (X))l/g, the effective reduced Wigner-Seitz radius TIgn(sp),
characteristic of interactions, is defined by:

— 38c(v(X) 1/3 1 _ 8 8cv)(X) 1/3 Me(y)(X)/mo
Foncsp) (N Tagay %) = (222) 7 x ey = 11723 X 10° (B x e
1D

So, the ratio of the inverse effective screening length K¢p(sp) to Fermi wave number Kgppy at 0 K is
defined by:

Ksnesp) _ Ken(ep)
P _ P —R “Tsn(sp) < 1,

Rsn(sp)(N' Td(a), X) = snWS(spWS) + [RsnTF(spTF) - RanS(spWS)]e

Ken(Fp) kS_I}(Sp)

(12)

These ratios, Rgnrr(sprr) and Renws(spws), are determined in following Equations (13, 14).

First, for N > Nepnnpp) (Taca), X), according to the Thomas-Fermi (TT)-approximation, the ratio
RsnTF(snTF) s reduced to

RsnTF(N: Td(a), X) = - T (1 3)

Ken(Fp) K nTF(spTF) ’

KsnTF(spTF) _ KenFp) \/4yrsn(sp)(N:rd(a).X) «1

being proportional to N™1/6,
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Secondly, N < N¢pn(npp)(Td@)), according to the Wigner-Seitz (WS)-approximation, the ratio
Rsnws(spws) is reduced to (Van Cong, 2023; 2023):

I'2 X
Renws(spws) (N, Tagay, X) = —SCoW9) _ (3 yw) x 1 (0.389856828), (14)

Kpn (Kgp) 2m drsn(sp)

where ECE(N, I'd(a), X) is the majority-carrier correlation energy (CE), being determined by:

0.87553 | 2[1-1n(2)] _
E (N )_ 087553 0-0908+rsn(sp)'( — )XIn (rn(sp))—0.093288
ce\I\, I'da), X) = 1.67378876
@ 0.0908+Tsn(sp) 1+0.03847728Xr50/2)

So, the n(p)-type degenerate Si;_yGey- crystalline alloy, the physical conditions are found to be given
by :

kErll(Fp) < Mnp) _— 1 kEé(Fp) =R ZEfno(Fpo)

Mn(p)
(15)

sn(sp) (N Tagay X) < 1, Apy(N, rqea), X) =

anBp)  EFno(Fpo)  Anm)  Ksn(sp)

Here, Egpq(ppo) is the Fermi energy at 0 K, and Ny p) is defined in next Eq. (17), as:+Egpo(rpo) (N, X) =
hZx KEn(Fp) (Nx)?

2 XM (y) )

_ 2mN 21.—1/2
M) (N> Taa) ) = Ze 22 X Q Kn(sp)-

Then, the total screened Coulomb impurity potential energy due to the attractive interaction between an
electron (hole) charge, —q(+q), at position T, and an ionized donor (ionized acceptor) charge:

+q(—q) at position ﬁ; , randomly distributed throughout the Si;_yGey- crystalline alloy, is defined by

V() = XL vy () + Vs, (16)

where N is the total number of ionized donors(acceptors), V,, is a constant potential energy, and the
screened Coulomb potential energy vj(r) is defined as:

q%xexp (—Ksn(spy* |F_ﬁ])|)
£(ra(a))X|F-Ry|

bl

vi(r) = -

where Kgp(sp) is the inverse screening length determined in Eq. (12).

-
Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by
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2
N q 4TT 1
vilk) = — X — X ,
J( ) e(fg@) @ K2+kd,

where () is the total Si;_yGey- crystalline alloy volume.

Then, the effective auto-correlation function for potential fluctuations, Wy, (Vn(p), N, rd) =
(V(r)V(r")), was determined, (Van Cong, 2023 ; 2023) as :

_ —Hnp)X)XRsn(s (N,r a 'X) __ V21N

W) (Va(p)» N Tacay X) = Mgy X exp | —HE—CBE—0= | 165 (N, Ty ), %) = 7 X
2 Vol @)
-1/2
qzksn(sp)’
— FE _ 1.069 _ ,1.069

Vi) (E,N,x) = —iEFno(Fpo)(fo)’ H,(xX) = 4.36698 X x + 3.320313702 x (1 —x ), and
Hp(x) = 10.9385 x x13053 13320313702 x (1 — x13033), (17)

Here, E is the total electron energy, €(rq(a)) is determined in Equations (8a, 8b), Rgp(sp) (N, Td(a) X) in
Eq. (12), and the empirical Heisenberg parameters Hpp)(X) were chosen above such that the
determination of the density of electrons localized in the conduction(valence)-band tails will be accurate,
noting that as E - too | |Vn(p)| — 0, and therefore, Wy ) = nrzl(p).

-1
In the following, we will calculate the ensemble average of the function: (E — V)a_% = Ei 2 fora=>1,
h?xk?

Ex = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (16), by using

2XMe(y) x)

the two following integration methods, which strongly depend on W,y (vn(p), N, rqcay X).

Mathematical Methods
Kane Integration Method (KIM)
Here, the effective Gaussian distribution probability is defined by:

_ 1 -v?
P(V) = —_an_n(p) X exp [an(p)].

1 -1
So, in the Kane integration method, the Gaussian average of (E — V)32 = E % is defined by

-1
((E=V)*Zham = (B, Diam = [, (E—V)* 2 X P(V)AV, for a> 1.
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+E
Then, by variable changes: s = (E—V)//Wyp and y = F+E/ /Wy, :no(Fpo) X Vnpy X
n(p)

Hnmp)XR : ; i
“a®) 77s6R) | nd using an identity:

4% |Vn(p)|

fooo 377 X exp (—ys — %)ds =T(a+3) xexp (y*/4) x D_a_%(y),

where D___1(y) is the parabolic cylinder function and I'(a + 2) is the Gamma function, one thus has:
—a-> 2

2a—1
a—l exp (-y%/HxW * exp (—}’2/4)><Tl?1 2
(B am = ——— =X T@+) X D_, a(y) = —— =
H () XRsn(sp) X (2a—1
exp| — () *Ron(sp) X(2a=1) XT(a+3) x D_, 1. (18)
8X |Vr1(p)| 2

Feynman Path-Integral Method (FPIM)

_1
Here, the ensemble average of (E — V)a_l = li % is defined by

1 2
-1 72 T(a+2) P | iEt  (tyWnp)) )
((E—V)*2)ppim = (Ey )FPIM = s X T X (D772 X exp {17 — }dt, i? =

ré 2h2
—1,
2
/W
noting that as a=1, (it)_% X exp {— %} is found to be proportional to the averaged Feynman

propagator given the dense donors (acceptors). Then, by variable changes: t =

and y =

h
JWnm)

) ) H XR . .
+E/\/Whp) T:‘::;‘po) X Vp(py X €xp %\/;‘I(Slp) , for n(p)-type respectively, and then using an
4X [|Vn(p)

identity:

f_oooo(is)_a_% X exp {iys — ;} ds = 23/2 x I'(3/2) x exp (—=y?/4) x D_,_1(y),
2

_1 -1 -1
one finally obtains: (Eli YepiM = (EE 2)KIM» (EE *)xim being determined in Eq. (18).
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In the following, with the use of asymptotic forms for D___1(y), those given for ((E — V)a_%)K[M can
2

be obtained in the two following cases.

First Case: n-type (E = 0) and p-type (E < 0)

As E —> o0, one has:vypy = F00 and y > Foo. In this case, one gets: D_,_1(y » Fo0) =
2

2
% X eyT X (iy)a_%, and therefore from Eq. (18), one gets:
2

a-1 _1
(E kv = E*72.
Further, as E = 10, one has: vy = +0 and y — +0. So, one obtains:

D_, 1y F0) = B(a) x exp (wa +lyy-2+ 7) - B@), B@) =

16a2 2 4 F(%+%)]

-1
Therefore, as E = %0, from Eq. (18), one gets: (Ei v — 0.

Thus, in this case, one gets:

IR

-1 _1
(Ei kv = E472. (19)

Second Case: n-type-case (E < 0) and p-type-case (E = 0)

al
2

j— nn .
As E = +0, one has: (y, vy p)) = %0, and by putting f(a) = ?(i) X T'(a+3) X B(a), Eq. (18) yields:

(Ea_i) Hn(p)XRsn(sp)*(2a—1)
Higp)(Vnp) = 20, N, Faqa) %,2) = == = exp |- —E—=b - (x/ﬁ +
8% |Vn(p)|
3
)yt = 0 20
16a

2

_acl ¥
2 Xe 4 >

Further, as E > +00, one has: (y, Vy(p)) = 0. Thus, one gets: D_,_1(y » o) =y
2

0.

Therefore, from Eq. (18), one gets:

1
_ (B kv 1 (An(p)*Vnp)?
Kn(p) (Vn(p) - ioo , N, rd(a): X, a) = kf(—a) ~ ﬁ X exp (— %) X (An(p) X
—aq-1
Vn(p)) a2 > O, (21)
m
@
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Vn Vn Vn

noting that 3(a) = = being equal to: = for a=1, and PEE) fora=5/2.
272 1G+)] 24xT(5/4)
N
(B, kM

It should be noted that those ratios: , obtained in Equations (20) and (21), can be taken in an

f(2)
approximate form as:

Fup) (Vnpy NoTagay %,@) = Knpy (Vnpy NoTaay, %.@) + [Hipy (Vngpy, N Tagay %, @) —
C
Kn) Vngpy No Faay % )] X exp [—c1 X (AnyVag) ], (22)

SO that: Fn(p) (Vn(p), N, rd(a), X, a) - Hn(p) (Vn(p)' N, rd(a), X, a) for 0< Vn <16 s and
Fn(p) (Vn(p)' N, Iq(a)y X a) - Kn(p) (Vn(p)r N, Tdca), X a) for Vn(p) > 16. Hete, the constants Cq and Cy
may be respectively chosen as: ¢; = 107*% and ¢, = 80, as a = 1, being used to determine the critical
density of electrons (holes) localized in the exponential conduction(valence) band-tails (EBT),

NEBE(CDp) (N, rg(a), X), given in the following.

NEEE(CDp) (N, rq(a), X)-Expression

Here, by using Eq. (18) for a=1, the density of states D(E) is defined by:

3 v\ i
_ Bew) (2Mcwv)\2 2 _ Bew) (2Mcw)\2 eXp(_T)XWn _
(DENam = 532 (Fa2)" x (B = 52 (Fa2)" x — 72— X T(}) X D_3(y) = D(®).

(23)

Going back to the functions: Hy, K}, and Fy,, given respectively in Equations (20-22), in which the factor
1

(EZ)kim

Ta=p) SOV replaced by:

1
(E2)kiM __ D(E<0) _ _
fa=D) Dy Fug) (Vo) N Ta@y %@ = 1),

8c(v X(mc v Xmo)S/ZX\/nn
DO(N, rd(a),x,a = 1) = ) ¢ ;1'[2}‘13 ®) X B(a),
\/_
Ba=1) = 54— 24)

23%[(5/4)

Therefore, NEBY oy (N, Taay X) can be defined by: NEBT o (N, (), %) = [°, D(E < 0) dE,

WWW.EJTAS.COM EITAS 2024 | VOLUME 2 | NUMBER 2



3/2
X(m m X(+ E 16
__ 8Bcw) ( c(v)) n(p) ( Fno(Fpo)) x {fo B(a — 1) x

NCDn(CDp)(Nr Id(a) X) = 23
Fam (Vney NoTay, %@ = 1) dvng) + In(p)}, (25)
Where

2
w ~(Ane)*vnp)
Inp) = Jio B@=1) X Knpy(Vnpy NoTgqay, %@ = 1) dvngyy = [ € 2

-3/2
(AnpyVnm)  dVngp).-

2
Then, by another variable change: t = [An(p)Vn(p) / \/E] , the integral I,y yields:

o _ _ T(bzpp) 2
L) = s—x [ e tdt= 2@ where b = —1/4, zyp) = [16An)/V2] , and T'(b,

25/%n@m) "2 25/ xhnpy’

Znp)) is the incomplete Gamma function, defined by: T'(b,zp)) = zg(_pl) X e %n® |1 +

216 (b- 1)(b 2)...(b— l)

Zn(p)

Finally, Eq. (25) now yields:

3/2
gecwyX(Me)) ™ YMn(p) X (& Epno(Fpo)) 16
NEbaccop) [N = Nepnvop) (Faay ), Tacay X] = e P22 X {fo Bla=1) x
_ F®.znp))
Fup) (V) N, Tagay, %@ = 1) dvngp) + 57 A:(p)}, (26)

being the density of electrons (holes) localized in the EBT, respectively.

In n(p)-type degenerate Sij_yGey- crystalline alloy, the numerical results of NEBE(CDp) [N =
Nepnnpp) (Fday, X)s Tdca) X] = NEBE(CDp)( T4(a), X), for a simplicity of presentation, evaluated using
Eq. (20), are given in following Tables 1n and 1p in Appendix 1, in which those of other functions such
as: Bdo(ao)> & Egno(gpo)> and Ncpnccpp) are computed, using Equations (6), (8a), (8b), and (10),

E T
CDn(CDp)

respectively, noting that the relative deviations in absolute values are defined by: |[RD| = |1 .
CDn(CDp)

Tables 1n and 1p in Appendix 1
Here, some concluding remarks are given and discussed in the following,

(1)-For a given x, while S(Fd(a); X) decreases (), the functions: Egnogpo) (Tdca) X)> Nepn(cpp) (Tdca) X)
and NEBE(CDp) (Taay, X) increase (), with increasing () q(a), due to the impurity size effect.
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(2)-In contrary, for a given Trqcy), while E(rd(a)’x) increases (7, the functions: Egno(gpo)(Taca), X),
Ncpn(epp) (Fdcay, X) and NEEE(CDp) (Taay, X) decrease (), with increasing (7) X.

(3)-Here, one notes that the maximal value of |RD| is found to be respectively given by:
9.99 X 107°(1.49 X 107>), meaning that NEBT = N¢p,. In other word, this critical d(a)-density
Nepnnpp) (Fdcay), X), determined in Eq. (10) is just the density of electrons (holes) localized in the

EBT, NESE(CDp)( Id(a), X), respectively.

(4)-In particular, in the n(p)-type degenerate Sij_yGey- crystalline alloy, for x=1 and rgc) = rpg), we
get:

e _ 163 _ 9.940 (0.75) , while, in the n(p)-type degenerate Ge-crystal (Van Cong, 2023), G

I'si 11.7 I'Ge

% = 0.902 (0.721), meaning: @ > @, due to the atom size effect: rg; = 0.117 nm < rge =
' Si Ge

0.122 nm . As a result, in those Tables 1n and 1p, we get: S(rP(B),X = 1) = 16.053 (22.144),
Egnogpo)('p@), X = 1) =0.741 eV (0.733 ¢V), and  Ncpncepp) (e, X = 1) in 10 cm™ =
4.384 (26.95), while in the n(p)-type degenerate Ge-crystal (Van Cong, 2023) one has the cortesponding
results as: S(rP(B)) = 16.499 (25373), Egno(gpo) (rP(B)) =0.64 eV (06305 e\O, and NCDn(CDp) (rP(B))
in 10 cm™3 = 4.038 (17.347), meaning that, due to the atom size effect: rg; = 0.117 nm < rg, =
0.122 nm, while E(I'p(B),X = 1) < E(rP(B))a therefore, Egno(gpo)(rp(B),x = 1) > Egno(gpo)(rP(B))
and NCDn(CDp) (rP(B)' X = 1) > NCDn(CDp) (rP(B)). This remark is important.

Finally, the effective density of free electrons (holes), N*, given in the parabolic conduction (valence)
band of the n(p)-type degenerate Sij_yGey- crystalline alloy, can thus be expressed by:

N* = N — Nepnvop) = N — NEB T cop)- 27)

Optical Band Gap
Here, the optical band gap, Egn1(gp1) (N*, Ta(a), % T), is defined by (Van Cong, 2023; 2023):

Egnl(gpl)(N*' Ty % T) = Egnz(gpz)(N*' ra@y % T) £ Epn@py (N*,x, T),
Egn2(gp2)(N" Ta@) % T) = Egno(gpo) (Taca), X) = AT(T) — ABgn(gp) (N*, racay, X), (28)

where Egny(gpz) is the reduced band gap, meaning that the band gap Egpo(gpo), given in Eq. (10), is
reduced by the effect of temperature, AT(T), being given in next Eq. (30), and that of high doping,
AEgn(gp) (N*, Td(a) X), being determined in next Equations (31n, 31p), and finally,  Epp(gp)(N*, %, T)
is the Fermi energy, being determined in next Eq. (32). Then, it should be noted that, in the calculation
of AEgn(gpy and Epp(pp), the effective mass me(y)(X) is now replaced by the reduced mass m(X), being
determined in Eq. (2). Further, the effective reduced Wigner-Seitz radius Isy(spy, characteristic of
interactions, determined in Eq. (11), is now replaced by:
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. _ 8 o (8NN3 mx)/m,

rsn(sp)(N ,rd(a),X) = 1.1723 x 10° x (T) X m, (29)
replacing M) (X) by m(X).
Now, the expressions of AT, AEgp(gp) and + Egp(pp) are determined as follows.
AT(T)-Determination
Here, we have (Van Cong, 2024):

_ -4 2 3.525xx | 2.54x(1-x)
AT(T) =107 X T x [T+94K T+204 K (30)

AEgn(gp) (N, Td(a) X) —Determination
Then, the band gap narrowing AE;, (N*, x,T) is found to be given by (Van Cong, 2023; 2023):

1

AEgn(N*,1q,x) = a; x 228 x N3+ a, x 50(’5) X N3 X (2.503 X [—Eep(rsn) X Tn]) + ag X

/4 &(rg,x) e(rq ; 1
£o(®) / 1/4 Eo(x) 1/2 £ 12 = _
[8(rd,x) x my XNT A+ ag X e(rg.x) XN X2+ as X [s(rd,x)] X Ny, N, =

N*

(9.999><1017 cm—3)’ (31n)

where a; = 6.506 X 1073(eV), a, = 1.113 x 1073(eV), as = 4.794 x 1073(eV), a, = 9.582 X
1073(eV) and as = 1.387 x 10~3(eV), and

AE gy (N*, 7, %) = ay X 229 x NY° 4 g, x 20 % N3 X (2.503 X [=Eqp(1sp) X Tgp]) + az X

&(rg.x) &(ra
3

[Eo_m]5/4x\/7xN1/4+2a4>< &) xN1/2+a5 5 SO_W]EXNE, N, = (N—)

&(ra.x) &(1q,x) &(rq,x) 9.999x1017 cm=3)”

(31p)

where a; = 1.113 X 1072(eV), a, = 1.904 x 1073(eV), a; = 8.526 x 10~3(eV), a, = 1.640 X
1072(eV) and a5 = 2.373 x 1073 (eV).

Further, the correlation energy of an effective electron gas, Ecp(cp) (N ", Td(a) x), is given as (Van Cong,
2023; 2023):

0.87553 | 2[1-In(2)] _
. (N* ) x) __omsss 0-0908+Tsn(sp)'( = )XIn (sn(sp))—0.093288
en(ep) T 7A@y 2 ™ 0.0908+7snsp) 1+0.03847728xr 587378876 ’
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and Tsp(rp) is determined in Eq. (29).

It should be noted in Equations (31n) and (31p) that, for given 744y and x, the values of AEgygp)
increase with increasing N.

+ Epnrp) (N%, X, T) —Determination

Here, as given in our previous works (Van Cong, 2023; Van Cong & Debiais, 1993), for the n(p)-type,
the Fermi energy & Epy(pp) was investigated, with a precision of the order of 2.11 X 107%, as

Epn(u) (_EFp(u)) — G(w)+AuBF(u) A
kT kpT 1+ AuB

= 0.0005372 and B = 4.82842262, (32)

*

where u is the reduced electron density, u(N*,T,x) = %, Ney(T, x) = 2 X gewy(x) X

—mr(")XkBT) (em™3), F(u) = aus (1 +bu3 + cu 2) a= [(3Vr/4) x u]z/g, b= %(g)z

2mh2
62.3739855 ( )

530 and G(u) = Ln(u) + 2_5 X u X e W, g =232

3
[5-2]>0
Here, one notes that:

@) as u » 1, according to the degenerate case, Eq. (32) is reduced to the function F(u),

(i)

and

EFn(u<<1) —Epp(u<1)

( kT

) K —1, to the non-degenerate case, Eq. (32) is reduced to the function G(u),

(i) for given 1y(qy and x, the values of * Epy(pp) increase with increasing N.
Now, going back to Eq. (28),

(1)-the numerical results of Egpq(gp1) (N*, rga,x=0,T =20 K) are calculated, being in good
agreement with experimental ones obtained by Wagner and del Alamo (1988), with a precision of the
order of 1.428 % (4.556 %), respectively, as observed in the following Table 2 in Appendix 1.

Table 2 in Appendix 1
(2)-for N > N¢pn(cpp) (Tdca), X), the numerical results of the optical band gap, given in the n(p)-type,

Egnl(N*,rd(a),X,T = 20 K), are obtained, as functions of N and rqe,) , for x=0, 0.5, 1, respectively,
being reported in following Tables 3n and 3p in Appendix 1.

Tables 3n and 3p in Appendix 1
Finally, as noted in Equations (31n), (31p) and (32), because both two functions: AEgygp) and & Epy(gp),

for given rg(y) and X, increase with increasing N, the optical band gap, Egnl(N*, Tgay % T =20 K),
determined in Eq. (28), and expressed as functions of N, thus randomly varies.
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Appendix

Table 1n. The numerical results of By, &, E gn9, Ncpn, and NEBT are computed, using Equations (6), (8a), (8b), (10), and (26), respectively, noting

IRD| in 10~°

9.99, 6.03, 9.30

6.7, 6.03, 9.30

Table 1p. The numetical results of By, &, E gpo, Ncpp, and N¢j, are computed, using Equations (6), (8a), (8b), (10), and (26), respectively, noting

EBT
that the relative deviations in absolute values are defined by: |RD| = |1 - %
n
Donor P Si Te
rq (nm) 7 0.110 Ig,=0.117 0.132
X 7 0,0.5,1 0,0.5,1 0,0.5,1
Byo(x) in 108 (N/m?) N 8.036400, 3.876827, 1.5610697
e(rg, x) \ 11.58254, 13.81777, 16.052996 11.4,13.6,15.8 10.59472, 12.63931, 14.683906
Egno (rq,x) eV 7 1.168948, 0.955092, 0.7409956 1.17, 0.9556, 0.7412 1.175310, 0.958162, 0.7422316
Nepn(rg, X) in 108 cm™3 7 3.519998, 0.5405417, 0.0438400 3.6918109, 0.566926, 0.0459799 4.599238, 0.706273, 0.0572815
NEBE (rg,x) in 10 cm™3 7 3.519975, 0.5405384, 0.0438396 3.6917862, 0.566922, 0.0459794 4.599222, 0.706269, 0.0572809
IRD| in 1076 7.10, 6.04, 9.29 6.71, 6.03, 9.30 3.47,6.04, 9.30
Donor Sb Sn
rq (nm) 7 0.136 0.140
x 2 0,0.5, 1 0,0.5, 1
g(ry, x) N 10.165683, 12.12748, 14.089280 9.6901858, 11.65602, 13.430257
Egno (rg,x) eV 7 1.1786689, 0.959782, 0.7428839 1.1829244, 0.961835, 0.7437106
Nepn(ra,x) in 1028 cm ™3 7 52064812, 0.799523, 0.0648444 1.1829244, 0.961835, 0.7437106
NEBT(rg,x) in 108 cm 3 7 5.2064292, 0.799518, 0.0648438 6.0111115, 0.923085, 0.0748655

EBT
that the relative deviations in absolute values are defined by: |RD| = |1 - L
CDp
Acceptor B Si Mg
r, (nm) 7 0.088 I,,=0.117 0.140
X 7 0,0.5,1 0,0.5,1 0,0.5,1
B,o(x) in 108 (N/m?) N 9.155899, 5.850357, 3.902674
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e(ry, x) N 15.9777, 19.0611, 22.1445 11.4,13.6,15.8 9.690186, 11.5602, 13.4302
Egpo(Ta, X) eV 7 1.15118, 0.94357,0.73318 1.17,0.9556, 0.7412 1.184725, 0.96501, 0.74748
Nepp(fa, X) in 10" cm™ 7 4.060003, 1.062187, 0.260952 11.17771, 2.924339, 0.718436 18.19999, 4.761524, 1.169785
N}ngg(ra,x) in 1018 cm™3 7 4.060012, 1.062182, 0.260956 11.17774, 2.924324, 0.718446 18.20003, 4.761500, 1.169803
IRD| in 107 2.28,5.03,14.9 2.30, 5.01, 14.9 2.30,5.02,14.9

Acceptor In Cd

r, (nm) 7 0.144 0.148

X 7 0,0.5,1 0,0.5,1

e(ry, x) \ 9.191081, 10.9648, 12.73851 8.687132, 10.36360, 12.0401

Egpo(Ta, X) eV 7 1.190645, 0.96879, 0.749999 1.197687, 0.973291, 0.75300

Nepp(fa, X) in 10" cm™ 7 21.328877, 5.580108, 1.3708900 25.260281, 6.608653, 1.623578

Nggg(ra,x) in 10® cm™3 7 21.328916, 5.580080, 1.370910 25.260339, 6.608620, 1.623602

IRD| in 107 2.30, 5.02, 14.9 2.30, 5.02, 14.9

Table 2. Here, the numerical results of the optical band gap, given in the n(p)-type, E gn1(gp1) (N*, T =Tpw)),X =0T =20 K), are obtained by

Egn1(gp1) EE xp.

using Eq. (28), respectively, noting that the maximal values of ([RD =1 — being the experimental values given by Wagner and

gExp- > Zgnl(gpl)
gnl(gpl)
del Alamo (1988), are found to be given respectively by: 1.428 % (4.556 %)
N in 108 cm™3 4 8.5 15 50 80 150
E;’flp'(N*, rp, T) in eV 1.138 1.138 1.129 1.131 1.132 1.133
Egni(N*, 1p;x = 0,T) ineV 1.1375 1.120 1.114 1.115 1.123 1.149
|[RD| in % 0.041 1.105 1.291 1.428 0.755 1.415
N in 10® cm™2 6.5 11 15 26 60 170 400
E:;g(N*, rg, T) in eV 1.142 1.140 1.139 1.142 1.142 1.162 1.178
Egp1 (N, 15,x = 0,T) ineV 1.115 1.102 1.097 1.090 1.090 1.129 1.231
|[RD| in % 2.341 3.312 3.714 4.556 4.505 2.825 4.492
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Table 3n. Here, for N > N¢p, (74, X), the numerical results of the optical band gap, E g1 (N*,74,x, T = 20 K), are obtained by using Eq. (28), as
functions of N and r; , for x=0, 0.5, 1, respectively

N in 10*® cm™3 4 8.5 15 50 80 150
x=0

Egni (N*,1p, T) in eV 1.1375 1.120 1.114 1.115 1.123 1.149
Egni (N, 1, T) in eV 1.139 1.120 1.113 1.113 1.121 1.146
Egni (N, rpe, T) in eV 1.118 1.109 1.104 1.110 1.131
Egni (N, rgp, T) in eV 1.118 1.107 1.099 1.104 1.123
Egni (N, rgp, T) in eV 1.119 1.104 1.092 1.096 1.113
x=0.5

Egni (N*,1p, T) in eV 0.921 0.920 0.922 0.946 0.970 1.024
Egni (N, 1, T) in eV 0.921 0.919 0.920 0.944 0.967 1.021
Egni (N, rpe, T) in eV 0.918 0.914 0.915 0.935 0.956 1.006
Egni (N, rgp, T) in eV 0.916 0.912 0.911 0.929 0.949 0.998
Egni (N, 15, T) in eV 0.914 0.908 0.907 0.923 0.941 0.987
x=1

Egni(N*,1p, T) in eV 0.726 0.737 0.752 0.830 0.890 1.013
Egni (N, 1, T) in eV 0.725 0.736 0.751 0.828 0.887 1.010
Egni (N, rpe, T) in eV 0.722 0.731 0.745 0.819 0.876 0.995
Egni (N, rgp, T) in eV 0.720 0.728 0.742 0.813 0.869 0.987
Egni (N, rgp, T) in eV 0.717 0.724 0.737 0.806 0.806 0.976

Table 3p.  Here, for N > N¢pp (T3, X), the numerical results of Egyq (N*, Ty, X, T = 20 K), are obtained by using Eq. (28), as functions of N and r, , for
x=0, 0.5, 1, respectively

N in 108 cm™3 6.5 11 15 26 60 170 400
x=0

Egoi(N*, 1, T) ineV | 1.115 1.102 1.097 1.090 1.090 1.129 1.231
Egpi (N*,1rg;, T) ineV | 1.094 1.073 1.063 1.046 1.027 1.129 1.085
Egpi (N*, 1y, T) in eV 1.054 0.999 0.970 0.998
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Egpl (N*, 11p, T) in eV 1.064 0.990 0.951 0.969
Egp1 (N*,rcg, T) ineV 1.102 0.982 0.930 0.936
x=0.5

Egpl (N*,1rg, T) ineV 0.910 0.909 0.909 0.915 0.943 1.043 1.237
Egp1 (N*, rg;, T) in eV 0.884 0.877 0.873 0.870 0.879 0.943 1.092
Egpl (N¥, I'Mg) T) ineV | 0.891 0.868 0.858 0.846 0.841 0.883 1.006
Egp1 (N, 11, T) ineV | 0.898 0.865 0.853 0.837 0.828 0.862 0.977
Egpl (N*,reqg, T) in eV 0.864 0.849 0.829 0.814 0.840 0.944
x=1

Egp1 (N*,rg, T) ineV 0.732 0.745 0.757 0.789 0.880 1.126 1.545
Egpl (N*,rsi, T) in eV 0.706 0.714 0.722 0.745 0.817 1.027 1.401
Egp1 (N*, I'Mg) T)ineV | 0.691 0.694 0.699 0.716 0.778 0.968 1.318
Egpl (N*, 1, T) ineV | 0.686 0.687 0.691 0.707 0.764 0.948 1.288
Egp1 (N*,rcq, T) ineV | 0.680 0.680 0.683 0.696 0.749 0.925 1.256
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