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Abstract: 
By basing on the same physical model and treatment method, as used 
in our recent works (Van Cong, 2024; 2023; 2023), we investigate the 
critical impurity density in the metal-insulator transition (MIT), 
obtained in the n(p)-type degenerate Si1−xGex- crystalline alloy, 0 ≤
x ≤ 1, and also applied to determine the optical band gap, being due 
to the effects of the size of donor (acceptor) d(a)-radius, rd(a), the x-
Ge concentration, the temperature T, and finally the high d(a)-
density, N, assuming that all the impurities are ionized even at T=0 
K. In such the n(p)-type degenerate Si1−xGex- crystalline alloy, we 
will determine: 

(i)-the critical impurity density 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)(𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥) in the MIT, as that given in Eq. (10), by using the 
generalized empirical Mott parameters 𝑀𝑀𝐶𝐶(𝐶𝐶)(𝑥𝑥),  

(ii)-the density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT), 
𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸 � 𝑟𝑟𝑑𝑑(𝑎𝑎),𝑥𝑥�, as that given in Eq. (26), by using the empirical Heisenberg parameters ℋ𝐶𝐶(𝐶𝐶)(𝑥𝑥), 

as those given in Eq. (17), according to: for given 𝑟𝑟𝑑𝑑(𝑎𝑎) and x,  𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸 � 𝑟𝑟𝑑𝑑(𝑎𝑎),𝑥𝑥� ≅

𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)(𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥), with a precision of the order of 9.99 × 10−6 (1.49 × 10−5), as seen in Tables 1n 
and 1p, respectively, and  

(iii)-the OBG, Egn1(gp1)�N∗, rd(a), x, T�, N∗ ≡ N − NCDn(NDp), as that given in Eq. (28); its numerical 
results are reported in Tables 2, 3n and 3p, showing, in particular, in Table 2, in which rd(a) ≡ rP(B), x=0 
and T=20 K, the numerical results of Egn1(gp1) are found to be in good agreement with the data, obtained 
by Wagner & del Alamo (1988), with maximal relative deviations: 1.428 % (4.556 %), respectively. 

 

Keywords: 𝑆𝑆𝑆𝑆1−𝑥𝑥𝐺𝐺𝐺𝐺𝑥𝑥-crystalline alloy; critical impurity density in the MIT; optical band gap. 

 

Introduction  
By basing on the same physical model and treatment method, as used in our recent works (Van Cong, 
2024; 2023; 2023), and also other works (Kitel, 1976; Van Cong et al., 2014, Van Cong & Debiais, 1993; 
Van Cong et al., 1984; Wagner & del Alamo, 1988), we will investigate the critical impurity density in the 
metal-insulator transition (MIT), obtained in the n(p)-type degenerate Si1−xGex- crystalline alloy, 0 ≤
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x ≤ 1, and also applied to determine the optical band gap (OBG), being due to the effects of the size of 
donor (acceptor) d(a)-radius, rd(a), the x-Ge concentration, the temperature T, and finally the high d(a)-
density, N, assuming that all the impurities are ionized even at T=0 K. 

In the n(p)-type degenerate 𝑆𝑆𝑆𝑆1−𝑥𝑥𝐺𝐺𝐺𝐺𝑥𝑥- crystalline alloy, we will determine: 

(i)-the critical impurity density 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)(𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥) in the MIT, as that given in Eq. (10), by using the 
generalized empirical Mott parameters 𝑀𝑀𝐶𝐶(𝐶𝐶)(𝑥𝑥),  

(ii)-the density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT), 
𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸 � 𝑟𝑟𝑑𝑑(𝑎𝑎),𝑥𝑥�, as that given in Eq. (26), by using the empirical Heisenberg parameters ℋ𝐶𝐶(𝐶𝐶)(𝑥𝑥), 

as those given in Eq. (17), according to: for given 𝑟𝑟𝑑𝑑(𝑎𝑎) and x,  𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸 � 𝑟𝑟𝑑𝑑(𝑎𝑎),𝑥𝑥� ≅

𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶)(𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥), with a precision of the order of 9.99 × 10−6 (1.49 × 10−5), as seen in Tables 1n 
and 1p, respectively, and 

(iii)-the OBG, Egn1(gp1)�N∗, rd(a), x, T�, N∗ ≡ N − NCDn(NDp), as that given in Eq. (28); its numerical 
results are reported in Tables 2, 3n and 3p, showing, in particular, in Table 2, in which rd(a) ≡ rP(B), x=0 
and T=20 K, the numerical results of Egn1(gp1) are found to be in good agreement with the data, obtained 
by Wagner & del Alamo (1988), with maximal relative deviations: 1.428 % (4.556 %), respectively. 

In the following, we will determine those functions: NCDn(CDp)(rd(a), x), NCDn(CDp)
EBT � rd(a), x�, and 

finally,  Egn1(gp1)�N∗, rd(a), x, T�. 

Critical Density in the MIT, 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪(𝑪𝑪𝑪𝑪𝑪𝑪)(𝒓𝒓𝒅𝒅(𝒂𝒂),𝒙𝒙) 

Such the critical impurity density NCDn(CDp)(rd(a), x), expressed as a function of  rd(a) and x, is 
determined as follows. 

 

Effect of x-Ge Concentration 
Here, the values of the intrinsic energy-band-structure parameters, such as: the effective average number 
of equivalent conduction (valence)-band edges gc(v)(x), the unperturbed relative effective electron (hole) 
mass in conduction (valence) bands mc(v)(x)/mo, mo being the electron rest mass, the reduced effective 
mass mr(x)/mo, the unperturbed relative dielectric static constant εo(x), the effective donor (acceptor)-

ionization energy Edo(ao)(x), and the isothermal bulk modulus Bdo(ao)(x) ≡
Edo(ao)(x)

(4π/3)×�rdo(ao)�
3 ,

at rd(a) = rdo(ao) ≡ rSi = 0.117 nm, are given respectively in the following (Van Cong, 2024; 2023; 
2023). 

 

gc(x) = 3 × x + 3 × (1 − x) = 3, gv(x) = 2 × x + 2 × (1 − x) = 2,    (1) 

 

mc(x)/mo = 0.12 × x + 0.3216 × (1 − x), mv(x)/mo = 0.3 × x + 0.3664 × (1 − x),  

 

mr(x)/mo = mc(x)×mv(x)
mc(x)+mv(x)

 ,           (2) 
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εo(x) = 15.8 × x + 11.4 ×  (1 − x),       (3) 

 

Ego(x) in eV = 0.7412 × x + 1.17 × (1 − x),      (4) 

 

Edo(ao)(x) = 13600×[mc(v)(x)/mo]
[εo(x)]2

 meV, and       (5) 

 

Bdo(ao)(x) ≡
Edo(ao)(x)

(4π/3)×�rdo(ao)�
3.         (6) 

 

Effects of Impurity Size, with a Given x  
Here, one shows that the effect of the size of donor (acceptor) d(a)-radius, rd(a), and x-Ge concentration 
strongly affects the changes in all the energy-band-structure parameters, which can be represented by the 
effective relative static dielectric constant ε(rd(a), x), in the following. 

At rd(a) = rdo(ao), the needed boundary conditions are found to be, for the impurity-atom volume V=
(4π/3) × �rd(a)�

3
, Vdo(ao) = (4π/3) × �rdo(ao)�

3
, for the pressure p, as: po = 0, and for the 

deformation potential energy (or the strain energy) σ, as: σo = 0. Further, the two important equations 
(Van Cong, 2023, 2023; Van Cong et al., 1984), used to determine the σ-variation: ∆σ≡ σ−σo = σ, are 
defined by: dp

dV
=−B

V
 and p=−dσ

dV
 . giving:  d

dV
(dσ
dV

)= B
V
. Then, by an integration, one gets: 

 

�∆σ(rd(a), x)�
n(p)

=Bdo(ao)(x)×(V−Vdo(ao))× ln ( V
Vdo(ao)

)= Edo(ao)(x) × �� rd(a)
rdo(ao)

�
3
− 1� ×

ln � rd(a)
rdo(ao)

�
3
≥ 0.           (7a) 

 

Furthermore, we also shown that, as rd(a) > rdo(ao) ( rd(a) < rdo(ao)), the compression (dilatation) 
gives rise to: the increase (the decrease) in the energy gap Egno(gpo)�rd(a), x�, and in the effective donor 
(acceptor)-ionization energy Ed(a)�rd(a), x� in absolute values, being obtained from the effective Bohr 
model, and then such the compression (dilatation) is represented respectively by: ± �∆σ(rd(a), x)�

n(p)
, 

 

Egno(gpo)(rd(a), x) − Ego(x) = Ed(a)(rd(a), x) − Edo(ao)(x) = Edo(ao)(x) × �� εo(x)
ε(rd(a))

�
2
− 1� =

+ �∆σ(rd(a), x)�
n(p)

, 

 

for  rd(a) ≥ rdo(ao), and for rd(a) ≤ rdo(ao), 
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Egno(gpo)(rd(a), x) − Ego(x) = Ed(a)(rd(a), x) − Edo(ao)(x) = Edo(ao)(x) × �� εo(x)
ε(rd(a))

�
2
− 1� =

− �∆σ(rd(a), x)�
n(p)

.           (7b) 

 

Therefore, from above Equations (7a) and (7b), one obtains the expressions for relative dielectric 
constant ε(rd(a), x) and energy band gap Egn(gp)�rd(a), x�, as: 

 

(i)-for  rd(a) ≥ rdo(ao),  since ε(rd(a), x)= εo(x)

�1+��
rd(a)

rdo(ao)
�
3
−1�×ln�

rd(a)
rdo(ao)

�
3
 ≤ εo(x),  

Egno(gpo)�rd(a), x� − Ego(x) = Ed(a)�rd(a), x� − Edo(ao)(x) = Edo(ao)(x) × �� rd(a)
rdo(ao)

�
3
− 1� ×

ln � rd(a)
rdo(ao)

�
3
≥ 0,          (8a) 

 

according to the increase in both Egn(gp)�rd(a), x� and Ed(a)�rd(a), x�, for a given x, and 

 

(ii)-for rd(a) ≤ rdo(ao), since ε(rd(a), x)= εo(x)

�1−��
rd(a)

rdo(ao)
�
3
−1�×ln�

rd(a)
rdo(ao)

�
3
 ≥ εo(x), with a condition, given 

by: �� rd(a)
rdo(ao)

�
3
− 1� × ln � rd(a)

rdo(ao)
�
3

< 1, 

 

Egno(gpo)�rd(a), x� − Ego(x) = Ed(a)�rd(a), x� − Edo(ao)(x) = −Edo(ao)(x) × �� rd(a)
rdo(ao)

�
3
− 1� ×

ln � rd(a)
rdo(ao)

�
3
 ≤ 0,            (8.b) 

 

corresponding to the decrease in both Egn(gp)�rd(a), x� and Ed(a)�rd(a), x�, for a given x.      

Furthermore, the effective Bohr radius aBn(Bp)(rd(a)) is defined by: 

 

aBn(Bp)(rd(a), x) ≡
ε(rd(a),x)×ℏ2

mc(v)(x)×q2
= 0.53 × 10−8 cm ×

ε(rd(a),x)
mc(v)(x)/mo

,    (9) 

where −q is the electron charge.   

In the n(p)-type degenerate Si1−xGex- crystalline alloy, the critical donor (acceptor)-density in the MIT, 
NCDn(NDp)(rd(a), x), is determined, using the generalized empirical Mott parameters Mn(p)(x), as: 

 

NCDn(rd, x)1 3� × aBn(rd, x) = Mn(x),  Mn(x) = 0.25 × x + 0.290364495 × (1 − x), and  
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NCDp(ra, x)1 3� × aBp(ra, x) = Mp(x), Mp(x) = 0.25 × x + 0.3687018 × (1 − x).  (10) 

 

It should be noted in Eq. (10) that, for the Mott criterion in the MIT, his empirical parameter is found 
to be equal to: MMott=0.25, while, from Eq. (10), Mn(x = 0) = 0.290364495  and Mp(x = 1) =
0.25 are chosen such that we can obtain the experimental values of critical densities of the Si-crystal, 
as (Van Cong, 2023; Van Cong et al., 2014): NCDn(rd = rP, x = 0) = 3.52 × 1018 cm−3 and 
NCDp(ra = rB, x = 0) = 4.06 × 1018 cm−3.  

In the following, these obtained numerical results can also be justified by calculating the numerical results 
of the density of electrons (holes) localized in exponential conduction (valence)-band (EBT) tails, 
NCDn(CDp)
EBT � rd(a), x�. 

 

𝐍𝐍𝐂𝐂𝐂𝐂𝐂𝐂(𝐂𝐂𝐂𝐂𝐂𝐂)
𝐄𝐄𝐄𝐄𝐄𝐄 (𝐫𝐫𝐝𝐝(𝐚𝐚), 𝐱𝐱)- Expression 

In order to determine NCDn(CDp)
EBT � rd(a), x�, we first present our physical model and also our 

mathematical methods. 

Physical model 

In the n(p)-type degenerate Si1−xGex- crystalline alloy, if denoting the Fermi wave number 
by: kFn(Fp)(N, x) ≡ �3π2N/gc(v)(x)�

1/3
, the effective reduced Wigner-Seitz radius rsn(sp), 

characteristic of interactions, is defined by: 

 

rsn(sp)�N, rd(a), x� ≡ �3gc(v)(x)
4πN

�
1/3

× 1
aBn(Bp)(rd(a),x)

= 1.1723 × 108 × �gc(v)(x)
N

�
1/3

× mc(v)(x)/mo 
ε(rd(a),x)

. 

            (11) 

 

So, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number  kFn(kp) at 0 K is 
defined by: 

 

Rsn(sp)�N, rd(a), x� ≡ ksn(sp)

 kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = RsnWS(spWS) + �RsnTF(spTF) − RsnWS(spWS)�e−rsn(sp) < 1. 

            (12) 

 

These ratios, RsnTF(spTF) and RsnWS(spWS), are determined in following Equations (13, 14). 

First, for N ≫ NCDn(NDp)(rd(a), x), according to the Thomas-Fermi (TF)-approximation, the ratio 
RsnTF(snTF) is reduced to  

RsnTF�N, rd(a), x� ≡ ksnTF(spTF)

 kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = �4γrsn(sp)�N,rd(a),x�

π
≪ 1,    (13) 

 

being proportional to N−1/6.  
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Secondly, N < NCDn(NDp)(rd(a)), according to the Wigner-Seitz (WS)-approximation, the ratio 
RsnWS(spWS) is reduced to (Van Cong, 2023; 2023): 

 

RsnWS(spWS)�N, rd(a), x� ≡ ksnWS(spWS)

kFn(kFp)
= � 3

2π − γd�rsn(sp)
2 ×ECE�

drsn(sp)
� × 1 (0.389856828),  (14) 

 

where ECE�N, rd(a), x� is the majority-carrier correlation energy (CE), being determined by:  

 

ECE�N, rd(a), x� ≡ −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+�2[1−ln(2)]

π2
�×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876  . 

 

So, the n(p)-type degenerate Si1−xGex- crystalline alloy, the physical conditions are found to be given 
by : 

 
kFn(Fp)
−1

aBn(Bp)
< ηn(p)

𝔼𝔼Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp)�N, rd(a), x� < 1,  An(p)(N, rd(a), x) ≡ ±𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅)

ηn(p)
. 

            (15) 

 

Here, ±𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅) is the Fermi energy at 0 K, and ηn(p) is defined in next Eq. (17), as:±𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅)(N, x) =
ℏ2× kFn(Fp)(N,x)2

2×mc(v)(x)
 , ηn(p)(N, rd(a), x) = √2πN

ε(rd(a),x)
× q2ksn(sp)

−1/2 . 
 

Then, the total screened Coulomb impurity potential energy due to the attractive interaction between an 
electron (hole) charge, −q(+q), at position r⃗, and an ionized donor (ionized acceptor) charge: 
+q(−q) at position Rȷ���⃗  , randomly distributed throughout the Si1−xGex- crystalline alloy, is defined by 

 

V(r) ≡ ∑ vj(r) + Voℕ
j=1 ,           (16) 

 

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and the 
screened Coulomb potential energy vj(r) is defined as: 

 

vj(r) ≡ −q2×exp (−ksn(sp)×�r�⃗ −Rȷ����⃗ �)
ε(rd(a))×�r�⃗ −Rȷ����⃗ �

,  

 

where ksn(sp) is the inverse screening length determined in Eq. (12). 

Further, using a Fourier transform, the vj-representation in wave vector k�⃗ -espace is given by 
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vj�k�⃗ � = − q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn2
, 

 

where Ω is the total Si1−xGex- crystalline alloy volume. 

Then, the effective auto-correlation function for potential fluctuations, Wn(p)�νn(p), N, rd� ≡
〈V(r)V(r′)〉, was determined, (Van Cong, 2023 ; 2023) as :  

 

 Wn(p)�νn(p), N, rd(a), x� ≡ ηn(p)
2 × exp�

−ℋn(p)(x)×Rsn(sp)�N,rd(a),x�

2��νn(p)�
�, ηn(p)(N, rd(a), x) ≡ √2πN

ε(rd(a))
×

q2ksn(sp)
−1/2 ,  

 

νn(p)(E, N, x) ≡ ∓E
±𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅)(𝐍𝐍,𝐱𝐱)

,  ℋn(x) = 4.36698 × x1.069 + 3.320313702 × (1 − x1.069), and 

 

ℋp(x) = 10.9385 × x1.3053 + 3.320313702 × (1 − x1.3053).     (17) 

Here, E is the total electron energy, ε(rd(a)) is determined in Equations (8a, 8b), Rsn(sp)�N, rd(a), x� in 
Eq. (12), and the empirical Heisenberg parameters ℋn(p)(x) were chosen above such that the 
determination of the density of electrons localized in the conduction(valence)-band tails will be accurate, 
noting that as E → ±∞ , �νn(p)� → ∞, and therefore, Wn(p) → ηn(p)

2 . 

In the following, we will calculate the ensemble average of the function: (E − V)a−
1
2 ≡ Ek

a−12, for a ≥ 1, 

Ek ≡
ℏ2×k2

2×mc(v)(x)
 being the kinetic energy of the electron (hole), and V(r) determined in Eq. (16), by using 

the two following integration methods, which strongly depend on Wn(p)�νn(p), N, rd(a), x�. 

 

Mathematical Methods 
Kane Integration Method (KIM) 

Here, the effective Gaussian distribution probability is defined by: 

 

P(V) ≡ 1

�2πWn(p) 
× exp � −V2

2Wn(p)
�. 

 

So, in the Kane integration method, the Gaussian average of (E − V)a−
1
2 ≡ Ek

a−12 is defined by 

 

〈(E − V)a−
1
2〉KIM ≡ 〈Ek

a−12〉KIM = ∫ (E − V)a−
1
2

E
−∞ × P(V)dV,   for  a ≥ 1. 
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Then, by variable changes: s = (E − V)/�Wn(p)  and  y = ∓E/�Wn(p) ≡
± 𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅)

ηn(p)
× νn(p) ×

exp�ℋn(p)×Rsn(sp)

4×��νn(p)�
�, and using an identity: 

 

∫ sa−
1
2

∞
0 × exp (−ys − s2

2 )ds ≡ Γ(a + 1
2) × exp (y2/4) × D−a−12

(y), 

 

where D−a−12
(y) is the parabolic cylinder function and Γ(a + 1

2) is the Gamma function, one thus has: 

 

〈Ek
a−12〉KIM =

exp (−y2/4)×Wn(p)

2a−1
4

√2π
× Γ(a + 1

2) × D−a−12
(y) =

exp (−y2/4)×ηn(p)
a−12

√2π
×

exp�−ℋn(p)×Rsn(sp)×(2a−1)

8×��νn(p)�
� × Γ(a + 1

2) × D−a−12
(y).      (18) 

 

Feynman Path-Integral Method (FPIM) 

Here, the ensemble average of (E − V)a−
1
2 ≡ Ek

a−12 is defined by 

 

〈(E − V)a−
1
2〉FPIM ≡ 〈Ek

a−12〉FPIM ≡ ℏa−
1
2

23/2×√2π
×

Γ(a+12)
Γ(32)

× ∫ (it)−a−
1
2

∞
−∞ × exp �iEt

ℏ
−

�t�Wn(p)�
2

2ℏ2
�dt, i2 =

−1, 

 

noting that as a=1, (it)−
3
2 × exp �−

�t�Wp�
2

2ℏ2
� is found to be proportional to the averaged Feynman 

propagator given the dense donors (acceptors). Then, by variable changes: t = ℏ

�Wn(p)
 and y =

∓E/�Wn(p) ≡
± 𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅)

ηn(p)
× νn(p) × exp�ℋn(p)×Rsn(sp)

4×��νn(p)�
�, for n(p)-type respectively, and then using an 

identity: 

 

∫ (is)−a−
1
2

∞
−∞ × exp �iys − s2

2
�ds ≡ 23/2 × Γ(3/2) × exp (−y2/4) × D−a−12

(y), 

 

one finally obtains: 〈Ek
a−12〉FPIM ≡ 〈Ek

a−12〉KIM, 〈Ek
a−12〉KIM being determined in Eq. (18). 
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In the following, with the use of asymptotic forms for D−a−12
(y), those given for 〈(E − V)a−

1
2〉KIM can 

be obtained in the two following cases. 

 

First Case: n-type (𝐄𝐄 ≥ 𝟎𝟎) and p-type (𝐄𝐄 ≤ 𝟎𝟎) 
As E → ±∞, one has: νn(p) → ∓∞ and y → ∓∞. In this case, one gets: D−a−12

(y → ∓∞) ≈
√2π

Γ�a+12�
× e

y2
4 × (∓y)a−

1
2, and therefore from Eq. (18), one gets:  

〈Ek
a−12〉KIM ≈ Ea−12.  

Further, as E → ±0, one has: νn(p) → ∓0 and y → ∓0. So, one obtains: 

D−a−12
(y → ∓0) ≃ β(a) × exp�(√a + 1

16a
3
2
) y − y2

16a + y3

24√a
� → β(a),     β(a) = √π

2
2a+1
4 Γ(a2+

3
4)]

. 

Therefore, as E → ±0, from Eq. (18), one gets:  〈Ek
a−12〉KIM → 0.  

Thus, in this case, one gets:  

 

〈Ek
a−12〉KIM ≅ Ea−12.           (19) 

 

Second Case:  n-type-case (𝐄𝐄 ≤ 𝟎𝟎) and p-type-case (𝐄𝐄 ≥ 𝟎𝟎) 

As E → ∓0, one has: (y, νn(p)) → ±0, and by putting f(a) ≡
ηn(p)
a−12

√2π
× Γ(a + 1

2) × β(a), Eq. (18) yields: 

 

Hn(p)�νn(p) → ±0 , N, rd(a), x, a� =
〈Ek
a−12〉KIM
f(a)

= exp �−ℋn(p)×Rsn(sp)×(2a−1)

8×��νn(p)�
− �√a  +

1

16a
3
2
� y−�14+

1
16a�y

2− y3

24√a
� → 0.          (20) 

Further, as E → ∓∞, one has: (y, νn(p)) → ±∞. Thus, one gets: D−a−12
(y → ±∞ ) ≈ y−a−

1
2 × e−

y2
4 →

0. 

Therefore, from Eq. (18), one gets: 

 

Kn(p)(νn(p) → ±∞ , N, rd(a), x, a) ≡  
 〈Ek

a−12〉KIM
f(a)

≃ 1
β(a) × exp (− (An(p)×νn(p))2

2
) × (An(p) ×

νn(p))−a−
1
2 → 0,           (21) 
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noting that β(a) = √π

2
2a+1
4 Γ(a2+

3
4)]

, being equal to: √π

2
3
4×Γ(5/4)

 for a=1, and √π
23/2 for a = 5/2. 

It should be noted that those ratios: 
〈Ek
a−12〉KIM
f(a)

, obtained in Equations (20) and (21), can be taken in an 
approximate form as: 

 

Fn(p)(νn(p), N, rd(a), x, a) = Kn(p)(νn(p), N, rd(a), x, a) + �Hn(p)(νn(p), N, rd(a), x, a) −
Kn(p)(νn(p), N, rd(a), x, a)� × exp �−c1 × �An(p)νn(p)�

c2�,       (22) 

 

so that: Fn(p)(νn(p), N, rd(a), x, a) → Hn(p)(νn(p), N, rd(a), x, a) for 0 ≤ νn ≤ 16 , and 
Fn(p)(νn(p), N, rd(a), x, a) → Kn(p)(νn(p), N, rd(a), x, a) for νn(p) ≥ 16. Here, the constants c1 and c2 
may be respectively chosen as: c1 = 10−40 and c2 = 80, as a = 1, being used to determine the critical 
density of electrons (holes) localized in the exponential conduction(valence) band-tails (EBT), 
NCDn(CDp)
EBT (N, rd(a), x), given in the following. 

 

𝐍𝐍𝐂𝐂𝐂𝐂𝐂𝐂(𝐂𝐂𝐂𝐂𝐂𝐂)
𝐄𝐄𝐄𝐄𝐄𝐄 (𝐍𝐍, 𝐫𝐫𝐝𝐝(𝐚𝐚), 𝐱𝐱)-Expression 

Here, by using Eq. (18) for a=1, the density of states 𝒟𝒟(E) is defined by: 

 

〈𝒟𝒟(Ek)〉KIM ≡ gc(v)

2π2
�2mc(v)

ℏ2
�
3
2 × 〈Ek

1
2〉KIM = gc(v)

2π2
�2mc(v)

ℏ2
�
3
2 ×

exp�−y
2

4 �×Wn

1
4

√2π
× Γ�32� × D−32

(y) = 𝒟𝒟(E). 

            (23) 

 

Going back to the functions: Hn, Kn and Fn, given respectively in Equations (20-22), in which the factor  

〈Ek

1
2〉KIM

f(a=1)
 is now replaced by: 

 

〈Ek

1
2〉KIM

f(a=1)
= 𝒟𝒟(E≤0)

𝒟𝒟o
= Fn(p)�νn(p), N, rd(a), x, a = 1�, 

𝒟𝒟o(N, rd(a), x, a = 1) =
gc(v)×�mc(v)×mo�

3/2
×�ηn(p)

2π2ℏ3
× β(a), 

β(a = 1) = √π

2
3
4×Γ(5/4)

.          (24) 

 

Therefore, NCDn(CDp)
EBT (N, rd(a), x)  can be defined by: NCDn(CDp)

EBT (N, rd(a), x) = ∫ 𝒟𝒟(E ≤ 0)0
−∞ dE, 
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NCDn(CDp)
EBT (N, rd(a), x) =

gc(v)×�mc(v)�
3/2

�ηn(p)×(± 𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅))

2π2ℏ3
× �∫ β(a = 1) ×16

0

Fn(p)�νn(p), N, rd(a), x, a = 1� dνn(p) + In(p)�,      (25) 

 

Where 

 

In(p) ≡ ∫ β(a = 1) × Kn(p)�νn(p), N, rd(a), x, a = 1�∞
16 dνn(p)  = ∫ e

−�An(p)×νn(p)�
2

2 ×∞
16

�An(p)νn(p)�
−3/2

dνn(p).  

 

Then, by another variable change: t = �An(p)νn(p)/√2�
2
, the integral In(p) yields: 

 

In(p) = 1
25/4An(p)

× ∫ tb−1∞
zn(p)

e−tdt ≡ Γ(b,zn(p))

25/4×An(p)
, where b = −1/4,  zn(p) = �16An(p)/√2�

2
, and Γ(b,

zn(p)) is the incomplete Gamma function, defined by: Γ(b, zn(p)) ⋍ zn(p)
b−1 × e−zn(p) �1 +

∑ (b−1)(b−2)…(b−j)

zn(p)
j

16
j=1 �. 

 

Finally, Eq. (25) now yields: 

 

NCDn(CDp)
EBT [N = NCDn(NDp)(rd(a), x), rd(a), x] =

gc(v)×�mc(v)�
3/2

�ηn(p)×(± 𝐄𝐄𝐅𝐅𝐂𝐂𝐅𝐅(𝐅𝐅𝐂𝐂𝐅𝐅))

2π2ℏ3
× �∫ β(a = 1) ×16

0

Fn(p)�νn(p), N, rd(a), x, a = 1� dνn(p) + Γ(b,zn(p))
25/4×An(p)

�,       (26) 

 

being the density of electrons (holes) localized in the EBT, respectively.  

In n(p)-type degenerate Si1−xGex- crystalline alloy, the numerical results of NCDn(CDp)
EBT [N =

NCDn(NDp)(rd(a), x), rd(a), x] ≡ NCDn(CDp)
EBT ( rd(a), x), for a simplicity of presentation, evaluated using 

Eq. (26), are given in following Tables 1n and 1p in Appendix 1, in which those of other functions such 
as: Bdo(ao), ε, Egno(gpo), and NCDn(CDp) are computed, using Equations (6), (8a), (8b), and (10), 

respectively, noting that the relative deviations in absolute values are defined by: |RD| ≡ �1 −
NCDn(CDp)
EBT

NCDn(CDp)
�. 

Tables 1n and 1p in Appendix 1 

Here, some concluding remarks are given and discussed in the following. 

(1)-For a given x, while ε�rd(a), x� decreases (↘), the functions: Egno(gpo)(rd(a), x), NCDn(CDp)(rd(a), x) 
and NCDn(CDp)

EBT (rd(a), x) increase (↗), with increasing (↗) rd(a), due to the impurity size effect. 
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(2)-In contrary, for a given rd(a), while ε�rd(a), x� increases (↗), the functions: Egno(gpo)(rd(a), x), 
NCDn(CDp)(rd(a), x) and NCDn(CDp)

EBT (rd(a), x) decrease (↘), with increasing (↗) x. 

(3)-Here, one notes that the maximal value of |RD| is found to be respectively given by: 
9.99 × 10−6(1.49 × 10−5), meaning that  NCDn

EBT ≅ NCDn. In other word, this critical d(a)-density 
NCDn(NDp)(rd(a)), x), determined in Eq. (10) is just the density of electrons (holes) localized in the 
EBT, NCDn(CDp)

EBT ( rd(a), x), respectively. 

(4)-In particular, in the n(p)-type degenerate Si1−xGex- crystalline alloy, for x=1 and  rd(a) = rP(B), we 
get: 
rP(B)

rSi
= 11(8.8)

11.7
= 0.940 (0.75) , while, in the n(p)-type degenerate Ge-crystal (Van Cong, 2023), 

rP(B)

rGe
=

11(8.8)
12.2

= 0.902 (0.721), meaning: 
rP(B)

rSi
>  rP(B)

rGe
, due to the atom size effect: rSi = 0.117 nm < rGe =

0.122 nm . As a result, in those Tables 1n and 1p, we get: ε�rP(B), x = 1� = 16.053 (22.144), 
Egno(gpo)(rP(B), x = 1) =0.741 eV (0.733 eV), and  NCDn(CDp)(rP(B), x = 1) in 1016 cm−3 =
4.384 (26.95), while in the n(p)-type degenerate Ge-crystal (Van Cong, 2023) one has the corresponding 
results as: ε�rP(B)� = 16.499 (25.373), Egno(gpo)(rP(B)) =0.64 eV (0.6305 eV), and NCDn(CDp)(rP(B)) 
in 1016 cm−3 = 4.038 (17.347), meaning that, due to the atom size effect: rSi = 0.117 nm < rGe =
0.122 nm, while ε�rP(B), x = 1� < ε�rP(B)�, therefore,  Egno(gpo)(rP(B), x = 1) > Egno(gpo)(rP(B)) 
and NCDn(CDp)(rP(B), x = 1) > NCDn(CDp)(rP(B)). This remark is important. 

Finally, the effective density of free electrons (holes), N∗, given in the parabolic conduction (valence) 
band of the n(p)-type degenerate Si1−xGex- crystalline alloy, can thus be expressed by: 

 

N∗ ≡ N − NCDn(NDp) ≅ N − NCDn(CDp)
EBT .       (27) 

 

Optical Band Gap 
Here, the optical band gap, Egn1(gp1)�N∗, rd(a), x, T�, is defined by (Van Cong, 2023; 2023): 

 

Egn1(gp1)�N∗, rd(a), x, T� ≡ Egn2(gp2)�N∗, rd(a), x, T� ±  EFn(Fp)(N∗, x, T),  

Egn2(gp2)�N∗, rd(a), x, T� ≡ Egno(gpo)�rd(a), x� − ∆T(T) − ΔEgn(gp)�N∗, rd(a), x�,  (28) 

 

where Egn2(gp2) is the reduced band gap, meaning that the band gap Egno(gpo), given in Eq. (10), is 
reduced by the effect of temperature, ∆T(T), being given in next Eq. (30), and that of high doping, 
ΔEgn(gp)�N∗, rd(a), x�, being determined in next Equations (31n, 31p), and finally, ± EFn(Fp)(N∗, x, T) 
is the Fermi energy, being determined in next Eq. (32). Then, it should be noted that, in the calculation 
of ΔEgn(gp) and  EFn(Fp), the effective mass mc(v)(x) is now replaced by the reduced mass mr(x), being 
determined in Eq. (2). Further, the effective reduced Wigner-Seitz radius rsn(sp), characteristic of 
interactions, determined in Eq. (11), is now replaced by: 
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rsn(sp)�N∗, rd(a), x� ≡ 1.1723 × 108 × �gc(v)(x)
N∗

�
1/3

× mr(x)/mo 
ε(rd(a),x)

,     (29) 

 

replacing mc(v)(x) by mr(x). 

Now, the expressions of ∆T, ΔEgn(gp) and ± EFn(Fp) are determined as follows. 

 

∆𝐄𝐄(𝐄𝐄)-Determination 
Here, we have (Van Cong, 2024): 

∆T(T) = 10−4 × T2 × �3.525×x
T+94 K

+ 2.54×(1−x)
T+204 K

�.        (30) 

 

𝚫𝚫𝐄𝐄𝐠𝐠𝐂𝐂(𝐠𝐠𝐂𝐂)(𝐍𝐍∗, 𝐫𝐫𝐝𝐝(𝐚𝐚), 𝐱𝐱) −Determination 

Then, the band gap narrowing 𝛥𝛥𝐸𝐸𝑔𝑔𝐶𝐶(𝑁𝑁∗, 𝑥𝑥,𝑇𝑇) is found to be given by (Van Cong, 2023; 2023): 

 

𝛥𝛥𝐸𝐸𝑔𝑔𝐶𝐶(𝑁𝑁∗, 𝑟𝑟𝑑𝑑, 𝑥𝑥) ≃ 𝑎𝑎1 ×  𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑑𝑑,𝑥𝑥) × 𝑁𝑁𝑟𝑟

1/3 + 𝑎𝑎2 × 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑑𝑑,𝑥𝑥) × 𝑁𝑁𝑟𝑟

1
3 × (2.503 × [−𝐸𝐸𝑐𝑐𝐶𝐶(𝑟𝑟𝑠𝑠𝐶𝐶) × 𝑟𝑟𝑠𝑠𝐶𝐶]) + 𝑎𝑎3 ×

� 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑑𝑑,𝑥𝑥)

�
5/4

× �
𝑚𝑚𝑣𝑣
𝑚𝑚𝑟𝑟

× 𝑁𝑁𝑟𝑟
1/4 + 𝑎𝑎4 × � 𝜀𝜀𝑜𝑜(𝑥𝑥)

𝜀𝜀(𝑟𝑟𝑑𝑑,𝑥𝑥)
× 𝑁𝑁𝑟𝑟

1/2 × 2 + 𝑎𝑎5 × � 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑑𝑑,𝑥𝑥)

�
3
2 × 𝑁𝑁𝑟𝑟

1
6, 𝑁𝑁𝑟𝑟 ≡

� 𝑁𝑁∗

9.999×1017 𝑐𝑐𝑚𝑚−3�,            (31n)  

 

where  𝑎𝑎1 = 6.506 × 10−3(𝐺𝐺𝑒𝑒), 𝑎𝑎2 = 1.113 × 10−3(𝐺𝐺𝑒𝑒), 𝑎𝑎3 = 4.794 × 10−3(𝐺𝐺𝑒𝑒), 𝑎𝑎4 = 9.582 ×
10−3(𝐺𝐺𝑒𝑒) and 𝑎𝑎5 = 1.387 × 10−3(𝐺𝐺𝑒𝑒), and 

 

𝛥𝛥𝐸𝐸𝑔𝑔𝐶𝐶(𝑁𝑁∗, 𝑟𝑟𝑎𝑎, 𝑥𝑥) ≃ 𝑎𝑎1 ×  𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑎𝑎,𝑥𝑥) × 𝑁𝑁𝑟𝑟

1/3 + 𝑎𝑎2 × 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑎𝑎,𝑥𝑥) × 𝑁𝑁𝑟𝑟

1
3 × �2.503 × [−𝐸𝐸𝑐𝑐𝐶𝐶�𝑟𝑟𝑠𝑠𝐶𝐶� × 𝑟𝑟𝑠𝑠𝐶𝐶]� + 𝑎𝑎3 ×

� 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑎𝑎,𝑥𝑥)�

5/4
× �

𝑚𝑚𝑐𝑐
𝑚𝑚𝑟𝑟

× 𝑁𝑁𝑟𝑟
1/4 + 2𝑎𝑎4 × � 𝜀𝜀𝑜𝑜(𝑥𝑥)

𝜀𝜀(𝑟𝑟𝑎𝑎,𝑥𝑥)
× 𝑁𝑁𝑟𝑟

1/2 + 𝑎𝑎5 × � 𝜀𝜀𝑜𝑜(𝑥𝑥)
𝜀𝜀(𝑟𝑟𝑎𝑎,𝑥𝑥)

�
3
2 × 𝑁𝑁𝑟𝑟

1
6,  𝑁𝑁𝑟𝑟 ≡ � 𝑁𝑁∗

9.999×1017 𝑐𝑐𝑚𝑚−3�, 

            (31p) 

 

where a1 = 1.113 × 10−2(eV), a2 = 1.904 × 10−3(eV), a3 = 8.526 × 10−3(eV), a4 = 1.640 ×
10−2(eV) and a5 = 2.373 × 10−3(eV). 

 

Further, the correlation energy of an effective electron gas, 𝐸𝐸𝑐𝑐𝐶𝐶(𝑐𝑐𝐶𝐶)�𝑁𝑁∗, 𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥�, is given as (Van Cong, 
2023; 2023): 

 

𝐸𝐸𝑐𝑐𝐶𝐶(𝑐𝑐𝐶𝐶)�𝑁𝑁∗, 𝑟𝑟𝑑𝑑(𝑎𝑎), 𝑥𝑥� = −0.87553
0.0908+𝑟𝑟𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠)

+
0.87553

0.0908+𝑟𝑟𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠)
+�2[1−𝑙𝑙𝑠𝑠(2)]

𝜋𝜋2
�×𝑙𝑙𝐶𝐶 (𝑟𝑟𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠))−0.093288

1+0.03847728×𝑟𝑟𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠)
1.67378876  , 
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and 𝑟𝑟𝑠𝑠𝐶𝐶(𝑟𝑟𝐶𝐶) is determined in Eq. (29).   

It should be noted in Equations (31n) and (31p) that, for given 𝑟𝑟𝑑𝑑(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥, the values of 𝛥𝛥𝐸𝐸𝑔𝑔𝐶𝐶(𝑔𝑔𝐶𝐶) 
increase with increasing N. 

 

± 𝐄𝐄𝐅𝐅𝐂𝐂(𝐅𝐅𝐂𝐂)(𝐍𝐍∗,𝐱𝐱,𝐄𝐄) −Determination 
Here, as given in our previous works (Van Cong, 2023; Van Cong & Debiais, 1993), for the n(p)-type, 
the Fermi energy ± EFn(Fp) was investigated, with a precision of the order of 2.11 × 10−4, as: 

 
𝐸𝐸𝐹𝐹𝑠𝑠(𝑢𝑢)
𝑘𝑘𝐵𝐵𝐸𝐸

(−𝐸𝐸𝐹𝐹𝑠𝑠(𝑢𝑢)
𝑘𝑘𝐵𝐵𝐸𝐸

) = 𝐺𝐺(𝑢𝑢)+𝐴𝐴𝑢𝑢𝐵𝐵𝐹𝐹(𝑢𝑢)
1+𝐴𝐴𝑢𝑢𝐵𝐵

, 𝐴𝐴 = 0.0005372 and 𝐵𝐵 = 4.82842262,    (32) 

 

where u is the reduced electron density, 𝑢𝑢(𝑁𝑁∗,𝑇𝑇, 𝑥𝑥) ≡ 𝑁𝑁∗

𝑁𝑁𝑐𝑐(𝑣𝑣)(𝐸𝐸,𝑥𝑥)
, 𝑁𝑁𝑐𝑐(𝑣𝑣)(𝑇𝑇, 𝑥𝑥) = 2 × 𝑔𝑔𝑐𝑐(𝑣𝑣)(𝑥𝑥) ×

�𝑚𝑚𝑟𝑟(𝑥𝑥)×𝑘𝑘𝐵𝐵𝑇𝑇
2𝜋𝜋ℏ2

�
3
2  (𝑐𝑐𝑐𝑐−3), 𝐹𝐹(𝑢𝑢) = 𝑎𝑎𝑢𝑢

2
3 �1 + 𝑏𝑏𝑢𝑢−

4
3 + 𝑐𝑐𝑢𝑢−

8
3�
−23

,  𝑎𝑎 = �(3√𝜋𝜋/4) × 𝑢𝑢�
2/3

,  𝑏𝑏 = 1
8
�𝜋𝜋𝑎𝑎�

2
  , 𝑐𝑐 =

62.3739855
1920

�𝜋𝜋𝑎𝑎�
4
 ,    and   𝐺𝐺(𝑢𝑢) ≃ 𝐿𝐿𝑎𝑎(𝑢𝑢) + 2−

3
2 × 𝑢𝑢 × 𝐺𝐺−𝑑𝑑𝑢𝑢;  𝑎𝑎 = 23/2 � 1

√27
− 3

16� > 0. 

 

Here, one notes that:  

(i) as 𝑢𝑢 ≫ 1, according to the degenerate case, Eq. (32) is reduced to the function F(u),  

(ii)  𝐸𝐸𝐹𝐹𝑠𝑠(𝑢𝑢≪1)
𝑘𝑘𝐵𝐵𝐸𝐸

(−𝐸𝐸𝐹𝐹𝑠𝑠(𝑢𝑢≪1)
𝑘𝑘𝐵𝐵𝐸𝐸

) ≪ −1, to the non-degenerate case, Eq. (32) is reduced to the function G(u), 
and  

(ii) for given 𝑟𝑟𝑑𝑑(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥, the values of ± 𝐸𝐸𝐹𝐹𝐶𝐶(𝐹𝐹𝐶𝐶) increase with increasing N.                  

Now, going back to Eq. (28),  

(1)-the numerical results of  Egn1(gp1)�N∗, rd(a), x = 0, T = 20 K� are calculated, being in good 
agreement with experimental ones obtained by Wagner and del Alamo (1988), with a precision of the 
order of 1.428 % (4.556 %), respectively, as observed in the following Table 2 in Appendix 1. 

Table 2 in Appendix 1 

(2)-for 𝐍𝐍 > NCDn(CDp)(rd(a), x), the numerical results of the optical band gap, given in the n(p)-type,  
Egn1�N∗, rd(a), x, T = 20 K�, are obtained, as functions of N and rd(a) , for x=0, 0.5, 1, respectively, 
being reported in following Tables 3n and 3p in Appendix 1.  

Tables 3n and 3p in Appendix 1 

Finally, as noted in Equations (31n), (31p) and (32), because both two functions: ΔEgn(gp) and ± EFn(Fp), 
for given rd(a) and x, increase with increasing N, the optical band gap, Egn1�N∗, rd(a), x, T = 20 K�, 
determined in Eq. (28), and expressed as functions of N, thus randomly varies. 
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Appendix 
 

Table 1n. The numerical results of 𝑩𝑩𝒅𝒅𝒅𝒅, 𝜺𝜺, 𝑬𝑬𝒈𝒈𝑪𝑪𝒅𝒅, 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪, and 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
𝑬𝑬𝑩𝑩𝑬𝑬 are computed, using Equations (6), (8a), (8b), (10), and (26), respectively, noting 

that the relative deviations in absolute values are defined by: |𝑹𝑹𝑪𝑪| ≡ �𝟏𝟏 − 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
𝑬𝑬𝑩𝑩𝑬𝑬

𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
� 

Donor  P Si Te 
rd (nm) ↗ 0.110 𝐫𝐫𝐝𝐝𝐅𝐅=0.117 0.132 
x ↗ 0, 0.5, 1 0, 0.5, 1 0, 0.5, 1 
Bdo(x) in 108 (N/m2) ↘  8.036400, 3.876827, 1.5610697  
ε(rd, x) ↘ 11.58254, 13.81777, 16.052996 11.4, 13.6, 15.8 10.59472, 12.63931, 14.683906 
Egno(rd, x) eV ↗ 1.168948, 0.955092, 0.7409956 1.17, 0.9556, 0.7412 1.175310, 0.958162, 0.7422316 
NCDn(rd, x) in 1018 cm−3 ↗ 3.519998, 0.5405417, 0.0438400 3.6918109, 0.566926, 0.0459799 4.599238, 0.706273, 0.0572815 
NCDn
EBT(rd, x) in 1018 cm−3 ↗ 3.519975, 0.5405384, 0.0438396 3.6917862, 0.566922, 0.0459794 4.599222, 0.706269, 0.0572809 

|RD| in 10−6  7.10, 6.04, 9.29 6.71, 6.03, 9.30 3.47, 6.04, 9.30 
Donor  Sb Sn  
rd (nm) ↗ 0.136 0.140  
x ↗ 0, 0.5, 1 0, 0.5, 1  
ε(rd, x) ↘ 10.165683, 12.12748, 14.089280 9.6901858, 11.65602, 13.430257  
Egno(rd, x) eV ↗ 1.1786689, 0.959782, 0.7428839 1.1829244, 0.961835, 0.7437106  
NCDn(rd, x) in 1018 cm−3 ↗ 5.2064812, 0.799523, 0.0648444 1.1829244, 0.961835, 0.7437106  
NCDn
EBT(rd, x) in 1018 cm−3 ↗ 5.2064292, 0.799518, 0.0648438 6.0111115, 0.923085, 0.0748655  

|RD| in 10−6  9.99, 6.03, 9.30 6.7, 6.03, 9.30  
 

Table 1p. The numerical results of 𝑩𝑩𝒂𝒂𝒅𝒅, 𝜺𝜺, 𝑬𝑬𝒈𝒈𝑪𝑪𝒅𝒅, 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪, and 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
𝑬𝑬𝑩𝑩𝑬𝑬 are computed, using Equations (6), (8a), (8b), (10), and (26), respectively, noting 

that the relative deviations in absolute values are defined by: |𝑹𝑹𝑪𝑪| ≡ �𝟏𝟏 −
𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
𝑬𝑬𝑩𝑩𝑬𝑬

𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪
� 

Acceptor  B Si Mg 
ra (nm) ↗ 0.088 𝐫𝐫𝐚𝐚𝐅𝐅=0.117 0.140 
x ↗ 0, 0.5, 1 0, 0.5, 1 0, 0.5, 1 
Bao(x) in 108 (N/m2) ↘  9.155899, 5.850357, 3.902674  
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ε(ra, x) ↘ 15.9777, 19.0611, 22.1445 11.4, 13.6, 15.8 9.690186, 11.5602, 13.4302 
Egpo(ra, x) eV ↗ 1.15118,  0.94357, 0.73318 1.17, 0.9556, 0.7412 1.184725,  0.96501, 0.74748 
NCDp(ra, x) in 1018 cm−3 ↗ 4.060003, 1.062187, 0.260952 11.17771, 2.924339, 0.718436 18.19999, 4.761524, 1.169785 
NCDp
EBT(ra, 𝐱𝐱) in 1018 cm−3 ↗ 4.060012, 1.062182, 0.260956 11.17774, 2.924324, 0.718446 18.20003, 4.761500, 1.169803 

|RD| in 10−6  2.28, 5.03, 14.9 2.30, 5.01, 14.9 2.30, 5.02, 14.9 
Acceptor  In Cd  
ra (nm) ↗ 0.144 0.148  
x ↗ 0, 0.5, 1 0, 0.5, 1  
ε(ra, x) ↘ 9.191081, 10.9648, 12.73851 8.687132, 10.36360, 12.0401  
Egpo(ra, x) eV ↗ 1.190645, 0.96879, 0.749999 1.197687, 0.973291, 0.75300  
NCDp(ra, x) in 1018 cm−3 ↗ 21.328877, 5.580108, 1.3708900 25.260281, 6.608653, 1.623578  
NCDp
EBT(ra, 𝐱𝐱) in 1018 cm−3 ↗ 21.328916,  5.580080, 1.370910 25.260339,  6.608620, 1.623602  

|RD| in 10−6  2.30, 5.02, 14.9 2.30, 5.02, 14.9  
 

Table 2. Here, the numerical results of the optical band gap, given in the n(p)-type, 𝑬𝑬𝒈𝒈𝑪𝑪𝟏𝟏(𝒈𝒈𝑪𝑪𝟏𝟏)�𝑵𝑵∗, 𝒓𝒓𝒅𝒅(𝒂𝒂) = 𝒓𝒓𝑷𝑷(𝑩𝑩),𝒙𝒙 = 𝟎𝟎,𝑬𝑬 = 𝟐𝟐𝟎𝟎 𝑲𝑲�, are obtained by 

using Eq. (28), respectively, noting that the maximal values of  �𝑹𝑹𝑪𝑪 = 𝟏𝟏 − 𝑬𝑬𝒈𝒈𝑪𝑪𝟏𝟏(𝒈𝒈𝑪𝑪𝟏𝟏)

𝑬𝑬𝒈𝒈𝑪𝑪𝟏𝟏(𝒈𝒈𝑪𝑪𝟏𝟏)
𝑬𝑬𝒙𝒙𝑪𝑪. � , 𝑬𝑬𝒈𝒈𝑪𝑪𝟏𝟏(𝒈𝒈𝑪𝑪𝟏𝟏)

𝑬𝑬𝒙𝒙𝑪𝑪.  being the experimental values given by Wagner and 

del Alamo (1988), are found to be given respectively by: 1.428 % (4.556 %) 
N  in 1018 cm−3 4 8.5 15 50 80 150  
Egn1
Exp.(N∗, rP, T) in eV 1.138 1.138 1.129 1.131 1.132 1.133  

Egn1(N∗, rP; x = 0, T) in eV 1.1375 1.120 1.114 1.115 1.123 1.149  
|RD| in % 0.041 1.105 1.291 1.428 0.755 1.415  
N  in 1018 cm−3 6.5 11 15 26 60 170 400 
Egp1
Exp.(N∗, rB, T) in eV 1.142 1.140 1.139 1.142 1.142 1.162 1.178 

Egp1(N∗, rB, x = 0, T) in eV 1.115 1.102 1.097 1.090 1.090 1.129 1.231 
|RD| in % 2.341 3.312 3.714 4.556 4.505 2.825 4.492 
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Table 3n.  Here, for 𝑵𝑵 > 𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪(𝒓𝒓𝒅𝒅,𝒙𝒙), the numerical results of the optical band gap, 𝑬𝑬𝒈𝒈𝑪𝑪𝟏𝟏(𝑵𝑵∗, 𝒓𝒓𝒅𝒅,𝒙𝒙,𝑬𝑬 = 𝟐𝟐𝟎𝟎 𝑲𝑲), are obtained by using Eq. (28), as 
functions of N and 𝒓𝒓𝒅𝒅 , for x=0, 0.5, 1, respectively 

N  in 1018 cm−3 4 8.5 15 50 80 150 
x=0       
Egn1(N∗, rP, T) in eV 1.1375 1.120 1.114 1.115 1.123 1.149 
Egn1(N∗, rSi, T) in eV 1.139 1.120 1.113 1.113 1.121 1.146 
Egn1(N∗, rTe, T) in eV  1.118 1.109 1.104 1.110 1.131 
Egn1(N∗, rSb, T) in eV  1.118 1.107 1.099 1.104 1.123 
Egn1(N∗, rSn, T) in eV  1.119 1.104 1.092 1.096 1.113 
x=0.5       
Egn1(N∗, rP, T) in eV 0.921 0.920 0.922 0.946 0.970 1.024 
Egn1(N∗, rSi, T) in eV 0.921 0.919 0.920 0.944 0.967 1.021 
Egn1(N∗, rTe, T) in eV 0.918 0.914 0.915 0.935 0.956 1.006 
Egn1(N∗, rSb, T) in eV 0.916 0.912 0.911 0.929 0.949 0.998 
Egn1(N∗, rSn, T) in eV 0.914 0.908 0.907 0.923 0.941 0.987 
x=1       
Egn1(N∗, rP, T) in eV 0.726 0.737 0.752 0.830 0.890 1.013 
Egn1(N∗, rSi, T) in eV 0.725 0.736 0.751 0.828 0.887 1.010 
Egn1(N∗, rTe, T) in eV 0.722 0.731 0.745 0.819 0.876 0.995 
Egn1(N∗, rSb, T) in eV 0.720 0.728 0.742 0.813 0.869 0.987 
Egn1(N∗, rSn, T) in eV 0.717 0.724 0.737 0.806 0.806 0.976 

 
 

Table 3p.     Here, for 𝐍𝐍 > 𝐍𝐍𝐂𝐂𝐂𝐂𝐂𝐂(𝐫𝐫𝐚𝐚,𝐱𝐱), the numerical results of 𝐄𝐄𝐠𝐠𝐂𝐂𝟏𝟏(𝐍𝐍∗, 𝐫𝐫𝐚𝐚,𝐱𝐱,𝐄𝐄 = 𝟐𝟐𝟎𝟎 𝐊𝐊), are obtained by using Eq. (28), as functions of N and 𝐫𝐫𝐚𝐚 , for 
x=0, 0.5, 1, respectively 

N  in 1018 cm−3 6.5 11 15 26 60 170 400 
x=0        
Egp1(N∗, rB, T) in eV 1.115 1.102 1.097 1.090 1.090 1.129 1.231 
Egp1(N∗, rSi, T) in eV 1.094 1.073 1.063 1.046 1.027 1.129 1.085 
Egp1(N∗, rMg, T) in eV    1.054 0.999 0.970 0.998 
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Egp1(N∗, rIn, T) in eV    1.064 0.990 0.951 0.969 
Egp1(N∗, rCd, T) in eV    1.102 0.982 0.930 0.936 
x=0.5        
Egp1(N∗, rB, T) in eV 0.910 0.909 0.909 0.915 0.943 1.043 1.237 
Egp1(N∗, rSi, T) in eV 0.884 0.877 0.873 0.870 0.879 0.943 1.092 
Egp1(N∗, rMg, T) in eV 0.891 0.868 0.858 0.846 0.841 0.883 1.006 
Egp1(N∗, rIn, T) in eV 0.898 0.865 0.853 0.837 0.828 0.862 0.977 
Egp1(N∗, rCd, T) in eV  0.864 0.849 0.829 0.814 0.840 0.944 
x=1        
Egp1(N∗, rB, T) in eV 0.732 0.745 0.757 0.789 0.880 1.126 1.545 
Egp1(N∗, rSi, T) in eV 0.706 0.714 0.722 0.745 0.817 1.027 1.401 
Egp1(N∗, rMg, T) in eV 0.691 0.694 0.699 0.716 0.778 0.968 1.318 
Egp1(N∗, rIn, T) in eV 0.686 0.687 0.691 0.707 0.764 0.948 1.288 
Egp1(N∗, rCd, T) in eV 0.680 0.680 0.683 0.696 0.749 0.925 1.256 

 


