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Abstract: 
Probabilistic Nonnegative Matrix Factorizations (NMFs) are very 
useful in statistics when dealing with stochastic signals such as wave 
fronts, share prices, and volatility as a Nonnegative Matrix 
Factorization (NMF) approach. Little attention has been made in the 
literature to developing NMF algorithms that use moving average to 
exploit data's temporal dependencies. A hidden Markov model 
(HMM) using a Weibull distribution as the output density function 
was created in this study. The Weibull HMM was then reformulated 
as a probabilistic NMF. This demonstrates the connection between 

the proposed HMM and NMF, and will lead to a novel probabilistic NMF approach in which the model 
captures temporal dependencies inherently utilizing moving average. Furthermore, the model parameters 
were estimated using maximum likelihood estimation (MLE). The model's adaptability was compared to 
the existing probabilistic NMFs models of gamma and lognormal. Our trials with US COVID-19 data 
revealed that the proposed technique achieves a superior balance of sparsity, the goodness of fit, and 
temporal modeling than gamma and lognormal models. 
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Introduction 
Markov models are frequently used in 
probability theory and statistics to simulate the 
probabilities of distinct states and the rates of 
transitions between them. In general, the 
approach is used to model systems. Markov 
models can also be used to identify patterns, 
predict outcomes, and learn the statistics of 
sequential data. The Hidden Markov Model 
(HMM) was first introduced in 1957 
(MacDonald and Zucchini 1997; Cappe et al. 
2005; Nkemnole et al. 2013), with several 
applications in signal processing, medicine, 

engineering, and management. The HMM is a 
doubly stochastic process that has an underlying 
stochastic process that is not directly observable 
but can be observed via another process that 
generates a succession of independent random 
observations. HMM can be defined in the same 
way via a functional representation known as a 
state space model (Nkemnole et al. 2013). 

HMM have been used to analyze random 
processes with temporal or spatial structure for 
over four decades and have been successfully 
applied to a wide range of applications including 
but not limited to speech recognition, musical 
scores, handwriting, and bio-informatics 
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(Lakshminarayanan and Raich 2013). In text 
document processing, for example, words 
display reliance on previous material, and the 
usage of HMM may result in more effective 
modeling and inference as compared to an 
independent word model. 

In classification, an HMM can be extracted for 
each class during the training phase (e.g., using 
the maximum likelihood (ML) principle), and the 
Bayes risk minimizing maximum aposteriori 
classifier can be used to optimally determine 
which of several HMMs is most likely to 
generate a sequence of test observations. The 
well-known Baum-Welch technique (Rabiner 
1989) is commonly utilized in performing HMM 
ML parameter estimation. The Baum-Welch 
algorithm is an expectation-maximization (EM) 
generalized implementation of the ML 
estimator. Baum-Welch inherits the property 
that generalized EM produces a succession of 
non-decreasing likelihood values converging to a 
local maximum of the likelihood. Fast 
convergence, on the other hand, is not assured. 
The computational complexity of each iteration 
of the Baum-Welch method is proportional to 
the length of the observation series. When 
dealing with extended sequences, the Baum-
Welch technique may be prohibitively expensive 
if many iterations are necessary. We are 
interested in developing resolution to this 
challenge. 

Non-Negative Matrix Factorization (NNMF) 
(Lee and Seung 2001) is a computationally 
efficient method for factoring a matrix into 
Non-Negative Factors that has been successfully 
applied in a variety of applications including text 
mining, spectral data analysis (Berry et al. 2007), 
face recognition (Lee and Seung 1999), and so 
on. There has been minimal previous research 
into the use of NNMF algorithms for HMM. 
Hsu et al. (2009) use a creative reparametrization 
of the conventional HMM problem (Rabiner 
1989) to compute a global solution for their 
suggested parametrization based on singular 
value decomposition (SVD). The authors of 
Cybenko and Crespi (2008) use NNMF on 
higher-order transitions to compute HMM 
parameters. However, unlike the least squares 
criterion employed in their research, their 

NNMF formulation is based on divergence 
minimization. Furthermore, both papers assume 
that the observations are discrete. To the best of 
our knowledge, no previous work on the 
application of NNMF to HMMS with 
continuous observations has been published. 

Probabilistic Non-negative Matrix Factorization 
(NMF) techniques are particularly useful when 
dealing with stochastic signals such as voice. 
Many scholars have become interested in non-
negative matrix factorization (NMF) in recent 
years. As a result, various ways to obtaining 
NMF utilizing various criteria have been 
established (Cichocki 2009). In its most basic 
form, NMF finds a locally optimum and 
deterministic approximation of a non-negative 
matrix x as a product of two non-negative 
matrices.  

To deal with non-negative data, we developed an 
HMM in which the output density functions are 
considered to be Weibull distributions. The 
Weibull distribution was chosen because of its 
shape characteristics, which allow for more 
flexible modelling than the exponential, normal, 
student-t, gamma, and generalized error 
distributions explored previously. Data scaling is 
not required when utilizing the Weibull 
distribution. The Weibull HMM would therefore 
be rewritten as a probabilistic NMF. Each HMM 
state is intended to result in a basis vector in the 
NMF representation, and the data's temporal 
correlation is enforced by the transition 
probability between the states. To account for 
the data's time-varying level, an explicit Weibull 
prior distribution is evaluated over the gain 
variable. Following that, the study presents an 
efficient EM approach for estimating the time-
varying and stationary model parameters. 

 

Literature review 
Cichocki et al. (2009) establishes a locally 
optimum and deterministic approximation of a 
non-negative matrix in the form of a product of 
two non-negative matrices. Cemgil and Fevotte 
(2009), Hoffman et al (2010), and Mysore et al 
(2010) create a numerical technique to establish 
a probabilistic framework for HMM for a non-
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negative matrix factorization. Hoffman et al. 
(2010) presented a method for performing non-
negative matrix factorization (NMF), in which 
data is supposed to follow an exponential 
distribution with rate parameters factored using 
an NMF. Their model is built in such a way that 
the optimal number of NMF basis vectors can 
be determined automatically. Mysore et al. 
(2010) integrated NMF and HMM, assuming 
that each sample of data was a sum of certain 
complex-valued Gaussian components with 
covariance matrices factorized using NMF. 
More specifically, each component's movement 
between different states was governed 
individually by a separate Markov chain. Mysore 
et al. (2010) also suggested a non-negative HMM 
with a Markov chain with many chains in each 
state, and the observed data is supposed to 
follow a multinomial mixture model. 
Nonetheless, due to the multinomial distribution 
assumption, the observed data must be scaled to 
be integer. The issue here is that the integer 
scaling levels will directly assume noise level in 
the model, which may cause side effects. To deal 
with non-negative data, Mohammadiha et al. 
(2017) developed an HMM in which the output 
density functions are considered to be gamma 
distributions. The gamma distribution source 
allows for more flexible modeling than the 
exponential distribution examined by Hoffman. 
Furthermore, unlike Cemgil and Mysore, the 
approach does not require data scaling. 
However, if some of the data points are zeros, 
this method may fail.  

This research work, on the other hand, proposes 
an HMM in which the output density function is 
assumed to be Weibull distribution, using 
moving average data. This method uses moving 
average rather than actual data points to smooth 
the curves and prevent zero data points. 
Furthermore, this method does not require that 
the data is normally distributed and can be used 
in measuring volatility in survival and reliability 
models. 

 

 

 

Methods 
Parameter Estimation 

The HMM is an important statistical model in 
many fields including bioinformatics (Durbin et 
al., 1998), econometrics (Kim et al., 1998) and 
population genetics ( Felsenstein & Churchill, 
1996); see also Cappe et al. (2005) for a recent 
overview. Often, one has a range of HMMs 
parameterized by a parameter vector taking 
values in some compact subset ‚ of the Euclidian 
space. The HMM is comprised of a latent state 
process {Xk}k≥0 which is only indirectly 
observed through the observation process. 
Given a sequence of such observations Ŷ1….Ŷn, 
in Rm, the objective is to find the parameter 
vector  θ * Ɛ Θ ‚ that corresponds to the 
particular HMM from which the data were 
generated. 

A common approach to Θ* estimate is 
maximum likelihood estimation (MLE). The 
parameter estimate, denoted θ̂n*, is obtained via 
maximizing the log-likelihood. 

 

𝜃𝜃�𝑛𝑛 = arg𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃∗ 𝜖𝜖𝜖𝜖𝑙𝑙𝑛𝑛 (θ)   (1) 

 

where 

  𝑙𝑙𝑛𝑛(𝜃𝜃) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝜃𝜃�𝑌𝑌�1 … .𝑌𝑌�𝑛𝑛� =
∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝜃𝜃  (𝑌𝑌�𝑖𝑖|𝑌𝑌�1 … …𝑌𝑌�𝑖𝑖−1)𝑛𝑛
𝑖𝑖=1    (2) 

 

Unless the model is simple, for example, linear 
Gaussian or when the range χ of the latent 
variables {Xk}k≥0 is a finite set, one can seldom 
evaluate the likelihood analytically. There are a 
variety of techniques, for example sequential 
Monte Carlo (SMC), for numerically estimating 
the likelihood. However, in a wide range of 
applications these methods cannot be used, for 
example when the conditional density of the 
observation Ŷk given hidden state Xk is 
intractable, by which we mean that this -density 
cannot be evaluated analytically and has no 
unbiased Monte Carlo estimator. Despite this, 
one is often still able to generate samples from 
the corresponding processes for different values 
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of the parameter θ (e.g. Jasra et al., 2012). This 
has led to the development of methods in which 
θ * is estimated by taking the value of that 
maximizes some principled approximation of 
the likelihood. 

One such approach is indirect inference 
(Gourieroux et al., 1993; Heggland and Frigessi, 
2004. However, in the context of HMMs, when 
one does not adopt a linear Gaussian 
approximation of the filtering density, which can 
be very inaccurate as in extended Kalman filter 
approximations, this method could become 
more expensive. Estimating θ*for HMMs with 
an intractable conditional observation density 
can be performed in a Bayesian context 
(Campillo & Rossi, 2009). Campillo and  Rossi 
(2009) utilizes the so-called convolution particle 
filter, which uses ideas from kernel density 
estimation, to replace the intractable observation 
density needed for the weight evaluation in the 
particle filter with their kernel estimates, to 
sequentially estimate the posterior distribution 
of θ *. 

The convolution particle filter is closely related 
to another Bayesian approach called 
approximate Bayesian computation (ABC), 
which has recently received a great deal of 
attention. A non-exhaustive list of references 
includes McKinley et al. (2009), Peters et al. 
(2010), and Ratmann et al. (2009) In the standard 
ABC approach, given the data set Y1….Yn, the 
likelihood   

pθ( Ŷ1….Ŷn ) is replaced by the approximation 

 

𝑃𝑃𝜃𝜃(𝑑𝑑(𝑌𝑌1 … … . .𝑌𝑌𝑛𝑛:𝑌𝑌�1 … …𝑌𝑌�𝑛𝑛 ) ≤ 𝜀𝜀  (3) 

 

where {Yk}k≥1 denotes the observed state of the 
HMM with parameter θ , d(.;.)  is some suitable 
metric on the n-fold product space Rm….Rm and 
Ɛ >0 is a constant that reflects the accuracy of 
the approximation. The probability in (1) is 
computed with respect to the law of Y1….Yn 
while Ŷ1….Ŷn are regarded fixed. We call (1) the 
ABC likelihood and in practice, it can be 
estimated using Monte Carlo techniques. 

The intuitive justification for the ABC likelihood 
is that for sufficiently small Ɛ 
 

𝑃𝑃𝜃𝜃(𝑑𝑑(𝑌𝑌1 … … . .𝑌𝑌𝑛𝑛:𝑌𝑌�1 … …𝑌𝑌�𝑛𝑛 ) ≤ 𝜀𝜀
≈ 𝑃𝑃𝜃𝜃(𝑌𝑌�1 … …𝑌𝑌�𝑛𝑛 ) 

𝑉𝑉𝜀𝜀𝑌𝑌�1 … . .𝑌𝑌�𝑛𝑛     (4) 

 

where V ƐŶ1….Ŷn denotes the volume of the d-ball 
of radius around the points Ŷ1….Ŷn. Thus, the 
probabilities (1) will provide an approximation 
to the true likelihood, up to the value of some 
renormalizing factor, which is independent of θ 
and hence can be ignored. However, in general, 
it is not at all clear in what sense an 
approximation to the likelihood must be ‘good’ 
in order for the resulting inference procedures to 
be well behaved. In this study one of the things 
to do is  to resolve this issue by directly 
investigating the effect of the parameter , not on 
the quality of the approximations (1), but on the 
behaviour of the estimates of θ* , which are 
obtained by maximizing the ABC likelihood as 
the length of the data set increases. 

We shall use the following specialization of the 
standard ABC likelihood (1) for the HMM (Jasra 
et al., 2012): we approximate the likelihood 
associated to a given sequence of observations 
Ŷ1….Ŷn  from an HMM with the probability 

 

𝑃𝑃𝜃𝜃(𝑌𝑌1𝜀𝜀𝐵𝐵𝑌𝑌1�
𝜀𝜀 … … . .𝑌𝑌𝑛𝑛𝜀𝜀𝐵𝐵𝑌𝑌�𝑛𝑛

𝜀𝜀 )   (5) 

 

where B Ɛ Y denotes the ball of radius centred 
around point y. The benefits of the ABC 
likelihood in (5) is that it retains the Markovian 
structure of the model. This facilitates both 
simpler Markov chain Monte Carlo (McKinley et 
al., 2009) and SMC (Jasra et al., 2012) 
implementation of the ABC. Furthermore, we 
are able to compute an unbiased estimate of this 
ABC likelihood using SMC even when the 
conditional densities of the observations given 
the hidden state are intractable. This is a 
practically useful extension as such HMMs are 
used in practice.  
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Hidden Markov Model 

A Hidden Markov model (HMM) is a stochastic 
process with an underlying, unseen Markov 
chain in which each state generates just one of K 
potential observations. These state-dependent 
observable output measurements are apparent to 
us. So we may say that an HMM is a Markov 
process with two components, one observable 
and one unobservable (hidden). The Markov 
property is fulfilled by the process tS , which 
represents the underlying unobserved process of 
the HMM: 

 

𝑃𝑃(𝑆𝑆𝑡𝑡 = 𝑗𝑗|𝑆𝑆1 = 𝑖𝑖1 … . 𝑆𝑆𝑡𝑡−1 = 𝑖𝑖𝑡𝑡−1) =
𝑃𝑃(𝑆𝑆𝑡𝑡 = 𝑗𝑗|𝑆𝑆𝑡𝑡−1 = 𝑖𝑖𝑡𝑡−1)                       (6) 

 

meaning that the probability of the process S of 
being in a state j depends only on the previous 
state it−1. 

Let 

πk = P(S1 = k) be the initial probability of state k, 
k = 1,...,K.  

Let 

 

𝑃𝑃𝑗𝑗𝑗𝑗=𝑃𝑃(𝑆𝑆𝑡𝑡 = 𝐾𝐾|𝑆𝑆𝑡𝑡−1 = 𝑗𝑗)   (7) 

 

denote the transition probability, that is, the 
probability of being in state k at time t given that 
previous state was j at time t − 1, We must also 
have that = 1 and Pjk > 0. The initial 
probabilities πk = (π1,π2,...,πk) together with the 
transition probability matrix P, where Pij is the 
elements of the matrix, govern the state 
switching behaviour of the chain. The number 
of time spent in each state before jumping to the 
next state is called the sojourn time. The 
probability of spending u consecutive time steps 
in state i under this model is 

𝑑𝑑𝑖𝑖 (𝑢𝑢) = 𝑃𝑃(𝑆𝑆𝑡𝑡+𝑢𝑢+1 ≠ 𝑖𝑖, 𝑆𝑆𝑡𝑡+𝑢𝑢 = 𝑖𝑖, 𝑆𝑆𝑡𝑡+𝑢𝑢−1 =
𝑖𝑖, … . . , 𝑆𝑆𝑡𝑡+2=𝑖𝑖|𝑆𝑆𝑡𝑡+1=𝑖𝑖,𝑆𝑆𝑡𝑡 ≠ 𝑖𝑖)  (8) 

 

= 𝑃𝑃𝑖𝑖𝑖𝑖𝑢𝑢−1(1 − 𝑃𝑃𝑖𝑖) 

 

We call di(u) the sojourn density. Hence the 
sojourn time is geometrically distributed for any 
Markov chain, and the most likely sojourn time 
for any state is equal to 1.  

The probability of an output observation, Xt, 
depends only on the state that produced the 
observation, St, and not on any other states or 
any other observations. Let S = (St, t = 0,...,T) 
denote the sequence of unobserved random 
variables, each with a finite state space {1,..., J}, 
and let X = (Xt, t = 1,...,T) denote a 
corresponding set of observed random vectors. 
The process {Xt} represents the state-dependent 
process of the HMM and fulfils the conditional 
(on the hidden states) independence property 

 

𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑚𝑚𝑡𝑡|𝑋𝑋1=𝑚𝑚1,..𝑋𝑋𝑡𝑡−1 = 𝑚𝑚𝑡𝑡−1,𝑆𝑆1=𝑠𝑠1..𝑆𝑆𝑡𝑡 =
𝑠𝑠𝑡𝑡)      (9) 

 

𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑚𝑚𝑡𝑡|𝑃𝑃(𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑡𝑡) 

 

This is called the emission probability. The 
probability that you will see xt   given that at the 
same time you are in state st. 

The HMM has the functional form 

 

𝑃𝑃(𝑋𝑋, 𝑆𝑆) =
𝑃𝑃(𝑋𝑋|𝑆𝑆)𝑃𝑃(𝑆𝑆)∏ 𝑃𝑃(𝑋𝑋𝑡𝑡|𝑆𝑆𝑡𝑡)∏ 𝑃𝑃 (𝑆𝑆𝑡𝑡|𝑆𝑆𝑡𝑡−1)𝑇𝑇

𝑡𝑡=1
𝑇𝑇
𝑡𝑡=1  

      (10) 

 

Given a specific observation sequence we want 
to calculate, we must first compute the joint 
probability of being in a particular hidden state 
sequence St and generating a particular sequence 
Xt of observable events. Then we must compute 
the total probability of the observations just by 
summing over all possible hidden state 
sequences. 

 

𝑃𝑃(𝑋𝑋) = ∑ 𝑃𝑃(𝑋𝑋, 𝑆𝑆)𝑠𝑠 = ∑ 𝑃𝑃(𝑋𝑋|𝑆𝑆)𝑃𝑃(𝑆𝑆)𝑠𝑠   
     (11) 
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For a HMM with an observation sequence of T 
observations and N hidden states, there are NT 

possible hidden sequences. In real life situations, 
even if the length of the sequences N and T are 
moderate, NT becomes a very large number. This 
makes it hard for us to compute the total 
observation likelihood. Thus, there exist a 
couple of algorithms we can use that makes it 
easier for us to compute the probability. The 
Forward Algorithm, The Backward Algorithm 
and The Viterbi Algorithm are three of the most 
used algorithms to compute the probability of a 
given observation sequence. 

Non-Negative Matrix Factorization 

Non-negative matrix factorization (NMF or 
NNMF), also non-negative matrix 
approximation (Dhillon and Sra, 2005; Rashish 
and Sra, 2010) is a group of algorithms in 
multivariate analysis and linear algebra where a 
matrix V is factorized into two matrices W and 
H, with the property that all three matrices have 
no negative elements. This non-negativity makes 
the resulting matrices easier to inspect.  

 

Consider a data matrix nmRV ×∈  with m 
dimensions and n data points which has only 
non-negative elements. If we define two 
matrices, also with only non-negative elements:  

W ∈ Rm×r and H ∈ Rr×n, then NMF can reduce 
the dimensionality of V through the 
approximation: 

 

𝑉𝑉 ≈ 𝑊𝑊𝑊𝑊     (12) 

 

where r < min(m, n) is the number of directions 
in the subspace of m that we are projecting onto. 
NMF looks like: 

[𝑉𝑉] = [𝑊𝑊] ∗ [𝑊𝑊] 
 

where the W and H matrices are both smaller 
than the original starting matrix, V. 

The columns of W make up the new dimensions 
we are projecting onto. Each column of H 

represents the coefficients s of each data point in 
this new subspace. 

An explanatory way of looking at NMF, as 
pointed out by Lee and Seung (2001), is to study 
each column of V at a time. Equation (12) then 
reduces to  

 

vj ≈ Whj 

 

where vj and hj are column vectors of V and H 
respectively.  

The original m-dimensional data point, vj, is now 
represented in this new space by the r-
dimensional hj. If we then consider each row of 
V independently, then the ith row of vj is Vi,j and 
the approximation is: 

 

𝑉𝑉𝑖𝑖𝑗𝑗 = �𝑊𝑊𝑖𝑖𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗

𝑟𝑟

𝑗𝑗=1

 

 

i.e. Vi,j, is approximated as  a linear combination 
of all the elements of hj. 

The Weibull Distribution 

The Weibull distribution, named after Swedish 
mathematician Waloddi Weibull, is a continuous 
probability distribution. He first developed the 
distribution as a model for material breaking 
strength, but in his 1951 publication A Statistical 
Distribution Function with Wide Applicability, 
he saw its potential. It is now widely used to 
evaluate product reliability, examine life data, 
and model failure times. The Weibull model can 
also fit data from many other domains, such as 
biology, economics, engineering sciences, and 
hydrology (Rinne, 2008). 

Probability Density Function (PDF) of 
Weibull Distribution 

The probability density function of a Weibull 
random variable is 

 

𝑓𝑓(𝑚𝑚) = 𝑗𝑗
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝑗𝑗−1

𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

, 𝑚𝑚 ≥ 0 (13) 
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where k > 0 is the shape parameter and λ > 0 is 
the scale parameter of the distribution. Its 
complementary cumulative distribution function 
is a stretched exponential function. The Weibull 
distribution is related to a number of other 
probability distributions; in particular, it 
interpolates between the exponential 
distribution (k = 1) and the Rayleigh distribution 
(k = 2 and λ = √2σ. An important aspect of the 
Weibull distribution is how the values of the 
shape parameter and the scale parameter affect 
such distribution characteristics as the shape of 
the pdf curve, the reliability and the failure rate.  

 

 
Figure 1. Probability Density Function of 

Weibull Distribution 

 

The form of the density function of the Weibull 
distribution changes drastically with the value 
of k as shown in Figure 1. For 0 < k < 1, f(x) → 
∞ as x → 0 from above and is strictly decreasing. 
For k = 1, f(x) → 1/λ as x → 0 from above and 
is strictly decreasing. For k > 1, f(x) → 0 as x → 
0 from above, increases until its mode and 
decreases after it. The density function has 
infinite negative slope at x = 0 if 0 < k < 1, 
infinite positive slope at x = 0 if 1 < k < 2 and 
null slope at x = 0 if k > 2. For k = 1 the density 
has a finite negative slope at x = 0. For k = 2 the 
density has a finite positive slope at x = 0. 
As k goes to infinity, the Weibull distribution 
converges to a Dirac delta distribution centered 
at x = λ. Moreover, the skewness and coefficient 
of variation depend only on the shape parameter. 
A generalization of the Weibull distribution is 
the hyperbolastic distribution of type III.  

Cumulative Distribution Function (CDF) of 
Weibull Distribution 

The cumulative distribution function for the 
Weibull distribution is given by 

 

𝐹𝐹(𝑚𝑚) = 1 − 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

   (14) 

 

for x ≥ 0, and F(x; k; λ) = 0 for x < 0. 

 

 
Figure 2. Cumulative Distribution 

Functions of Weibull 

 

From figure 2, if x = λ then F(x; k; λ) 
= 1 − e−1 ≈ 0.632 for all values of k. Vice versa: 
at F(x; k; λ) = 0.632 the value of x ≈ λ. 

Quantile Function of Weibull Distribution 

The quantile (inverse cumulative distribution) 
function for the Weibull distribution is 

 

𝑄𝑄(𝑝𝑝) = 𝜆𝜆[− ln(1 − 𝑝𝑝)]1/𝑗𝑗  (15) 

for 0 ≤ p < 1. The Weibull variates would be 
generated from the quantile function in 
Equation (3).  

Survival Function of Weibull Distribution 

By definition, the survival function is given by 

 

𝑆𝑆(𝑚𝑚) = 1 − 𝐹𝐹(𝑚𝑚) 

 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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The survival function of Weibull distribution is 
given by 

 

𝑆𝑆(𝑚𝑚) = 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

    (16) 

 

Hazard Function of Weibull Distribution 

By definition, the hazard function is given by 

 

ℎ(𝑚𝑚) =
𝑓𝑓(𝑚𝑚)

1 − 𝐹𝐹(𝑚𝑚) 

 

The hazard rate also known as failure rate h is 
given by 

 

ℎ(𝑚𝑚) = 𝑗𝑗
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝑗𝑗−1

   (17) 

 

for 0 ≤ p < 1.  

Cumulative Hazard of Weibull Distribution 

By definition, the cumulative hazard function is 
given by 

 

𝑊𝑊(𝑚𝑚) = − ln[1 − 𝐹𝐹(𝑚𝑚)] 
 

The hazard rate also known as failure rate h is 
given by 

 

𝑊𝑊(𝑚𝑚) = �𝑥𝑥
𝜆𝜆
�
𝑗𝑗
    (18) 

Reverse Hazard of Weibull Distribution 

By definition, the reverse hazard function is 
given by 

 

ℎ(𝑚𝑚) =
𝑓𝑓(𝑚𝑚)
𝐹𝐹(𝑚𝑚) 

 

The reverse hazard rate also known as failure 
rate h is given by 

 

ℎ(𝑚𝑚) = 𝑗𝑗
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝑗𝑗−1

𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

�1 − 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

�
−1

 

     (19) 

 

HMM with Weibull Distributions 

The proposed HMM models the 
multidimensional nonnegative signal X with a 
limited number of hidden states. In the field of 
speech processing, where the short-time 
magnitude/power spectral vectors are 
commonly used as the input matrix for NMF, 
these hidden states can be identified, for 
example, with different speech sounds (phones). 
Let us assume that the hidden random variable 
St (at time t) of the HMM can take one of I 
available discrete values i = 1, ..., I. Because of 
the nonnegative nature of the signal, the output 
probability density functions of the HMM are 
modelled as gamma distributions. Hence, the 
conditional distribution of each element of X is 
given as: 

 

𝑓𝑓(𝑚𝑚𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡) =

  𝑗𝑗𝑟𝑟𝑟𝑟
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

� 𝑥𝑥𝑟𝑟𝑡𝑡
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

�
𝑗𝑗𝑟𝑟𝑟𝑟−1

𝑒𝑒
−� 𝑥𝑥𝑟𝑟𝑡𝑡

𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟
�
𝑘𝑘𝑟𝑟𝑟𝑟

, 𝑚𝑚𝑟𝑟𝑡𝑡 ≥ 0 
     (20) 

 

where Gt is the short-term stochastic gain 
parameter, r is the dimension index, and kri and 
λri are state-dependent shape and scale 
parameters. Thus, the expected value and 
variance are obtained as 𝐸𝐸(𝑋𝑋𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 =
𝑙𝑙𝑡𝑡) = 𝑘𝑘𝑟𝑟𝑖𝑖𝑙𝑙𝑡𝑡𝜆𝜆𝑟𝑟𝑖𝑖  and 𝑉𝑉𝑚𝑚𝑉𝑉(𝑋𝑋𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 =
𝑙𝑙𝑡𝑡) = 𝑘𝑘𝑟𝑟𝑖𝑖(𝑙𝑙𝑡𝑡𝜆𝜆𝑟𝑟𝑖𝑖)2. In modeling the speech 
spectra, the choice of the gamma distribution is 
motivated by the super-Gaussianity of the 
speech DFT coefficients. 

We assume that, given the hidden state St, 
different elements of the vector Xt are 
independent. Hence, the HMM output density 
function is given as: 

https://en.wikipedia.org/wiki/Failure_rate
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𝑓𝑓(𝑋𝑋𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡) =   ∏ 𝑓𝑓(𝑚𝑚𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 =𝑅𝑅
𝑟𝑟=1

𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡).     (21) 

 

Gt is allowed to take only nonnegative values, 
and is assumed to have a Weibull distribution for 
the sake of tractability: 

 

𝑓𝑓(𝑙𝑙𝑡𝑡) =   𝜙𝜙
𝜃𝜃𝑡𝑡
�𝑔𝑔𝑡𝑡
𝜃𝜃𝑡𝑡
�
𝜙𝜙−1

𝑒𝑒−�
𝑔𝑔𝑡𝑡
𝜃𝜃𝑡𝑡
�
𝜙𝜙

,   𝑙𝑙𝑡𝑡 ≥ 0 
     (22) 

 

with φ and θt being the shape and scale 
parameters, respectively. In practice, the scale 
parameters λri are estimated to describe the 
signal statistics for different states while θt is 
meant to only model the long-term level changes 
of the signal. The sequence of hidden states is 
characterized by a first order Markov chain, with 
initial state probability mass vector p, with 
elements pi = f[St=0 = i], and a transition 
probability matrix q, with elements qij = f[St = j  
St-1 = i] as illustrated in Figure 1. 

Weibull HMM as a Probabilistic NMF 

The HMM described above can alternatively be 
formulated as a probabilistic NMF. A usual 
approach in probabilistic NMFs is to 
approximate an input matrix with an expected 
value that is obtained under the model 
assumptions. Then, the expected value is 
decomposed into a product of two nonnegative 
matrices. By doing so, a condensed 
representation of data can be achieved. 
Following this approach, we use an expected 
value of Xt to derive an NMF representation of 
the given vector xt. That is, xt ≈ 𝑚𝑚𝑡𝑡⏞  = vwt where 
𝑚𝑚𝑡𝑡⏞  refers to the expected value. We calculate 𝑚𝑚𝑡𝑡⏞  
by considering the posterior distribution of the 
state and gain variables conditioned on the entire 
sequence of the observed signal over time, x: 

 

𝑚𝑚�𝑡𝑡 =  ∑ ∫𝐸𝐸(𝑋𝑋𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡)𝑓𝑓(𝑆𝑆𝑡𝑡 =𝐼𝐼
𝑖𝑖=1

𝑖𝑖,𝑙𝑙𝑡𝑡|𝑚𝑚)𝑑𝑑𝑙𝑙𝑡𝑡 .     (23) 

 

Let us denote the hidden random states by a one-
of-I indicator vector St i.e. Sit = 1 if the Markov 
chain at time t is in state i and Sjt = 0  for j ≠i. 
Accordingly, the realizations are referred to as st. 
We define the basis matrix v×r = [vri] as vri = 
kriλri. Using this notation, we can write vt = vst. 
Therefore, we have E[Xt  st; gt] = gtvst. 
Equation (21) can now be written as: 

 

𝑚𝑚�𝑡𝑡 = 𝑣𝑣 ∑ 𝑠𝑠𝑡𝑡𝑓𝑓(𝑠𝑠𝑡𝑡|𝑚𝑚)∫𝑙𝑙𝑡𝑡𝑓𝑓(𝑙𝑙𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑚𝑚)𝑠𝑠𝑡𝑡 𝑑𝑑𝑙𝑙𝑡𝑡 
     (24) 

 

Denoting 𝑤𝑤𝑡𝑡 = 𝑣𝑣 ∑ 𝑠𝑠𝑡𝑡𝑓𝑓(𝑠𝑠𝑡𝑡|𝑚𝑚)𝑠𝑠𝑡𝑡 𝐸𝐸(𝑙𝑙𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑚𝑚), 
we can write: 𝑚𝑚�𝑡𝑡 = 𝑣𝑣𝑤𝑤𝑡𝑡. Thus, we have x ≈ vw, 
i.e., x is factorized into two nonnegative factors, 
a basis matrix v and an NMF coefficients matrix 
w. In an extremely sparse case where f(si

t x) = 
1 only for one state si

t , depending on time t, and 
all the other states have zero probability, we will 
have wt = si

t E(gtsi
t. x). 

The conditional state probabilities f(stx) can be 
calculated using the forward-backward 
algorithm. To finish our NMF derivation, we 
need to evaluate E(gtst; x). Noting that gt 
depends only on the observation at time t, the 
posterior distribution of the gain variable can be 
obtained by using the Bayes rule as: 

 

𝑓𝑓(𝑙𝑙𝑡𝑡|𝑠𝑠𝑡𝑡,𝑚𝑚) = 𝑓𝑓(𝑥𝑥𝑡𝑡|𝑔𝑔𝑡𝑡,𝑠𝑠𝑡𝑡)𝑓𝑓(𝑔𝑔𝑡𝑡)
𝑓𝑓(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡)   (25) 

 

Since the denominator of equations (23) is 
constant, using (19) and (20) gives: 

𝑙𝑙𝑙𝑙𝑓𝑓(𝑙𝑙𝑡𝑡|𝑠𝑠𝑡𝑡 = 1𝑖𝑖 , 𝑚𝑚) ∝
𝑓𝑓(𝑥𝑥𝑡𝑡|𝑔𝑔𝑡𝑡,𝑠𝑠𝑡𝑡)𝜙𝜙

𝜃𝜃𝑡𝑡
�𝑔𝑔𝑡𝑡𝜃𝜃𝑡𝑡

�
𝜙𝜙−1

𝑒𝑒
−�
𝑔𝑔𝑡𝑡
𝜃𝜃𝑡𝑡
�
𝜙𝜙

𝑘𝑘𝑟𝑟𝑟𝑟
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

� 𝑥𝑥𝑡𝑡
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

�
𝑘𝑘𝑟𝑟𝑟𝑟−1

𝑒𝑒
−�

𝑥𝑥𝑘𝑘𝑡𝑡
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

�
𝑘𝑘𝑟𝑟𝑟𝑟

     (26) 

 

𝑓𝑓(𝑋𝑋𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡) =   ∏ 𝑓𝑓(𝑚𝑚𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 =𝑅𝑅
𝑟𝑟=1

𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡)    (27) 
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𝑓𝑓(𝑙𝑙𝑡𝑡) =   𝜙𝜙
𝜃𝜃𝑡𝑡
�𝑔𝑔𝑡𝑡
𝜃𝜃𝑡𝑡
�
𝜙𝜙−1

𝑒𝑒−�
𝑔𝑔𝑡𝑡
𝜃𝜃𝑡𝑡
�
𝜙𝜙

,   𝑙𝑙𝑡𝑡 ≥ 0 
     (28) 

 

𝑓𝑓(𝑚𝑚𝑟𝑟𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑖𝑖,𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡) =

  𝑗𝑗𝑟𝑟𝑟𝑟
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

� 𝑥𝑥𝑘𝑘𝑡𝑡
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

�
𝑗𝑗𝑟𝑟𝑟𝑟−1

𝑒𝑒
−�

𝑥𝑥𝑘𝑘𝑡𝑡
𝑔𝑔𝑡𝑡𝜆𝜆𝑟𝑟𝑟𝑟

�
𝑘𝑘𝑟𝑟𝑟𝑟

, 𝑚𝑚𝑗𝑗𝑡𝑡 ≥ 0 
     (29) 

 

Equation (27) corresponds to a Generalized 
Weibull (GW) distribution with parameters 
𝜙𝜙 = 𝑘𝑘𝑟𝑟𝑖𝑖 and 𝜃𝜃𝑡𝑡 = 𝑙𝑙𝑡𝑡𝜆𝜆𝑟𝑟𝑖𝑖. 
Parameter Estimation 

We propose an EM algorithm to estimate the 
model parameters, denoted by λ = {p; q; a; b; φ; 
θ}. Alternatively, the time-invariant parameters 
p; q; a; b; and φ  can be obtained given a training 
data set. To obtain the NMF representation of a 
new vector in this case, the only unknown 
parameter is θ, which should be estimated. 

In the E step of the EM, a lower bound is 
obtained on the log-likelihood of data, and in the 
M step, this lower bound is maximized. Let Z 
represent the hidden variables in the model. The 
EM lower bound takes the form 

 

𝐿𝐿�𝑓𝑓(𝑧𝑧|𝑚𝑚, λ),λ�� =  𝑄𝑄�λ� , λ� + 𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑐𝑐𝑚𝑚𝑙𝑙𝑐𝑐 
     (30) 

Where 

 

𝑄𝑄�λ� , λ� = ∫𝑓𝑓(𝑧𝑧|𝑚𝑚, λ)𝑙𝑙𝑙𝑙 �𝑓𝑓�𝑧𝑧, 𝑚𝑚|λ��� 𝑑𝑑𝑧𝑧 
     (31) 

 

where λ includes the estimated parameters from 
the previous iteration of the EM, and λ 

contains the new estimates to be obtained. 

For this problem, Z = {S;G} in which S = {S1; 
…ST} , and G = {G1; …GT} g where T is the 
number of data samples, i.e., the number of 
columns of x. Now, 𝑄𝑄�λ� , λ� can be written as 

𝑄𝑄�λ� , λ� = 𝑄𝑄��λ� ,λ�

+ �𝑤𝑤𝑡𝑡(𝑖𝑖)
𝑡𝑡,𝑖𝑖

� 𝑓𝑓(𝑙𝑙𝑡𝑡|𝑚𝑚𝑡𝑡, 𝑆𝑆𝑡𝑡

= 𝑖𝑖, λ ) �𝑙𝑙𝑙𝑙𝑓𝑓�𝑙𝑙𝑡𝑡|λ��
+ 𝑙𝑙𝑙𝑙𝑓𝑓�𝑚𝑚𝑡𝑡|𝑙𝑙𝑡𝑡, 𝑆𝑆𝑡𝑡 = 𝑖𝑖, λ�  �� 𝑑𝑑𝑙𝑙𝑡𝑡 

 

Here, 𝑄𝑄��λ� ,λ� includes the terms for optimizing 
the Markov chain parameters p and q, which is 
done similarly to. The state probabilities ωt (i) = 
f(St = i | x,λ) are obtained by the forward-
backward algorithm in which: 

 

   (32) 

 

Inserting (30) and (31) in (32), and using the 
definition of the GW distribution we get: 

 

,     (33) 

With 

 

 
 

To obtain the new estimate of the rest of the 
parameters, (33) is differentiated w.r.t. 
parameters of interest, and the result is set to 
zero. Obtaining the gradient w.r.t. ˆbki and setting 
it to zero yields the following estimate: 

 

. 
  (34) 

Inserting (33) into (34), and setting the gradient 
of the objective function w.r.t. aˆki to zero yields: 
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   (35) 

Where  is the 
digamma function. Therefore, a is first estimated 
using (35), then (33) is solved to obtain bˆ. 
Similarly, φˆ and θˆ are obtained by first 
estimating the shape parameter φ as: 

 

 
      (36) 

with ξt defined as: 

,  (37) 

and then using φˆ to estimate θt: 

 

𝜃𝜃�t = ξt/𝜑𝜑� .    (38) 

 

Results 
Data 

The data used in this study is a USA COVID-19 
daily data collected from 23rd January 2020 to 
22nd July, covering 547 days. Another variable 
collected is the number of COVID-19 
hospitalized cases on daily basis covering 368 
days, because hospitalized cases were not 
reported until 15th July 2020. The daily data 
fluctuates but are not normally distributed.The 
COVID-19 data increased, decreased or remain 
the same from day to day. For the hospitalized 
data, it either increased or not increased. An 
increase in a previous day, does not guarantee 
and increase or decrease in the subsequent days. 
The data are discrete and there are some days 
that there are no new cases of COVID-19 or 
hospitalization. Thus, a zero data point might 
occur. Both gamma and Weibull will not be good 
fit for discrete data. The moving average is used 
to make sure zero does not exist in the data 
point, and produces a smoother curve that are 
continuous. 

Table 1. Summary of COVID-19 Cases and Moving Average 
 Min 1st Q. Median Mean 3rd Q. Max Skewness Kurtosis 
New Cases 0 22,732 44,251 62,673 70,107 300,462 1.5686 4.7379 
Moving Ave. 
Cases 

0.2 22,841.8 43,149.9 62,960.3 66,910.6 245,409.1 1.4730 4.1660 

Hospitalized 
Cases 

12,218 28,516 37,986 50,620 65,430 133,214 1.0678 2.8924 

Moving Ave. 
Hospitalized 

9,810 27,809 37,845 50,195 66,280 128,245 1.0394 2.8511 

 

 
 

 

Figure 3. COVID-19 
Observed Daily Cases 

Figure 4. COVID-19 
Observed Hospitalised Cases 

Figure 5. Covid-19 Moving  
Average 
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Figure 6. State per Time Figure 7. Hospitalized State per Time in 

Days 

  
Figure 8. Bar Plot Showing New Cases Figure 9. Bar Plot Showing Hospitalized 

Transition State 

 

The EDA of the data collected is used to show 
some hidden features in the dataset that might 
not be easily seen by mere observation of the 
data. The summary of the data collected on US 
COVID-19 new and hospitalised cases are 
shown on Table 1. 

Data Transmutation to State 

If the COVID-19 new cases from day to day 
increased, it is positive (1), if it decreased, it is 
negative (-1), but if it remained the same, it is 
neither positive nor negative (0).  

Let yt represent the number of new cases 
reported at day t. Let yt+1 be number of new cases 
reported on day t + 1.  

So, if yt+1 > yt, assign 1; if yt+1 = yt, assign 0 and if 
yt+1 < yt, assign -1. 

These three states 1, 0 and -1, implies that 
COVID-19 reported cases can increase, remain 
the same or decrease. The probability that it will 
increase is p, the probability that it will remain 
the same is r and the probability that it will 
decrease is q. 

Thus 

 

p + q + r = 1 

 

Also, let xt represent the number of new 
hospitalised reported cases at day t. Let xt+1 be 
number of hospitalised cases reported on day t 
+ 1.  

So, if xt+1 > xt, assign 1; else assign 0. 
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These two states 1 and 0 implies that COVID-
19 reported hospitalised cases can increase or 
not. The probability that it will increase is p, the 
probability that it will not increase is q. 

Thus 

p + q = 1 

The continuous data for the two variables are 
achieved with moving average to convert the 
discrete data to continuous and remove every 
point with zero entries. Zero entry implies no 
new case was recorded for that day and this will 
affect the gamma and Weibull models. 

Transition State 

 

Table 2. The table shows the Covid-19 New Cases Observed 
  COVID-19 New Cases (Observed)  
  P q R Pr 
Hospitalized 
Cases 
(Hidden) 

P 0.3027 0.1459 0.0000 0.4486 

Q 0.1703 0.3622 0.0189 0.5514 
 Pr 0.5191 0.4351 0.0457 1 

 

Table 3. Basic Statistics Moving Average (MA) for COVID-19 New and Hospitalised Cases 
 New Cases MA New Cases Hospitalised MA Hospitalised 
N 547 547 368 368 
NAs 0 0 0 0 
Minimum 0 0.2 12,218 9,810.0 
Maximum 300,462 245,409.1 133,214 128,245.4 
1st Quartile 22,732 22,841.85 28,516.25 27,808.72 
3rd Quartile 70,107 66,910.55 65,429.50 66,279.68 
Mean 62,672.51 62,960.27 50,620.47 50,195.09 
Median 44,251.00 43,149.90 37,986.00 37,844.55 
Sum 34,281,860 34,439,270 18,628,330 18,471,790 
SE Mean 2,695.849 2,622.013 1,730.090 1,741.916 
LCL Mean 57,377.00 57,809.80 47,218.34 46,769.70 
UCL Mean 67,968.02 68,110.74 54,022.61 53,620.48 
Variance 3,975,379,000 3,760,599,000 1,101,502,000 1,116,612,000 
Stdev 63,050.60 61,323.73 33,188.88 33,415.75 
Skewness 1.5643 1.4690 1.0635 1.034511 
Kurtosis 1.7206 1.1508 -0.1233 -0.1735 

 

Transition Matrix for New Cases 
 q r p 
q 

�
0.6878 0.0169 0.2954
0.2800 0.5600 0.1600
0.2394 0.0211 0.7394

� r 
p 

 

Transition Matrix for Hospitalised Cases 
 q p 

q �0.9811 0.0189
0.0398 0.9602� 

p 
 

 

trans2<-trans^2 
Transition Matrix for New Cases 

 q r p 
q 

�
0.5485 0.0273 0.2954
0.3877 0.3217 0.1600
0.3476 0.0315 0.7394

� r 
p 

 

 

trans5<-trans^5 
Transition Matrix for New Cases 

 q r p 
q 

�
0.4467 0.0392 0.5142
0.4410 0.0857 0.4734
0.4287 0.0405 0.5308

� r 
p 
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trans10<-trans^10 
Transition Matrix for New Cases 

 q r p 
q 

�
0.4372 0.0417 0.5211
0.4377 0.0438 0.5185
0.4369 0.0417 0.5213

� r 
p 

 

trans100<-trans^100 
Transition Matrix for New Cases 

 q r p 
q 

�
0.4371 0.0418 0.5211
0.4371 0.0418 0.5211
0.4371 0.0418 0.5211

� r 
p 

 

 

Table 4. Evaluation Statistics of the Weibull, Gamma and Log Normal Distributions 
 Weibull Gamma Log Normal 

MLE Parameters Shape: 3.2143 (0.1269) 
Scale 0.8116 ( 0.0110) 

Shape: 3.3936 (0.1960) 
Rate : 4.5648 (0.2841) 

Meanlog: -0.4510 (0.0377) 
Sdlog:0.8812 (0.0266) 

-LogL 87.55773 222.0167 460.2831 
AIC 179.1155 448.0333 924.5662 
BIC 187.7244 456.6422 933.175 
K-S Stat. 0.2661 0.3239 0.3348 
Cramer-von Mises stat. 9.4202 14.3585554 17.9709 

Anderson-Darling stat. 51.6876 70.48894 87.7225 

 

   
Figure 10. Empirical and 

Theoretical CDFs 
Figure 11. Empirical 

Quantiles 
Figure 12. Empirical 

Probabilities 

 
Discussion 
Weibull HMM was proposed in the work to 
develop an NMF approximation of the COVID-
19 laboratory confirmed new cases in a 
predictive way. The COVID-19 data from the 
United States are utilized here for demonstrative 
purposes only. The time-varying scale parameter 
t was calculated with the value gained from the 
training data being fixed. 

Figure 1 depicts the data's empirical and 
theoretical cumulative distribution functions, as 
well as the competing models' NMF 
representations. The plot illustrates that only 

Weibull NMF reflected the COVID-19 data 
since it follows the data in the predicted 
direction, unlike gamma and lognormal. 

The plot of empirical quantiles against 
theoretical quantiles of the data and the three 
competing models is shown in Figures 10–12. 
The Weibull model is a smooth approximation 
of the power spectra of various data sets. This 
demonstrates the suggested scheme's potential 
for coping with noise and unwanted fluctuations 
when applied to a more realistic application such 
as voice recognition or enhancement. 

To have a better understanding of the obtained 
factorization, the derived NMF representation 
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was compared to two state-of-the-art 
approaches using model selection statistic and 
criteria. We considered two variants of NHMM: 
the gamma model and the lognormal model with 
same number of observations each. Aimed to 
compare the goodness of fit as a function of the 
sparsity level, the NMF coefficient vectors, wt, 
were constrained to have a specified l0 norm 
(number of non-zero elements). For each value 
of l0 in KL-NMF, the training was repeated to 
have the best possible basis matrix under the 
sparsity constraint. 

The number of the consecutive vectors, xt, for 
which the same basis vector had the largest 
coefficient was computed, and it was normalized 
by the total number of columns in x. In other 
words, if the system is in the state i in the current 
time frame, this measure (denoted as Prep) gives 
the probability of staying in the same state in the 
next time frame. 

The findings were based on an average of 368 
days of COVID-19 reported cases. The 
experiment demonstrates that the proposed 
approach results in a sparse representation with 
a tradeoff between accurate fitting and temporal 
modeling. Weibull HMM approximation 
accuracy is comparable to gamma HMM and 
lognormal HMM utilizing negative log-
likelihood, Akaike Information Criterion (AIC), 
and Bayesian Information Criterion (BIC) 
selection criteria. K-S, Cramer-von Mises, and 
Anderson-Darling statistics are also employed. 

However, the Weibull HMM gives a higher 
probability to continuously stay in the same 
state. The Weibull HMM approach provides the 
best fit to the observed data, and the probability 
of staying in the same state is the highest using 
this method. By comparing actual and moving 
average variants, we see that the moving average 
provides both better temporal modelling and 
better fit as each state of the moving average has 
a greater flexibility to model the observation. 

In terms of the computational complexity, 
Weibull HMM is substantially faster than gamma 
and competed well with log-normal. When 
applied for the factorization, the computational 
requirements of the Weibull HMM is 
comparable with that of the gamma and 

lognormal, but for some computation of some 
criteria it is a little more demanding as gamma 
and lognormal have more existing known 
algorithm than Weibull. 

 

Conclusion 
The purpose of this theoretical investigation was 
to develop a probabilistic NMF technique. To 
use the signal's temporal correlations, we created 
an HMM using Weibull output density functions 
(Weibull HMM). Furthermore, another Weibull 
distribution was explored to govern the signal's 
long-term level. We demonstrated the analogy 
between the Weibull HMM and the NMF, and 
so generated a novel probabilistic NMF. This 
work serves as the foundation for a variety of 
applications, including stock price swings, 
speech and image processing, and daily COVID-
19 instances. When the suggested Weibull NMF 
is compared to other approaches, the Weibull 
model outperforms the gamma and lognormal 
models for the US COVID-19 data.  COVID-19 
instances in the United States peaked and then 
declined, only to climb again. The likelihood of 
an increase in new cases in the future days is 
smaller than that of fewer cases, but this chance 
is quite close. As a result, it is recommended that 
the government implement severe steps to 
prevent the spread and the strain on the hospital. 

 

References 
Berry, M.W., Browne, M., Langville, A.N., 
Pauca, V.P., & Plemmons, R.J. (2007). 
Algorithms and applications for approximate 
nonnegative matrix factorization. Comput. Stat. 
Data Anal., 52, 155-173. 
https://doi.org/10.1016/J.CSDA.2006.11.006 

Cappe, O., Moulines, E., & Ryden, T. (2005). 
Inference in hidden Markov models. New York, NY: 
Springer. 

Cemgil A. T. (2009). Bayesian inference for 
nonnegative matrix factorisation 
models. Computational intelligence and 
neuroscience, 2009, 785152. 
https://doi.org/10.1155/2009/785152 

https://doi.org/10.1016/J.CSDA.2006.11.006
https://doi.org/10.1155/2009/785152


 

   

          
www.ejtas.com                                                                     EJTAS                    2024 | Volume 2 | Number 1 

622  

Cichocki, A. Zdunek, R. Phan, A. H. & Amari, 
S. (2009). Nonnegative Matrix and Tensor 
Factorizations: Applications to Exploratory Multi-way 
Data Analysis and Blind Source Separation. New 
York: John Wiley & Sons. 

Cybenko, G. & Crespi, V. (2008). Learning 
Hidden Markov Models using Non-Negative 
Matrix Factorization. Arxiv preprint 
arXiv:0809.408.  

Dhillon, I.S. & Sra, S. (2005). Generalized 
Nonnegative Matrix Approximations with Bregman 
Divergences (PDF). NIPS. 

Felsenstein, J., & Churchill, G. A. (1996). A 
Hidden Markov Model approach to variation 
among sites in rate of evolution. Molecular biology 
and evolution, 13(1), 93–104. 
https://doi.org/10.1093/oxfordjournals.molbe
v.a025575 

Fevotte, C. & Cemgil, A. T. (2009). Non-
negative matrix factorisations as probabilistic 
inference in composite models. In 17 European 
Signal Processing Conference (EUSIPCO), 47, 1913–
1917. 

Hoffman, M. D., Blei, D. M. & Cook P. R. 
(2010). Bayesian non-parametric matrix 
factorization for recorded music. In Processing 
International Conference of Machine Learning (pp. 
439–446). 

Hsu, D., Kakade, S.M. & Zhang, T. (2009). A 
spectral algorithm for learning hidden markov 
models. Proceedings of the Conference on Learning 
Theory (COLT). 

Kim, S., Shephard N., & Chib, S. (1998). 
Stochastic volatility: likelihood inference and 
comparison with ARCH models. Review of 
Economic Studies, 65, 361-393. 
https://doi.org/10.1111/1467-937X.00050 

Lakshminarayanan, B. & Raich R. (2013). Non-
negative matrix factorization for parameter estimation in 
Hidden Markov models. School of EECS, Oregon 
State University, Corvallis, OR 97331-5501. 

Lee, D.D. & Seung, H.S. (2001). Algorithms for 
non-negative matrix factorization, Advances in 
neural information processing systems, 13, 556-562. 

MacDonald, I. L., & Zucchini, W. (1997). Hidden 
Markov and other models for discretevalued time series, 
vol 70: Monographs on statistics and applied probability. 
London: Chapman & Hall. 

Mohammadiha, N., Taghia, J. & Leijon, A. 
(2017). Single channel speech enhancement 
using Bayesian NMF with recursive temporal 
updates of prior distributions. In Proc. IEEE Int. 
Conf. Acoustics, Speech, and Signal Process. (ICASSP) 
4561–4564. 
http://dx.doi.org/10.1016/j.apacoust.2016.04.0
24 

Mysore, G. J., Smaragdis, P. & Raj, B. (2010). 
Non-negative hidden Markov modelling of 
audio with application to source separation. In 
Int. Conf. on Latent Variable Analysis and Signal 
Separation, 140–148. 

Nkemnole, E. B., Abass, O. and Kasumu, R. A. 
(2013). Parameter Estimation of a Class of 
Hidden Markov Model with Diagnostics. Journal 
of Modern Applied Statistical Methods, 12(1), 181–
197. 
https://doi.org/10.56801/10.56801/v12.i.652 

Rabiner, L.R. (1989). A tutorial on hidden 
Markov models and selected applications in 
speech recognition. Proceedings of the IEEE, 
77(2), 257–286. 
https://doi.org/10.1109/5.18626 

Rashish, T. & Sra, S. (2010). Sparse nonnegative 
matrix approximation: new formulations and algorithms 
(PDF). TR. 

 

https://doi.org/10.1093/oxfordjournals.molbev.a025575
https://doi.org/10.1093/oxfordjournals.molbev.a025575
https://doi.org/10.1111/1467-937X.00050
http://dx.doi.org/10.1016/j.apacoust.2016.04.024
http://dx.doi.org/10.1016/j.apacoust.2016.04.024
https://doi.org/10.56801/10.56801/v12.i.652
https://doi.org/10.1109/5.18626

