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Abstract. We review the class of implicit algebraic constitutive relations for fluids which includes in its ambit
those whose material properties depend on the invariants of the stress, the symmetric part of the velocity
gradient, as well as their mixed invariants. Such constitutive relations can describe the response of complex
fluids whose material properties depend on the mechanical pressure, shear rate, etc. The class of models
under consideration can describe the non-monotone relationship between the shear stress and the shear
rate observed in experiments on colloids, as well as other novel response characteristics of non-Newtonian
fluids. Constitutive relations for power-law fluids, generalized Stokesian fluids and Piezo-viscous fluids are
special sub-classes of the class of fluids considered herein.
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1. Introduction

The general class of Stokesian fluids1 is described by providing an explicit expression for the stress
as a function of the density and the symmetric part of the velocity gradient. The classical Navier–
Stokes constitutive relation is a special sub-class of Stokesian fluids where the stress depends
arbitrarily on the density and is linear in the symmetric part of the velocity gradient. The Euler
fluid (see [1,2] which is a special sub-class of the Navier–Stokes fluid (see [3–7]) is characterized by
the stress being given in terms of the density. The classical Navier–Stokes fluids, or for that matter
the general Stokesian fluids, are incapable of describing the response characteristics of a very
large class of fluids. Fluids that cannot be characterized by the Navier–Stokes fluids are referred

1By a Stokesian fluid we mean a fluid whose constitutive relation takes the form T = f(ρ,D), where T is the Cauchy
stress, D is the symmetric part of the velocity gradient and ρ is the density.
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to as non-Newtonian2 fluids and such fluids can be classified under three categories3, fluids of
the differential type, fluids of the rate type and fluids of the integral type (see [11–14]). Rate type
constitutive theories are markedly different from Stokesian fluids in that the constitutive relation
is an implicit relationship between the stress, its time derivatives, and kinematical measures such
as the velocity gradients, and their time derivatives. Such constitutive relations have been in
place for a long time. In the celebrated constitutive relation due to [15], which seems to be
the first constitutive relation to describe viscoelastic fluids, while the stress and the time rate
of the stress appear in the constitutive relation, it is not an implicit relation as the symmetric
part of the velocity gradient can be expressed explicitly as a function of the stress and the time
rate of stress. On the other hand, the constitutive relations proposed by [16] and [17] which
relate the stress and its time rate and the symmetric part of the velocity gradient and its time
derivative are implicit constitutive relations. Most of the implicit constitutive relations used in
non-Newtonian mechanics to describe viscoelastic fluids are of the rate type, that is the relation
is between the stress and its time rate, the symmetric part of the velocity gradient and its time
rates. By an algebraic implicit constitutive relation, we mean an implicit relationship between
just the stress and the symmetric part of the velocity gradient, with their rates not appearing in the
relationship4. The general Stokesian constitutive relation is a special sub-class of these algebraic
implicit constitutive relations wherein the stress is an explicit function of the symmetric part
of the velocity gradient, and the classical power-law constitutive relation and the Navier–Stokes
fluids are also in our terminology algebraic constitutive relations as they are in fact sub-classes of
the Stokesian fluids.

There is a very important philosophical distinction underpinning implicit constitutive rela-
tions with respect to explicit constitutive relations like the Navier–Stokes constitutive relation as
it is usually expressed, and this has to do with causality. Since, forces or stresses are the cause,
and the deformation the effect, it is more meaningful to express the effect (kinematics) in terms
of the cause (stress), rather than the cause (stress) in terms of the effect (kinematics). That is, in
the case of the Navier–Stokes fluid, it would be philosophically more sensible to express the ve-
locity gradient in terms of the stress rather than the stress in terms of the velocity gradient5. A
much more general approach to the development of constitutive relations is to just assume that
various relevant quantities are related by implicit relations6 (see [18, 19] for a discussion of the
role of causality in the development of constitutive relations).

2A fluid described by the Navier–Stokes constitutive relation is often times referred to as a Newtonian fluid, but this is
misattributing credit to Newton for the works of Navier, Poisson, Stokes and St. Venant. The balance of linear momentum
for a fluid described by the Navier–Stokes constitutive relation, is referred to as the Navier–Stokes equation. At the time
of Newton, there was no notion of partial derivatives or balance laws for continua, and as pointed out by [8] it was
James Bernoulli that first advocated the balance law for a continuum. Newton did not have a clear understanding of
the constitutive relation that is now referred to as the Navier–Stokes fluid. In fact, [8] makes the statement “Newton’s
theories of fluids are largely false”. As [9] points out Newton advanced two theories for describing the behavior of fluids,
the first “a schematic theory of fluids, which he considered to be formed of an aggregate of elastic particles, which repelled
each other, were arranged at equal distances from each other, and were free”, and “In the second theory the particles of the
fluid are contiguous”. The two theories led to results to the resistance due to the translation of a solid cylinder in the fluid
to differ by a factor of four.

3[10] for a recent classification of incompressible fluids.
4Algebraic constitutive relations can be viewed as implicit differential type constitutive relations of order zero or rate

type constitutive relations of order zero (that is no derivative appears in the constitutive relation).
5Doing so makes it apparent why assumptions like the “Stokes assumption”, which has been clearly shown to be

incorrect in numerous experiments but which researchers yet persist in appealing to, is inapt (see [18]). Also, in doing so,
one can incorporate the constraint of incompressibility in a much more natural manner.

6In situations wherein one has numerous fields: electric field, magnetic field, thermal field, stress, strain, density,
moisture, etc., we might only be in a position to conclude that all these fields are related and not know how any one of
them depends on the others.
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The celebrated gas law due to [20] that states that the product of the pressure and volume
is a constant, that due to Charles that states that when pressure is held constant, the volume
is directly proportional to the temperature ([21] attributes this famous result to Charles though
Charles himself did not publish it), and the law due to [21] that states that when volume is kept
fixed the pressure is directly proportional to the temperature (this law is attributed to Amontons)
and the ideal gas law, are all essentially statements concerning an implicit relationship between
pressure, volume and temperature of the gas. Based on which quantity is viewed as the effect,
and which is viewed as the cause, the appropriate laws due to Boyle, Charles and Gay-Lussac are
arrived at.

In order to describe stress relaxation that is observed in many real fluids, Maxwell, and later
Burgers, Oldroyd and others developed rate type constitutive relations wherein the stress and
its rate and the symmetric part of the velocity gradient and its rates are related. Fluids that ex-
hibit stress relaxation can also be described by integral type constitutive relations. Fluids that
exhibit stress relaxation are referred to as viscoelastic fluids. However, there are many fluids
that do not exhibit viscoelasticity, but they cannot be described by the general class of Stokesian
fluids. It transpires that several such fluids can be described by the class of algebraic constitu-
tive relations. Examples of such fluids are those whose viscosity is pressure dependent (referred
to as piezo-viscous fluids), and also colloids and slurries wherein one has non-monotonic rela-
tionship between the shear stress and shear rate in simple shear flows. The class of fluids that are
describable by such algebraic constitutive relations are in fact much larger than the class wherein
the stress is explicitly defined in terms of the kinematics, as the material moduli characterizing
such fluids depend on the invariants of stress, invariants of the appropriate kinematical quanti-
ties and also mixed invariants of the stress and appropriate kinematical quantities. Such consti-
tutive relations can also be the embarking point for the development of constitutive relations to
describe turbulence wherein the invariants of the fluctuations of stress, shear rate and the mixed
invariants might play a role in the response of the fluid.

The organization of the paper is as follows. After introducing the kinematics in the next
section, incompressible fluids defined through implicit constitutive relations are discussed in
Section 3. Implicit algebraic constitutive relations and stress-power law fluids are discussed in
Sections 4 and 5, respectively, and Section 6 is devoted to a discussion of a class of implicit
constitutive relations that have been shown to describe the response of colloidal solutions.
Fluids with pressure dependent viscosity are considered in Section 7 and fluids with viscosity
that is dependent on both pressure and shear rate are treated in Section 8. In Section 9 we
provide a brief discussion of constitutive equations specified in terms of monotone graphs. The
final Section 10 is dedicated to a discussion of some interesting new applications for implicit
constitutive relations.

2. Preliminaries

Let B denote a body. By a placer κ, we mean a one-to-one mapping

κ :B→E (1)

where E denotes an Euclidean space of dimension three. κ(B) is referred to as a configuration
of the body in the three-dimensional Euclidean space. By the motion of a body, one refers to a
one-parameter family of placers κt , t ∈ R, R being the set of real numbers and the parameter
being time. The members P ∈ B are called particles of the abstract body. For P ∈ B, let
X := κR(P ), where κR is one of the one parameter family of placers that we shall identify as
a reference placement of the body, with κR(B) being identified as a reference configuration.
Let x := κt (P ), where κt is the placement at time t , which we shall identify with the current
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placement of the body. We shall refer to κt (B) as the configuration of the body at time t or as the
current configuration of the body.

With the one parameter family of placers {κR, · · · , κt , · · · }, and hence the corresponding one
parameter family of configurations {κR(B),· · · , κt (B),· · · }, we can identify a one to one mapping
χκR which is defined through

χκR : κR(B)×R→E (2)

which takes the reference configuration to the configuration that it occupies at time t, such that

x =χκR (X, t ). (3)

Let
ξ=χκR (X,τ) (4)

denote the position occupied by the point X at time τ. Since the mapping χκR is one to one, we
can express ξ as

ξ=χκR (X,τ) =χκR
(
χ−1
κR

(x, t ),τ
)
=χκt (x,τ), (5)

and χκt is referred to as the “Relative Motion” (see [22]).
The velocity v and acceleration a are defined through

v = ∂χκR
∂t

, a = ∂2χκR
∂t 2 (6)

and the velocity gradient L, and its symmetric part D and its skew part through

L = ∂v

∂x
, D = 1

2

[
L+LT ]

, W = 1

2

[
L−LT ]

. (7)

A general fluid of the differential type of order n is defined through7(see [11])

T = f
(
ρ,A1,A2, · · · , An

)
, (8)

where ρ is the density and
A1 =

[
L+LT ]= 2D (9)

and An is given by the recursive relation

An = d

d t
An−1 +An−1L+LT An−1 (10)

The tensors An , n = 1,2, . . . are referred to as Rivlin–Ericksen tensors (see [24]).
Differential type fluids described by (8) are incapable of exhibiting stress relaxation and

instantaneous elastic response. While most researchers in the field refer to them as viscoelastic
fluids, they are not viscoelastic fluids as we shall identify the ability to stress relax and possess the
capability for instantaneous elastic response as characteristics of viscoelastic fluids. Fluids of the
differential type are elasticoviscous fluids. They are essentially viscous fluids with a smidgen of
elastic behavior.

If one starts with the assumption that we have a fluid of the differential type of complexity 1,
that is a Stokesian fluid

T = f
(
ρ,A1

)
, (11)

and require that the stress is linear in A1, then we would obtain the constitutive expression

T =−pth(ρ)I+λ(ρ)(trD)I+2µ(ρ)D, (12)

the compressible Navier–Stokes fluid. In the above expression, pth is the thermodynamic
pressure and λ(ρ) and µ(ρ) are the bulk and shear viscosities.

7One can define more general class of fluids referred to as fluids of the differential type of Complexity (m,n) but this
would require us to introduce a thermodynamic framework in which to cast the constitutive relations. We shall not do so
here, the interested reader can find an extended discussion in [23].
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3. Incompressible fluids defined through implicit constitutive relations

We shall primarily be interested in discussing the response of incompressible fluids. The stress in
an incompressible fluid of complexity n has the representation

T =−pI+ f(A1,A2, . . . , An), (13)

where p denotes the indeterminate part of the stress due to the constraint of incompressibility.
Since an incompressible fluid can undergo only isochoric motions, it follows that

divv = trD = 0. (14)

A special subclass of these fluids that has attracted a lot of attention are fluids of grade n (see [11]).
As these fluid models are used to describe the response of dilute polymeric liquids which are
idealized as being incompressible, the constitutive relations are those that model incompressible
fluids. An important sub-class of fluids of the differential type are Stokesian fluids wherein the
stress is expressed in the form

T =−pI+ f(A1), (15)

where −pI is the indeterminate part of the stress due to the constraint of incompressibility.
The constitutive relations due to [25] and [26] are special sub-classes of the constitutive rela-
tion (15).

The classical incompressible Navier–Stokes fluid is given by the constitutive relation

T =−pI+2µD, (16)

where µ, the viscosity is a constant. However, Stokes was well aware that viscosity was not
constant but dependent on the pressure as these remarks of his make evident ([7]): “. . . If we
suppose µ to be independent of the pressure. . . ” and “Let us now consider in what cases it is
allowable to suppose µ to be independent of the pressure”.

[27]8 had proposed an exponential dependence of the viscosity on pressure as shown below:

T =−pI+2µ(p)D, (17)

where

µ(p) =µ0 exp(αp),α> 0. (18)

Recent experiments by [30] and others shows that the viscosity increases to much greater val-
ues than previously thought. For Napthalmic mineral oil, a change of density of 16% (computed
using a correlation developed by [31]) can be accompanied by a change in viscosity of approxi-
mately 5×108 %, and thus in comparison to the change in viscosity due to pressure, the changes
in density can be neglected (see [19] for details regarding the same). Fluids whose viscosity are
pressure dependent and approximated as being incompressible are described by constitutive re-
lations of the form:

T =−pI+S,

S = 2µ(p)D,
(19)

where −pI is the indeterminate part of the stress due to the constraint of incompressibility, and
S is the deviatoric part of the stress. It follows from (14), on taking the trace of (19), that

p =−1

3
trT. (20)

This immediately implies that (17) is no more an explicit expression for the Cauchy stress T in
terms of D, but it can however be re-written to express the symmetric part of the velocity gradient

8The terminology “pressure” is one of the most abused terminologies in fluid mechanics as it is used to define a variety
of quantities that are quite distinct (see [28, 29]). Here, by pressure we mean the mean normal stress.
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in terms of the stress. We notice that the Cauchy stress and the symmetric part of the velocity
gradient are related through

T− 1

3
(trT)I = 2µ

(
−1

3
trT

)
D. (21)

Suppose the viscosity also depends on the second invariant of the symmetric part of the
velocity gradient in the above constitutive relation, then the viscosity will be µ(trT, |D|2) and will
lead, in our terminology to an implicit algebraic constitutive relation. In general, neither the
stress nor the symmetric part of the velocity gradient can be expressed as an explicit function of
the other.

The constitutive relation (12) is an explicit expression for the stress, it expresses the stress as
a function of the density and the symmetric part of the velocity gradient, and the constitutive
relation (13) is also an explicit expression for the deviatoric stress in terms of the symmetric part
of the velocity gradient. We shall be interested in the class of implicit constitutive relations for
incompressible fluids wherein the Cauchy stress and the symmetric part of the velocity gradient
are related through:

T =−pI+S,

f(S,D) = 0.

Such constitutive relations have several interesting applications in the field of elastohydrody-
namics, and in modeling colloids, slurries, etc. We shall discuss these applications in what fol-
lows.

4. Implicit Algebraic Constitutive Relations

As mentioned earlier, implicit constitutive relations wherein one has an implicit relationship
between the stress and its frame indifferent time derivatives and the symmetric part of the
velocity gradient and its various frame-indifferent time derivatives, have been in use for a long
time. However, constitutive relations wherein no derivative of the stress or the symmetric part of
the velocity gradient appear but where just the stress and symmetric part of the velocity gradient
are related implicitly were not considered despite the fact that such constitutive relations would
be the natural ones to use to describe materials with pressure dependent viscosity, amongst many
other applications.

We are interested in studying the class of implicit algebraic constitutive relations for incom-
pressible fluids defined through (22). The assumption that the fluid is isotropic leads to (see [32])

α0I+α1S+α2D+α3S2 +α4D2 +α5(DS+SD)+α6
(
S2D+DS2)

+α7
(
SD2 +D2S

)+α8
(
S2D2 +D2S2)= 0, (22)

where the material functions αi , i = 0, . . . ,8 depend on the invariants

trS, trS2, trD2, trS3, trD3, tr(SD), tr
(
S2D

)
, tr

(
SD2) , tr

(
S2D2) . (23)

Before discussing fluids belonging to the class of incompressible fluids defined by (22)
and (23), we shall discuss a class of compressible fluids that has been recently introduced by [33],
namely implicit relations that are a generalization of the classical Euler and Korteweg fluids
(see [1, 2, 34]). First, let us consider the implicit constitutive relation

f(ρ,T) = 0, (24)

where ρ is the density. We notice that the above is a generalization of the classical Euler fluid.
It can be shown that many constitutive relations that belong to the class (24) can describe the
simple static solution exhibited by the Euler fluid that is at rest in the presence of gravity. One is
confronted with the question whether one of these constitutive relations might prove useful in
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describing specific flows of perfectly elastic fluids which the classical Euler fluid is incapable of
doing so.

Yet another generalization of a compressible fluid is the implicit constitutive relation

f
(
ρ,
∂ρ

∂x
T
)
= 0, (25)

which is a a generalization of the constitutive relation due to [34]. It follows from representation
theorems that

α1I+α2T+α3

(
∂ρ

∂x
⊗ ∂ρ

∂x

)
+α4T2 +α5

(
∂ρ

∂x
⊗T

∂ρ

∂x
+T

∂ρ

∂x
⊗ ∂ρ

∂x

)
+α6

(
∂ρ

∂x
⊗T2 ∂ρ

∂x
+T2 ∂ρ

∂x
⊗ ∂ρ

∂x

)
= 0, (26)

where the material moduli αi , i = 1, · · · ,6 depend on the density ρ and the following invariants:

trT, trT2, trT3, tr

(
∂ρ

∂x
⊗ ∂ρ

∂x

)
, tr

(
∂ρ

∂x
⊗T

∂ρ

∂x

)
, tr

(
∂ρ

∂x
⊗T2 ∂ρ

∂x

)
. (27)

We shall not discuss these implicit relations further and refer the reader to [33] for the same.
A special sub-class of the constitutive relations described by (22) is the constitutive class

wherein the symmetric part of the velocity gradient is expressed explicitly in terms of the stress
in the following manner

D = g(S). (28)

The above constitutive expression is not an implicit relation between the stress and the symmet-
ric part of the velocity gradient, it is an explicit expression for the symmetric part of the velocity
gradient. If the expression (28) is invertible, then we recover the classical incompressible Stoke-
sian fluid. However, it is possible that (28) is not invertible and such constitutive expressions are
new and were only considered after the introduction of implicit equations by [18] as special sub-
classes of the implicit constitutive equations (22). Even when (28) is invertible, expressing the
Stokesian fluid as (28) provides us a new perspective to such constitutive relations.

We notice that the classical incompressible Navier–Stokes constitutive relation can be ex-
pressed as

D = 1

2µ
S. (29)

A comment concerning the compressible Navier–Stokes constitutive relation is warranted at this
juncture. Instead of starting from stress being a function of the density and the symmetric part
of the velocity gradient if one were to assume that

D = f(ρ,T), (30)

then, one arrives at the constitutive relation for the compressible Navier–Stokes fluid in the form

D =β1(ρ)I+β2(ρ)(trT)I+β3(ρ)T, (31)

where β1(ρ), β2(ρ), and β3(ρ) are material functions. The important consequence of the repre-
sentation (31) is that one would forthwith arrive at the conclusion that (see [35] for details)

3β2(ρ)+β3(ρ) ̸= 0, (32)

which would immediately imply that the Stokes assumption is untenable, as substantiated by
numerous experiments (see [36–39]). Stokes himself had serious doubts about the validity of his
assumption. Unfortunately, an erroneous “proof” for the assumption offered by Maxwell gave
credibility to the incorrect assumption (see [40]).

It is worth observing that expressing the symmetric part of the velocity gradient in terms of
the Cauchy stress allows one to express the constraint of incompressibility in a natural manner
without having to introduce a Lagrange multiplier. This is also true with regard to the general
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implicit theory for a variety of constraints. For example, the incompressible Navier–Stokes fluid
expressed as

D = 1

3

{
T− 1

3
(trT)I

}
, (33)

automatically satisfies the constraint that the fluid can undergo only isochoric motion. We
have not introduced a Lagrangian multiplier “p” which in fact happens to be the mean normal
stress. We now have to solve the balance of mass, the balance of linear momentum and the
constitutive relation, ten partial differential equations for the density, the components of the
velocity and the components of the stress, that is ten unknown scalars (since the stress is
symmetric), simultaneously. In using the expression (33), in conjunction with the balance of
mass and the balance of linear momentum it might seem like we have to solve a larger system
of equations for more unknowns than is usual when one substitutes the constitutive relation for
the stress into the balance of linear momentum to obtain an equation for the velocity and the
pressure, and the equation due to the constraint of incompressibility, namely that the divergence
of the velocity field is zero. However, the standard approach increases the order of the balance
of linear momentum to a second order partial differential equation for the velocity field, while
solving for the balance of mass, the balance of linear momentum and the constitutive (33) is a
system of first order equations. This immediately has implications regarding the smoothness of
solutions as well as the boundary conditions that are required.

5. Stress Power-Law Fluids

Many fluids shear-thin and shear-thicken, but do not exhibit significant stress-relaxation or
normal stress differences in simple shear flows, and such fluids are usually described quite
adequately by the classical power-law fluid wherein the Cauchy stress is expressed as a power-
law function of the symmetric part of the velocity gradient (constitutive relations due to [41–44]
and others). A counterpart to such power-law fluids are stress power-law fluids wherein the
symmetric part of the velocity gradient is a power-law function of the stress (see [45]). We can
only invert the stress power-law constitutive relation to obtain the classical power-law relation for
a certain range of power-law values. A modification of the stress power-law model for which there
is no classical equivalent in that the stress can not be expressed as a function of the symmetric
part of the velocity gradient was introduced by [46], which we will discuss later, can be used to
describe the response of colloidal solutions.

Recently [47] introduced a power-law constitutive relation that mimics the response of the
viscoplastic fluids in that the viscosity (resistance to flow) blows up, as the shear rate tends to
zero, while the shear stress is yet finite. The Cauchy stress in their fluid takes the form

T =−pI+
{
α1

∥D∥ − α1 exp(α2∥D∥)

∥D∥
}
∥D∥, (34)

where α1 and α2 are positive constants, and ∥D∥ = (trD2)1/2. They determined the constants
α1 and α2 for various non-Newtonian fluids such as Kaolin-water, meat extract, paint, etc., by
corroborating against available experimental data. The ability of the constitutive relation to
mimic viscoplastic fluids stems from the viscosity blowing up at zero shear rate. Recently, some
boundary value problems have been studied within the context of (34) (see [48, 49]).



Kumbakonam Rajagopal 711

The constitutive relation for the stress power-law fluid takes the form

D =α
{[

1+β∥∥trS2∥∥]n
}

S; T =−pI+S, (35)

where −∞< n <∞, α> 0, β> 0.
The fluid described by the constitutive relation (35) is an incompressible fluid as trD = 0.

The relationship between the shear stress and shear rate for a classical power-law fluid and a
stress power-law fluid for a simple shear flow is portrayed in Figures 1 and 2. We notice that the
response depicted in Figure 2, when n < −1

2 is not possible within the context of the classical
power-law fluid. [45] have studied a fluid described by (35). We also notice that when n = −1

2 ,
the fluid exhibits a limiting shear-rate, that is the fluid can never be made to flow with a higher
shear-rate, however high the applied shear stress.

Figure 1. Qualitative behavior of the classical power-law model (from [45, Figure 2(a)]).
Tδ denotes the deviatoric part of the stress and D is the symmetric part of the velocity
gradient.

In simple shear flow, the constitutive relation for a fluid described by (35) reduces to

κ=α
{[

1+βτ2]n
}
τ, (36)

where κ is the shear rate and τ is the shear stress. α{[1+βτ2]n} is the inverse of the viscosity of the
fluid and is usually referred to as the “fluidity” of the fluid. We notice that in simple shear flow,
the generalized fluidity αg is given by

αg (τ) =α[
1+βτ2]n

(37)

where αg (τ) is the generalized fluidity. When n > 0, the generalized fluidity at zero shear stress
is α, and κ(0) = 0. The generalized fluidity tends to infinity as the shear stress tends to infinity as
does κ. We notice that if n < 0, then

αg (0) =α and αg (τ) → 0asτ→∞. (38)

Thus, in the limit of zero shear stress we have the generalized fluidity tends to a finite value.
However, while αg (τ) → 0asτ→∞ when n < 0, the shear rate can tend to a finite value for other
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Figure 2. Qualitative behavior of a typical power-law fluid.

values of n. For instance, if n = −1
2 , κ(0) = 0, and we have a limiting strain rate 1

(β)1/2 as τ→∞. If

n < −1
2 , κ=α{[1+βτ2]n}τ is such that

κ(0) = 0 and
(
α

{[
1+βτ2]n

}
τ
)
→ 0asτ→∞. (39)

Such a response is not possible in a classical power-law fluid. A modification of this response
allows us to develop a constitutive relation to describe the response of colloids. Before turning
to this discussion, we should briefly discuss another stress power-law model that exhibits com-
pletely different behavior though it looks very similar in form to (35). Consider the constitutive
relation

D =α
{

1+ [
β

∥∥trS2∥∥]n
}

S; T =−pI+S. (40)

The slight modification to the constitutive relation leads to a markedly different response. In
simple shear flow, we find that

αg f (τ) =α
{

1+ [
βτ2]n

}
, (41)

where αg (τ) is the generalized fluidity. We notice that if n < 0, then α f (0) = ∞, and α f (τ) →
αasτ→∞

Next, since
κ=α

{
1+ [

βτ2]n
}
τ, (42)

we conclude that when n < − 1
2 , κ(0) =∞, and κ(τ) →∞ as τ→∞. If 0 < n < − 1

2 , κ(0) = 0, and
κ(τ) →∞ as τ→∞. Notice that when n > 0, the generalized fluidity at zero shear stress is a finite
value α while the fluidity α f (τ) →∞asτ→∞. Also, κ(0) = 0, and κ(τ) →∞ as τ→∞.

[45] studied several simple flows within the context of the constitutive relation (35). They
studied Plane Couette, Plane Poiseuille, Hagen–Poiseuille and cylindrical Couette flow, and the
solutions that they find are markedly different from the classical solution for these problems.
Later [50]) studied the flow of such fluids between two plates rotating with the same angular
speed about non-coincident axis. They also found solutions that are very different from that for
a Navier-Stokes fluid with pronounced boundary layers developing in the case of a stress power-
law fluid while no such boundary layer manifests itself in the case of the Navier–Stokes fluid.
[51] have examined the flow of a stress power-law fluid down an inclined plane, while [52]
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analysed a class of unsteady flows. Recently, [53] studied stress power-law fluids undergoing
squeeze flow. Since all these investigations indicate that the solutions with regard to stress power-
law fluids can be distinctly different from that for the Navier–Stokes and classical power-law
fluids, for a range of power-law parameter values, it would be worthwhile solving other boundary
value problems as they might explain phenomena that cannot be explained by the classical
Navier–Stokes or the usual class of power-law fluids.

6. A constitutive Relation to describe the response of colloidal solutions

[46] modified the constitutive relation (35) in the following manner:

D =α{
[
1+β∥trS2∥]n +γ}S; T =−pI+S. (43)

In simple shear flow, the shear-rate versus shear-stress changes sign twice depending on the
values of the material parameters (see Figure 3). [46] felt such constitutive relations could be
used to describe the flow characteristics in materials that are modeled as fluids, but which
have an internal structure or constituents (such as blood or other biological fluids, slurries,
colloids) that can change their characteristics due to the shear rate. For instance, in blood at
different shear rates one can have rouleaux forming and breaking whereby the response changes.
Similarly, in colloids which are essentially molecules of one substance being dispersed through a
second substance, one can have coalescence and breakup of the molecules of the first substance.
Their hypothesis seems to have been justified as the constitutive relation (43) has been shown
to describe the behavior of colloidal (see [54–59] for experimental results on colloids). [60]
have shown that the constitutive relation (43) fits the complex experimental data of [56] for
simple shear flow of colloids exceptionally well (see Figures 4 and 5). None of the popular
models available in the non-Newtonian fluid mechanics literature come close to fitting such
data as the derivative of the stress-shear rate curve changes sign more than once. Recently, [61]
studied mathematical issues concerning the equations governing the flow of a fluid described
by (43). They established the existence of weak solutions and on making additional assumptions
were able to establish uniqueness of those solutions. Much remains to be done with regard
to establishing both rigorous mathematical results as well as the study of interesting initial-
boundary value problems whose results can be corroborated against available experimental
results.

[62] studied the flow of a fluid described by (43) in between two rotating cylinders, the
classic cylindrical Couette flow problem, and between parallel plates with a blockage. Since one
value of the shear-rate can be engendered by several values of the shear-stress, this presents
difficulties with regard to determining numerical solutions to the governing equations. They
found interesting flow patterns that are very distinct from those for the classical Navier–Stokes
fluid. Recently, [63] considered the flow of a fluid described by (43) flowing past a porous plate
and were able to find an exact solution to the problem and they also studied the stability of such
solutions. They found that suction stabilizes the flow. Since the constitutive relation (43) is not
only capable of describing flows of colloids observed by [56], but is also on sound footing and
could possibly describe other phenomena associated with colloids as well as slurries, the model
and variants of the same warrant scrutiny.

7. Fluids with pressure dependent viscosity

As we have discussed in Section 3, there has been a great deal of work concerning the flows of flu-
ids with pressure dependent viscosity9, wherein the fluid is approximated as an incompressible

9We shall restrict our discussion to incompressible fluids that have a pressure dependent viscosity.
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fluid in virtue of the fact that the changes in viscosity due to the increase in pressure is several
orders of magnitude greater than the changes of the density of the liquid due to the increase in
pressure. The constitutive relations for such fluids are given through (17). While the viscosity
suggested by [27], namely (18) is a popular choice, other forms of pressure dependence of viscos-
ity have been used in the literature. Another popular assumption is that the viscosity depends
linearly on the pressure.

To date, there is no global existence theory for both steady and unsteady flows of fluids whose
viscosity depends purely on the pressure. Previous studies by [64, 65] addressed either existence
of solutions for small data for short time or under the conditions namely v(p)

p → 0 as p → ∞,
but this condition is clearly contradicted by experiments. A detailed discussion of many of fluids
whose viscosity depends on pressure can be found in [66].

Figure 3. Qualitative response of the constitutive relation (43). t1 and t2 are values of the
norm of the deviatoric stress where the tangent to the response function is zero.

Figure 4. Shear stress versus shear rate in the experiments of [56].
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Figure 5. Fit of experimental data of [56] by [60]. The qualitative nature of the curve C
belongs to precisely the same class of models introduced by [46].

[67] studied the flow of such fluids in pipes and they found that the velocity profiles can be
markedly different from those for the classical Navier–Stokes fluid10. This study was followed by
that due to [70] for the flow between two plates rotating with the same angular velocity about
distinct axes, in the presence of gravity. Due to the variation of the pressure due to gravity, and
the dependence of viscosity on pressure, they show that very pronounced boundary layers can
develop. [71] studied the flow of such a fluid due to the rolling of a rigid cylinder on an elastic
cylinder, a boundary value problem that has relevance to the flows in elastohydrodynamics.
[72–78] and several others have studied specific boundary value problems which have relevance
to several problems in elastohydrodynamic lubrication.

There is a very important distinction between the classical Navier–Stokes fluid whose viscosity
is a constant and a fluid whose viscosity depends on the pressure, that requires careful discussion.
The structure of the flow of a classical Navier–Stokes fluid in a pipe depends only on the pressure
difference between the inlet and outlet (the pressure gradient) and not on the absolute value
of the pressure. On the other hand, in the flow due to a fluid whose viscosity depends on the
pressure, the value of the viscosity depends on the value of the pressure and it could be different
by orders of magnitude. While the pressure field can be determined by fixing the value at one
point, it is better to fix it based on a mean value (see the discussion in [79]).

8. Fluids with pressure and shear dependent viscosity

The viscosity of many fluids not only depends on the pressure, it can also depend on the
shear-rate. It turns out that if the dependence of the viscosity on the shear rate has a certain
mathematical structure, then one can establish interesting global existence of weak solutions
to the equations governing the flows of such fluids. [67, 80, 81] established existence of global
weak solution for unsteady flows, but their assumptions for the dependence of the viscosity on
the pressure is contradicted by experiments. [82] obtained numerical solutions for a fluid with
pressure and shear dependent viscosity.

[83] proved the existence of weak solutions for steady flows, and [84,85] extended these results
for flows in bounded domains when the fluid obeys Navier slip on the boundary. Establishing
global existence of solutions for viscosities that have a dependence on the pressure and viscosity

10As pointed out by [68], one of the many solutions found by [69] is physically unacceptable as the pressure field
corresponding to the solution is not continuous (see the discussion in [69] concerning the same).
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which is qualitatively consistent with experimental results is an interesting open problem that
deserves study, especially in view of its relevance to important technological problems such as
elastohydrodynamics. We recall that in fluids with pressure and shear rate dependent viscosity,
the Cauchy stress is given through:

T =−pI+2µ
(
p, |D|2)D, (44)

with trD = 0. Thus, we have

T =−1

3
(trT)I+2µ

(
1

3
trT, |D|2

)
D. (45)

[86] studied the flow of a fluid whose viscosity depends on the pressure and shear rate in an
infinite pipe and were able to establish explicit exact solutions. Special flows between parallel
plates for such fluids have been studied by [82] in pipes, flows past slots and projections, and
other technologically relevant flow domains. They found that the fluid exhibits distinctly different
flow characteristics from the classical Navier–Stokes fluid. [79] also studied the flow of the fluid
between two flat plates using a kinematic viscosity of the form:

ν= ν(p,D) =αp|D|r−2, (46)

where α and r are constants. They were able to show that the equations governing the flows of
such fluids exhibit multiplicity of solutions that are not possible in classical Navier–Stokes fluids
or classical Power-Law fluids. For example, when r = 3

2 , three solutions are possible of which one
is that which occurs in a Navier–Stokes fluid. [79] also establish an explicit exact solution for the
flow of a fluid between plates, when the viscosity depends exponentially on the pressure, the flow
taking place in the presence of gravity.

9. Implicit Constitutive Relations Characterized by Maximal Graphs

Careful mathematical studies concerning fluids described by implicit constitutive relations char-
acterized by maximal monotone (possibly multivalued) graphs have been carried out by [87–89].

Implicit constitutive relations have also been used to describe generalizations of the response
of dilute polymeric liquids that are obtained using a kinetic theory approach. Such generaliza-
tions that have been considered also lead to maximal monotone graphs. [90] have established
the existence of global weak solutions for the flows of such fluids (see [90]).

10. A possible application for fluids defined through implicit constitutive relations

The most important open problem in fluid mechanics is the problem of turbulence. One
phenomenological approach to turbulence within the context of continuum mechanics is the
approach wherein one assumes a mean velocity and mean pressure and fluctuations for the
velocity and pressure from the mean while writing down the Navier–Stokes equation. This
introduces a closure problem wherein one needs to provide a constitutive relation for the product
of the density and the tensor product of the fluctuating velocity, referred to in the literature as
“Reynolds stress”, with closure being accomplished by assuming a constitutive relation for the
fluctuations. Boussinesq was the first to address this closure problem and introduced the concept
of eddy viscosity ([91]). Various other closure models have been proposed such as the κ−ϵ, κ−ω,
and other models. As it is the stresses that cause changes in the velocity, the fluctuations in
the stress ought to cause fluctuations in the velocities. Thus, it does not seem appropriate to
just consider the fluctuations in the velocity and not consider the fluctuations in its cause, the
stress. It is also peculiar that fluctuations are considered for the pressure, just the mean normal
stress, but not the individual components of the stress, including the shear stress components.
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It would be more appropriate to consider implicit constitutive relations wherein one assumes a
mean value for the stress as well as the velocity and admit fluctuations to both. Starting with
algebraic implicit constitutive relations that include the mean values for the stress and velocity
and allowing for fluctuations, one will arrive at an equation involving the fluctuations in terms
of the mean quantities. Once closure relations are provided, we will have a constitutive relation
that can incorporate the invariants of both the stresses and the symmetric part of the velocity
gradient, as well as mixed invariants involving the stress and the symmetric part of the velocity
gradient. Such a constitutive relation will be much more general than the usual closure models.
However, just starting with an algebraic constitutive relation will not allow for the final system
of constitutive relations to describe relaxation effects that are observed in turbulence. For such
effects to be incorporated, one would have to start with implicit constitutive relations wherein
one allows for the time derivative of the stress to also be involved, that is one would need to use
a rate-type implicit model. Given the importance of the problem of turbulence, it might well be
worth the effort to see if the approach outlined above might provide some useful insights.
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[81] J. Málek, J. Nečas, K. R. Rajagopal, “Global analysis of the flows of fluids with pressure-dependent viscosities”, Arch.
Ration. Mech. Anal. 165 (2002), no. 3, p. 243-269.
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[85] M. Bulıček, J. Málek, K. R. Rajagopal, “Mathematical analysis of unsteady flows of fluids with pressure, shear-rate,
and temperature dependent material moduli that slip at solid boundaries”, SIAM J. Math. Anal. 41 (2009), no. 2,
p. 665-707.

[86] M. Vasudevaiah, K. R. Rajagopal, “On fully developed flows of fluids with a pressure dependent viscosity in a pipe”,
Appl. Math., Praha 50 (2005), no. 4, p. 341-353.
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