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Abstract. We study the existence of a weak solution to a regularized, moving boundary, fluid-structure inter-
action problem with multi-layered poroelastic media consisting of a reticular plate located at the interface
between the free flow of an incompressible, viscous fluid modeled by the 2D Navier–Stokes equations, and
a poroelastic medium modeled by the 2D Biot equations. The existence result holds for both the elastic and
viscoelastic Biot model. The free fluid flow and the poroelastic medium are coupled via the moving interface
(the reticular plate) through the kinematic and dynamic coupling conditions. The reticular plate is “trans-
parent” to fluid flow. The nonlinear coupling over the moving interface presents a major difficulty since both
the fluid domain and the poroelastic medium domain are functions of time, and the finite energy spaces
do not provide sufficient regularity for the corresponding weak formulation to be well-defined. This is why
in this manuscript we consider a regularized problem by employing convolution with a smooth kernel only
where needed. The resulting problem is still very challenging due to the nonlinear coupling and the motion
of the fluid and Biot domains. We provide a constructive existence proof for this regularized fluid-poroelastic
structure interaction problem. This regularized problem is consistent with the original, nonregularized prob-
lem in the sense that the weak solutions constructed here, converge, as the regularization parameter tends
to zero, to a classical solution of the original, nonregularized problem when such a classical solution exists,
assuming viscoelasticity in the Biot poroelastic matrix [1]. Furthermore, the existence result presented in this
manuscript, is a crucial stepping stone for the singular limit problem in which the thickness of the reticular
plate tends to zero. Namely, in [1] we will show that, in the case of a Biot poroviscoelastic matrix, the mov-
ing boundary problem obtained in the singular limit as the thickness of the plate tends to zero, has a weak
solution.
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1. Introduction and literature review

We are interested in weak solutions to a fluid-structure interaction problem between the flow of
an incompressible, viscous free fluid and a poroelastic medium, coupled over a moving interface.
The free fluid flow is modeled by the 2D Navier–Stokes equations for an incompressible, viscous
fluid, and the poroelastic medium is modeled by the 2D Biot equations, which are coupled to a
reticular plate serving as the interface between the free fluid flow and the Biot poro(visco)elastic
medium. See Figure 1.

Figure 1. A sketch of the fluid-poroelastic structure interaction domain.

A reticular plate is a lattice-type structure characterized by two properties: periodicity and
small thickness, where periodicity refers to periodic cells (holes) distributed in all directions [2].
Reticular plates, shells or membranes are models for reticular tissue, which is a connective tissue
made up of a network of supportive fibers that provide a framework for soft organs. The reticular
plate is transparent to fluid flow. It only provides mass (inertia) and elastic energy to the interface.
The free fluid flow and the structure consisting of the Biot poro(visco)elastic medium with a
reticular plate at the interface, are fully coupled across the moving (plate) interface, giving rise
to a nonlinearly coupled fluid-poroelastic structure interaction (FPSI) problem.

We focus on the finite energy weak solutions analogous to the Leray–Hopf class for the Navier–
Stokes equations. Such solutions have been widely studied in the context of fluid-structure
interaction (FSI) with purely elastic structures (no poroelasticity) when the structure is lower
dimensional, i.e. described by the plate/shell type of models, see e.g. [3–5] and the references
therein. However, in the case of FSI problems with bulk elasticity (i.e. when the dimension of
the fluid domain is the same as the dimension of the structure domain) the existence of weak
solutions is still open. The main issue is that the resulting energy inequality does not provide
sufficient regularity of the interface to define the moving domain and the corresponding traces,
as well as the integrals over the interface and over the moving structure domain in the weak
formulation. To the best of our knowledge, there are currently only two approaches to circumvent
this issue. The first one is to associate mass and elastic energy to the interface (elastic interface
with mass), as in [6, 7]. The elastic interface with mass regularizes the problem, as was proved
in [8], and makes it possible to define and construct weak solutions. The second one is to add
viscoelasticity to the structure so that the resulting nonlinear second order viscoelastic model
has energy that is coercive in W 1,p , p > 3, see [9]. Our approach to the study of FPSI in this
manuscript is closer to the former.

In moving boundary problems with poroelasticity, the issues are further exacerbated by the
fact that the Biot equations are defined on moving domains Ωb(t ) in Eulerian coordinates, and
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the corresponding weak formulation has terms that are not well defined. Consequently, in the
analysis of moving boundary FPSI problems it is not enough to regularize the interface, rather one
needs more regularity of the poroelastic matrix displacement in the entire domain. To deal with
this difficulty, we define weak solutions to a regularized form of the given moving boundary FPSI
problem by using a suitably constructed convolution in spatial variables. We regularize only the
“problematic” terms, i.e. the terms that are not well defined in the finite energy regularity class.
The resulting regularized problem is still a nonlinear moving boundary problem of FPSI type
and very challenging. To justify our regularization procedure and the corresponding definition
of weak solutions to the regularized FPSI problem, in [1] we prove that weak solutions to the
regularized FPSI problem indeed converge to the classical (smooth) solution of the original FPSI
problem when such a classical solution exists, as the regularization parameter tends to zero. This
is a weak-classical consistency result. Namely, we prove that if a smooth solution exists for the
FPSI problem without regularization, then there exists a time T > 0 such that the sequence of
weak solutions to the regularized FPSI problem constructed in this manuscript, converges to the
classical solution on [0,T ] as the regularization parameter converges to 0 [1].

In this manuscript we provide the existence of a weak solution to the regularized FPSI problem
for both the viscoelastic and elastic Biot models. While the result of this manuscript holds for the
more difficult elastic case, we include viscoelasticity since the weak-classical consistency result
from [1] is proved for the viscoelastic case.

1.1. Outline of the manuscript

This manuscript is organized as follows. In Section 2 we provide the statement of the original,
nonregularized FPSI problem defined on moving domains, together with the coupling condi-
tions. Here, we introduce the Lagrangian map which maps the Biot problem from the reference
domain onto the moving, physical Eulerian domain. In Section 3 we further introduce the La-
grangian mapping for the plate problem, and the Arbitrary Lagrangian-Eulerian (ALE) mapping
for the fluid domain, so that we can state the weak formulation for the nonregularized FPSI prob-
lem. In this section we remark which term in the weak formulation is not well-defined due the
motion of the Biot domain Ωb(t ) and the lack of regularity of finite energy solutions. In Section 4
we regularize the FPSI problem using a convolution with the convolution parameter δ, and spec-
ify weak formulations for the regularized FPSI problem both on fixed and moving domains. An
energy equality satisfied by the regularized solution is also presented. Existence of a weak solu-
tion to the regularized FPSI problem is presented in the rest of the paper. The main result and the
construction of approximate weak solutions is given in Section 5. Approximate solutions are con-
structed by semi-discretizing the coupled problem in time and splitting the reticular plate prob-
lem from the fluid-Biot subproblem. In Section 6 we provide uniform energy bounds for the ap-
proximate sequences. Since the problem is highly nonlinear, to show that approximate solutions
converge to a weak solution of the continuous regularized FPSI problem, we need some strong
convergence results to pass to the limit in the weak formulation. We outline the compactness
results ensuring the desired strong convergence of approximate subsequences in Section 7. In
Section 8 we pass to the limit in the weak formulation. This is, however, far from straight-forward
since the test functions in the weak formulation depend on the moving fluid domain. We will
explain in Section 8 how to address this difficulty.

Conclusions and upcoming related work are discussed in Section 9.
While all the details necessary to follow the results presented here are provided in this manu-

script, further detailed calculations will be provided in the associated manuscript [1].
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1.2. A brief literature review

By now, there is extensive work on fluid-structure interaction involving incompressible, Newto-
nian fluids interacting with elastic structures. The models first considered in the literature are
linearly coupled fluid-structure interaction models [10–12], which pose the fluid equations on a
fixed reference fluid domain as a linearization that approximates real-life dynamics well when
structure displacements are small. Nonlinearly coupled models, defined on time-dependent
moving fluid domains, have been extensively studied by many authors [3–5, 13–38]. The main
difficulty in the analysis of these problems is geometric nonlinearities arising from the moving
boundary.

Many elastic materials, such as biological tissues and sediments, are not impermeable and
can admit fluid flow through their pores. The study of poroelastic media was initiated by Biot
modeling soil consolidation [39, 40]. Since then, a number of authors have contributed to the
study of poroelastic media, both in terms of modeling and well-posedness analysis [35, 41–71].

More recently, the mathematical studies involving porous/poroelastic media have focused
on coupled problems including viscous, incompressible fluids. First, the coupled problems
involving Stokes/Navier–Stokes viscous fluid flow equations and the Darcy equation were studied
in, e.g., [72–74] in the steady-state case, and in [75–77] in the time-dependent case. Very recently,
studies focusing on the well-posedness of fully coupled fluid-poroelastic structure interaction
systems, involving an incompressible fluid coupled to a structure that is poroelastic, modeled by
the Biot equations, were considered in [78–80], where existence of (mild and strong) solutions was
studied. In 2021, existence of a weak solution to a fluid-structure interaction model involving
a multi-layered poroelastic medium and the time-dependent flow of a Stokes fluid was proved
in [81] assuming both linear and nonlinear permeability in the Biot model. The proof uses a Lie
operator splitting scheme, also known as the Marchuk–Yanenko scheme, which has been used
by Roland Glowinski and others in numerical computations, see [82] and the references therein.
A version of this operator splitting scheme is also used in the current paper as a skeleton for the
construction of approximate solutions. We emphasize that the existing work on fluid-poroelastic
structure interaction is solely for linearly coupled models, in which the fluid equations are posed
on a fixed reference fluid domain and the Biot equations describing poroelasticity are posed on a
fixed reference poroelastic structure domain. There has been no prior work that has considered
the case of nonlinearly coupled fluid-poroelastic structure interaction, in which the poroelastic
structure and fluid are both posed on moving domains that depend on the poroelastic structure
displacement. The goal of the current manuscript is to provide a first step in the development of
a well-posedness theory for nonlinearly coupled (moving boundary) fluid-poroelastic structure
interaction problems by constructing new tools for dealing with the equations of poroelasticity
defined on time-dependent and a priori unknown domains.

2. Statement of the problem

We consider a 2D benchmark, moving boundary FPSI problem defined on a simple rectangu-
lar domain. See Figure 1. This benchmark problem already embodies significant mathemat-
ical difficulties associated with the well-posedness analysis of moving domain FPSI problems.
We will use the “hat” notation to denote the reference domain:

Ω̂= Ω̂b ∪ Ω̂ f ∪ Γ̂,

where Ω̂ f = (0,L)× (−R,0), Ω̂b = (0,L)× (0,R), and Γ̂ = (0,L)× {0} denote the fluid reference do-
main, the Biot reference domain and the interface reference configuration, respectively. Because
we are considering a problem with nonlinear coupling, these domains will evolve in time, giving
rise to time-dependent Ω(t ) =Ωb(t )∪Ω f (t )∪Γ(t ).
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2.1. The Biot poroviscoelastic structure subproblem

The Biot system consists of the elastodynamics equation, which in this work will be defined on
the Lagrangian domain Ω̂b , and the fluid equation, which in this work will be defined on the
Eulerian domain Ωb(t ). The elastodynamics equation will be given in terms of the displacement
of the Biot poroelastic matrix from the reference configuration η̂ : [0,T ]× Ω̂b →R2 and fluid pore
pressure p̂ : Ω̂b → R. To specify the fluid equation given in terms of the fluid pore pressure in
Eulerian formulation, we introduce the Lagrangian map by

Φ̂
η

b(t , ·) = Id+ η̂(t , ·) : Ω̂b →Ωb(t ), (1)

with (Φη

b)−1(t , ·) :Ωb(t ) → Ω̂b denoting its inverse. The Biot equations are then given by [83, 84]:

ρb∂t t η̂= ∇̂ · Ŝb(∇̂η̂, p̂), in Ω̂b , (2)

c0[
det

(∇̂Φ̂η

b

)]◦ (
Φ
η

b

)−1

D

Dt
p +α∇· D

Dt
η−∇· (κ∇p) = 0, in Ωb(t ), (3)

where D
Dt = d

d t +(∂tη(t , .)◦(Φη

b)−1(t , ·)) ·∇) is the material derivative. To recover the filtration fluid
velocity q , Darcy’s law is used:

q =−κ∇p on Ωb(t ), (4)

where κ is a positive permeability constant.
In this work, we will consider both the viscoelastic and the purely elastic consitutive models for

the Biot poroelastic matrix with the Piola–Kirchhoff stress tensor for the viscoelastic case given
by

Ŝb
(∇η, p

)= 2µe D̂(η̂)+λe (∇̂ · η̂)I +2µv D̂(η̂t )+λv (∇̂ · η̂t )I −αdet
(∇̂Φ̂η

b

)
p̂

(∇̂Φ̂η

b

)−t
, (5)

where superscript t denotes matrix transposition and A−t = (A−1)t . The purely elastic case will
have the coefficients λv and µv equal to zero. Here, D denotes the symmetrized gradient, µe

and λe are the Lamé parameters related to the elastic stress, µv and λv are the corresponding
parameters related to the viscoelastic stress, and Φ̂η

b is the Lagrangian map defined above. In
equation (3) the Biot material displacementη and the pore pressure p are defined on the physical
domainΩb(t ) as

η(t , ·) = η̂
(
t ,

(
Φ
η

b

)−1
(t , ·)

)
, p(t , ·) = p̂

(
t ,

(
Φ
η

b

)−1
(t , ·)

)
, where Ωb(t ) = Φ̂η

b

(
t ,Ω̂b

)
.

We remark that in the last term of the Piola–Kirchhoff stress tensor (5), we have used the
Piola transform, which is a transformation that maps tensors in Lagrangian coordinates to
corresponding tensors in Eulerian coordinates in such a way that divergence-free tensors in
Lagrangian coordinates remain divergence free in Eulerian coordinates [85].

We note that a priori the notion of Ωb(t ) is not entirely clear, unless η̂ is sufficiently regular,
and furthermore, the formulation of this problem makes sense only if the map Φ̂η

b = Id+ η̂ is an
injective map from Ω̂b to Ωb(t ). We address these important issues later.

2.2. The reticular plate subproblem

The elastodynamics of reticular plates, studied in [2] using homogenization, are governed by a
plate-type equation, defined on the equilibrium middle surface of the homogenized plate or shell
Γ̂. The homogenized equation is given in terms of transverse displacement ω̂ = ω̂e y from the
reference configuration:

ρ̂p∂t t ω̂+ ∆̂2ω̂= F̂ p , on Γ̂, (6)

where ρ̂p is the plate density coefficient and F̂ p is the external forcing on the plate in y direction,
to be specified later in the coupling conditions. The constant ρ̂p is the “average” plate density,
which depends on the periodic structure. The in-plane bi-Laplacian ∆̂2 (Laplace–Beltrami
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operator for curved Γ̂’s) is associated with the elastic energy of the plate. Typically, there is a
coefficient D̃ in front of the bi-Laplacian, which contains information about the periodicity of
the structure and its stiffness properties [2]. In the present work, we will assume that it is equal
to 1. The source term F̂ p corresponds to the loading of the poroelastic plate, which will come
from the jump in the normal stress (traction) between the free fluid on one side and the thick
Biot poroelastic structure on the other, see (7) below.

In our problem, the reticular plate separates the regions of free fluid flow and the Biot
poroviscoelastic medium, and is transparent to the flow between the two. The time-dependent
configuration of the plate

Γ(t ) = {
(x, y) : 0 < x < L, y = ω̂(t , x)

}
,

forms the bottom boundary of the moving Biot domain Ωb(t ), and the remaining left, top, and
right boundaries of the moving Biot domainΩb(t ) are fixed in time. Hence, we impose that η= 0
on the left, top, and right boundaries of Ωb(t ). See Figure 1. Hence, we can describe the moving
domainΩb(t ) as

Ωb(t ) = {
(x, y) : 0 < x < L, ω̂(t , x) < y < R

}
.

2.3. The fluid subproblem

The free flow of an incompressible, viscous fluid will be modeled by the Navier–Stokes equations

∂t u + (u ·∇)u =∇·σ f (∇u,π), in Ω f (t ), (7)

∇·u = 0, in Ω f (t ), (8)

where u is the fluid velocity and π is the fluid pressure. The Cauchy stress tensor is given by

σ f (∇u,π) = 2νD(u)−πI ,

where π is the fluid pressure and ν is kinematic viscosity coefficient. The moving fluid domain
Ω f (t ) is determined by the plate displacement ω̂, as follows:

Ω f (t ) = {
(x, y) : 0 < x < L,−R < y < ω̂(t , x)

}
.

2.4. The coupling conditions

The three problems above are fully coupled across the moving interface Γ(t ) via two sets of
coupling conditions: the kinematic and dynamic coupling conditions. To state these conditions,
we introduce the following notation:

• The Biot Cauchy stress tensor, defined on the physical domain, is obtained by applying
the Piola transform to the Biot Cauchy stress tensor Ŝb(∇η, p) on the reference domain:

Sb
(∇η, p

)= [
det

(∇̂Φ̂η

b

)−1
Ŝb

(∇̂η̂, p̂
)(∇̂Φ̂η

b

)t
]
◦ (
Φ
η

b

)−1

=
(

1

det
(∇̂Φ̂η

b

) [
2µe D̂

(
η̂
)+λe

(∇̂ · η̂)+2µv D̂
(
η̂t

)+λv
(∇̂ · η̂t

)](∇̂Φ̂η

b

)t

)
◦ (
Φ
η

b

)−1 −αp I . (9)

• The Eulerian structure velocity of the Biot poroviscoelastic matrix is given at each point
of the physical domain Ωb(t ) by

ξ(t , ·) = ∂t η̂
(
t ,

(
Φ
η

b

)−1
(t , ·)

)
. (10)

• The normal unit vector to the moving interface Γ(t ) will be denoted by n(t ), and the
normal unit vector to the reference configuration of the interface Γ̂ will be denoted by n̂.
Note that n̂ = e y . The vectors n(t ) and n̂ point outward from Ω f (t ) and Ω f , and inward
towards Ωb(t ) and Ωb .
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The two sets of coupling conditions can now be defined as follows.
(I) Kinematic coupling conditions:

• Conservation of mass of the fluid,

u ·n(t ) = (q +ξ) ·n(t ), on (0,T )×Γ(t ). (11)

• Beavers–Joseph–Saffman condition describing tangential fluid slip at Γ(t ) [86, 87],

β(ξ−u) ·τ(t ) =σ f n(t ) ·τ(t ), on (0,T )×Γ(t ), (12)

where β≥ 0 is a constant and τ(t ) is the rightward pointing unit tangent vector to Γ(t ).
• Continuity of the displacement,

η̂= ω̂e y , on (0,T )× Γ̂. (13)

(II) Dynamic coupling conditions:

• Balance of forces describing the external forcing on the plate as the difference between
the external and internal load,

F̂ p =−det
(
∇Φ̂ω

f

)[
σ f (∇u,π)◦ Φ̂ω

f

](
∇Φ̂ω

f

)−t
n̂ · n̂ + Ŝb

(∇̂η̂, p̂
)

n̂ · n̂|Γ̂, on Γ̂, (14)

where Φ̂ω
f is the Arbitrary Lagrangian–Eulerian (ALE) mapping for the fluid domain:

Φ̂ω
f (x̂, ŷ) =

(
x̂, ŷ +

(
1+ ŷ

R

)
ω̂

)
, (x̂, ŷ) ∈ Ω̂ f . (15)

• Balance of pressure at the interface,

−σ f (∇u,π)n(t ) ·n(t )+ 1

2
|u|2 = p, on (0,T )×Γ(t ). (16)

2.5. The initial and boundary conditions

For the fluid, we will assume rigid walls on ∂Ω f (t ) \Γ(t ) and impose a no-slip condition

u = 0, on ∂Ω f (t ) \Γ(t ).

Similarly, we will assume that the boundaries of the Biot poroviscoelastic medium, excluding the
interface Γ(t ), are rigid and impose

η̂= 0 and p̂ = 0, on ∂Ω̂b \ Γ̂.

Finally, we prescribe the following initial conditions:

u(0) = u0 in Ω f (0),

η̂(0) = η̂0, ∂t η̂(0) = ξ̂0 in Ω̂b ,

ω̂(0) = ω̂0, ∂t ω̂(0) = ζ̂0 in Γ̂,

p̂(0) = p̂0 in Ω̂b .

3. Definition of weak solutions

To handle the moving domains, it is useful to introduce the mappings that map the reference
domains for the fluid, the Biot model, and the interface, onto the moving domains that depend
on time and on the solution itself. We introduce these mappings next, and specify how functions
and their derivatives transform under those mappings.



512 Jeffrey Kuan, Sunčica Čanić and Boris Muha

3.1. Mappings between reference and physical domains

We introduce the mappings for the Biot medium, for the plate, and for the fluid by the following:

Φ̂
η

b(t , ·) : Ω̂b →Ωb(t ), Φ̂ω
Γ (t , ·) : Γ̂→ Γ(t ), Φ̂ω

f (t , ·) : Ω̂ f →Ω f (t ),

where

(1) Φ̂η

b is defined by the Lagrangian mapping (1) introduced in the previous section

Φ̂
η

b = Id+ η̂.

(2) Φ̂ω
Γ is defined by the Lagrangian mapping

Φ̂ω
Γ (x̂,0) = (x̂,ω̂(x̂)) . (17)

(3) Φ̂ω
f is defined by the Arbitrary Lagrangian–Eulerian (ALE) mapping (15) defined above as

Φ̂ω
f (x̂, ŷ) =

(
x̂, ŷ +

(
1+ ŷ

R

)
ω̂

)
, (x̂, ŷ) ∈ Ω̂ f .

The inverse is given by(
Φ̂
ω
f

)−1
(x, y) =

(
x,−R + R

R + ω̂ (R + y)

)
, (x, y) ∈Ω f (t ).

We will need the following Jacobians:

• The Jacobian of Φ̂ω
f on Ω̂ f is given by Ĵω

f = |1+ ω̂
R |. Because our results will hold up until

the time of domain degeneracy when |ω̂| ≥ R, we can get rid of the absolute values and
just write

Ĵω
f = 1+ ω̂

R
. (18)

• The Jacobian of Φ̂η

b on Ω̂b is

Ĵ
η

b = det
(

I +∇̂η̂)
. (19)

• We will also need the arc length measure Ĵω
Γ between the reference configuration and

the deformed configuration of the plate, defined by

Ĵω
Γ =

√
1+|∂x̂ω̂|2. (20)

In the analysis of the full FPSI problem, it is necessary to consider functions on both the reference
and the physical domains, and hence, we must examine how functions and derivatives transform
under Φ̂ω

f and Φ̂η

b .

Transformations under Φ̂ω
f on Ω̂ f . Consider, in particular, the fluid velocity u. The fluid

velocity u defined on Ω f (t ), transferred to the fixed reference domain Ω̂ f , is given by

û(t , x̂, ŷ) = u ◦ Φ̂ω
f , for (x̂, ŷ) ∈ Ω̂ f .

• The divergence free condition. Recall that on Ω f (t ), ∇ · u = 0. However, when we
pull the fluid velocity back to the reference domain, û is not necessarily divergence
free on Ω̂ f . Hence, we want to reformulate the divergence free condition on the fixed
reference domain. To do this, we look at how derivatives transform under the map Φ̂ω

f .
In particular, note that for any function g defined on Ω f (t ),

∇g =∇
(

ĝ ◦
(
Φ̂
ω
f

)−1
)
=

(
∇̂ωf ĝ

)
◦
(
Φ̂
ω
f

)−1

for the differential operator

∇̂ωf =
(
∂x̂ − (R + y)∂x̂ω̂

R
(R+ω̂)2 ∂ŷ

R
R+ω̂∂ŷ

)
=

(
∂x̂ − (R+ŷ)∂x̂ ω̂

R+ω̂ ∂ŷ
R

R+ω̂∂ŷ

)
, (21)
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where we used y = ŷ + (1+ ŷ
R )ω̂. Therefore, the divergence free condition on the fixed

reference domain Ω̂ f and the symmetrized gradient on Ω̂ f transform as follows:

∇̂ωf · û = 0 and D̂ω
f (û) = 1

2

(
∇̂ωf û +

(
∇̂ωf û

)t )
.

• The time derivatives. Next, we consider how time derivatives are transformed under the
map Φ̂ω

f . We have that

∂t u(t , x, y) = ∂t

(
û(t ,

(
Φω

f

)−1
(x̂, ŷ)

)
= ∂t û −∂ŷ û

(R + ŷ)∂t ω̂

R + ω̂ .

By introducing the domain velocity

ŵ = R + ŷ

R
∂t ω̂e y , (22)

we have that

∂t u = ∂t û −
(

ŵ · ∇̂ωf
)

û. (23)

Transformations under Φ̂η

b on Ω̂b . Recall that Φ̂η

b(x̂, ŷ) = (x̂, ŷ)+η̂(x̂, ŷ) for (x̂, ŷ) ∈ Ω̂b . So given
a scalar function g defined on Ωb(t ), we want to see how ∇g transforms when pulled back to the
reference domain. We define the pull back of g to the reference domain Ω̂b by

ĝ = g ◦ Φ̂η

b .

Similarly to what we had above, we claim that for some differential operator ∇̂ηb ,

∇g =∇
(
ĝ ◦ (

Φ̂
η

b

)−1
)
= (∇̂ηb ĝ

)◦ (
Φ̂
η

b

)−1
.

We emphasize that ∇ is a gradient on the physical domain, ∇̂ is a gradient on the reference
domain, and ∇̂ηb is a differential operator (different from ∇̂) on the reference domain. For any
function g defined on the physical domain, we have that

∇̂(
g ◦ Φ̂η

b

)= [
(∇g )◦ Φ̂η

b

] · (I +∇̂η̂)
.

Hence, for

∇̂ηb ĝ = (∇g )◦ Φ̂η

b ,

we have the following explicit formula for the differential operator ∇̂ηb on the reference domain:

∇̂ηb ĝ =
(
∂ĝ

∂x̂
,
∂ĝ

∂ŷ

)
· (I +∇̂η̂)−1

. (24)

We remark that the invertibility of the matrix I +∇̂η̂ will be related to whether the map (x̂, ŷ) →
(x̂, ŷ)+ η̂(x̂, ŷ) is a bijection between Ω̂b and Ωb(t ).

3.2. Weak formulation

To derive a weak formulation of the coupled FPSI problem (2), (3), (5), (6), (7), and (8) with the
coupling conditions (11)-(16), we introduce the test function v for the fluid velocity u, the test
function ψ̂ for the structure displacement η̂, the test function φ̂ for the plate displacement ω̂,
and the test function r̂ for the Biot pressure p̂, multiply the corresponding equations by the
test functions, integrate by parts, and use the Reynold’s transport theorem and the coupling
conditions to obtain the following definition of a weak solution.



514 Jeffrey Kuan, Sunčica Čanić and Boris Muha

Definition 1. The ordered four-tuple (u,ω̂, η̂, p̂) is a weak solution if for every test function
(v ,ϕ̂,ψ̂, r̂ ) that is C 1

c in time on [0,T ] taking values in the test space, satisfying ψ̂ = ϕ̂e y on Γ̂,
we have that

−
∫ T

0

∫
Ω f (t )

u ·∂t v + 1

2

∫ T

0

∫
Ω f (t )

[
((u ·∇)u) ·v − ((u ·∇)v ) ·u

]+ 1

2

∫ T

0

∫
Γ(t )

(u ·n −2ξ ·n)u ·v

+2ν
∫ T

0

∫
Ω f (t )

D(u) : D(v )+
∫ T

0

∫
Γ(t )

(
1

2
|u|2 −p

)
(ψn − vn)+β

∫ T

0

∫
Γ(t )

(ξτ−uτ)(ψτ− vτ)

−ρp

∫ T

0

∫
Γ̂
∂t ω̂ ·∂t ϕ̂+

∫ T

0

∫
Γ̂
∆̂ω̂ · ∆̂ϕ̂−ρb

∫ T

0

∫
Ω̂b

∂t η̂ ·∂tψ̂+2µe

∫ T

0

∫
Ω̂b

D̂(η̂) : D̂(ψ̂)

+λe

∫ T

0

∫
Ω̂b

(∇̂ · η̂)(∇̂ ·ψ̂)+2µv

∫ T

0

∫
Ω̂b

D̂(∂t η̂) : D̂(ψ̂)+λv

∫ T

0

∫
Ω̂b

(∇̂ ·∂t η̂)(∇̂ ·ψ̂)

−α
∫ T

0

∫
Ωb (t )

p∇·ψ− c0

∫ T

0

∫
Ω̂b

p̂ ·∂t r̂ −α
∫ T

0

∫
Ωb (t )

D

Dt
η ·∇r −α

∫ T

0

∫
Γ(t )

(ξ ·n)r

+κ
∫ T

0

∫
Ωb (t )

∇p ·∇r −
∫ T

0

∫
Γ(t )

((u −ξ) ·n)r

=
∫
Ω f (0)

u0 ·v (0)+ρp

∫
Γ̂
∂t ω̂0 · ϕ̂(0)+ρb

∫
Ω̂b

∂t η̂0 ·ψ̂(0)+ c0

∫
Ω̂b

p̂0 · r̂ (0). (25)

Details of the derivation of this weak formulation will be presented in [1].

Remark 2. We will omit explicit mention of function compositions with the mappings Φ̂ω
f , Φ̂ω

Γ ,

and Φ̂η

b (defined in (15), (17), and (1)), and their inverses throughout the paper, as the function
compositions needed will be clear from the context. In particular, we follow this convention in
the weak formulation above. For example, since the pore pressure p̂ and the test function ψ̂ are
defined on the reference domain Ω̂b , the integral

−α
∫ T

0

∫
Ωb (t )

p∇·ψ means −α
∫ T

0

∫
Ωb (t )

(
p̂ ◦ (

Φ
η

b

)−1
)
∇·

(
ψ̂◦ (

Φ
η

b

)−1
)

.

As another example, the integral

−
∫ T

0

∫
Γ(t )

((
u −ζe y

) ·n
)

r means −
∫ T

0

∫
Γ(t )

((
u −

(
ζ◦ (
Φω
Γ

)−1
)

e y

)
·n

)(
r̂ ◦ (

Φ
η

b

)−1
)

.

Remark 3. The above weak formulation is inadequate for the finite energy weak solutions. By
the energy estimates, see Section 4.1, the regularity of the structure displacement η̂ on Ω̂b in the
finite energy space is L2(0,T, H 1(Ω̂b)), which is not enough regularity to interpret the term

α

∫
Ωb (t )

p∇·ψ,

since the test function has regularity ψ̂ ∈ H 1(Ω̂b) on the fixed reference domain, due to the
corresponding finite energy regularity of η̂. Hence, after changing variables, which adds an extra
factor of det(I+∇̂η̂) arising from the Jacobian, which is only in L1(0,T ;L1(Ω̂b)) in two dimensions,
there is not enough regularity to guarantee that this integral is finite.

Therefore, we cannot interpret the above notion of weak solution properly in the space of
finite energy solutions, as the finite energy space does not have enough regularity to make sense
of certain integrals in the weak formulation involving the deformed domain Ωb(t ). This is why
we introduce a regularized problem, which is consistent with the original problem in the sense
that weak solutions to the regularized problem converge, as the regularization parameter tends
to zero, to a smooth solution of the original, nonregularized problem, when a smooth solution
exists. This weak-classical consistency will be shown in [1]. In this manuscript, we show that
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the regularized, nonlinearly coupled FPSI problem has a weak solution which satisfies an energy
estimate “consistent” with the original, nonregularized problem.

4. Weak solutions to the regularized moving boundary FPSI problem

We recall that the main difficulty in defining a weak formulation is the lack of regularity of η̂ on
Ω̂b from the energy estimate. Therefore, we modify our weak formulation appropriately to give
η̂ more regularity, by convolving with a smooth compactly supported function with support of
width δ. Because we are working on a bounded domain Ω̂b , the convolution must be defined in a
way that preserves the Dirichlet condition on the left, top, and right boundaries of Ω̂b . To do this,
we extend the domain Ω̂b by L in each horizontal direction, and by R in the vertical direction to
define an extended domain Ω̃b as follows:

Ω̃b = [−L,2L]× [−R,2R].

Assuming that the convolution parameter δ< min(L,R), the resulting convolved function will be
defined on Ω̂b . Furthermore, to satisfy the Dirichlet boundary condition we must use an odd
extension of η̂ on Ω̂b to the larger domain Ω̃b along the lines x̂ = 0, x̂ = L, ŷ = 0 and ŷ = R:

Definition 4. Given η̂ defined on Ω̂b satisfying η̂= 0 on x̂ = 0, x̂ = L, and ŷ = R and η̂= ω̂e y on Γ,
we define the odd extension of η̂ to Ω̃b as follows.

(1) On [0,L]× [−R,0], set η̂(x̂, ŷ) = ω̂(x̂)e y + (ω̂(x̂)e y − η̂(x̂,−ŷ)).
(2) On [0,L]× [R,2R], set η̂(x̂, ŷ) =−η̂(x̂,2R − ŷ).
(3) On [−L,0]× [−R,2R], set η̂(x̂, ŷ) =−η̂(−x̂, ŷ).
(4) On [L,2L]× [−R,2R], set η̂(x̂, ŷ) =−η̂(2L− x̂, ŷ).

To define the convolution of η̂, we use a radially symmetric smooth function σ on R2 with
compact support in the closed ball of radius one, with the property that

∫
R2 σ= 1, and define

σδ = δ−2σ(δ−1x), on R2.

Regularized (in space) functions, which are spatially smooth on Ω̂b :

• The regularized Biot displacement η̂ is then defined by extending η̂ to Ω̃b by odd exten-
sion and defining:

η̂δ = η̂∗σδ, on Ω̂b . (26)

• The regularized Lagrangian mapping is defined by:

Φ̂
ηδ

b = Id+ η̂δ, (27)

• The regularized moving Biot domain is defined by

Ωδ
b(t ) = Φ̂ηδ

b

(
t ,Ω̂b

)
. (28)

• The regularized moving interface is defined by

Γδ(t ) = Φ̂ηδ

b (t , Γ̂).

The motivation for this comes from the need to satisfy the continuity of displacement
for the regularized quantities at the fluid-structure interface, which otherwise would not
have been satisfied.

Note that the following property remains to be true for the regularized displacement:

η̂δ = 0 on ∂Ω̂b \ Γ̂.

We can now define a weak solution to the regularized nonlinearly coupled FPSI problem with
regularization parameter δ. We start by defining the solution and test space, which is motivated
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by the energy estimates in Section 4.1, and then we state the regularized weak formulation.
We will formulate the solution space, test space, and regularized weak formulation for both
the moving fluid/Biot domain (Eulerian) and the fixed reference fluid/Biot domain (Lagrangian)
formulations.

Definition 5 (Solution and test spaces for the regularized problem).

• Fluid function space (moving domain-Eulerian formulation).

V f (t ) = {
u = (ux ,uy ) ∈ H 1 (

Ω f (t )
)

: ∇·u = 0, and u = 0 when x = 0, x = L, y =−R
}

, (29)

V f = L∞ (
0,T ;L2 (

Ω f (t )
))∩L2 (

0,T ;V f (t )
)

. (30)

• Fluid function space (fixed domain- Lagrangian formulation).

V ω
f =

{
û = (

ûx , ûy
) ∈ H 1 (

Ω̂ f
)

: ∇̂ωf · û = 0, and û = 0 when x̂ = 0, x̂ = L, ŷ =−R
}

, (31)

V ω
f = L∞ (

0,T ;L2 (
Ω̂ f

))∩L2
(
0,T ;V ω

f

)
. (32)

• Plate function space.

Vω =W 1,∞ (
0,T ;L2(Γ̂)

)∩L∞ (
0,T ; H 2

0 (Γ̂)
)

. (33)

• Biot displacement function space.

Vd = {
η̂= (

η̂x , η̂y
) ∈ H 1 (

Ω̂b
)

: η̂= 0 for x̂ = 0, x̂ = L, ŷ = R, and η̂x = 0 on Γ̂
}

, (34)

Vb =W 1,∞ (
0,T ;L2 (

Ω̂b
))∩L∞ (0,T ;Vd )∩H 1 (0,T ;Vd ) . (35)

• Biot pore pressure function space.

Vp = {
p̂ ∈ H 1 (

Ω̂b
)

: p̂ = 0 for x̂ = 0, x̂ = L, ŷ = R
}

, (36)

Qb = L∞ (
0,T ;L2 (

Ω̂b
))∩L2 (

0,T ;Vp
)

. (37)

• Weak solution space (moving domain).

Vsol =
{(

u,ω̂, η̂, p̂
) ∈ V f ×Vω×Vb ×Qb : η̂= ω̂e y on Γ̂

}
. (38)

• Weak solution space (fixed domain).

V ω
sol =

{(
û,ω̂, η̂, p̂

) ∈ V ω
f ×Vω×Vb ×Qb : η̂= ω̂e y on Γ̂

}
. (39)

• Test space (moving domain).

Vtest =
{(

v ,ϕ̂,ψ̂, r̂
) ∈C 1

c

(
[0,T );V f (t )×H 2

0 (Γ̂)×Vd ×Vp
)

: ψ̂= ϕ̂e y on Γ̂
}

. (40)

• Test space (fixed domain).

V ω
test =

{(
v̂ ,ϕ̂,ψ̂, r̂

) ∈C 1
c

(
[0,T );V ω

f ×H 2
0 (Γ̂)×Vd ×Vp

)
: ψ̂= ϕ̂e y on Γ̂

}
. (41)

Remark 6. Because Γ̂ is one dimensional, for plate displacements ω̂ ∈ Vω, we have that ω̂ ∈
C (0,T ;C 1(Γ̂)) and hence, there is a one-to-one correspondence between functions in Vsol and
V ω

sol and functions in Vtest and V ω
test, given by composition with the ALE mapping (15) for the fluid

domain, Φ̂ω
f : Ω̂ f →Ω f (t ), for the component involving fluid velocities.

To write a weak formulation for the regularized problem, we introduce the reticular plate
velocity ζ̂ = ∂t ω̂, which satisfies the kinematic coupling condition ζ̂e y = ξ̂ on Γ̂× (0,T ), which
follows from (13). With this notation, we have the following definition of a weak solution for the
regularized problem.
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Definition 7 (Weak solution to regularized problem, moving fluid domain formulation). An
ordered four-tuple (u,ω̂, η̂, p̂) ∈ Vsol is a weak solution to the regularized nonlinearly coupled FPSI
problem with regularization parameter δ if for every test function (v ,ϕ̂,ψ̂, r̂ ) ∈ Vtest,

−
∫ T

0

∫
Ω f (t )

u ·∂t v + 1

2

∫ T

0

∫
Ω f (t )

[
((u ·∇)u) ·v − ((u ·∇)v ) ·u

]+ 1

2

∫ T

0

∫
Γ(t )

(u ·n −2ζe y ·n)u ·v

+2ν
∫ T

0

∫
Ω f (t )

D(u) : D(v )+
∫ T

0

∫
Γ(t )

(
1

2
|u|2 −p

)
(ψ−v ) ·n +β

∫ T

0

∫
Γ(t )

(ζe y ·τ−u ·τ)(ψ ·τ−v ·τ)

−ρp

∫ T

0

∫
Γ̂
∂t ω̂ ·∂t ϕ̂+

∫ T

0

∫
Γ̂
∆̂ω̂ · ∆̂ϕ̂−ρb

∫ T

0

∫
Ω̂b

∂t η̂ ·∂tψ̂+2µe

∫ T

0

∫
Ω̂b

D̂(η̂) : D̂(ψ̂)

+λe

∫ T

0

∫
Ω̂b

(∇̂ · η̂)(∇̂ ·ψ̂)+2µv

∫ T

0

∫
Ω̂b

D̂(∂t η̂) : D̂(ψ̂)+λv

∫ T

0

∫
Ω̂b

(∇̂ ·∂t η̂)(∇̂ ·ψ̂)

−α
∫ T

0

∫
Ωδ

b (t )
p∇·ψ− c0

∫ T

0

∫
Ω̂b

p̂ ∂t r̂ −α
∫ T

0

∫
Ωδ

b (t )

Dδ

Dt
η ·∇r −α

∫ T

0

∫
Γδ(t )

(
ζe y ·nδ

)
r

+κ
∫ T

0

∫
Ωδ

b (t )
∇p ·∇r −

∫ T

0

∫
Γ(t )

(
(u −ζe y ) ·n

)
r

=
∫
Ω f (0)

u0 ·v (0)+ρp

∫
Γ̂
∂t ω̂0 · ϕ̂(0)+ρb

∫
Ω̂b

∂t η̂0 ·ψ̂(0)+ c0

∫
Ω̂b

p̂0 · r̂ (0), (42)

where Dδ

Dt = d
d t + (ξδ ·∇) is the material derivative with respect to the regularized displacement, n

denotes the upward pointing normal vector to Γ(t ), and nδ denotes the upward pointing normal
vector to Γδ(t ).

Notice that only four terms contain regularization via convolution with parameter δ. While
there are many different ways to write the regularized weak formulation, the regularization
presented above is a regularization that deviates from the original, nonregularized problem, in
the smallest possible number of terms, and is still consistent (in the weak-classical consistency
sense [1]) with the original, nonregularized problem.

Remark 8. We remark that, while the solution to the regularized problem above depends on the
regularization parameter δ implicitly, we will not use δ to denote this implicit dependence for
simplicity of notation.

Remark 9. As in Remark 2, in this weak formulation for the regularized problem, we simplify

notation by omitting the explicit compositions with the maps Φ̂ω
f , Φ̂ω

Γ , Φ̂η

b , and Φ̂ηδ

b , (defined
in (15), (17), (1), and (27) respectively), and their inverses. The necessary compositions with such
mappings, which are omitted for notational simplicity, will be clear from the context. To clarify
this, as an example, we show the explicit compositions with these mappings for the two terms in
the weak formulation for the regularized problem, which correspond to the two terms mentioned
in Remark 2:

−α
∫ T

0

∫
Ωδ

b (t )
p∇·ψ means −α

∫ T

0

∫
Ωδ

b (t )

(
p̂ ◦

(
Φ
ηδ

b

)−1
)
∇·

(
ψ̂◦

(
Φ
ηδ

b

)−1
)

,

and the second integral from Remark 2 (which also appears in the weak formulation for the
regularized problem) has the same meaning here:

−
∫ T

0

∫
Γ(t )

((
u −ζe y

) ·n
)

r means −
∫ T

0

∫
Γ(t )

((
u −

(
ζ◦ (
Φω
Γ

)−1
)

e y

)
·n

)(
r̂ ◦ (

Φ
η

b

)−1
)

.

Next we reformulate the definition of a weak solution to the regularized moving boundary
FPSI problem by stating the weak formulation on the fixed reference domain. In particular, we
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will need to handle any integrals dealing with time-dependent domains by using a change of
variables, which will introduce the Jacobians of the transformations, Ĵω

f , Ĵ
η

b , and Ĵω
Γ defined

in (18), (19), and (20), respectively. Furthermore, we have to use the transformation of time
derivatives, given by (22) and (23), and the transformed gradient (21), where we assume that
|ω| < R so that there is no domain degeneracy. Finally, by introducing the following notation
for the renormalized normal and tangent vectors:

n̂ω = (−∂x̂ω̂,1), τ̂ω = (1,∂x̂ω̂), n̂ωδ =
(
−∂x̂

((
η̂δ

)
y

∣∣
Γ̂

)
,1

)
, (43)

after the calculation which can be found in [1], we can now define a weak solution for the
regularized problem, defined on the fixed reference domain as follows.

Definition 10 (Weak solution to regularized problem, fixed fluid domain formulation). An
ordered four-tuple (û,ω̂, η̂, p̂) ∈ V ω

sol is a weak solution to the regularized nonlinearly coupled FPSI
problem with regularization parameter δ if for all test functions (v̂ ,ϕ̂,ψ̂, r̂ ) ∈ V ω

test, the following
equality holds:

−
∫ T

0

∫
Ω̂ f

(
1+ ω̂

R

)
û ·∂t v̂ + 1

2

∫ T

0

∫
Ω̂ f

(
1+ ω̂

R

)[(
(û − ŵ ) · ∇̂ωf û

)
· v̂ −

(
(û − ŵ ) · ∇̂ωf v̂

)
· û

]
− 1

2R

∫ T

0

∫
Ω̂ f

(∂t ω̂) û · v̂ + 1

2

∫ T

0

∫
Γ̂

(
û · n̂ω− ζ̂e y · n̂ω

)
û · v̂ +2ν

∫ T

0

∫
Ω̂ f

(
1+ ω̂

R

)
D̂ (û) : D̂ (v̂ )

+
∫ T

0

∫
Γ̂

(
1

2
|û|2 − p̂

)(
ψ̂− v̂

) · n̂ω+ β

Ĵω
Γ

∫ T

0

∫
Γ̂

(
ζ̂e y − û

) · τ̂ω (
ψ̂− v̂

) · τ̂ω
−ρp

∫ T

0

∫
Γ̂
∂t ω̂ ·∂t ϕ̂+

∫ T

0

∫
Γ̂
∆̂ω̂ · ∆̂ϕ̂−ρb

∫ T

0

∫
Ω̂b

∂t η̂ ·∂tψ̂+2µe

∫ T

0

∫
Ω̂b

D̂(η̂) : D̂(ψ̂)

+λe

∫ T

0

∫
Ω̂b

(∇̂ · η̂)(∇̂ ·ψ̂)+2µv

∫ T

0

∫
Ω̂b

D̂(∂t η̂) : D̂(ψ̂)+λv

∫ T

0

∫
Ω̂b

(∇̂ ·∂t η̂)(∇̂ ·ψ̂)

−α
∫ T

0

∫
Ω̂b

Ĵ
ηδ

b p̂∇̂ηδb ·ψ̂− c0

∫ T

0

∫
Ω̂b

p̂ ∂t r̂ −α
∫ T

0

∫
Ω̂b

Ĵ
ηδ

b ∂t η̂ · ∇̂η
δ

b r̂

−α
∫ T

0

∫
Γ̂

(
ζ̂e y · n̂ωδ

)
r̂ +κ

∫ T

0

∫
Ω̂b

Ĵ
ηδ

b ∇̂ηδb p̂ · ∇̂ηδb r̂ −
∫ T

0

∫
Γ̂

((
û − ζ̂e y

) · n̂ω
)

r̂

=
∫
Ω f (0)

u(0) ·v (0)+ρp

∫
Γ̂
∂t ω̂(0) · ϕ̂(0)+ρb

∫
Ω̂b

∂t η̂(0) ·ψ̂(0)+ c0

∫
Ω̂b

p̂(0) · r̂ (0). (44)

For completeness, we list the definitions of all of the relevant expressions below:

ŵ = R + ŷ

R
∂t ω̂e y , ∇̂ωf =

(
∂x̂ − (R + ŷ)∂x̂ω̂

R + ω̂ ∂ŷ ,
R

R + ω̂∂ŷ

)
, ∇̂ηδb ĝ =

(
∂ĝ

∂x̂
,
∂ĝ

∂ŷ

)
·
(

I +∇̂η̂δ
)−1

Ĵ
ηδ

b = det
(

I +∇̂η̂δ
)

, Ĵω
Γ =

√
1+|∂x̂ω̂|2, n̂ω

= (−∂x̂ω̂,1) , τ̂ω = (1,∂x̂ω̂) , n̂ωδ =
(
−∂x̂

((
η̂δ

)
y

∣∣
Γ̂

)
,1

)
.

4.1. Formal energy equality for the regularized problem

In this subsection we show that our regularization is defined in a way to preserve the variational
structure of the problem. More precisely, we formally prove that a weak solution to the regular-
ized problem satisfies an energy equality in the same way as for the original problem. To do this,
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we recall the weak formulation for the regularized problem (44) defined on the fixed reference do-
main and formally substitute (v̂ ,ϕ̂,ψ̂, r̂ ) = (û,∂t ω̂,∂t η̂, p̂) for the test function. After integration
by parts and after using the Reynold’s transport theorem, we obtain the following energy equality:

E K (T )+E E (T )+
∫ T

0

(
DV

f (t )+DV
b (t )+DV

fb
(t )+DV

β (t )
)

d t = E K (0)+E E (0) (45)

where

E K (t ) = 1

2

∫
Ω f (t )

|u(t )|2 + 1

2
ρb

∫
Ω̂b

∣∣∂t η̂(t )
∣∣2 + 1

2
c0

∫
Ω̂b

∣∣p̂(t )
∣∣2 + 1

2
ρp

∫
Γ̂
|∂t ω̂(t )|2

represents the kinetic energy of the fluid, the kinetic energy of the Biot poroviscoelastic matrix
motion, the kinetic energy of the filtrating fluid flow in the Biot medium, and the kinetic energy
of the plate motion, respectively.

E E (t ) = 2µe

∫
Ω̂b

∣∣D̂ (
η̂
)

(t )
∣∣2 +2λe

∫
Ω̂b

∣∣∇̂ · η̂(t )
∣∣2 +

∫
Γ̂

∣∣∆̂ω̂(t )
∣∣2

represents the elastic energy of the Biot poroviscoelastic matrix and the elastic energy of the plate,
and

DV
f (t ) = 2ν

∫
Ω f (t )

|D(u)|2 , DV
b (t ) = 2µv

∫
Ω̂b

∣∣D̂ (
∂t η̂

)∣∣2 +λv

∫
Ω̂b

∣∣∇̂ ·∂t η̂
∣∣2

,

DV
fb

(t ) = κ
∫
Ωδ

b (t )
|∇p|2, DV

β (t ) =β
∫
Γ(t )

|(ξ−u) ·τ|2

represents dissipation due to fluid viscosity, viscosity of the Biot poroviscoelastic matrix, dissipa-
tion due to permeability effects, and dissipation due to friction in the Beavers–Joseph–Saffman
slip condition. Details of the calculation can be found in [1].

5. Statement of the main result and construction of approximate solutions

To show the existence of a weak solution to the regularized problem, we use a constructive
existence proof, which involves a splitting scheme [82]. This is an approach that has been used for
constructive existence of weak solutions for a variety of FSI problems, see for example [3–5,27,28].
Here, we design a splitting scheme which consists of two subproblems: one for the fluid-Biot
medium, and one for the plate.

We now state the main result.

Theorem 11 (Main Result). Consider initial data for the plate displacement ω̂0 ∈ H 2
0 (Γ̂), plate

velocity ζ̂0 ∈ L2(Γ̂), Biot displacement η̂0 ∈ H 1(Ω̂b), Biot velocity ξ̂0 ∈ H 1(Ω̂b), Biot pore pressure
p̂0 ∈ L2(Ω̂b), and fluid velocity u0 ∈ H 1(Ω f (0)) which is divergence-free. Suppose further that
|ω̂0| ≤ R0 < R for some R0, η̂0|Γ = ω̂0e y , and ξ̂0|Γ = ζ̂0e y , and for some arbitrary but fixed
regularization parameter δ > 0, suppose that Id+ η̂δ0 is an invertible map with det(I +∇η̂δ0 ) > 0.
Then, there exists a weak solution (u,ω̂, η̂, p̂) to the regularized FPSI problem with regularization
parameter δ on some time interval [0,T ], for some T > 0.

While T in general depends on δ, we will show in [1] that if there exists a smooth solution to
the nonregularized FPSI problem, then this time T for the regularized problem is independent of
δ. This will allow us to pass to the limit as δ→ 0 and show that weak solutions to the regularized
FPSI problems constructed in this manuscript, converge to a smooth solution of the original,
nonregularized problem, when a smooth solution to the nonregularized problem exists.

Remark 12. The result above is a local result, since it holds up to some time T > 0, which needs
to be sufficiently small. However, it is easy to show that this T > 0 can be made maximal, in the
sense that it holds until the time for which Id+ η̂δ fails to be invertible or |ω̂(·, x)| = R for some
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x ∈ Γ̂ when the reticular plate collides with the boundary. This can be shown using a standard
method, see e.g. [88, pg. 397-398], or the proof of [3, Theorem 7.1].

In the rest of this manuscript we present the main steps of the proof of Theorem 11. The
proof is based on constructing a sequence of approximate solutions and showing that, up to a
subsequence, they converge to a weak solution of the regularized FPSI problem. The approximate
solutions are constructed by semi-discretizing the problem in time and using a Lie operator
splitting scheme [82].

An important notational convention. In the rest of the manuscript we will drop the “hat”
notation for the Lagrangian variables and the reference domain. For example, we will use Ωb

instead of Ω̂b , and keep Ωb(t ) for the Eulerian, physical domain. The distinction between the
functions defined on these two domains will be clear from the context. Moreover, we will use the
following notation for the regularization ( f )δ := f δ, where f is a function defined on Ω̂b .

5.1. The splitting scheme

Let∆t = T /N . The splitting scheme is given in terms of the fluid velocity, plate displacement and
velocity, and Biot poroviscoelastic material displacement and pressure:(

u
n+ i

2
N ,ω

n+ i
2

N ,ζ
n+ i

2
N ,η

n+ i
2

N , p
n+ i

2
N

)
, for n = 0,1, . . . ., N and i = 0,1.

We semidiscretize the regularized weak formulation (44) on the fixed reference domain using
Euler discretization to approximate time derivatives, with the following shorthand notation

ḟ
n+ i

2
N = f

n+ i
2

N − f
n+ i

2 −1
N

∆t
.

The semidiscretized problem is split into two subproblems: a plate subproblem and a fluid-Biot
subproblem.

The plate subproblem. Only the plate displacement and velocity ω
n+ 1

2
N and ζ

n+ 1
2

N are updated
in this step, leaving the remaining variables unchanged:

u
n+ 1

2
N = un

N , η
n+ 1

2
N =ηn

N , p
n+ 1

2
N = pn

N .

The weak formulation reads: find ω
n+ 1

2
N ∈ H 2

0 (Γ) and ζ
n+ 1

2
N ∈ H 2

0 (Γ), such that

∫
Γ

ωn+ 1
2

N −ωn− 1
2

N

∆t

 ·φ=
∫
Γ
ζ

n+ 1
2

N ·φ, for all φ ∈ L2(Γ),

ρp

∫
Γ

ζn+ 1
2

N −ζn
N

∆t

 ·ϕ+
∫
Γ
∆ω

n+ 1
2

N ·∆ϕ= 0, for all ϕ ∈ H 2
0 (Γ).

(46)

When n = 0, we set ω
− 1

2
N =ω0 and ζ0

N = ζ0. Recall that ω0e y =η0|Γ and ζ0e y = ξ0|Γ.
Using the Lax–Milgram Lemma one can show that this problem has a unique solution (see [1]

for details), and it satisfies the following energy equality:

1

2
ρp

∫
Γ

∣∣∣∣ζn+ 1
2

N

∣∣∣∣2

+1

2
ρp

∫
Γ

∣∣∣∣ζn+ 1
2

N −ζn
N

∣∣∣∣2

+ 1

2

∫
Γ

∣∣∣∣∆ωn+ 1
2

N

∣∣∣∣2

+ 1

2

∫
Γ

∣∣∣∣∆(
ω

n+ 1
2

N −ωn− 1
2

N

)∣∣∣∣2

= 1

2
ρp

∫
Γ

∣∣ζn
N

∣∣2 + 1

2

∫
Γ

∣∣∣∣∆ωn− 1
2

N

∣∣∣∣2

. (47)

The fluid and Biot subproblem. For the fluid and Biot subproblem, we update the quantities
related to the fluid and the Biot medium. Due to the kinematic coupling between the Biot
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medium displacement and the plate displacement, we must also update the plate velocity, as
the dynamics of the Biot medium affect the kinematics of the plate. In this step, only the plate
displacement remains unchanged:

ωn+1
N =ωn+ 1

2
N .

To state the weak formulation of the fluid and Biot subproblem, we define the solution and
test spaces, respectively:

V n+1
N =

{(
u,ζ,η, p

) ∈ V
ωn

N
f ×H 2

0 (Γ)×Vd ×Vp

}
, (48)

Qn+1
N =

{(
v ,ϕ,ψ,r

) ∈V
ωn

N
f ×H 2

0 (Γ)×Vd ×Vp :ψ=ϕe y on Γ
}

, (49)

where V ω
f , Vd , and Vp are defined in (31), (34), and (36).

The weak formulation now reads: find (un+1
N ,ζn+1

N ,ηn+1
N , pn+1

N ) ∈ V n+1
N defined on the reference

domain, such that for all test functions (v ,ϕ,ψ,r ) ∈ Qn+1
N defined on the reference domain, the

following holds:∫
Ω f

(
1+ ωn

N

R

)
u̇n+1

N ·v+2ν
∫
Ω f

(
1+ ωn

N

R

)
D
ωn

N
f

(
un+1

N

)
: D

ωn
N

f (v )+
∫
Γ

(
1

2
un+1

N ·un
N −pn+1

N

)
(ψ−v )·nωn

N

+ 1

2

∫
Ω f

(
1+ ωn

N

R

)[((
un

N −ζn+ 1
2

N

R + y

R
e y

)
·∇ω

n
N

f un+1
N

)
·v −

((
un

N −ζn+ 1
2

N

R + y

R
e y

)
·∇ω

n
N

f v
)
·un+1

N

]
+ 1

2R

∫
Ω f

ζ
n+ 1

2
N un+1

N ·v + 1

2

∫
Γ

(
un+1

N − η̇n+1
N

) ·nωn
N

(
un

N ·v
)

+ β

J
ωn

N
Γ

∫
Γ

(
η̇n+1

N −un+1
N

) ·τωn
N

(
ψ−v

) ·τωn
N +ρb

∫
Ωb

(
η̇n+1

N − η̇n
N

∆t

)
·ψ

+ρp

∫
Γ

ζn+1
N −ζn+ 1

2
N

∆t

ϕ+2µe

∫
Ωb

D
(
ηn+1

N

)
: D(ψ)+λe

∫
Ωb

(∇·ηn+1
N

)
(∇·ψ)

+2µv

∫
Ωb

D
(
η̇n+1

N

)
: D(ψ)+λv

∫
Ωb

(∇· η̇n+1
N

)
(∇·ψ)−α

∫
Ωb

J

(
ηn

N

)δ
b pn+1

N ∇
(
ηn

N

)δ
b ·ψ

+ c0

∫
Ωb

pn+1
N −pn

N

∆t
r −α

∫
Ωb

J

(
ηn

N

)δ
b η̇n+1

N ·∇
(
ηn

N

)δ
b r −α

∫
Γ

(
η̇n+1

N ·n
(
ωn

N

)δ)
r

+κ
∫
Ωb

J

(
ηn

N

)δ
b ∇

(
ηn

N

)δ
b pn+1

N ·∇
(
ηn

N

)δ
b r −

∫
Γ

[(
un+1

N − η̇n+1
N

) ·nωn
N

]
r = 0,

(50)

and ∫
Γ

(
ηn+1

N −ηn
N

∆t

)
·φ=

∫
Γ
ζn+1

N e y ·φ, for all φ ∈ L2(Γ). (51)

The proof of the existence of a unique solution for this subproblem can be obtained under the
following two assumptions:

(1) Assumption 1A: Boundedness of the plate displacement away from R. There exists a
positive constant Rmax such that∣∣∣∣ωk+ i

2
N

∣∣∣∣≤ Rmax < R, for all k = 0,1, . . . , n and i = 0,1. (52)

(2) Assumption 2A: Invertibility of the map from fixed to moving Biot domain. The map

Id+ (
ηn

N

)δ :Ωb → (Ωb)n,δ
N is invertible, (53)

where we define (Ωb)n,δ
N to be the image ofΩb under the map Id+ (ηn

N )δ.
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The proof is based on using the Lax–Milgram Lemma. However, in this case the proof is more
involved for two reasons. First, the bilinear form associated with problem (50) and (51) is not

coercive on the Hilbert space V
ωn

N
f ×Vd ×Vp , because of a mismatch between the hyperbolic and

parabolic scaling in the problem. The second reason is that it is not a priori clear that Korn’s
inequality, which is needed in the proof of the existence, holds for the Biot domain. To deal with
the first difficulty and recover the coercive structure of the problem, the test functions can be
rescaled so that

v → (∆t )v , r → (∆t )r.

This scaling of the test functions is valid because if (v ,ϕ,ψ, v) ∈ Qn+1
N , then the rescaled test

function satisfies ((∆t )−1v ,ϕ,ψ, (∆t )−1r ) ∈Qn+1
N also. To deal with the second difficulty, one can

show by explicit calculation that the following Korn’s inequality holds for this problem:

Proposition 13 (Korn’s inequality for the Biot poroviscoelastic domain). For all η ∈Vd ,∫
Ωb

|D(η)|2 ≥ 1

2

∫
Ωb

|∇η|2.

Details of the proof can be found in [1].

The Lax Milgram Lemma implies the existence of a unique solution (un+1
N ,ηn+1

N , pn+1
N ) ∈ V

ωn
N

f ×
Vd ×Vp to the weak formulation (50), (51), which satisfies the following energy equality:

1

2

∫
Ω f

(
1+ ωn+1

N

R

)∣∣un+1
N

∣∣2 + 1

2
ρb

∫
Ωb

∣∣η̇n+1
N

∣∣2 + 1

2
c0

∫
Ωb

∣∣pn+1
N

∣∣2 +µe

∫
Ωb

∣∣D (
ηn+1

N

)∣∣2

+ 1

2
λe

∫
Ωb

∣∣∇·ηn+1
N

∣∣2 + 1

2
ρp

∫
Γ

∣∣ζn+1
N

∣∣2 +2µv (∆t )
∫
Ωb

∣∣D (
η̇n+1

N

)∣∣2 +λv (∆t )
∫
Ωb

∣∣∇· η̇n+1
N

∣∣2

+κ(∆t )
∫
Ωb

J

(
ηn

N

)δ
b

∣∣∣∣∇(
ηn

N

)δ
b pn+1

N

∣∣∣∣2

+ β(∆t )

J
ωn

N
Γ

∫
Γ

∣∣∣(η̇n+1
N −un+1

N

) ·τωn
N

∣∣∣2

+ 1

2
ρb

∫
Ωb

∣∣η̇n+1
N − η̇n

N

∣∣2 + 1

2
c0

∫
Ωb

∣∣pn+1
N −pn

N

∣∣2

+µe

∫
Ωb

∣∣D (
ηn+1

N −ηn
N

)∣∣2 + 1

2
λe

∫
Ωb

∣∣∇· (ηn+1
N −ηn

N

)∣∣2

= 1

2

∫
Ω f

(
1+ ωn

N

R

)∣∣un
N

∣∣2 + 1

2
ρb

∫
Ωb

∣∣η̇n
N

∣∣2 + 1

2
c0

∫
Ωb

∣∣pn
N

∣∣2 +µe

∫
Ωb

∣∣D (
ηn

N

)∣∣2

+ 1

2
λe

∫
Ωb

∣∣∇·ηn
N

∣∣2 + 1

2
ρp

∫
Γ

∣∣∣∣ζn+ 1
2

N

∣∣∣∣2

.

The monolithic semidiscrete problem and uniform energy estimates. To obtain uniform energy
estimates for approximate solutions of our semidiscretized scheme it is useful to present the
scheme in monolithic form:∫

Ω f

(
1+ ωn

N

R

)
u̇n+1

N ·v +2ν
∫
Ω f

(
1+ ωn

N

R

)
D
ωn

N
f

(
un+1

N

)
: D

ωn
N

f (v )+
∫
Γ

(
1

2
un+1

N ·un
N −pn+1

N

)
(ψ−v ) ·nωn

N

+ 1

2

∫
Ω f

(
1+ ωn

N

R

)[((
un

N −ζn+ 1
2

N

R + y

R
e y

)
·∇ω

n
N

f un+1
N

)
·v −

((
un

N −ζn+ 1
2

N

R + y

R
e y

)
·∇ω

n
N

f v
)
·un+1

N

]
+ 1

2R

∫
Ω f

ζ
n+ 1

2
N un+1

N ·v + 1

2

∫
Γ

(
un+1

N − η̇n+1
N

) ·nωn
N

(
un

N ·v
)+ β

J
ωn

N
Γ

∫
Γ

(
η̇n+1

N −un+1
N

) ·τωn
N

(
ψ−v

) ·τωn
N

+ρb

∫
Ωb

(
η̇n+1

N − η̇n
N

∆t

)
·ψ+ρp

∫
Γ

(
ζn+1

N −ζn
N

∆t

)
ϕ+2µe

∫
Ωb

D
(
ηn+1

N

)
: D(ψ)+λe

∫
Ωb

(∇·ηn+1
N

)(∇·ψ)
+2µv

∫
Ωb

D
(
η̇n+1

N

)
: D(ψ)+λv

∫
Ωb

(∇· η̇n+1
N

)
(∇·ψ)
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−α
∫
Ωb

J

(
ηn

N

)δ
b pn+1

N ∇
(
ηn

N

)δ
b ·ψ+ c0

∫
Ωb

pn+1
N −pn

N

∆t
r

−α
∫
Ωb

J

(
ηn

N

)δ
b η̇n+1

N ·∇
(
ηn

N

)δ
b r −α

∫
Γ

(
η̇n+1

N ·n
(
ωn

N

)δ)
r +κ

∫
Ωb

J

(
ηn

N

)δ
b ∇

(
ηn

N

)δ
b pn+1

N ·∇
(
ηn

N

)δ
b r

−
∫
Γ

[(
un+1

N − η̇n+1
N

) ·nωn
N

]
r +

∫
Γ
∆ω

n+ 1
2

N ·∆ϕ= 0, ∀ (v ,ϕ,ψ,r ) ∈Qn+1
N , (54)

∫
Γ

ωn+ 1
2

N −ωn− 1
2

N

∆t

φ=
∫
Γ
ζ

n+ 1
2

N φ,
∫
Γ

(
ηn+1

N −ηn
N

∆t

)
·φ=

∫
Γ
ζn+1

N e y ·φ, ∀φ,φ ∈ L2(Γ). (55)

This formulation implies uniform energy estimates for the following discrete energy and
discrete dissipation:

E
n+ i

2
N = 1

2

∫
Ω f

(
1+ ωn

N

R

)∣∣∣∣un+ i
2

N

∣∣∣∣2

+ 1

2
ρb

∫
Ωb

∣∣∣∣η̇n+ i
2

N

∣∣∣∣2

+ 1

2
c0

∫
Ωb

∣∣∣∣pn+ i
2

N

∣∣∣∣2

+µe

∫
Ωb

∣∣∣∣D (
η

n+ i
2

N

)∣∣∣∣2

,

+ 1

2
λe

∫
Ωb

∣∣∣∣∇·ηn+ i
2

N

∣∣∣∣2

+ 1

2
ρp

∫
Γ

∣∣∣∣ζn+ i
2

N

∣∣∣∣2

+ 1

2

∫
Γ

∣∣∣∣∆ωn+ i
2

N

∣∣∣∣2

, i = 0,1.

Dn+1
N = 2ν(∆t )

∫
Ω f

(
1+ ωn

N

R

)∣∣∣Dωn
N

f

(
un+1

N

)∣∣∣2
+2µv (∆t )

∫
Ωb

∣∣D (
η̇n+1

N

)∣∣2 +λv (∆t )
∫
Ωb

∣∣∇· η̇n+1
N

∣∣2

+κ(∆t )
∫
Ωb

J

(
ηn

N

)δ
b

∣∣∣∣∇(
ηn

N

)δ
b pn+1

N

∣∣∣∣2

+ β(∆t )

J
ωn

N
Γ

∫
Γ

∣∣∣(η̇n+1
N −un+1

N

) ·τωn
N

∣∣∣2
. (56)

The following discrete energy equalities hold:

E
n+ 1

2
N + 1

2
ρp

∫
Γ

∣∣∣∣ζn+ 1
2

N −ζn
N

∣∣∣∣2

+ 1

2

∫
Γ

∣∣∣∣∆(
ω

n+ 1
2

N −ωn− 1
2

N

)∣∣∣∣2

= E n
N (57)

E n+1
N +Dn+1

N + 1

2

∫
Ω f

(
1+ ωn

N

R

)∣∣un+1
N −un

N

∣∣2 + 1

2
ρb

∫
Ωb

∣∣η̇n+1
N − η̇n

N

∣∣2 + 1

2
c0

∫
Ωb

∣∣pn+1
N −pn

N

∣∣2

+µe

∫
Ωb

∣∣D (
ηn+1

N −ηn
N

)∣∣2 + 1

2
λe

∫
Ωb

∣∣∇· (ηn+1
N −ηn

N

)∣∣2 + 1

2
ρp

∫
Γ

∣∣∣∣ζn+1
N −ζn+ 1

2
N

∣∣∣∣2

= E
n+ 1

2
N . (58)

We remark that the terms not included in the definition of E
n+ i

2
N and Dn+1

N , appearing in (57)
and (58), are numerical dissipation terms.

These energy identities immediately imply that E
n+ i

2
N and

∑N
n=1 Dn

N are uniformly bounded by
a constant C independent of n and N .

The semidiscretized splitting scheme defines semidiscretized approximations of the solution
to the regularized problem at discrete time points. To work with approximate functions and
show that they converge to the solution of the continuous problem, we need to extend the
semidiscrete approximations to the entire time interval and investigate uniform boundedness
of those approximate solution functions. This is done next.

6. Uniform bounds on approximate solutions to the regularized problem

We introduce two extensions to the whole time interval [0,T ] of semidiscrete approximate solu-
tions constructed in the previous sections. One is the following piecewise constant extension:

uN (t ) = un
N , ηN (t ) =ηn

N , pN (t ) = pn
N , ωN (t ) =ωn− 1

2
N , ζN (t ) = ζn− 1

2
N , ζ∗N (t ) = ζn

N ,

for (n −1)∆t < t ≤ n∆t ,
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and the other one is a linear interpolation that will be used to estimate time derivatives for the
compactness arguments later in the paper:

ηN (n∆t ) =ηn
N , pN (n∆t ) = pn

N , ωN (n∆t ) =ωn− 1
2

N , for n = 0,1, . . . , N ,

where we formally set ω
− 1

2
N =ω0. Note that ∂tωN = ζN and ∂tηN |Γ = ζ∗N e y .

From the preceding energy estimates, the following lemma stating uniform boundedness
holds.

Lemma 14 (Uniform boundedness of approximate solutions). Assume:

(1) Assumption 1B: Uniform boundedness of plate displacements. There exists a positive
constant Rmax such that for all N ,∣∣∣∣ωn− 1

2
N

∣∣∣∣≤ Rmax < R, for all n = 0,1, . . . , N , (59)

∣∣∣(ηn
N )δ|Γ

∣∣∣≤ Rmax < R, for all n = 0,1, . . . , N . (60)

(2) Assumption 2B: Uniform invertibility of the ALE mapping (Jacobian). There exists a
positive constant c0 such that for all N ,

det
(

I +∇(
ηn

N

)δ)≥ c0 > 0, for all n = 0,1, . . . , N . (61)

(3) Assumption 2C: Uniform boundedness of the ALE mapping (matrix norm). There exists
positive constants c1 and c2 such that for all N ,∣∣∣∣(I +∇(

ηn
N

)δ)−1
∣∣∣∣≤ c1,

∣∣∣I +∇(
ηn

N

)δ∣∣∣≤ c2, for all n = 0,1, . . . , N . (62)

Then for all N :

• uN is uniformly bounded in L∞(0,T ;L2(Ω f )) and L2(0,T ; H 1(Ω f )).
• ηN is uniformly bounded in L∞(0,T ; H 1(Ωb)).
• pN is uniformly bounded in L∞(0,T ;L2(Ωb)) and L2(0,T ; H 1(Ωb)).
• ωN is uniformly bounded in L∞(0,T ; H 2

0 (Γ)).

In addition, we have the following estimates on the linear interpolations.

• ηN is uniformly bounded in W 1,∞(0,T ;L2(Ωb)).
• ωN is uniformly bounded in W 1,∞(0,T ;L2(Γ)).

Remark 15 (A crucial remark about invertibility). At first, it would appear that to show the
uniform boundedness results above, we also need to have a fourth assumption, which is As-
sumption 2A (53) from before, that the map Id + (ηn

N )δ : Ωb → R2 is injective (and is hence a
bijection onto its image), for each n = 0,1, . . . , N and for all N . However, this is implied by an
injectivity theorem, see Ciarlet [85, Theorem 5-5-2]. Note also that Assumption 1A (52) from
before is automatically satisfied once we verify Assumption 1B (59), (60). In particular, this in-
jectivity theorem is as follows. Since det(I +∇(ηn

N )δ) > 0 by Assumption 2B (61), it suffices to
show that Id+ (ηn

N )δ =ϕ0 on ∂Ωb , for some injective mapping ϕ0 :Ωb → R2, for example a stan-
dard ALE mapping ϕ0(x, y) = (

x, y + (
1− y

R

)
ω

)
can be used. This implies the very useful fact that

(Id+ (ηn
N )δ)(Ωb) = ϕ0(Ωb), which means that the deformed configuration is fully determined by

the behavior on the boundary.

The results of Lemma 14 follows from the uniform energy estimates. More details can be found
in [1].

An immediate consequence of the uniform boundedness result is the following proposition.
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Proposition 16. Assume that the three assumptions listed in Lemma 14 hold. Then, there exists a
subsequence such that the following weak convergence results hold:

• uN *u weakly* in L∞(0,T ;L2(Ω f )), uN *u weakly in L2(0,T ; H 1(Ω f )),
• ηN *ηweakly* in L∞(0,T ; H 1(Ωb)), ηN *ηweakly* in W 1,∞(0,T ;L2(Ωb)),
• pN * p weakly* in L∞(0,T ;L2(Ωb)), pN * p weakly in L2(0,T ; H 1(Ωb)),
• ωN *ω weakly* in L∞(0,T ; H 2

0 (Γ)), ωN *ω weakly* in W 1,∞(0,T ;L2(Γ)).

Furthermore, η=η and ω=ω.

To use these results and to be able to construct approximate solutions, we must verify that the
assumptions from Lemma 14 hold. This is given by the following lemma.

Lemma 17. Suppose that the initial data satisfies |ω0| ≤ R0 < R for some R0, and suppose that
η0 has the property that Id + (η0)δ is invertible with det(I +∇(η0)δ) ≥ c0 > 0 on Ωb for some
positive constant c0. Then, there exists a sufficiently small time T > 0 such that for all N , all
three assumptions in Lemma 14 hold and the splitting scheme is well defined until time T .

Proof. First, notice that the assumptions on the initial data immediately imply that the three
assumptions from Lemma 14 hold for the initial data, i.e., for n = 0.

Next, we want to choose an appropriate time T such that the three assumptions hold uni-
formly for all N and n∆t up to time T . To do this, note that the energy estimates imply

E
k+ 1

2
N ≤ E0, E k+1

N ≤ E0,

and, after completing both subproblems of the scheme on the time step [k∆t , (k+1)∆t ], it follows
that ∥∥η̇n

N

∥∥
L2(Ωb ) ≤C , for n = 0,1, . . . , k +1, (63)∥∥∥∥ωn+ 1

2
N

∥∥∥∥
H 2

0 (Γ)
≤C , for n = 0,1, . . . , k, (64)∥∥∥∥ζn+ i

2
N

∥∥∥∥
L2(Γ)

≤C , for 0 ≤ n + i

2
≤ k +1 and i = 0,1, (65)

for a constant C that is independent of k and N , since C depends only on the initial energy E0.
The proof of (59): Suppose that the linear interpolation ωN is defined up to time (k + 1)∆t .

Then, by (64) and (65), it satisfies ∥ωN∥W 1,∞(0,(k+1)∆t ;L2(Γ)) ≤ C and ∥ωN∥L∞(0,(k+1)∆t ;H 2
0 (Γ)) ≤ C .

Thus, following the method in [3], we obtain by an interpolation inequality that for all t , t +τ ∈
[0, (k +1)∆t ] with τ> 0,∥∥ωN (t +τ)−ωN (t )

∥∥
H 1(Γ) ≤C

∥∥ωN (t +τ)−ωN (t )
∥∥1/2

L2(Γ)

∥∥ωN (t +τ)−ωN (t )
∥∥1/2

H 2(Γ) . (66)

Here, we used a Sobolev interpolation inequality, see for example [89, Theorem 4.17 (pg. 79)]. By
the Lipschitz continuity of ωN taking values in L2(Γ) and by the boundedness of ωN in H 2

0 (Γ), we
get ∥ωN (t +τ)−ωN (t )∥H 1(Γ) ≤ C ·τ1/2, for a constant C depending only on E0 (and in particular,
not depending on k and N ). Therefore, setting t = 0 and τ= (k +1)∆t and using the continuous
embedding of H 1(Γ) into C (Γ),∥∥∥ωk+1

N −ω0

∥∥∥
C (Γ)

≤C · [(k +1)t ]1/2 ≤C ·T 1/2, (67)

for a constant C that is independent of k and N . Because |ω0| < R, we can choose T > 0
sufficiently small so that

C ·T 1/2 < R −∥ω0∥C (Γ). (68)

This gives (59).
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The proof of (60), (61), and (62). Here, we want to control the behavior of η. To do this, first
note that ∥ηk+1

N −η0∥L2(Ωb ) ≤ (∆t )
∑k+1

n=1 ∥η̇n
N∥L2(Ωb ) ≤ (k+1)(∆t )C ≤C T, for a constant C depending

only on E0. By regularization, we then have that for a constant depending only on δ and E0,∥∥∥∥(
ηk+1

N

)δ− (η0)δ
∥∥∥∥

H 3(Ωb )
≤C T.

By using the trace theorem and the continuous embedding of H 2(Γ) into C (Γ), and by using the
continuous embedding of H 2(Ωb) into C (Ωb), we obtain∥∥∥∥(

ηk+1
N

)δ |Γ− (η0)δ|Γ
∥∥∥∥

C (Γ)
≤C T and

∥∥∥∥∇(
ηk+1

N

)δ−∇(η0)δ
∥∥∥∥

C (Ωb )
≤C T, (69)

where C depends only on δ and E0. Since det(I +∇(ηn
N )δ), |I +∇(ηn

N )δ|, and |(I + (∇(ηn
N )δ)−1| are

continuous functions of ∇(ηn
N )δ, from (69), we get that the assumptions (60), (61), and (62) are

satisfied, where we can choose the constants c0, c1, c2, and Rmax (defined in the statement of
those assumptions) independently of N and n = 0,1, . . . , N , because of the fact that the constant
C in our estimates does not depend on k (satisfying (k +1)∆t ≤ T ) or N . □

7. Compactness for the regularized problem

Since the problem is nonlinear, to pass to the limit in the weak formulation and show that
the approximate solutions converge to a weak solution of the regularized problem, we need
stronger convergence than just weak and weak* convergence in Proposition 16. For this reason,
we will use compactness arguments. In particular, for functions defined on fixed domains,
such as the Biot poroelastic matrix displacement and plate displacement, we use the classical
Aubin-Lions compactness theorem. For functions defined on moving domains, such as the fluid
velocity, we use the generalized Aubin–Lions compactness theorem presented in [90], see also [3].
The reason we must use a generalized Aubin–Lions compactness theorem is that the approximate
fluid velocities are defined on different time-dependent fluid domains. To be able to compare
functions defined on different domains we introduce a maximal domainΩM

f containing all of the
physical approximate fluid domains Ωn

f ,N :

ΩM
f = {

(x, y) ∈R2 : 0 ≤ x ≤ L,−R ≤ y ≤ M(x)
}

,

where M(x) is an upper bound for the location of the interface displacement, defined by

ωn
N (x) ≤ M(x), for all x ∈ [0,L],n = 0,1, . . . , N , and for all N . (70)

The existence of such a maximal domainΩM
f , namely the existence of M(x), follows by arguments

similar to [91, Lemma 2.5] and [90, Lemma 4.5], established in the context of incompressible
FSI. Once the maximal fluid domain is defined, we can extend the fluid velocities un

N from Ωn
f ,N

to this common maximal domain ΩM
f , using extensions by zero in ΩM

f ∩ (Ωn
f ,N )c . Notice that

since ωn
N (x) are all uniformly Lipschitz, the extensions by zero of the H 1 functions un

N defined
on Lipschitz domains to ΩM

f are uniformly bounded in H s (ΩM
f ) for all s such that 0 < s < 1/2.

The strong convergence result below is stated in terms of the velocity functions defined on the
maximal domainΩM

f .
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Theorem 18. The following strong convergence results hold:

(1) The Biot poroviscoelastic matrix displacement: There exists a subsequence such that
ηN →η strongly in C (0,T ;L2(Ωb)).

(2) The plate displacement: Given arbitrary 0 < s < 2, there exists a subsequence such that
ωN →ω in C (0,T ; H s (Γ)), and ωN →ω in L∞(0,T ; H s (Γ)).

(3) The Biot poroviscoelastic matrix velocity and plate velocity: For −1/2 < s < 0, there
exists a subsequence such that (ξN ,ζN ) → (ξ,ζ) strongly in L2(0,T ; H−s (Ωb)×H−s (Γ)).

(4) The pore pressure: There exists a subsequence such that pN → p, strongly in
L2(0,T ;L2(Ωb)).

(5) The free fluid velocity: Let ΩM
f be a maximal domain containing all of the physical

approximate fluid domains Ωn
f ,N , and let uN be defined on ΩM

f via a zero extension from

Ωn
f ,N to ΩM

f . Then, there exists a subsequence such that uN → u in L2(0,T ;L2(ΩM
f )).

Precompactness for the approximate Biot poroviscoelastic medium displacements fol-
lows from the compactness of the embedding W 1,∞(0,T ;L2(Ωb)) ∩ L∞(0,T ; H 1(Ωb)) ⊂⊂
C (0,T ;L2(Ωb)), which is proved by a standard Aubin–Lions argument.

Precompactness for the approximate plate displacements follows from the Arzela–Ascoli the-
orem and the fact that H 2α embeds compactly into any H 2α−ϵ for ϵ> 0, once we choose α ∈ (0,1)
and ϵ> 0 appropriately so that 2α−ϵ= s for a given arbitrary 0 < s < 2.

Precompactness for the approximate Biot velocity and plate velocity follow by using a com-
pactness criterion for piecewise constant functions due to Dreher and Jüngel [92].

Precompactness for the approximate pore pressure follows similarly by using arguments based
on the Dreher–Jüngel compactness criterion for piecewise constant functions [92].

Precompactness for the approximate fluid velocity follows from the generalized Aubin–Lions
compactness theorem [90] for functions defined on moving domains, except for one additional
wrinkle. Namely, since in this work we are considering a moving fluid domain with a moving plate
as a boundary, we must modify the arguments presented in [90] by considering extra arguments
to handle the additional perturbative terms that appear in this particular FPSI model. Details can
be found in [1].

8. Passing to the limit

With the convergence results just established, we pass to the limit in the semidiscrete formula-
tion (54) and (55). There is, however, another difficulty that needs to be overcome, which is re-
lated to dealing with the test functions for the fluid velocity. In particular, on the fixed reference
fluid domain Ω f on which (54) and (55) are defined, the test functions for the fluid velocity in
V ω

test, defined by (41), satisfy ∇ωf · v = 0 onΩ f , where ω is the solution for the plate displacement.
However, the test functions for the fluid velocity in the semidiscrete formulation belong to the
semidiscrete test space Qn+1

N , defined by (49), and satisfy ∇ωn
N · v = 0 onΩ f . Hence, we need a

way of comparing the test functions from Qn+1
N and V ω

test. To do this, we go back to the physical
space and consider the velocity test functions in the physical space where the classical divergence
free condition holds, and extend the test functions to the maximal domain ΩM

f in the way speci-
fied below. We look at the restrictions of those test function onto the physical fluid domains that
are bounded by ω and by ωN , and define the test functions on the fixed, reference fluid domain
to be those restrictions in the physical domain, pulled back to the reference domain via the cor-
responding ALE mappings. These test functions defined on the reference fluid domain now de-
pend on N . However, for the test functions constructed this way, we can show that they are dense
in the original test spaces, and we can get the desired convergence properties as N → ∞ to be
able to pass to the limit in the corresponding weak formulation.
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More precisely, consider the following test space X , which consists of functions v in C 1
c ([0,T )

×ΩM
f ) defined on the physical space, satisfying the following properties for each t ∈ [0,T ):

(1) For each t ∈ [0,T ), v (t ) is a smooth vector-valued function onΩM
f .

(2) ∇·v (t ) = 0 onΩM
f for all t ∈ [0,T ).

(3) v (t ) = 0 on x = 0, x = L, and y =−R, for all t ∈ [0,T ).

Given v ∈X , define

ṽ = v |Ωω
f
◦Φω

f and ṽ N = v |
Ω
ωN
f

◦ΦωN
f .

The test functions ṽ are dense in the fluid velocity test space V ω
f associated with the fixed domain

formulation, and the test functions ṽ N restricted to [n∆t , (n+1)∆t ) are dense in V
ωn

N
f , where V

ωn
N

f
is the velocity test space for the semidiscretized problem(s) given in (49). Therefore, for each fixed
N , we can consider the semidiscrete formulation with the test function ṽ N , which we emphasize
is discontinuous in time, due to the jumps in ωN at each n∆t . To pass to the limit as N → ∞
we can use the same approach as in [3, Lemma 7.1] and [91, Lemma 2.8], to obtain the following
strong convergence results of the velocity test functions ṽ N and their gradients, which will allow
us to pass to the limit in the semidiscrete weak formulations:

Proposition 19. Consider v ∈X . As N →∞,

ṽ N → v , ∇ṽ N →∇v ,

pointwise, uniformly on [0,T ]×Ω f , as N →∞.

With this construction of velocity test functions defined on approximate domains, we can pass
to the limit in the semidiscrete weak formulation (54) and (55) where v is replaced with ṽ N . By
using the strong convergence results from Theorem 18, along with the strong convergence of test
functions stated in Proposition 19, and after using discrete integration by parts as in∫ T

0

∫
Ω f

(
1+ τ∆tωN

R

)
∂t uN · ṽ N

→−
∫ T

0

∫
Ω f

(
1+ ω

R

)
u ·∂t ṽ − 1

R

∫ T

0

∫
Ω f

(∂tω)u · ṽ −
∫
Ω f

(
1+ ω0

R

)
u(0) · ṽ (0),

for ṽ = v |Ωω
f
◦Φω

f , where v ∈ X (see, e.g., [91, pg. 79-81]), we can pass to the limit in the

semidiscrete weak formulation of the regularized problem. The limiting weak formulation holds
for all velocity test functions in the smooth test space, which can be extended to the general
test space V ω

test defined in (41) by using a density argument. Therefore, we have shown that the
approximate weak solutions converge, up to a subsequence, to a weak solution to the regularized
problem, as stated in Theorem 11.

This completes the main result of this manuscript, stated in Theorem 11 providing existence
of a weak solution to the nonlinearly coupled, regularized fluid-poroviscoelastic structure inter-
action problem, given in Definition 10.

We conclude this manuscript by making the important observation that the weak solution
constructed here satisfies the following energy estimate.

Proposition 20. The weak solution (u,η, p,ω) to the regularized problem, constructed above,
satisfies the following energy estimate:

1

2

∫
Ω f (t )

|u|2 + 1

2
ρb

∫
Ωb

|ξ|2 + 1

2
c0

∫
Ωb

|p|2 +µe

∫
Ωb

|D(η)|2

+1

2
λe

∫
Ωb

|∇ ·η|2 + 1

2
ρp

∫
Γ
|ζ|2 + 1

2

∫
Γ
|∆ω|2 +2ν

∫ t

0

∫
Ω f (s)

|D(u)|2
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+2µv

∫ t

0

∫
Ωb

|D (ξ)|2 +λv

∫ t

0

∫
Ωb

|∇ ·ξ|2 +κ
∫ t

0

∫
Ωδ

b (s)

∣∣∇p
∣∣2 +β

∫ t

0

∫
Γ(s)

∣∣(ζe y −u) ·τ)∣∣2 ≤ E0, (71)

for almost every t ∈ [0,T ].

Proof. The approximate solutions (uN ,ηN , pN ,ωN ) satisfy the following energy inequality:

1

2

∫
Ω
ωN
f (t )

|uN |2 + 1

2
ρb

∫
Ωb

|ξN |2 + 1

2
c0

∫
Ωb

|pN |2 +µe

∫
Ωb

∣∣D (
ηN

)∣∣2

+ 1

2
λe

∫
Ωb

∣∣∇·ηN

∣∣2 + 1

2
ρp

∫
Γ
|ζN |2 + 1

2

∫
Γ
|∆ωN |2 +2ν

∫ t

0

∫
Ω f ,N (s)

|D (uN )|2

+2µv

∫ t

0

∫
Ωb

∣∣D (
ξN

)∣∣2+λv

∫ t

0

∫
Ωb

∣∣∇·ξN

∣∣2+κ
∫ t

0

∫
Ωδ

b,N (s)
|∇pN |2+β

∫ t

0

∫
Γ(s)

∣∣(ζ̂N e y −uN
) ·τ∣∣2 ≤ E0,

where E0 is the initial energy of the problem. We can then use the weak convergences of the
approximate solutions, stated in Proposition 16, and weak lower semicontinuity in order to pass
to the limit in the energy inequality. □

9. Conclusions and Related Upcoming Work

We provided the main steps in the existence proof of a weak solution to a regularized FPSI prob-
lem consisting of multi-layered poroelastic media interacting with the free flow of an incompress-
ible, viscous fluid. The benchmark nonlinearly coupled FPSI model that we considered consists
of an incompressible, viscous fluid modeled by the 2D Navier–Stokes equations interacting with
a multilayered structure consisting of a poroviscoelastic medium modeled by the 2D Biot equa-
tions and a reticular plate. The reticular plate that is at the interface between the fluid and the
Biot poroviscoelastic medium associates mass (inertia) and elastic energy to the interface, and it
is “transparent” to fluid flow. The free fluid flow and the poroviscoelastic medium are coupled via
the moving (plate) interface through the kinematic and dynamic coupling conditions. Though
we have presented the main results for the case of a Biot poroviscoelastic medium, the existence
result holds for both the elastic and viscoelastic Biot model.

We emphasize that this existence result is the first such result for a nonlinearly coupled FPSI
model. The nonlinear coupling over the moving interface presents a major difficulty since both
the fluid domain and the poroviscoelastic medium domain are functions of time. Because the
Biot medium is a 2D thick medium having the same dimension as the fluid domain, there are
substantial difficulties in defining the time-dependent moving Biot domain Ωb(t ). Namely, we
would want to define the moving Biot domainΩb(t ) as the image of the reference Biot domain Ω̂b

under the map Id+η̂, where η̂ is the Biot medium displacement, and we would furthermore want
this map Id+ η̂ to be a bijection between Ω̂b and Ωb(t ). However, in the finite energy space for
the problem, the Biot medium displacement η̂ is not even a continuous function on Ω̂b , which
makes it difficult to properly interpret the moving Biot domain Ωb(t ). Furthermore, the weak
formulation for the original FPSI problem (without regularization) contains integrals over the
time-dependent Biot domain Ωb(t ) which do not necessarily converge for solutions in the finite
energy space. This is due to the low regularity of the factor Ĵ

η

b = det(I +∇η̂) for η̂ in the finite
energy space appearing in the weak formulation, where the Jacobian det(I +∇η̂) arises from a
change of variables from Ωb(t ) to Ω̂b .

To address this difficulty, in this manuscript, we considered a regularized problem, which
consists of a regularized Biot matrix displacement ηδ via convolution with a smooth kernel,
which defines a regularized moving Biot domainΩδ

b(t ). We formulated a weak formulation to the
regularized FPSI problem, which differs from the original formulation in the smallest number of
terms. In this manuscript, we proved the existence of a weak solution to the regularized problem,
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which is difficult to study in its own right. The proof was constructive, and was based on the time
discretization via operator splitting. Upon fixing an arbitrary regularization parameter δ> 0, we
showed that there exists a uniform time T independent of the time step∆t , for which the splitting
scheme remains valid up until time T , so that we could construct approximate solutions for the
regularized FPSI problem on a uniform time interval [0,T ]. We used compactness arguments
and an analysis of the test space, which depends on the solution itself, in order to pass to the
limit in these approximate solutions to obtain a resulting weak solution to the regularized moving
boundary FPSI problem.

While the constructive existence proof in this manuscript was carried out in the case of
a viscoelastic Biot medium, the existence result continues to hold in the case of a purely
elastic Biot medium. The main difference is that rather than having the Biot velocity ξ̂ ∈
L∞(0,T ;L2(Ω̂b))∩L2(0,T ; H 1(Ω̂b)) as in the case of a poroviscoelastic Biot medium, we instead
have ξ̂ ∈ L∞(0,T ;L2(Ω̂b)) for a poroelastic Biot medium. Thus, in the case of a poroelastic Biot
medium, the Biot velocity ξ̂ does not have a well-defined trace along Γ̂ and thus, it no longer
makes sense to additionally impose that ξ̂|Γ̂ = ζ̂e y where ζ̂ is the plate velocity, and we instead
just impose continuity of displacements η̂|Γ̂ = ω̂e y , where η̂ is the Biot medium displacement
and ω̂ is the plate displacement. Due to the reticular plate separating the Biot medium and the
fluid flow, considering the case of a purely elastic Biot medium does not present additional dif-
ficulties in the constructive existence proof described in this manuscript. This is because even
though the Biot velocity ξ̂ does not have a well-defined trace along the interface Γ̂ in the case of a
purely elastic Biot material, the presence of the reticular plate, which has a well-defined velocity
ζ̂ ∈ L∞(0,T ;L2(Γ̂)) in the finite energy space, allows us to still be able to interpret any terms in the
weak formulation involving the velocity of the interface between the Biot medium and the free
fluid flow.

In an associated manuscript [1], we prove that the regularized weak formulation that we have
constructed in this manuscript is consistent with the original, nonregularized problem in the
case of the viscoelastic Biot model, in the sense that weak solutions of the regularized problem
converge (as the regularization parameter δ→ 0) to a classical (smooth) solution of the original
nonregularized problem when such a classical solution exists, where this convergence takes
place on a uniform time interval that is independent of the regularization parameter δ. We call
this property weak-classical consistency, and remark that viscoelasticity of the Biot medium is
needed in this weak-classical consistency proof. However, the existence proof presented in this
manuscript holds for both the case of a purely elastic and viscoelastic Biot medium.

We conclude this manuscript with a remark that for the regularized moving boundary FPSI
problem that we have considered, we are studying the singular limit in which the reticular plate
thickness tends to zero [1]. We have preliminary results which indicate that under the assumption
of viscoelasticity in the Biot model, the singular limit can be taken, establishing the existence of
a weak solution to the corresponding regularized moving boundary fluid-structure interaction
problem between the flow of an incompressible, viscous fluid modeled by the Navier–Stokes
equations, and a poroviscoelastic structure modeled by the Biot equations, without a reticular
plate between the Biot medium and the fluid flow [1]. The existence of a weak solution to the
regularized, moving-boundary problem studied in this manuscript, is a crucial stepping stone
for the singular limit proof to be carried out.
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[11] V. Barbu, Z. Grujić, I. Lasiecka, A. Tuffaha, “Smoothness of weak solutions to a nonlinear fluid-structure interaction
model”, Indiana Univ. Math. J. 57 (2008), no. 3, p. 1173-1207.

[12] I. Kukavica, A. Tuffaha, M. Ziane, “Strong solutions for a fluid structure interaction system”, Adv. Differ. Equ. 15
(2010), no. 3-4, p. 231-254.

[13] H. Beirão da Veiga, “On the existence of strong solutions to a coupled fluid-structure evolution problem”, J. Math.
Fluid Mech. 6 (2004), no. 1, p. 21-52.

[14] A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont, “Existence of weak solutions for the unsteady interaction
of a viscous fluid with an elastic plate”, J. Math. Fluid Mech. 7 (2005), no. 3, p. 368-404.

[15] C. H. A. Cheng, D. Coutand, S. Shkoller, “Navier-Stokes equations interacting with a nonlinear elastic biofluid shell”,
SIAM J. Math. Anal. 39 (2007), no. 3, p. 742-800.

[16] C. H. A. Cheng, S. Shkoller, “The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic
shell”, SIAM J. Math. Anal. 42 (2010), no. 3, p. 1094-1155.

[17] D. Coutand, S. Shkoller, “Motion of an elastic solid inside an incompressible viscous fluid”, Arch. Ration. Mech. Anal.
176 (2005), no. 1, p. 25-102.

[18] D. Coutand, S. Shkoller, “The interaction between quasilinear elastodynamics and the Navier-Stokes equations”,
Arch. Ration. Mech. Anal. 179 (2006), no. 3, p. 303-352.

[19] C. Grandmont, “Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate”,
SIAM J. Math. Anal. 40 (2008), no. 2, p. 716-737.

[20] C. Grandmont, M. Hillairet, “Existence of global strong solutions to a beam-fluid interaction system”, Arch. Ration.
Mech. Anal. 220 (2016), no. 3, p. 1283-1333.
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