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Abstract   
   

The study was aimed to isolate the oleaginous bacteria from various soil 

samples and characterize the bacterial lipids to study its suitable application. 

The study was carried out from June 2023 to October 2023 in the 

microbiology lab at Changu Kana Thakur Arts, Commerce & Science 

College, New Panvel (Autonomous). The soil samples were collected from 

the garden, dumping, and compost area at New Panvel. The bacterial 

isolation was carried out by simple streak plate method, followed by 

screening by Sudan black B staining method. Production of oleaginous 

bacteria was done, followed by extraction of lipids by Bligh and dyer 

method. The extracted lipids were characterized by TLC and FTIR. The 

antioxidant potential of extracted lipids was assessed by DPPH method. The 

different oleaginous bacteria were isolated from soil sample and screened by 

Sudan black B staining method. The results indicate phospholipids, TAG, 

esters of fatty acids were mainly present. The extracted lipid samples S1C2, 

S2C4, S2C2, S1C1, S3C4, S2C1, S3C2 have 83.30%, 80%, 36.60%, 

23.30%, 26.60%, 16.6%, 6.6% antioxidant potential respectively. 
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Introduction:  

 

Single-cell microorganisms (SCM) are a newly emerging source of high-value lipids for a number of 

expanding applications that seek low-cost, high-quality substitutes. (Bajwa et al.; AJB2T, 3(1): 1-12, 2018; 

Article no. AJB2T. 39260) Oleaginous microorganisms are those that can accumulate lipids in amounts more 

than 20% and up to 70% of their dry weight. (Tamene and Dawit, 2014) Microbial lipid sources have several 

advantages over other sources, including better lipid productivity in terms of g/L/day, being unaffected by 

seasonal climate fluctuations, being low labour intensive, and being easily scaled-up. (Alok Patel, Fabio 

Mikes and Leonidas Matsakas; 2018) Lipids are a class of molecules that are soluble in organic solvents but 

insoluble in water. They include fat-soluble vitamins (e.g., A, D, E, and K), monoglycerides, diglycerides, 

triglycerides, hydrocarbon-like compounds (e.g., sterols, terpenes, waxes), and glycerophospholipids. (A. 

Daniel Jones et al;2019) Temperature, pH, substrate, C/N ratio, and oxygen pressure are all factors that 

influence the productivity of accumulating lipids. (Bajwa et al.; AJB2T, 3(1): 1-12, 2018; Article no. AJB2T. 

39260). Microbial lipids can potentially be used to produce safe and clean biomaterials at low cost and with 

continuous availability. (Bajwa et al.; AJB2T, 3(1): 1-12, 2018; Article no. AJB2T. 39260). Antioxidants 

have ability to neutralize free radicals. They reduce the risk of various diseases. Many lipids have antioxidant 

mailto:vemulaanvi@gmail.com


Journal of Advanced Zoology  

 

Available online at: https://jazindia.com    134  

potential. The antioxidant potency is determined by DPPH assay. DPPH is a free radical neutralize by 

antioxidant, give colour changes from purple to colourless. The decrease in absorbance is proportional to 

antioxidant capacity. (Durval, I. J. B., Ribeiro, B. G., Aguiar, J. S., Sarubbo, L. A., Rufino, R. D., & 

Converti, A, 2021) 

 

Materials and Methods:  

 

1. Collection and enrichment of soil samples: Soil samples were collected from garden, dumping, compost 

and 1 gram of each sample was added into different sterile nutrient broth. Incubate for 24 hrs. at R.T. on 

shaking condition. 

2. Isolation of bacterial species: After incubation period loopful inoculum was streak on sterile nutrient agar 

plate and kept it at R.T. for 24 hrs.  

3. Morphological characterization and screening of oleaginous bacteria: Morphologically different 

colonies were selected and streak on Tryptone Yeast Extract agar plates. Gram nature of isolates was 

identified by Gram staining method. Sudan black B method was used for the screening of oleaginous 

bacteria.  

4. Production of lipids: Sudan black B positive isolates were inoculated into 20 ml sterile Peptone yeast 

extract (PY) broth and kept it at R.T. for 24 hrs. in a shaking condition. Cell pellets were collected by 

centrifugation from 10 ml of incubated PY broth and inoculated into sterile mineral medium broth for the 

production of lipids.  

5. Extraction of lipids: Cell pellets were collected from 24 hrs inoculated mineral medium and kept it for 

completely get dried for 2-3 days. All dried cell biomass was subjected to total lipid extraction by using 

Bligh and dyer method.  

6. Characterization of lipids by using TLC: The extracted lipids were characterized by using TLC in which 

the sample spotted TLC plates were kept in solvent system n- Hexane: diethyl ether: acetic acid (90:10:2). 

After running the sample with solvent, kept it in iodine vapour.  

7. Characterization of lipids by using FTIR spectroscopy: Secondary lipid characterization of the samples 

is done by using FTIR spectrophotometer (Model- Nicolateis 5) (make- Thermoscientific) at Quality 

solution lab, Navi Mumbai.  

8. Assessment of antioxidant potential of extracted lipids: The antioxidant activity of extracted lipids was 

determined by DPPH assay. The standard with ascorbic acid concentrations (0 ug/ml, 5 ug/ml, 10 ug/ml, 

15 ug/ml, 20 ug/ml) were used. The absorbance was determined at wavelength 517 nm.  

 

Result:  

 

1. Enrichment and isolation of bacteria: The collected soil samples were enriched by using Nutrient 

broth.12 isolated colonies were obtained after streaking loopful samples on Nutrient agar plates from 

enrichment broth.  

 

 
 

 
 

Figure No. 1: Enrichment and isolation of bacteria 
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2. Morphological characterization and screening of oleaginous bacteria:  
Out of 12, 7 colonies were Sudan black B (SB) positive (black centred bacteria when observed under 

microscope).  

 

    
Figure No. 2: Sudan black B staining 
 

3. Production of lipids: Cell pellets were collected by centrifugation of incubated mineral medium and dried 

it.  

  
Figure No. 3: Production of lipids 

 

4. Extraction of lipids: After performing Bligh and dyer the lipids were extracted and present at bottom 

chloroform phase. 

  
Figure No. 4: Dried cell biomass  Figure No. 5: Extracted lipids 

 

5. Characterization of lipids by using TLC: The Rf values 0.76, 0.15, 0.23, 0.30, 0.15, 0.39, 0.84 were 

obtained after performing the TLC. From these values they may be TAG, esters of fatty acids, monoacyl 

glycerol, phospholipids.  

  
Figure No. 6: Results of TLC 
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6. Characterization of lipids by using FTIR:  
Peaks are obtained after characterization of lipid samples by FTIR spectroscopy. Lipid content can be 

identified by peaks related to C-H stretching vibrations at 762.74, 2855-2954 cm-1. C-H bending at 821 cm-

1, CH, C-O stretching at 1130, 1216.13, 1164.25 are present. N-H, O-H stretching at 2975,59, 3353.43, 

3402.95cm-1. All these signals of phospholipids, esters of fatty acids were visible in the spectrum of extracted 

lipids.  

Phosphatidyl ethanolamine, phosphatidyl choline were may be mainly present. 

 

6.1.  

 
A) FTIR result of S1C2 

 

6.2.  

 
B) FTIR result of S2C1 

6.3.  
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C) FTIR result of S2C2 

 

6.4.  

 
D) FTIR result of S2C4 

 

6.5.  

 
E) FTIR result of S3C4 

Figure No. 7: Characterization by using FTIR 

 

7. Assessment of antioxidant potential of extracted lipids: After performing DPPH assay for assessment 

of antioxidant potential, the sample S1C2 and S2C4 has 83.3% and 80% antioxidant activity respectively, 

which is the highest among all samples. The samples S2C2, S1C1, S3C4, S2C1, S3C2 has 36.6%, 23.3%, 

26.6%, 16.6%, 6.6% antioxidant activity respectively. 

 

  
Figure No. 8: Antioxidant activity of lipids 
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DISCUSSION:  

 

Soil samples collected from different locations contain diverse bacterial strains that can produce lipids with 

potential applications in biofuel and biotechnology. Li, S.L. et al. has collected 26 soil samples and found 31 

isolates which compared to this work in which 12 isolates were found from 3 soil samples. Bajwa et al has 

found 15 isolates, out of which 5 were positive for Sudan black B which compared to this work in which 7 

were positive for Sudan black B from 12 isolates. The lipid extraction by Bligh and Dyer method yielded a 

chloroform phase containing the lipids, which were further analysed by thin layer chromatography (TLC) and 

Fourier transform infrared spectroscopy (FTIR). The TLC revealed the presence of different types of lipids, 

such as triacylglycerols (TAG), esters of fatty acids, monoacylglycerols, and phospholipids, based on their Rf 

values. The FTIR confirmed the presence of these lipids by showing characteristic peaks corresponding to the 

functional groups of lipids, such as C-H stretching, C-H bending, C-O stretching, N-H stretching, and O-H 

stretching. The lipid samples also exhibited antioxidant activity, as measured by the DPPH assay, which can 

be attributed to the presence of unsaturated fatty acids and phenolic compounds in the lipids. The samples 

S1C2 and S2C4 showed the highest antioxidant activity, followed by S2C2, S1C1, S3C4, S2C1, and S3C2. 

These results suggest that the bacterial lipids from the soil samples have potential as a renewable source of 

biofuel and as a natural antioxidant agent. Urval, I.J.B.; Ribeiro, B.G.; Aguiar, J.S.; Rufino, R.D.; Converti, 

A.; Sarubbo, L.A has extracted lipids from Bacillus cereus UCP 1615 and antioxidant potential was recorded 

28.45% which is much less compared to the result of this work. 
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