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Abstract   
 

In this study we have investigates the impact of polynomial degree 

selection on data fitting accuracy in analyzing population trends within 

Nashik District. Through a series of figures, it becomes evident that lower-

degree polynomials, including linear and quadratic models, inadequately 

match the dataset's complexity. However, with escalating polynomial 

degrees, a notable improvement in fitting effectiveness emerges. This 

analysis highlights the critical role of selecting an appropriate polynomial 

degree in accurately representing underlying trends. While higher-degree 

polynomials offer improved fitting, the risk of overfitting, especially with 

smaller datasets, necessitates a delicate balance between complexity and 

accuracy. Understanding dataset characteristics is pivotal in determining 

the optimal polynomial degree for effective representation and prediction 

of population trends in Nashik District. 

Keywords:  Polynomial Degree, Data Fitting Accuracy, Population 

Trends, Nashik District,  Overfitting 

 

Introduction: 

 

In numerical analysis, spline interpolation utilizes a particular type of piecewise polynomial, known as a spline, 

as the interpolant. Rather than employing a single high-degree polynomial to fit all values simultaneously, 

spline interpolation employs low-degree polynomials to interpolate small subsets of the values. This method is 

favoured over polynomial interpolation due to its ability to minimize interpolation errors, even with the use of 

low-degree polynomials for the spline. Additionally, spline interpolation circumvents Runge's phenomenon, a 

challenge associated with high-degree polynomials that leads to oscillations between points during 

interpolation. 

 

Literature Review: 
 

Harju employed an FIR polynomial predictor for data with missing samples, comparing its performance with 

a computationally lighter algorithm based on decision-driven recursion in predicting a sinusoidal signal 

corrupted by impulsive and Gaussian noise(Harju, 1997). Ghazali et al. demonstrated the use of a ridge 
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polynomial neural network for forecasting financial time series trends(Ghazali et al., 2006). Hussain et al. 

proposed a novel higher-order pipelined neural network known as the polynomial pipelined neural 

network(Hussain et al., 2008). Zaw and Naing  forecasted rainfall in Myanmar using MPR and MLR models, 

concluding that the MPR model delivered more accurate results(Zaw & Naing, 2009). Bahadori  applied spline 

interpolation for extracting natural gas from water-saturated underground reservoirs(Bahadori, 2011). 

Additionally, Bahadori & Nouri  developed a straightforward model to estimate the critical oil rate for bottom 

water coning in anisotropic and homogeneous formations with the well completed from the top of the 

formation(Bahadori & Nouri, 2012). Physicists often explore complex, nonlinear models with numerous 

unknown or adjustable parameters to interpret experimental data. Ostertagová  utilized a polynomial regression 

model to establish the relationship between strains and drilling, analyzing the data using a computer 

program(Ostertagová, 2012). Zjavka  developed an accurate short-term wind speed forecasting model crucial 

for renewable energy power generation planning, particularly in grid systems(Zjavka, 2015). In 625 AD, Indian 

astronomer and mathematician Brahmagupta introduced a method for second-order interpolation of the sine 

function and later devised a technique for interpolating unequal-interval data(Lavanya & Achireddy, 2016). 

Wu et al.  proposed CryptoNets, a scheme for prediction on encrypted data using neural networks, evaluating 

the expressiveness of PPoly activations and discussing the accuracy-efficiency tradeoff (Wu et al., 2018). 

 

Methodology: 

 

A polynomial with degree n means a linear combination of the term 𝑥𝑖, 𝑖 = 0,1,2, … , 𝑛.  For every set of data 

point there is a unique interpolation polynomial with degree= no. of points -1. From the complicated 

mathematical model or a function f(x) we can get the data points.  If we get an interpolation polynomial the we 

can easily replace the original model that is the function by the interpolation polynomial for the purpose of 

analysis and design. 

We can write the n points { (𝑥1, 𝑝(𝑥1)), (𝑥2, 𝑝(𝑥2)),… , (𝑥𝑛, 𝑝(𝑥𝑛))} in the form of polynomial of degree (n-

1). 

𝑝(𝑥)  =  𝛽𝑛−1𝑥
𝑛−1  + ⋯ + 𝛽2𝑥

2  + 𝛽1𝑥 + 𝛽0  

Further this polynomial can be expressed as 𝐴𝑋 = 𝐵. A is the 𝑛 × 𝑛 matrix which is known as Vandermonde 

matrix, X and B is 𝑛 ×1 matrix given as  

𝐴 =

[
 
 
 
𝑥1

𝑛−1 ⋯ 𝑥1 1

𝑥2
𝑛−1 … 𝑥2 1
⋮ ⋱ ⋮ ⋮

𝑥𝑛
𝑛−1 ⋯ 𝑥𝑛 1]

 
 
 
, 𝑋 =

[
 
 
 
 
𝛽𝑛−1

𝛽𝑛−2

⋮
𝛽1

𝛽0 ]
 
 
 
 

 , 𝐵 = [

𝑝(𝑥1)
𝑝(𝑥2)

⋮
𝑝(𝑥𝑛)

] 

 

The solution for accurate interpolation in systems with roundoff errors involves understanding the trade-offs 

between high-order interpolating polynomials and their potential pitfalls. 

When dealing with large datasets, using high-order interpolating polynomials might lead to overfitting. Using 

a single high-degree polynomial to interpolate between points can pass exactly through these points but may 

not generalize well between them, especially if the number of points is limited. 

To ease this, employing multiple low-order polynomials for piecewise interpolation—known as spline 

interpolation—can yield better results. Each polynomial within this approach is valid within an interval 

between two or more points and maintains the same degree but with different coefficients. 

In spline interpolation, the points where adjacent splines meet is called knots. At these knots, the derivative 

may not be continuous, leading to abrupt changes in slope. To ensure a smoother interpolation function, higher-

order polynomials can be used to enforce continuity of the second derivative at each knot point. This helps to 

improve the smoothness of the underlying function being interpolated. 

The key elements of the spline method revolve around determining the lowest-order polynomial spline 𝑠𝑖   that 

passes through two adjacent interpolating points (𝑥𝑖 , 𝑓(𝑥𝑖)) and (𝑥𝑖+1, 𝑓(𝑥𝑖+1)). This spline should satisfy 

specific conditions:  

Interpolation: The spline 𝑠𝑖 must interpolate the given points  (𝑥𝑖 , 𝑓(𝑥𝑖)) and (𝑥𝑖+1, 𝑓(𝑥𝑖+1)). 

Continuity of First Derivative: The slope (first derivative) of 𝑠𝑖  at 𝑥𝑖  should be equal to the slope of the 

previous spline 𝑠𝑖−1  at  𝑥𝑖   
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Continuity of Second Derivative: The concavity (second derivative) of  𝑠𝑖  at  𝑥𝑖  must be the same as that of 

the previous spline  𝑠𝑖−1    at   𝑥𝑖. 

These conditions result in four constraints that need to be satisfied to determine the characteristics of the spline 

𝑠𝑖  accurately. These constraints ensure a smooth and continuous transition between adjacent splines while 

maintaining the desired properties at the interpolation points and providing a coherent overall interpolation 

function. 

 

𝑠𝑖(𝑥𝑖) = 𝑓(𝑥𝑖) 

𝑠𝑖(𝑥𝑖+1) = 𝑓(𝑥𝑖+1) 

𝑠′𝑖(𝑥𝑖) = 𝑠′𝑖−1(𝑥𝑖) 

𝑠𝑖
′′(𝑥𝑖) = 𝑠𝑖−1

′′ (𝑥𝑖) 

Where ′ denotes the first derivative w.r.t. x and ′′ denotes the second derivative w.r.t. x.  

 

The polynomial that fulfils these four constraints necessitates a minimum of four degrees of freedom, typically 

corresponding to a 3rd-order polynomial, commonly referred to as a cubic polynomial. Therefore, 𝑠𝑖 has the 

form, 

𝑠𝑖(𝑥) = 𝛽𝑖,3𝑥
3 + 𝛽𝑖,2𝑥

2 + 𝛽𝑖,1𝑥 + 𝛽𝑖,0     ∀𝑖 = 0,1,2,…𝑛 − 1 

We need 𝑛 − 1 splines to accommodate and interpolate 𝑛 data points. 

 

In order to calculate all 4(𝑛 − 1) spline coefficients, solving 4(𝑛 − 1)  equations is necessary. Specifically, when 

dealing with cubic splines involving three data points  ( 𝑥₁, 𝑥₂, 𝑥₃), we determine that 2 cubic splines are required 

for these three points. 

After solving we get the following system.  

[
 
 
 
 
 
 
 
 
𝑥1

3 𝑥1
2 𝑥1 1 0 0 0 0

𝑥2
3 𝑥2

2 𝑥2 1 0 0 0 0

0 0 0 0 𝑥2
3 𝑥2

2 𝑥2 1

0 0 0 0 𝑥3
3 𝑥3

2 𝑥3 1

3𝑥2
2 2𝑥2 1 0 −3𝑥2

2 −2𝑥2 −1 0
3𝑥2 1 0 0 −3𝑥2 −1 0 0

3𝑥1
2 2𝑥1 1 0 0 0 0 0

0 0 0 0 3𝑥3
2 2𝑥3 1 0]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛽1,3

𝛽1,2

𝛽1,1

𝛽1,0

𝛽2,3

𝛽2,2

𝛽2,1

𝛽2,0]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑝(𝑥1)
𝑝(𝑥2)
𝑝(𝑥2)
𝑝(𝑥3)

0
0

𝑝′(𝑥1)

𝑝′(𝑥3)]
 
 
 
 
 
 
 
 

 

For the spline polynomial interpolation, we have used MATLAB. We have collected the data from the 

government website (Census Tables | Government of India, n.d.). 

 

Results and Conclusion:  

 

From Figure 1, its clear that linear polynomials don't perfectly match the data. Similarly, Figure 2 illustrates 

that degree 2 polynomials also fall short of perfect alignment with the data. As the polynomial degree increases 

(Figure 3 to Figure 8), the data fit into the model more effectively. In Figure 10, it is noticeable that the degree 

1 polynomial is inadequate for fitting, while there is a slight disparity between the fittings of degree 2 and 3 

polynomials. Figure 10 further emphasizes that as the degree of the polynomial increases, the accuracy of the 

fitting also improves. As compared to the degree 1,2,3 and 4 polynomial the degree 4 polynomial i.e. quartic 

polynomial gave the best approximation for the data. Linear and quadratic polynomial not gave the perfect 

approximation of the data. By using quartic polynomial, we can get more reliable predictions as compared to 

linear, quadratic polynomial. This example shows that extrapolating data using polynomials of even modest 

degree is dicey and defective. 
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                  Figure 1                                                                                                                Figure 2 

 

 
Figure 3                                                                                                            Figure 4 

 
Figure 5                                                                                                           Figure 6 

 
Figure 7                                                                                               Figure 8 
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Figure 9                                                                                                     Figure 10 

Conclusion 

 

In conclusion, the analysis of polynomial fitting reveals that the choice of polynomial degree significantly 

impacts the accuracy of fitting data. Lower-degree polynomials, such as linear or quadratic, may not capture 

the intricacies of the data adequately, resulting in imperfect fits. As the polynomial degree increases, the models 

tend to better approximate the data, reflecting improved accuracy in fitting. However, higher-degree 

polynomials, while providing better fitting, may also risk overfitting the data, particularly with smaller datasets, 

leading to reduced generalization ability.  Therefore, selecting an appropriate polynomial degree requires a 

careful balance between capturing the nuances of the data and avoiding excessive complexity. It is essential to 

assess the trade-offs between model complexity and accuracy to determine the most suitable polynomial degree 

for effectively representing and predicting the underlying patterns within the dataset. Additionally, considering 

the context, size, and nature of the dataset is crucial in making informed decisions about the polynomial degree 

for optimal fitting and predictive performance. 
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